summaryrefslogtreecommitdiff
path: root/crypto/ecc.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/ecc.c')
-rw-r--r--crypto/ecc.c856
1 files changed, 726 insertions, 130 deletions
diff --git a/crypto/ecc.c b/crypto/ecc.c
index ed1237115066..6cf9a945fc6c 100644
--- a/crypto/ecc.c
+++ b/crypto/ecc.c
@@ -1,6 +1,6 @@
/*
- * Copyright (c) 2013, Kenneth MacKay
- * All rights reserved.
+ * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
+ * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
@@ -24,14 +24,18 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
+#include <crypto/ecc_curve.h>
+#include <linux/module.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/swab.h>
#include <linux/fips.h>
#include <crypto/ecdh.h>
#include <crypto/rng.h>
+#include <crypto/internal/ecc.h>
+#include <linux/unaligned.h>
+#include <linux/ratelimit.h>
-#include "ecc.h"
#include "ecc_curve_defs.h"
typedef struct {
@@ -39,7 +43,14 @@ typedef struct {
u64 m_high;
} uint128_t;
-static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
+/* Returns curv25519 curve param */
+const struct ecc_curve *ecc_get_curve25519(void)
+{
+ return &ecc_25519;
+}
+EXPORT_SYMBOL(ecc_get_curve25519);
+
+const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
{
switch (curve_id) {
/* In FIPS mode only allow P256 and higher */
@@ -47,10 +58,37 @@ static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
return fips_enabled ? NULL : &nist_p192;
case ECC_CURVE_NIST_P256:
return &nist_p256;
+ case ECC_CURVE_NIST_P384:
+ return &nist_p384;
+ case ECC_CURVE_NIST_P521:
+ return &nist_p521;
default:
return NULL;
}
}
+EXPORT_SYMBOL(ecc_get_curve);
+
+void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
+ u64 *out, unsigned int ndigits)
+{
+ int diff = ndigits - DIV_ROUND_UP_POW2(nbytes, sizeof(u64));
+ unsigned int o = nbytes & 7;
+ __be64 msd = 0;
+
+ /* diff > 0: not enough input bytes: set most significant digits to 0 */
+ if (diff > 0) {
+ ndigits -= diff;
+ memset(&out[ndigits], 0, diff * sizeof(u64));
+ }
+
+ if (o) {
+ memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
+ out[--ndigits] = be64_to_cpu(msd);
+ in += o;
+ }
+ ecc_swap_digits(in, out, ndigits);
+}
+EXPORT_SYMBOL(ecc_digits_from_bytes);
static u64 *ecc_alloc_digits_space(unsigned int ndigits)
{
@@ -64,10 +102,10 @@ static u64 *ecc_alloc_digits_space(unsigned int ndigits)
static void ecc_free_digits_space(u64 *space)
{
- kzfree(space);
+ kfree_sensitive(space);
}
-static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
+struct ecc_point *ecc_alloc_point(unsigned int ndigits)
{
struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
@@ -92,16 +130,18 @@ err_alloc_x:
kfree(p);
return NULL;
}
+EXPORT_SYMBOL(ecc_alloc_point);
-static void ecc_free_point(struct ecc_point *p)
+void ecc_free_point(struct ecc_point *p)
{
if (!p)
return;
- kzfree(p->x);
- kzfree(p->y);
- kzfree(p);
+ kfree_sensitive(p->x);
+ kfree_sensitive(p->y);
+ kfree_sensitive(p);
}
+EXPORT_SYMBOL(ecc_free_point);
static void vli_clear(u64 *vli, unsigned int ndigits)
{
@@ -112,7 +152,7 @@ static void vli_clear(u64 *vli, unsigned int ndigits)
}
/* Returns true if vli == 0, false otherwise. */
-static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
+bool vli_is_zero(const u64 *vli, unsigned int ndigits)
{
int i;
@@ -123,13 +163,19 @@ static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
return true;
}
+EXPORT_SYMBOL(vli_is_zero);
-/* Returns nonzero if bit bit of vli is set. */
+/* Returns nonzero if bit of vli is set. */
static u64 vli_test_bit(const u64 *vli, unsigned int bit)
{
return (vli[bit / 64] & ((u64)1 << (bit % 64)));
}
+static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
+{
+ return vli_test_bit(vli, ndigits * 64 - 1);
+}
+
/* Counts the number of 64-bit "digits" in vli. */
static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
{
@@ -145,7 +191,7 @@ static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
}
/* Counts the number of bits required for vli. */
-static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
+unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
{
unsigned int i, num_digits;
u64 digit;
@@ -160,6 +206,28 @@ static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
return ((num_digits - 1) * 64 + i);
}
+EXPORT_SYMBOL(vli_num_bits);
+
+/* Set dest from unaligned bit string src. */
+void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
+{
+ int i;
+ const u64 *from = src;
+
+ for (i = 0; i < ndigits; i++)
+ dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
+}
+EXPORT_SYMBOL(vli_from_be64);
+
+void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
+{
+ int i;
+ const u64 *from = src;
+
+ for (i = 0; i < ndigits; i++)
+ dest[i] = get_unaligned_le64(&from[i]);
+}
+EXPORT_SYMBOL(vli_from_le64);
/* Sets dest = src. */
static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
@@ -171,7 +239,7 @@ static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
}
/* Returns sign of left - right. */
-static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
+int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
{
int i;
@@ -184,6 +252,7 @@ static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
return 0;
}
+EXPORT_SYMBOL(vli_cmp);
/* Computes result = in << c, returning carry. Can modify in place
* (if result == in). 0 < shift < 64.
@@ -239,8 +308,30 @@ static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
return carry;
}
+/* Computes result = left + right, returning carry. Can modify in place. */
+static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
+ unsigned int ndigits)
+{
+ u64 carry = right;
+ int i;
+
+ for (i = 0; i < ndigits; i++) {
+ u64 sum;
+
+ sum = left[i] + carry;
+ if (sum != left[i])
+ carry = (sum < left[i]);
+ else
+ carry = !!carry;
+
+ result[i] = sum;
+ }
+
+ return carry;
+}
+
/* Computes result = left - right, returning borrow. Can modify in place. */
-static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
+u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
unsigned int ndigits)
{
u64 borrow = 0;
@@ -258,9 +349,37 @@ static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
return borrow;
}
+EXPORT_SYMBOL(vli_sub);
+
+/* Computes result = left - right, returning borrow. Can modify in place. */
+static u64 vli_usub(u64 *result, const u64 *left, u64 right,
+ unsigned int ndigits)
+{
+ u64 borrow = right;
+ int i;
+
+ for (i = 0; i < ndigits; i++) {
+ u64 diff;
+
+ diff = left[i] - borrow;
+ if (diff != left[i])
+ borrow = (diff > left[i]);
+
+ result[i] = diff;
+ }
+
+ return borrow;
+}
static uint128_t mul_64_64(u64 left, u64 right)
{
+ uint128_t result;
+#if defined(CONFIG_ARCH_SUPPORTS_INT128)
+ unsigned __int128 m = (unsigned __int128)left * right;
+
+ result.m_low = m;
+ result.m_high = m >> 64;
+#else
u64 a0 = left & 0xffffffffull;
u64 a1 = left >> 32;
u64 b0 = right & 0xffffffffull;
@@ -269,7 +388,6 @@ static uint128_t mul_64_64(u64 left, u64 right)
u64 m1 = a0 * b1;
u64 m2 = a1 * b0;
u64 m3 = a1 * b1;
- uint128_t result;
m2 += (m0 >> 32);
m2 += m1;
@@ -280,7 +398,7 @@ static uint128_t mul_64_64(u64 left, u64 right)
result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
result.m_high = m3 + (m2 >> 32);
-
+#endif
return result;
}
@@ -330,6 +448,28 @@ static void vli_mult(u64 *result, const u64 *left, const u64 *right,
result[ndigits * 2 - 1] = r01.m_low;
}
+/* Compute product = left * right, for a small right value. */
+static void vli_umult(u64 *result, const u64 *left, u32 right,
+ unsigned int ndigits)
+{
+ uint128_t r01 = { 0 };
+ unsigned int k;
+
+ for (k = 0; k < ndigits; k++) {
+ uint128_t product;
+
+ product = mul_64_64(left[k], right);
+ r01 = add_128_128(r01, product);
+ /* no carry */
+ result[k] = r01.m_low;
+ r01.m_low = r01.m_high;
+ r01.m_high = 0;
+ }
+ result[k] = r01.m_low;
+ for (++k; k < ndigits * 2; k++)
+ result[k] = 0;
+}
+
static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
{
uint128_t r01 = { 0, 0 };
@@ -402,6 +542,170 @@ static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
vli_add(result, result, mod, ndigits);
}
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^k-c, for small c (note the minus sign)
+ *
+ * References:
+ * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
+ * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
+ * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
+ */
+static void vli_mmod_special(u64 *result, const u64 *product,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 c = -mod[0];
+ u64 t[ECC_MAX_DIGITS * 2];
+ u64 r[ECC_MAX_DIGITS * 2];
+
+ vli_set(r, product, ndigits * 2);
+ while (!vli_is_zero(r + ndigits, ndigits)) {
+ vli_umult(t, r + ndigits, c, ndigits);
+ vli_clear(r + ndigits, ndigits);
+ vli_add(r, r, t, ndigits * 2);
+ }
+ vli_set(t, mod, ndigits);
+ vli_clear(t + ndigits, ndigits);
+ while (vli_cmp(r, t, ndigits * 2) >= 0)
+ vli_sub(r, r, t, ndigits * 2);
+ vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
+ * where k-1 does not fit into qword boundary by -1 bit (such as 255).
+
+ * References (loosely based on):
+ * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
+ * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
+ * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
+ *
+ * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
+ * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
+ * Algorithm 10.25 Fast reduction for special form moduli
+ */
+static void vli_mmod_special2(u64 *result, const u64 *product,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 c2 = mod[0] * 2;
+ u64 q[ECC_MAX_DIGITS];
+ u64 r[ECC_MAX_DIGITS * 2];
+ u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
+ int carry; /* last bit that doesn't fit into q */
+ int i;
+
+ vli_set(m, mod, ndigits);
+ vli_clear(m + ndigits, ndigits);
+
+ vli_set(r, product, ndigits);
+ /* q and carry are top bits */
+ vli_set(q, product + ndigits, ndigits);
+ vli_clear(r + ndigits, ndigits);
+ carry = vli_is_negative(r, ndigits);
+ if (carry)
+ r[ndigits - 1] &= (1ull << 63) - 1;
+ for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
+ u64 qc[ECC_MAX_DIGITS * 2];
+
+ vli_umult(qc, q, c2, ndigits);
+ if (carry)
+ vli_uadd(qc, qc, mod[0], ndigits * 2);
+ vli_set(q, qc + ndigits, ndigits);
+ vli_clear(qc + ndigits, ndigits);
+ carry = vli_is_negative(qc, ndigits);
+ if (carry)
+ qc[ndigits - 1] &= (1ull << 63) - 1;
+ if (i & 1)
+ vli_sub(r, r, qc, ndigits * 2);
+ else
+ vli_add(r, r, qc, ndigits * 2);
+ }
+ while (vli_is_negative(r, ndigits * 2))
+ vli_add(r, r, m, ndigits * 2);
+ while (vli_cmp(r, m, ndigits * 2) >= 0)
+ vli_sub(r, r, m, ndigits * 2);
+
+ vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod, where product is 2N words long.
+ * Reference: Ken MacKay's micro-ecc.
+ * Currently only designed to work for curve_p or curve_n.
+ */
+static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
+ unsigned int ndigits)
+{
+ u64 mod_m[2 * ECC_MAX_DIGITS];
+ u64 tmp[2 * ECC_MAX_DIGITS];
+ u64 *v[2] = { tmp, product };
+ u64 carry = 0;
+ unsigned int i;
+ /* Shift mod so its highest set bit is at the maximum position. */
+ int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
+ int word_shift = shift / 64;
+ int bit_shift = shift % 64;
+
+ vli_clear(mod_m, word_shift);
+ if (bit_shift > 0) {
+ for (i = 0; i < ndigits; ++i) {
+ mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
+ carry = mod[i] >> (64 - bit_shift);
+ }
+ } else
+ vli_set(mod_m + word_shift, mod, ndigits);
+
+ for (i = 1; shift >= 0; --shift) {
+ u64 borrow = 0;
+ unsigned int j;
+
+ for (j = 0; j < ndigits * 2; ++j) {
+ u64 diff = v[i][j] - mod_m[j] - borrow;
+
+ if (diff != v[i][j])
+ borrow = (diff > v[i][j]);
+ v[1 - i][j] = diff;
+ }
+ i = !(i ^ borrow); /* Swap the index if there was no borrow */
+ vli_rshift1(mod_m, ndigits);
+ mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
+ vli_rshift1(mod_m + ndigits, ndigits);
+ }
+ vli_set(result, v[i], ndigits);
+}
+
+/* Computes result = product % mod using Barrett's reduction with precomputed
+ * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
+ * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
+ * boundary.
+ *
+ * Reference:
+ * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
+ * 2.4.1 Barrett's algorithm. Algorithm 2.5.
+ */
+static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
+ unsigned int ndigits)
+{
+ u64 q[ECC_MAX_DIGITS * 2];
+ u64 r[ECC_MAX_DIGITS * 2];
+ const u64 *mu = mod + ndigits;
+
+ vli_mult(q, product + ndigits, mu, ndigits);
+ if (mu[ndigits])
+ vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
+ vli_mult(r, mod, q + ndigits, ndigits);
+ vli_sub(r, product, r, ndigits * 2);
+ while (!vli_is_zero(r + ndigits, ndigits) ||
+ vli_cmp(r, mod, ndigits) != -1) {
+ u64 carry;
+
+ carry = vli_sub(r, r, mod, ndigits);
+ vli_usub(r + ndigits, r + ndigits, carry, ndigits);
+ }
+ vli_set(result, r, ndigits);
+}
+
/* Computes p_result = p_product % curve_p.
* See algorithm 5 and 6 from
* http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
@@ -409,7 +713,7 @@ static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
static void vli_mmod_fast_192(u64 *result, const u64 *product,
const u64 *curve_prime, u64 *tmp)
{
- const unsigned int ndigits = 3;
+ const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS;
int carry;
vli_set(result, product, ndigits);
@@ -437,7 +741,7 @@ static void vli_mmod_fast_256(u64 *result, const u64 *product,
const u64 *curve_prime, u64 *tmp)
{
int carry;
- const unsigned int ndigits = 4;
+ const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS;
/* t */
vli_set(result, product, ndigits);
@@ -509,47 +813,222 @@ static void vli_mmod_fast_256(u64 *result, const u64 *product,
}
}
+#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
+#define AND64H(x64) (x64 & 0xffFFffFF00000000ull)
+#define AND64L(x64) (x64 & 0x00000000ffFFffFFull)
+
/* Computes result = product % curve_prime
- * from http://www.nsa.gov/ia/_files/nist-routines.pdf
-*/
+ * from "Mathematical routines for the NIST prime elliptic curves"
+ */
+static void vli_mmod_fast_384(u64 *result, const u64 *product,
+ const u64 *curve_prime, u64 *tmp)
+{
+ int carry;
+ const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS;
+
+ /* t */
+ vli_set(result, product, ndigits);
+
+ /* s1 */
+ tmp[0] = 0; // 0 || 0
+ tmp[1] = 0; // 0 || 0
+ tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
+ tmp[3] = product[11]>>32; // 0 ||a23
+ tmp[4] = 0; // 0 || 0
+ tmp[5] = 0; // 0 || 0
+ carry = vli_lshift(tmp, tmp, 1, ndigits);
+ carry += vli_add(result, result, tmp, ndigits);
+
+ /* s2 */
+ tmp[0] = product[6]; //a13||a12
+ tmp[1] = product[7]; //a15||a14
+ tmp[2] = product[8]; //a17||a16
+ tmp[3] = product[9]; //a19||a18
+ tmp[4] = product[10]; //a21||a20
+ tmp[5] = product[11]; //a23||a22
+ carry += vli_add(result, result, tmp, ndigits);
+
+ /* s3 */
+ tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
+ tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
+ tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13
+ tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
+ tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
+ tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
+ carry += vli_add(result, result, tmp, ndigits);
+
+ /* s4 */
+ tmp[0] = AND64H(product[11]); //a23|| 0
+ tmp[1] = (product[10]<<32); //a20|| 0
+ tmp[2] = product[6]; //a13||a12
+ tmp[3] = product[7]; //a15||a14
+ tmp[4] = product[8]; //a17||a16
+ tmp[5] = product[9]; //a19||a18
+ carry += vli_add(result, result, tmp, ndigits);
+
+ /* s5 */
+ tmp[0] = 0; // 0|| 0
+ tmp[1] = 0; // 0|| 0
+ tmp[2] = product[10]; //a21||a20
+ tmp[3] = product[11]; //a23||a22
+ tmp[4] = 0; // 0|| 0
+ tmp[5] = 0; // 0|| 0
+ carry += vli_add(result, result, tmp, ndigits);
+
+ /* s6 */
+ tmp[0] = AND64L(product[10]); // 0 ||a20
+ tmp[1] = AND64H(product[10]); //a21|| 0
+ tmp[2] = product[11]; //a23||a22
+ tmp[3] = 0; // 0 || 0
+ tmp[4] = 0; // 0 || 0
+ tmp[5] = 0; // 0 || 0
+ carry += vli_add(result, result, tmp, ndigits);
+
+ /* d1 */
+ tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
+ tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13
+ tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
+ tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
+ tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
+ tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
+ carry -= vli_sub(result, result, tmp, ndigits);
+
+ /* d2 */
+ tmp[0] = (product[10]<<32); //a20|| 0
+ tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
+ tmp[2] = (product[11]>>32); // 0 ||a23
+ tmp[3] = 0; // 0 || 0
+ tmp[4] = 0; // 0 || 0
+ tmp[5] = 0; // 0 || 0
+ carry -= vli_sub(result, result, tmp, ndigits);
+
+ /* d3 */
+ tmp[0] = 0; // 0 || 0
+ tmp[1] = AND64H(product[11]); //a23|| 0
+ tmp[2] = product[11]>>32; // 0 ||a23
+ tmp[3] = 0; // 0 || 0
+ tmp[4] = 0; // 0 || 0
+ tmp[5] = 0; // 0 || 0
+ carry -= vli_sub(result, result, tmp, ndigits);
+
+ if (carry < 0) {
+ do {
+ carry += vli_add(result, result, curve_prime, ndigits);
+ } while (carry < 0);
+ } else {
+ while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
+ carry -= vli_sub(result, result, curve_prime, ndigits);
+ }
+
+}
+
+#undef SL32OR32
+#undef AND64H
+#undef AND64L
+
+/*
+ * Computes result = product % curve_prime
+ * from "Recommendations for Discrete Logarithm-Based Cryptography:
+ * Elliptic Curve Domain Parameters" section G.1.4
+ */
+static void vli_mmod_fast_521(u64 *result, const u64 *product,
+ const u64 *curve_prime, u64 *tmp)
+{
+ const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS;
+ size_t i;
+
+ /* Initialize result with lowest 521 bits from product */
+ vli_set(result, product, ndigits);
+ result[8] &= 0x1ff;
+
+ for (i = 0; i < ndigits; i++)
+ tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55);
+ tmp[8] &= 0x1ff;
+
+ vli_mod_add(result, result, tmp, curve_prime, ndigits);
+}
+
+/* Computes result = product % curve_prime for different curve_primes.
+ *
+ * Note that curve_primes are distinguished just by heuristic check and
+ * not by complete conformance check.
+ */
static bool vli_mmod_fast(u64 *result, u64 *product,
- const u64 *curve_prime, unsigned int ndigits)
+ const struct ecc_curve *curve)
{
u64 tmp[2 * ECC_MAX_DIGITS];
+ const u64 *curve_prime = curve->p;
+ const unsigned int ndigits = curve->g.ndigits;
+
+ /* All NIST curves have name prefix 'nist_' */
+ if (strncmp(curve->name, "nist_", 5) != 0) {
+ /* Try to handle Pseudo-Marsenne primes. */
+ if (curve_prime[ndigits - 1] == -1ull) {
+ vli_mmod_special(result, product, curve_prime,
+ ndigits);
+ return true;
+ } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
+ curve_prime[ndigits - 2] == 0) {
+ vli_mmod_special2(result, product, curve_prime,
+ ndigits);
+ return true;
+ }
+ vli_mmod_barrett(result, product, curve_prime, ndigits);
+ return true;
+ }
switch (ndigits) {
- case 3:
+ case ECC_CURVE_NIST_P192_DIGITS:
vli_mmod_fast_192(result, product, curve_prime, tmp);
break;
- case 4:
+ case ECC_CURVE_NIST_P256_DIGITS:
vli_mmod_fast_256(result, product, curve_prime, tmp);
break;
+ case ECC_CURVE_NIST_P384_DIGITS:
+ vli_mmod_fast_384(result, product, curve_prime, tmp);
+ break;
+ case ECC_CURVE_NIST_P521_DIGITS:
+ vli_mmod_fast_521(result, product, curve_prime, tmp);
+ break;
default:
- pr_err("unsupports digits size!\n");
+ pr_err_ratelimited("ecc: unsupported digits size!\n");
return false;
}
return true;
}
+/* Computes result = (left * right) % mod.
+ * Assumes that mod is big enough curve order.
+ */
+void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 product[ECC_MAX_DIGITS * 2];
+
+ vli_mult(product, left, right, ndigits);
+ vli_mmod_slow(result, product, mod, ndigits);
+}
+EXPORT_SYMBOL(vli_mod_mult_slow);
+
/* Computes result = (left * right) % curve_prime. */
static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
- const u64 *curve_prime, unsigned int ndigits)
+ const struct ecc_curve *curve)
{
u64 product[2 * ECC_MAX_DIGITS];
- vli_mult(product, left, right, ndigits);
- vli_mmod_fast(result, product, curve_prime, ndigits);
+ vli_mult(product, left, right, curve->g.ndigits);
+ vli_mmod_fast(result, product, curve);
}
/* Computes result = left^2 % curve_prime. */
static void vli_mod_square_fast(u64 *result, const u64 *left,
- const u64 *curve_prime, unsigned int ndigits)
+ const struct ecc_curve *curve)
{
u64 product[2 * ECC_MAX_DIGITS];
- vli_square(product, left, ndigits);
- vli_mmod_fast(result, product, curve_prime, ndigits);
+ vli_square(product, left, curve->g.ndigits);
+ vli_mmod_fast(result, product, curve);
}
#define EVEN(vli) (!(vli[0] & 1))
@@ -557,7 +1036,7 @@ static void vli_mod_square_fast(u64 *result, const u64 *left,
* See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
* https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
*/
-static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
+void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
unsigned int ndigits)
{
u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
@@ -630,41 +1109,45 @@ static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
vli_set(result, u, ndigits);
}
+EXPORT_SYMBOL(vli_mod_inv);
/* ------ Point operations ------ */
/* Returns true if p_point is the point at infinity, false otherwise. */
-static bool ecc_point_is_zero(const struct ecc_point *point)
+bool ecc_point_is_zero(const struct ecc_point *point)
{
return (vli_is_zero(point->x, point->ndigits) &&
vli_is_zero(point->y, point->ndigits));
}
+EXPORT_SYMBOL(ecc_point_is_zero);
/* Point multiplication algorithm using Montgomery's ladder with co-Z
- * coordinates. From http://eprint.iacr.org/2011/338.pdf
+ * coordinates. From https://eprint.iacr.org/2011/338.pdf
*/
/* Double in place */
static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
- u64 *curve_prime, unsigned int ndigits)
+ const struct ecc_curve *curve)
{
/* t1 = x, t2 = y, t3 = z */
u64 t4[ECC_MAX_DIGITS];
u64 t5[ECC_MAX_DIGITS];
+ const u64 *curve_prime = curve->p;
+ const unsigned int ndigits = curve->g.ndigits;
if (vli_is_zero(z1, ndigits))
return;
/* t4 = y1^2 */
- vli_mod_square_fast(t4, y1, curve_prime, ndigits);
+ vli_mod_square_fast(t4, y1, curve);
/* t5 = x1*y1^2 = A */
- vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
+ vli_mod_mult_fast(t5, x1, t4, curve);
/* t4 = y1^4 */
- vli_mod_square_fast(t4, t4, curve_prime, ndigits);
+ vli_mod_square_fast(t4, t4, curve);
/* t2 = y1*z1 = z3 */
- vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
+ vli_mod_mult_fast(y1, y1, z1, curve);
/* t3 = z1^2 */
- vli_mod_square_fast(z1, z1, curve_prime, ndigits);
+ vli_mod_square_fast(z1, z1, curve);
/* t1 = x1 + z1^2 */
vli_mod_add(x1, x1, z1, curve_prime, ndigits);
@@ -673,7 +1156,7 @@ static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
/* t3 = x1 - z1^2 */
vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
/* t1 = x1^2 - z1^4 */
- vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
+ vli_mod_mult_fast(x1, x1, z1, curve);
/* t3 = 2*(x1^2 - z1^4) */
vli_mod_add(z1, x1, x1, curve_prime, ndigits);
@@ -690,7 +1173,7 @@ static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
/* t1 = 3/2*(x1^2 - z1^4) = B */
/* t3 = B^2 */
- vli_mod_square_fast(z1, x1, curve_prime, ndigits);
+ vli_mod_square_fast(z1, x1, curve);
/* t3 = B^2 - A */
vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
/* t3 = B^2 - 2A = x3 */
@@ -698,7 +1181,7 @@ static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
/* t5 = A - x3 */
vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
/* t1 = B * (A - x3) */
- vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
+ vli_mod_mult_fast(x1, x1, t5, curve);
/* t4 = B * (A - x3) - y1^4 = y3 */
vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
@@ -708,23 +1191,22 @@ static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
}
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
-static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
- unsigned int ndigits)
+static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
{
u64 t1[ECC_MAX_DIGITS];
- vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */
- vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
- vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */
- vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
+ vli_mod_square_fast(t1, z, curve); /* z^2 */
+ vli_mod_mult_fast(x1, x1, t1, curve); /* x1 * z^2 */
+ vli_mod_mult_fast(t1, t1, z, curve); /* z^3 */
+ vli_mod_mult_fast(y1, y1, t1, curve); /* y1 * z^3 */
}
/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
- u64 *p_initial_z, u64 *curve_prime,
- unsigned int ndigits)
+ u64 *p_initial_z, const struct ecc_curve *curve)
{
u64 z[ECC_MAX_DIGITS];
+ const unsigned int ndigits = curve->g.ndigits;
vli_set(x2, x1, ndigits);
vli_set(y2, y1, ndigits);
@@ -735,35 +1217,37 @@ static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
if (p_initial_z)
vli_set(z, p_initial_z, ndigits);
- apply_z(x1, y1, z, curve_prime, ndigits);
+ apply_z(x1, y1, z, curve);
- ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
+ ecc_point_double_jacobian(x1, y1, z, curve);
- apply_z(x2, y2, z, curve_prime, ndigits);
+ apply_z(x2, y2, z, curve);
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
* Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
* or P => P', Q => P + Q
*/
-static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
- unsigned int ndigits)
+static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
+ const struct ecc_curve *curve)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
u64 t5[ECC_MAX_DIGITS];
+ const u64 *curve_prime = curve->p;
+ const unsigned int ndigits = curve->g.ndigits;
/* t5 = x2 - x1 */
vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
/* t5 = (x2 - x1)^2 = A */
- vli_mod_square_fast(t5, t5, curve_prime, ndigits);
+ vli_mod_square_fast(t5, t5, curve);
/* t1 = x1*A = B */
- vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
+ vli_mod_mult_fast(x1, x1, t5, curve);
/* t3 = x2*A = C */
- vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
+ vli_mod_mult_fast(x2, x2, t5, curve);
/* t4 = y2 - y1 */
vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
/* t5 = (y2 - y1)^2 = D */
- vli_mod_square_fast(t5, y2, curve_prime, ndigits);
+ vli_mod_square_fast(t5, y2, curve);
/* t5 = D - B */
vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
@@ -772,11 +1256,11 @@ static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
/* t3 = C - B */
vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
/* t2 = y1*(C - B) */
- vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
+ vli_mod_mult_fast(y1, y1, x2, curve);
/* t3 = B - x3 */
vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
/* t4 = (y2 - y1)*(B - x3) */
- vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
+ vli_mod_mult_fast(y2, y2, x2, curve);
/* t4 = y3 */
vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
@@ -787,22 +1271,24 @@ static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
* Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
* or P => P - Q, Q => P + Q
*/
-static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
- unsigned int ndigits)
+static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
+ const struct ecc_curve *curve)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
u64 t5[ECC_MAX_DIGITS];
u64 t6[ECC_MAX_DIGITS];
u64 t7[ECC_MAX_DIGITS];
+ const u64 *curve_prime = curve->p;
+ const unsigned int ndigits = curve->g.ndigits;
/* t5 = x2 - x1 */
vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
/* t5 = (x2 - x1)^2 = A */
- vli_mod_square_fast(t5, t5, curve_prime, ndigits);
+ vli_mod_square_fast(t5, t5, curve);
/* t1 = x1*A = B */
- vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
+ vli_mod_mult_fast(x1, x1, t5, curve);
/* t3 = x2*A = C */
- vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
+ vli_mod_mult_fast(x2, x2, t5, curve);
/* t4 = y2 + y1 */
vli_mod_add(t5, y2, y1, curve_prime, ndigits);
/* t4 = y2 - y1 */
@@ -811,29 +1297,29 @@ static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
/* t6 = C - B */
vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
/* t2 = y1 * (C - B) */
- vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
+ vli_mod_mult_fast(y1, y1, t6, curve);
/* t6 = B + C */
vli_mod_add(t6, x1, x2, curve_prime, ndigits);
/* t3 = (y2 - y1)^2 */
- vli_mod_square_fast(x2, y2, curve_prime, ndigits);
+ vli_mod_square_fast(x2, y2, curve);
/* t3 = x3 */
vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
/* t7 = B - x3 */
vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
/* t4 = (y2 - y1)*(B - x3) */
- vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
+ vli_mod_mult_fast(y2, y2, t7, curve);
/* t4 = y3 */
vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
/* t7 = (y2 + y1)^2 = F */
- vli_mod_square_fast(t7, t5, curve_prime, ndigits);
+ vli_mod_square_fast(t7, t5, curve);
/* t7 = x3' */
vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
/* t6 = x3' - B */
vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
/* t6 = (y2 + y1)*(x3' - B) */
- vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
+ vli_mod_mult_fast(t6, t6, t5, curve);
/* t2 = y3' */
vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
@@ -858,60 +1344,136 @@ static void ecc_point_mult(struct ecc_point *result,
carry = vli_add(sk[0], scalar, curve->n, ndigits);
vli_add(sk[1], sk[0], curve->n, ndigits);
scalar = sk[!carry];
- num_bits = sizeof(u64) * ndigits * 8 + 1;
+ if (curve->nbits == 521) /* NIST P521 */
+ num_bits = curve->nbits + 2;
+ else
+ num_bits = sizeof(u64) * ndigits * 8 + 1;
vli_set(rx[1], point->x, ndigits);
vli_set(ry[1], point->y, ndigits);
- xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
- ndigits);
+ xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
for (i = num_bits - 2; i > 0; i--) {
nb = !vli_test_bit(scalar, i);
- xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
- ndigits);
- xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
- ndigits);
+ xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
+ xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
}
nb = !vli_test_bit(scalar, 0);
- xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
- ndigits);
+ xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
/* Find final 1/Z value. */
/* X1 - X0 */
vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
/* Yb * (X1 - X0) */
- vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
+ vli_mod_mult_fast(z, z, ry[1 - nb], curve);
/* xP * Yb * (X1 - X0) */
- vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
+ vli_mod_mult_fast(z, z, point->x, curve);
/* 1 / (xP * Yb * (X1 - X0)) */
vli_mod_inv(z, z, curve_prime, point->ndigits);
/* yP / (xP * Yb * (X1 - X0)) */
- vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
+ vli_mod_mult_fast(z, z, point->y, curve);
/* Xb * yP / (xP * Yb * (X1 - X0)) */
- vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
+ vli_mod_mult_fast(z, z, rx[1 - nb], curve);
/* End 1/Z calculation */
- xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
+ xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
- apply_z(rx[0], ry[0], z, curve_prime, ndigits);
+ apply_z(rx[0], ry[0], z, curve);
vli_set(result->x, rx[0], ndigits);
vli_set(result->y, ry[0], ndigits);
}
-static inline void ecc_swap_digits(const u64 *in, u64 *out,
- unsigned int ndigits)
+/* Computes R = P + Q mod p */
+static void ecc_point_add(const struct ecc_point *result,
+ const struct ecc_point *p, const struct ecc_point *q,
+ const struct ecc_curve *curve)
{
+ u64 z[ECC_MAX_DIGITS];
+ u64 px[ECC_MAX_DIGITS];
+ u64 py[ECC_MAX_DIGITS];
+ unsigned int ndigits = curve->g.ndigits;
+
+ vli_set(result->x, q->x, ndigits);
+ vli_set(result->y, q->y, ndigits);
+ vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
+ vli_set(px, p->x, ndigits);
+ vli_set(py, p->y, ndigits);
+ xycz_add(px, py, result->x, result->y, curve);
+ vli_mod_inv(z, z, curve->p, ndigits);
+ apply_z(result->x, result->y, z, curve);
+}
+
+/* Computes R = u1P + u2Q mod p using Shamir's trick.
+ * Based on: Kenneth MacKay's micro-ecc (2014).
+ */
+void ecc_point_mult_shamir(const struct ecc_point *result,
+ const u64 *u1, const struct ecc_point *p,
+ const u64 *u2, const struct ecc_point *q,
+ const struct ecc_curve *curve)
+{
+ u64 z[ECC_MAX_DIGITS];
+ u64 sump[2][ECC_MAX_DIGITS];
+ u64 *rx = result->x;
+ u64 *ry = result->y;
+ unsigned int ndigits = curve->g.ndigits;
+ unsigned int num_bits;
+ struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
+ const struct ecc_point *points[4];
+ const struct ecc_point *point;
+ unsigned int idx;
int i;
- for (i = 0; i < ndigits; i++)
- out[i] = __swab64(in[ndigits - 1 - i]);
+ ecc_point_add(&sum, p, q, curve);
+ points[0] = NULL;
+ points[1] = p;
+ points[2] = q;
+ points[3] = &sum;
+
+ num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
+ i = num_bits - 1;
+ idx = !!vli_test_bit(u1, i);
+ idx |= (!!vli_test_bit(u2, i)) << 1;
+ point = points[idx];
+
+ vli_set(rx, point->x, ndigits);
+ vli_set(ry, point->y, ndigits);
+ vli_clear(z + 1, ndigits - 1);
+ z[0] = 1;
+
+ for (--i; i >= 0; i--) {
+ ecc_point_double_jacobian(rx, ry, z, curve);
+ idx = !!vli_test_bit(u1, i);
+ idx |= (!!vli_test_bit(u2, i)) << 1;
+ point = points[idx];
+ if (point) {
+ u64 tx[ECC_MAX_DIGITS];
+ u64 ty[ECC_MAX_DIGITS];
+ u64 tz[ECC_MAX_DIGITS];
+
+ vli_set(tx, point->x, ndigits);
+ vli_set(ty, point->y, ndigits);
+ apply_z(tx, ty, z, curve);
+ vli_mod_sub(tz, rx, tx, curve->p, ndigits);
+ xycz_add(tx, ty, rx, ry, curve);
+ vli_mod_mult_fast(z, z, tz, curve);
+ }
+ }
+ vli_mod_inv(z, z, curve->p, ndigits);
+ apply_z(rx, ry, z, curve);
}
+EXPORT_SYMBOL(ecc_point_mult_shamir);
+/*
+ * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5.
+ * Whereas A.4.2 results in an integer in the interval [1, n-1], this function
+ * ensures that the integer is in the range of [2, n-3]. We are slightly
+ * stricter because of the currently used scalar multiplication algorithm.
+ */
static int __ecc_is_key_valid(const struct ecc_curve *curve,
const u64 *private_key, unsigned int ndigits)
{
@@ -948,33 +1510,32 @@ int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
return __ecc_is_key_valid(curve, private_key, ndigits);
}
+EXPORT_SYMBOL(ecc_is_key_valid);
/*
- * ECC private keys are generated using the method of extra random bits,
- * equivalent to that described in FIPS 186-4, Appendix B.4.1.
- *
- * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer
- * than requested
- * 0 <= c mod(n-1) <= n-2 and implies that
- * 1 <= d <= n-1
+ * ECC private keys are generated using the method of rejection sampling,
+ * equivalent to that described in FIPS 186-5, Appendix A.2.2.
*
* This method generates a private key uniformly distributed in the range
- * [1, n-1].
+ * [2, n-3].
*/
-int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
+int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits,
+ u64 *private_key)
{
const struct ecc_curve *curve = ecc_get_curve(curve_id);
- u64 priv[ECC_MAX_DIGITS];
unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
unsigned int nbits = vli_num_bits(curve->n, ndigits);
int err;
- /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
- if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
+ /*
+ * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5,
+ * section 6.1.1.
+ */
+ if (nbits < 224)
return -EINVAL;
/*
- * FIPS 186-4 recommends that the private key should be obtained from a
+ * FIPS 186-5 recommends that the private key should be obtained from a
* RBG with a security strength equal to or greater than the security
* strength associated with N.
*
@@ -987,43 +1548,43 @@ int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
if (crypto_get_default_rng())
return -EFAULT;
- err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
+ /* Step 3: obtain N returned_bits from the DRBG. */
+ err = crypto_rng_get_bytes(crypto_default_rng,
+ (u8 *)private_key, nbytes);
crypto_put_default_rng();
if (err)
return err;
- /* Make sure the private key is in the valid range. */
- if (__ecc_is_key_valid(curve, priv, ndigits))
+ /* Step 4: make sure the private key is in the valid range. */
+ if (__ecc_is_key_valid(curve, private_key, ndigits))
return -EINVAL;
- ecc_swap_digits(priv, privkey, ndigits);
-
return 0;
}
+EXPORT_SYMBOL(ecc_gen_privkey);
int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
const u64 *private_key, u64 *public_key)
{
int ret = 0;
struct ecc_point *pk;
- u64 priv[ECC_MAX_DIGITS];
const struct ecc_curve *curve = ecc_get_curve(curve_id);
- if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
+ if (!private_key) {
ret = -EINVAL;
goto out;
}
- ecc_swap_digits(private_key, priv, ndigits);
-
pk = ecc_alloc_point(ndigits);
if (!pk) {
ret = -ENOMEM;
goto out;
}
- ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
- if (ecc_point_is_zero(pk)) {
+ ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits);
+
+ /* SP800-56A rev 3 5.6.2.1.3 key check */
+ if (ecc_is_pubkey_valid_full(curve, pk)) {
ret = -EAGAIN;
goto err_free_point;
}
@@ -1036,13 +1597,17 @@ err_free_point:
out:
return ret;
}
+EXPORT_SYMBOL(ecc_make_pub_key);
/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
-static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
- struct ecc_point *pk)
+int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
+ struct ecc_point *pk)
{
u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
+ if (WARN_ON(pk->ndigits != curve->g.ndigits))
+ return -EINVAL;
+
/* Check 1: Verify key is not the zero point. */
if (ecc_point_is_zero(pk))
return -EINVAL;
@@ -1054,18 +1619,45 @@ static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
return -EINVAL;
/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
- vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */
- vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */
- vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */
- vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */
+ vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
+ vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
+ vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
+ vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
return -EINVAL;
return 0;
+}
+EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
+/* SP800-56A section 5.6.2.3.3 full verification */
+int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
+ struct ecc_point *pk)
+{
+ struct ecc_point *nQ;
+
+ /* Checks 1 through 3 */
+ int ret = ecc_is_pubkey_valid_partial(curve, pk);
+
+ if (ret)
+ return ret;
+
+ /* Check 4: Verify that nQ is the zero point. */
+ nQ = ecc_alloc_point(pk->ndigits);
+ if (!nQ)
+ return -ENOMEM;
+
+ ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
+ if (!ecc_point_is_zero(nQ))
+ ret = -EINVAL;
+
+ ecc_free_point(nQ);
+
+ return ret;
}
+EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
const u64 *private_key, const u64 *public_key,
@@ -1073,13 +1665,11 @@ int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
{
int ret = 0;
struct ecc_point *product, *pk;
- u64 priv[ECC_MAX_DIGITS];
u64 rand_z[ECC_MAX_DIGITS];
unsigned int nbytes;
const struct ecc_curve *curve = ecc_get_curve(curve_id);
- if (!private_key || !public_key || !curve ||
- ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
+ if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) {
ret = -EINVAL;
goto out;
}
@@ -1100,24 +1690,30 @@ int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
if (ret)
goto err_alloc_product;
- ecc_swap_digits(private_key, priv, ndigits);
-
product = ecc_alloc_point(ndigits);
if (!product) {
ret = -ENOMEM;
goto err_alloc_product;
}
- ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
+ ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits);
- ecc_swap_digits(product->x, secret, ndigits);
-
- if (ecc_point_is_zero(product))
+ if (ecc_point_is_zero(product)) {
ret = -EFAULT;
+ goto err_validity;
+ }
+ ecc_swap_digits(product->x, secret, ndigits);
+
+err_validity:
+ memzero_explicit(rand_z, sizeof(rand_z));
ecc_free_point(product);
err_alloc_product:
ecc_free_point(pk);
out:
return ret;
}
+EXPORT_SYMBOL(crypto_ecdh_shared_secret);
+
+MODULE_DESCRIPTION("core elliptic curve module");
+MODULE_LICENSE("Dual BSD/GPL");