summaryrefslogtreecommitdiff
path: root/crypto/lrw.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/lrw.c')
-rw-r--r--crypto/lrw.c547
1 files changed, 287 insertions, 260 deletions
diff --git a/crypto/lrw.c b/crypto/lrw.c
index ba42acc4deba..dd403b800513 100644
--- a/crypto/lrw.c
+++ b/crypto/lrw.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
/* LRW: as defined by Cyril Guyot in
* http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
*
@@ -5,19 +6,15 @@
*
* Based on ecb.c
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the Free
- * Software Foundation; either version 2 of the License, or (at your option)
- * any later version.
*/
/* This implementation is checked against the test vectors in the above
* document and by a test vector provided by Ken Buchanan at
- * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
+ * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
*
* The test vectors are included in the testing module tcrypt.[ch] */
-#include <crypto/algapi.h>
+#include <crypto/internal/skcipher.h>
+#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
@@ -27,14 +24,37 @@
#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>
-#include <crypto/lrw.h>
-struct priv {
- struct crypto_cipher *child;
- struct lrw_table_ctx table;
+#define LRW_BLOCK_SIZE 16
+
+struct lrw_tfm_ctx {
+ struct crypto_skcipher *child;
+
+ /*
+ * optimizes multiplying a random (non incrementing, as at the
+ * start of a new sector) value with key2, we could also have
+ * used 4k optimization tables or no optimization at all. In the
+ * latter case we would have to store key2 here
+ */
+ struct gf128mul_64k *table;
+
+ /*
+ * stores:
+ * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
+ * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
+ * key2*{ 0,0,...1,1,1,1,1 }, etc
+ * needed for optimized multiplication of incrementing values
+ * with key2
+ */
+ be128 mulinc[128];
+};
+
+struct lrw_request_ctx {
+ be128 t;
+ struct skcipher_request subreq;
};
-static inline void setbit128_bbe(void *b, int bit)
+static inline void lrw_setbit128_bbe(void *b, int bit)
{
__set_bit(bit ^ (0x80 -
#ifdef __BIG_ENDIAN
@@ -45,11 +65,23 @@ static inline void setbit128_bbe(void *b, int bit)
), b);
}
-int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
+static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
+ unsigned int keylen)
{
+ struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
+ struct crypto_skcipher *child = ctx->child;
+ int err, bsize = LRW_BLOCK_SIZE;
+ const u8 *tweak = key + keylen - bsize;
be128 tmp = { 0 };
int i;
+ crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
+ crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
+ CRYPTO_TFM_REQ_MASK);
+ err = crypto_skcipher_setkey(child, key, keylen - bsize);
+ if (err)
+ return err;
+
if (ctx->table)
gf128mul_free_64k(ctx->table);
@@ -60,343 +92,338 @@ int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
/* initialize optimization table */
for (i = 0; i < 128; i++) {
- setbit128_bbe(&tmp, i);
+ lrw_setbit128_bbe(&tmp, i);
ctx->mulinc[i] = tmp;
gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
}
return 0;
}
-EXPORT_SYMBOL_GPL(lrw_init_table);
-
-void lrw_free_table(struct lrw_table_ctx *ctx)
-{
- if (ctx->table)
- gf128mul_free_64k(ctx->table);
-}
-EXPORT_SYMBOL_GPL(lrw_free_table);
-static int setkey(struct crypto_tfm *parent, const u8 *key,
- unsigned int keylen)
+/*
+ * Returns the number of trailing '1' bits in the words of the counter, which is
+ * represented by 4 32-bit words, arranged from least to most significant.
+ * At the same time, increments the counter by one.
+ *
+ * For example:
+ *
+ * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
+ * int i = lrw_next_index(&counter);
+ * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
+ */
+static int lrw_next_index(u32 *counter)
{
- struct priv *ctx = crypto_tfm_ctx(parent);
- struct crypto_cipher *child = ctx->child;
- int err, bsize = LRW_BLOCK_SIZE;
- const u8 *tweak = key + keylen - bsize;
-
- crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
- crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
- CRYPTO_TFM_REQ_MASK);
- err = crypto_cipher_setkey(child, key, keylen - bsize);
- if (err)
- return err;
- crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
- CRYPTO_TFM_RES_MASK);
-
- return lrw_init_table(&ctx->table, tweak);
-}
+ int i, res = 0;
-struct sinfo {
- be128 t;
- struct crypto_tfm *tfm;
- void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
-};
+ for (i = 0; i < 4; i++) {
+ if (counter[i] + 1 != 0)
+ return res + ffz(counter[i]++);
-static inline void inc(be128 *iv)
-{
- be64_add_cpu(&iv->b, 1);
- if (!iv->b)
- be64_add_cpu(&iv->a, 1);
-}
+ counter[i] = 0;
+ res += 32;
+ }
-static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
-{
- be128_xor(dst, &s->t, src); /* PP <- T xor P */
- s->fn(s->tfm, dst, dst); /* CC <- E(Key2,PP) */
- be128_xor(dst, dst, &s->t); /* C <- T xor CC */
+ /*
+ * If we get here, then x == 128 and we are incrementing the counter
+ * from all ones to all zeros. This means we must return index 127, i.e.
+ * the one corresponding to key2*{ 1,...,1 }.
+ */
+ return 127;
}
-/* this returns the number of consequative 1 bits starting
- * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
-static inline int get_index128(be128 *block)
+/*
+ * We compute the tweak masks twice (both before and after the ECB encryption or
+ * decryption) to avoid having to allocate a temporary buffer and/or make
+ * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
+ * just doing the lrw_next_index() calls again.
+ */
+static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
{
- int x;
- __be32 *p = (__be32 *) block;
-
- for (p += 3, x = 0; x < 128; p--, x += 32) {
- u32 val = be32_to_cpup(p);
-
- if (!~val)
- continue;
+ const int bs = LRW_BLOCK_SIZE;
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
+ be128 t = rctx->t;
+ struct skcipher_walk w;
+ __be32 *iv;
+ u32 counter[4];
+ int err;
- return x + ffz(val);
+ if (second_pass) {
+ req = &rctx->subreq;
+ /* set to our TFM to enforce correct alignment: */
+ skcipher_request_set_tfm(req, tfm);
}
- return x;
-}
-
-static int crypt(struct blkcipher_desc *d,
- struct blkcipher_walk *w, struct priv *ctx,
- void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
-{
- int err;
- unsigned int avail;
- const int bs = LRW_BLOCK_SIZE;
- struct sinfo s = {
- .tfm = crypto_cipher_tfm(ctx->child),
- .fn = fn
- };
- be128 *iv;
- u8 *wsrc;
- u8 *wdst;
-
- err = blkcipher_walk_virt(d, w);
- if (!(avail = w->nbytes))
+ err = skcipher_walk_virt(&w, req, false);
+ if (err)
return err;
- wsrc = w->src.virt.addr;
- wdst = w->dst.virt.addr;
-
- /* calculate first value of T */
- iv = (be128 *)w->iv;
- s.t = *iv;
+ iv = (__be32 *)w.iv;
+ counter[0] = be32_to_cpu(iv[3]);
+ counter[1] = be32_to_cpu(iv[2]);
+ counter[2] = be32_to_cpu(iv[1]);
+ counter[3] = be32_to_cpu(iv[0]);
- /* T <- I*Key2 */
- gf128mul_64k_bbe(&s.t, ctx->table.table);
+ while (w.nbytes) {
+ unsigned int avail = w.nbytes;
+ const be128 *wsrc;
+ be128 *wdst;
- goto first;
+ wsrc = w.src.virt.addr;
+ wdst = w.dst.virt.addr;
- for (;;) {
do {
+ be128_xor(wdst++, &t, wsrc++);
+
/* T <- I*Key2, using the optimization
* discussed in the specification */
- be128_xor(&s.t, &s.t,
- &ctx->table.mulinc[get_index128(iv)]);
- inc(iv);
-
-first:
- lrw_round(&s, wdst, wsrc);
-
- wsrc += bs;
- wdst += bs;
+ be128_xor(&t, &t,
+ &ctx->mulinc[lrw_next_index(counter)]);
} while ((avail -= bs) >= bs);
- err = blkcipher_walk_done(d, w, avail);
- if (!(avail = w->nbytes))
- break;
+ if (second_pass && w.nbytes == w.total) {
+ iv[0] = cpu_to_be32(counter[3]);
+ iv[1] = cpu_to_be32(counter[2]);
+ iv[2] = cpu_to_be32(counter[1]);
+ iv[3] = cpu_to_be32(counter[0]);
+ }
- wsrc = w->src.virt.addr;
- wdst = w->dst.virt.addr;
+ err = skcipher_walk_done(&w, avail);
}
return err;
}
-static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
- struct scatterlist *src, unsigned int nbytes)
+static int lrw_xor_tweak_pre(struct skcipher_request *req)
{
- struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
- struct blkcipher_walk w;
+ return lrw_xor_tweak(req, false);
+}
- blkcipher_walk_init(&w, dst, src, nbytes);
- return crypt(desc, &w, ctx,
- crypto_cipher_alg(ctx->child)->cia_encrypt);
+static int lrw_xor_tweak_post(struct skcipher_request *req)
+{
+ return lrw_xor_tweak(req, true);
}
-static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
- struct scatterlist *src, unsigned int nbytes)
+static void lrw_crypt_done(void *data, int err)
{
- struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
- struct blkcipher_walk w;
+ struct skcipher_request *req = data;
+
+ if (!err) {
+ struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
+
+ rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
+ err = lrw_xor_tweak_post(req);
+ }
- blkcipher_walk_init(&w, dst, src, nbytes);
- return crypt(desc, &w, ctx,
- crypto_cipher_alg(ctx->child)->cia_decrypt);
+ skcipher_request_complete(req, err);
}
-int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
- struct scatterlist *ssrc, unsigned int nbytes,
- struct lrw_crypt_req *req)
+static void lrw_init_crypt(struct skcipher_request *req)
{
- const unsigned int bsize = LRW_BLOCK_SIZE;
- const unsigned int max_blks = req->tbuflen / bsize;
- struct lrw_table_ctx *ctx = req->table_ctx;
- struct blkcipher_walk walk;
- unsigned int nblocks;
- be128 *iv, *src, *dst, *t;
- be128 *t_buf = req->tbuf;
- int err, i;
-
- BUG_ON(max_blks < 1);
-
- blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
-
- err = blkcipher_walk_virt(desc, &walk);
- nbytes = walk.nbytes;
- if (!nbytes)
- return err;
-
- nblocks = min(walk.nbytes / bsize, max_blks);
- src = (be128 *)walk.src.virt.addr;
- dst = (be128 *)walk.dst.virt.addr;
+ const struct lrw_tfm_ctx *ctx =
+ crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
+ struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
+ struct skcipher_request *subreq = &rctx->subreq;
+
+ skcipher_request_set_tfm(subreq, ctx->child);
+ skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
+ req);
+ /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
+ skcipher_request_set_crypt(subreq, req->dst, req->dst,
+ req->cryptlen, req->iv);
/* calculate first value of T */
- iv = (be128 *)walk.iv;
- t_buf[0] = *iv;
+ memcpy(&rctx->t, req->iv, sizeof(rctx->t));
/* T <- I*Key2 */
- gf128mul_64k_bbe(&t_buf[0], ctx->table);
+ gf128mul_64k_bbe(&rctx->t, ctx->table);
+}
- i = 0;
- goto first;
+static int lrw_encrypt(struct skcipher_request *req)
+{
+ struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
+ struct skcipher_request *subreq = &rctx->subreq;
- for (;;) {
- do {
- for (i = 0; i < nblocks; i++) {
- /* T <- I*Key2, using the optimization
- * discussed in the specification */
- be128_xor(&t_buf[i], t,
- &ctx->mulinc[get_index128(iv)]);
- inc(iv);
-first:
- t = &t_buf[i];
-
- /* PP <- T xor P */
- be128_xor(dst + i, t, src + i);
- }
-
- /* CC <- E(Key2,PP) */
- req->crypt_fn(req->crypt_ctx, (u8 *)dst,
- nblocks * bsize);
-
- /* C <- T xor CC */
- for (i = 0; i < nblocks; i++)
- be128_xor(dst + i, dst + i, &t_buf[i]);
-
- src += nblocks;
- dst += nblocks;
- nbytes -= nblocks * bsize;
- nblocks = min(nbytes / bsize, max_blks);
- } while (nblocks > 0);
-
- err = blkcipher_walk_done(desc, &walk, nbytes);
- nbytes = walk.nbytes;
- if (!nbytes)
- break;
-
- nblocks = min(nbytes / bsize, max_blks);
- src = (be128 *)walk.src.virt.addr;
- dst = (be128 *)walk.dst.virt.addr;
- }
+ lrw_init_crypt(req);
+ return lrw_xor_tweak_pre(req) ?:
+ crypto_skcipher_encrypt(subreq) ?:
+ lrw_xor_tweak_post(req);
+}
- return err;
+static int lrw_decrypt(struct skcipher_request *req)
+{
+ struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
+ struct skcipher_request *subreq = &rctx->subreq;
+
+ lrw_init_crypt(req);
+ return lrw_xor_tweak_pre(req) ?:
+ crypto_skcipher_decrypt(subreq) ?:
+ lrw_xor_tweak_post(req);
}
-EXPORT_SYMBOL_GPL(lrw_crypt);
-static int init_tfm(struct crypto_tfm *tfm)
+static int lrw_init_tfm(struct crypto_skcipher *tfm)
{
- struct crypto_cipher *cipher;
- struct crypto_instance *inst = (void *)tfm->__crt_alg;
- struct crypto_spawn *spawn = crypto_instance_ctx(inst);
- struct priv *ctx = crypto_tfm_ctx(tfm);
- u32 *flags = &tfm->crt_flags;
+ struct skcipher_instance *inst = skcipher_alg_instance(tfm);
+ struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
+ struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct crypto_skcipher *cipher;
- cipher = crypto_spawn_cipher(spawn);
+ cipher = crypto_spawn_skcipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
- if (crypto_cipher_blocksize(cipher) != LRW_BLOCK_SIZE) {
- *flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
- crypto_free_cipher(cipher);
- return -EINVAL;
- }
-
ctx->child = cipher;
+
+ crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
+ sizeof(struct lrw_request_ctx));
+
return 0;
}
-static void exit_tfm(struct crypto_tfm *tfm)
+static void lrw_exit_tfm(struct crypto_skcipher *tfm)
{
- struct priv *ctx = crypto_tfm_ctx(tfm);
+ struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
- lrw_free_table(&ctx->table);
- crypto_free_cipher(ctx->child);
+ if (ctx->table)
+ gf128mul_free_64k(ctx->table);
+ crypto_free_skcipher(ctx->child);
+}
+
+static void lrw_free_instance(struct skcipher_instance *inst)
+{
+ crypto_drop_skcipher(skcipher_instance_ctx(inst));
+ kfree(inst);
}
-static struct crypto_instance *alloc(struct rtattr **tb)
+static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
{
- struct crypto_instance *inst;
- struct crypto_alg *alg;
+ struct crypto_skcipher_spawn *spawn;
+ struct skcipher_alg_common *alg;
+ struct skcipher_instance *inst;
+ const char *cipher_name;
+ char ecb_name[CRYPTO_MAX_ALG_NAME];
+ u32 mask;
int err;
- err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
+ err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
if (err)
- return ERR_PTR(err);
+ return err;
- alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
- CRYPTO_ALG_TYPE_MASK);
- if (IS_ERR(alg))
- return ERR_CAST(alg);
+ cipher_name = crypto_attr_alg_name(tb[1]);
+ if (IS_ERR(cipher_name))
+ return PTR_ERR(cipher_name);
- inst = crypto_alloc_instance("lrw", alg);
- if (IS_ERR(inst))
- goto out_put_alg;
+ inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
+ if (!inst)
+ return -ENOMEM;
- inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
- inst->alg.cra_priority = alg->cra_priority;
- inst->alg.cra_blocksize = alg->cra_blocksize;
+ spawn = skcipher_instance_ctx(inst);
- if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
- else inst->alg.cra_alignmask = alg->cra_alignmask;
- inst->alg.cra_type = &crypto_blkcipher_type;
+ err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
+ cipher_name, 0, mask);
+ if (err == -ENOENT && memcmp(cipher_name, "ecb(", 4)) {
+ err = -ENAMETOOLONG;
+ if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
+ cipher_name) >= CRYPTO_MAX_ALG_NAME)
+ goto err_free_inst;
- if (!(alg->cra_blocksize % 4))
- inst->alg.cra_alignmask |= 3;
- inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
- inst->alg.cra_blkcipher.min_keysize =
- alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
- inst->alg.cra_blkcipher.max_keysize =
- alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
+ err = crypto_grab_skcipher(spawn,
+ skcipher_crypto_instance(inst),
+ ecb_name, 0, mask);
+ }
- inst->alg.cra_ctxsize = sizeof(struct priv);
+ if (err)
+ goto err_free_inst;
- inst->alg.cra_init = init_tfm;
- inst->alg.cra_exit = exit_tfm;
+ alg = crypto_spawn_skcipher_alg_common(spawn);
- inst->alg.cra_blkcipher.setkey = setkey;
- inst->alg.cra_blkcipher.encrypt = encrypt;
- inst->alg.cra_blkcipher.decrypt = decrypt;
+ err = -EINVAL;
+ if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
+ goto err_free_inst;
-out_put_alg:
- crypto_mod_put(alg);
- return inst;
-}
+ if (alg->ivsize)
+ goto err_free_inst;
-static void free(struct crypto_instance *inst)
-{
- crypto_drop_spawn(crypto_instance_ctx(inst));
- kfree(inst);
+ err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
+ &alg->base);
+ if (err)
+ goto err_free_inst;
+
+ err = -EINVAL;
+ cipher_name = alg->base.cra_name;
+
+ /* Alas we screwed up the naming so we have to mangle the
+ * cipher name.
+ */
+ if (!memcmp(cipher_name, "ecb(", 4)) {
+ int len;
+
+ len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
+ if (len < 2)
+ goto err_free_inst;
+
+ if (ecb_name[len - 1] != ')')
+ goto err_free_inst;
+
+ ecb_name[len - 1] = 0;
+
+ if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
+ "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
+ err = -ENAMETOOLONG;
+ goto err_free_inst;
+ }
+ } else
+ goto err_free_inst;
+
+ inst->alg.base.cra_priority = alg->base.cra_priority;
+ inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
+ inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
+ (__alignof__(be128) - 1);
+
+ inst->alg.ivsize = LRW_BLOCK_SIZE;
+ inst->alg.min_keysize = alg->min_keysize + LRW_BLOCK_SIZE;
+ inst->alg.max_keysize = alg->max_keysize + LRW_BLOCK_SIZE;
+
+ inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
+
+ inst->alg.init = lrw_init_tfm;
+ inst->alg.exit = lrw_exit_tfm;
+
+ inst->alg.setkey = lrw_setkey;
+ inst->alg.encrypt = lrw_encrypt;
+ inst->alg.decrypt = lrw_decrypt;
+
+ inst->free = lrw_free_instance;
+
+ err = skcipher_register_instance(tmpl, inst);
+ if (err) {
+err_free_inst:
+ lrw_free_instance(inst);
+ }
+ return err;
}
-static struct crypto_template crypto_tmpl = {
+static struct crypto_template lrw_tmpl = {
.name = "lrw",
- .alloc = alloc,
- .free = free,
+ .create = lrw_create,
.module = THIS_MODULE,
};
-static int __init crypto_module_init(void)
+static int __init lrw_module_init(void)
{
- return crypto_register_template(&crypto_tmpl);
+ return crypto_register_template(&lrw_tmpl);
}
-static void __exit crypto_module_exit(void)
+static void __exit lrw_module_exit(void)
{
- crypto_unregister_template(&crypto_tmpl);
+ crypto_unregister_template(&lrw_tmpl);
}
-module_init(crypto_module_init);
-module_exit(crypto_module_exit);
+module_init(lrw_module_init);
+module_exit(lrw_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LRW block cipher mode");
+MODULE_ALIAS_CRYPTO("lrw");
+MODULE_SOFTDEP("pre: ecb");