diff options
Diffstat (limited to 'drivers/acpi/pptt.c')
| -rw-r--r-- | drivers/acpi/pptt.c | 371 |
1 files changed, 320 insertions, 51 deletions
diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c index c91342dcbcd6..de5f8c018333 100644 --- a/drivers/acpi/pptt.c +++ b/drivers/acpi/pptt.c @@ -21,6 +21,25 @@ #include <linux/cacheinfo.h> #include <acpi/processor.h> +/* + * The acpi_pptt_cache_v1 in actbl2.h, which is imported from acpica, + * only contains the cache_id field rather than all the fields of the + * Cache Type Structure. Use this alternative structure until it is + * resolved in acpica. + */ +struct acpi_pptt_cache_v1_full { + struct acpi_subtable_header header; + u16 reserved; + u32 flags; + u32 next_level_of_cache; + u32 size; + u32 number_of_sets; + u8 associativity; + u8 attributes; + u16 line_size; + u32 cache_id; +} __packed; + static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, u32 pptt_ref) { @@ -56,6 +75,18 @@ static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_ return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); } +static struct acpi_pptt_cache_v1_full *upgrade_pptt_cache(struct acpi_pptt_cache *cache) +{ + if (cache->header.length < sizeof(struct acpi_pptt_cache_v1_full)) + return NULL; + + /* No use for v1 if the only additional field is invalid */ + if (!(cache->flags & ACPI_PPTT_CACHE_ID_VALID)) + return NULL; + + return (struct acpi_pptt_cache_v1_full *)cache; +} + static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, struct acpi_pptt_processor *node, int resource) @@ -81,6 +112,7 @@ static inline bool acpi_pptt_match_type(int table_type, int type) * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache * @table_hdr: Pointer to the head of the PPTT table * @local_level: passed res reflects this cache level + * @split_levels: Number of split cache levels (data/instruction). * @res: cache resource in the PPTT we want to walk * @found: returns a pointer to the requested level if found * @level: the requested cache level @@ -100,6 +132,7 @@ static inline bool acpi_pptt_match_type(int table_type, int type) */ static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, unsigned int local_level, + unsigned int *split_levels, struct acpi_subtable_header *res, struct acpi_pptt_cache **found, unsigned int level, int type) @@ -113,8 +146,17 @@ static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, while (cache) { local_level++; + if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) { + cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); + continue; + } + + if (split_levels && + (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) || + acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR))) + *split_levels = local_level; + if (local_level == level && - cache->flags & ACPI_PPTT_CACHE_TYPE_VALID && acpi_pptt_match_type(cache->attributes, type)) { if (*found != NULL && cache != *found) pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); @@ -135,8 +177,8 @@ static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, static struct acpi_pptt_cache * acpi_find_cache_level(struct acpi_table_header *table_hdr, struct acpi_pptt_processor *cpu_node, - unsigned int *starting_level, unsigned int level, - int type) + unsigned int *starting_level, unsigned int *split_levels, + unsigned int level, int type) { struct acpi_subtable_header *res; unsigned int number_of_levels = *starting_level; @@ -149,7 +191,8 @@ acpi_find_cache_level(struct acpi_table_header *table_hdr, resource++; local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, - res, &ret, level, type); + split_levels, res, &ret, + level, type); /* * we are looking for the max depth. Since its potentially * possible for a given node to have resources with differing @@ -165,29 +208,33 @@ acpi_find_cache_level(struct acpi_table_header *table_hdr, } /** - * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches + * acpi_count_levels() - Given a PPTT table, and a CPU node, count the + * total number of levels and split cache levels (data/instruction). * @table_hdr: Pointer to the head of the PPTT table * @cpu_node: processor node we wish to count caches for + * @split_levels: Number of split cache levels (data/instruction) if + * success. Can by NULL. * + * Return: number of levels. * Given a processor node containing a processing unit, walk into it and count * how many levels exist solely for it, and then walk up each level until we hit * the root node (ignore the package level because it may be possible to have - * caches that exist across packages). Count the number of cache levels that - * exist at each level on the way up. - * - * Return: Total number of levels found. + * caches that exist across packages). Count the number of cache levels and + * split cache levels (data/instruction) that exist at each level on the way + * up. */ static int acpi_count_levels(struct acpi_table_header *table_hdr, - struct acpi_pptt_processor *cpu_node) + struct acpi_pptt_processor *cpu_node, + unsigned int *split_levels) { - int total_levels = 0; + int current_level = 0; do { - acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); + acpi_find_cache_level(table_hdr, cpu_node, ¤t_level, split_levels, 0, 0); cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); } while (cpu_node); - return total_levels; + return current_level; } /** @@ -217,18 +264,20 @@ static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, node_entry = ACPI_PTR_DIFF(node, table_hdr); entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, sizeof(struct acpi_table_pptt)); - proc_sz = sizeof(struct acpi_pptt_processor *); + proc_sz = sizeof(struct acpi_pptt_processor); - while ((unsigned long)entry + proc_sz < table_end) { + /* ignore subtable types that are smaller than a processor node */ + while ((unsigned long)entry + proc_sz <= table_end) { cpu_node = (struct acpi_pptt_processor *)entry; + if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && cpu_node->parent == node_entry) return 0; if (entry->length == 0) return 0; + entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, entry->length); - } return 1; } @@ -258,18 +307,21 @@ static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_he table_end = (unsigned long)table_hdr + table_hdr->length; entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, sizeof(struct acpi_table_pptt)); - proc_sz = sizeof(struct acpi_pptt_processor *); + proc_sz = sizeof(struct acpi_pptt_processor); /* find the processor structure associated with this cpuid */ - while ((unsigned long)entry + proc_sz < table_end) { + while ((unsigned long)entry + proc_sz <= table_end) { cpu_node = (struct acpi_pptt_processor *)entry; if (entry->length == 0) { pr_warn("Invalid zero length subtable\n"); break; } + /* entry->length may not equal proc_sz, revalidate the processor structure length */ if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && acpi_cpu_id == cpu_node->acpi_processor_id && + (unsigned long)entry + entry->length <= table_end && + entry->length == proc_sz + cpu_node->number_of_priv_resources * sizeof(u32) && acpi_pptt_leaf_node(table_hdr, cpu_node)) { return (struct acpi_pptt_processor *)entry; } @@ -281,19 +333,6 @@ static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_he return NULL; } -static int acpi_find_cache_levels(struct acpi_table_header *table_hdr, - u32 acpi_cpu_id) -{ - int number_of_levels = 0; - struct acpi_pptt_processor *cpu; - - cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); - if (cpu) - number_of_levels = acpi_count_levels(table_hdr, cpu); - - return number_of_levels; -} - static u8 acpi_cache_type(enum cache_type type) { switch (type) { @@ -334,7 +373,7 @@ static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *ta while (cpu_node && !found) { found = acpi_find_cache_level(table_hdr, cpu_node, - &total_levels, level, acpi_type); + &total_levels, NULL, level, acpi_type); *node = cpu_node; cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); } @@ -347,7 +386,6 @@ static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *ta * @this_leaf: Kernel cache info structure being updated * @found_cache: The PPTT node describing this cache instance * @cpu_node: A unique reference to describe this cache instance - * @revision: The revision of the PPTT table * * The ACPI spec implies that the fields in the cache structures are used to * extend and correct the information probed from the hardware. Lets only @@ -357,10 +395,9 @@ static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *ta */ static void update_cache_properties(struct cacheinfo *this_leaf, struct acpi_pptt_cache *found_cache, - struct acpi_pptt_processor *cpu_node, - u8 revision) + struct acpi_pptt_processor *cpu_node) { - struct acpi_pptt_cache_v1* found_cache_v1; + struct acpi_pptt_cache_v1_full *found_cache_v1; this_leaf->fw_token = cpu_node; if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) @@ -410,9 +447,8 @@ static void update_cache_properties(struct cacheinfo *this_leaf, found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) this_leaf->type = CACHE_TYPE_UNIFIED; - if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) { - found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1, - found_cache, sizeof(struct acpi_pptt_cache)); + found_cache_v1 = upgrade_pptt_cache(found_cache); + if (found_cache_v1) { this_leaf->id = found_cache_v1->cache_id; this_leaf->attributes |= CACHE_ID; } @@ -437,8 +473,7 @@ static void cache_setup_acpi_cpu(struct acpi_table_header *table, pr_debug("found = %p %p\n", found_cache, cpu_node); if (found_cache) update_cache_properties(this_leaf, found_cache, - ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)), - table->revision); + ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table))); index++; } @@ -537,16 +572,19 @@ static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, static struct acpi_table_header *acpi_get_pptt(void) { static struct acpi_table_header *pptt; + static bool is_pptt_checked; acpi_status status; /* * PPTT will be used at runtime on every CPU hotplug in path, so we * don't need to call acpi_put_table() to release the table mapping. */ - if (!pptt) { + if (!pptt && !is_pptt_checked) { status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt); if (ACPI_FAILURE(status)) acpi_pptt_warn_missing(); + + is_pptt_checked = true; } return pptt; @@ -602,32 +640,48 @@ static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag) } /** - * acpi_find_last_cache_level() - Determines the number of cache levels for a PE + * acpi_get_cache_info() - Determine the number of cache levels and + * split cache levels (data/instruction) and for a PE. * @cpu: Kernel logical CPU number + * @levels: Number of levels if success. + * @split_levels: Number of levels being split (i.e. data/instruction) + * if success. Can by NULL. * * Given a logical CPU number, returns the number of levels of cache represented * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 * indicating we didn't find any cache levels. * - * Return: Cache levels visible to this core. + * Return: -ENOENT if no PPTT table or no PPTT processor struct found. + * 0 on success. */ -int acpi_find_last_cache_level(unsigned int cpu) +int acpi_get_cache_info(unsigned int cpu, unsigned int *levels, + unsigned int *split_levels) { - u32 acpi_cpu_id; + struct acpi_pptt_processor *cpu_node; struct acpi_table_header *table; - int number_of_levels = 0; + u32 acpi_cpu_id; + + *levels = 0; + if (split_levels) + *split_levels = 0; table = acpi_get_pptt(); if (!table) return -ENOENT; - pr_debug("Cache Setup find last level CPU=%d\n", cpu); + pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu); acpi_cpu_id = get_acpi_id_for_cpu(cpu); - number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id); - pr_debug("Cache Setup find last level level=%d\n", number_of_levels); + cpu_node = acpi_find_processor_node(table, acpi_cpu_id); + if (!cpu_node) + return -ENOENT; + + *levels = acpi_count_levels(table, cpu_node, split_levels); + + pr_debug("Cache Setup: last_level=%d split_levels=%d\n", + *levels, split_levels ? *split_levels : -1); - return number_of_levels; + return 0; } /** @@ -794,3 +848,218 @@ int find_acpi_cpu_topology_hetero_id(unsigned int cpu) return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, ACPI_PPTT_ACPI_IDENTICAL); } + +/** + * acpi_pptt_get_child_cpus() - Find all the CPUs below a PPTT + * processor hierarchy node + * + * @table_hdr: A reference to the PPTT table + * @parent_node: A pointer to the processor hierarchy node in the + * table_hdr + * @cpus: A cpumask to fill with the CPUs below @parent_node + * + * Walks up the PPTT from every possible CPU to find if the provided + * @parent_node is a parent of this CPU. + */ +static void acpi_pptt_get_child_cpus(struct acpi_table_header *table_hdr, + struct acpi_pptt_processor *parent_node, + cpumask_t *cpus) +{ + struct acpi_pptt_processor *cpu_node; + u32 acpi_id; + int cpu; + + cpumask_clear(cpus); + + for_each_possible_cpu(cpu) { + acpi_id = get_acpi_id_for_cpu(cpu); + cpu_node = acpi_find_processor_node(table_hdr, acpi_id); + + while (cpu_node) { + if (cpu_node == parent_node) { + cpumask_set_cpu(cpu, cpus); + break; + } + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); + } + } +} + +/** + * acpi_pptt_get_cpus_from_container() - Populate a cpumask with all CPUs in a + * processor container + * @acpi_cpu_id: The UID of the processor container + * @cpus: The resulting CPU mask + * + * Find the specified Processor Container, and fill @cpus with all the cpus + * below it. + * + * Not all 'Processor Hierarchy' entries in the PPTT are either a CPU + * or a Processor Container, they may exist purely to describe a + * Private resource. CPUs have to be leaves, so a Processor Container + * is a non-leaf that has the 'ACPI Processor ID valid' flag set. + */ +void acpi_pptt_get_cpus_from_container(u32 acpi_cpu_id, cpumask_t *cpus) +{ + struct acpi_table_header *table_hdr; + struct acpi_subtable_header *entry; + unsigned long table_end; + u32 proc_sz; + + cpumask_clear(cpus); + + table_hdr = acpi_get_pptt(); + if (!table_hdr) + return; + + table_end = (unsigned long)table_hdr + table_hdr->length; + entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, + sizeof(struct acpi_table_pptt)); + proc_sz = sizeof(struct acpi_pptt_processor); + while ((unsigned long)entry + proc_sz <= table_end) { + if (entry->type == ACPI_PPTT_TYPE_PROCESSOR) { + struct acpi_pptt_processor *cpu_node; + + cpu_node = (struct acpi_pptt_processor *)entry; + if (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID && + !acpi_pptt_leaf_node(table_hdr, cpu_node) && + cpu_node->acpi_processor_id == acpi_cpu_id) { + acpi_pptt_get_child_cpus(table_hdr, cpu_node, cpus); + break; + } + } + entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, + entry->length); + } +} + +/** + * find_acpi_cache_level_from_id() - Get the level of the specified cache + * @cache_id: The id field of the cache + * + * Determine the level relative to any CPU for the cache identified by + * cache_id. This allows the property to be found even if the CPUs are offline. + * + * The returned level can be used to group caches that are peers. + * + * The PPTT table must be rev 3 or later. + * + * If one CPU's L2 is shared with another CPU as L3, this function will return + * an unpredictable value. + * + * Return: -ENOENT if the PPTT doesn't exist, the revision isn't supported or + * the cache cannot be found. + * Otherwise returns a value which represents the level of the specified cache. + */ +int find_acpi_cache_level_from_id(u32 cache_id) +{ + int cpu; + struct acpi_table_header *table; + + table = acpi_get_pptt(); + if (!table) + return -ENOENT; + + if (table->revision < 3) + return -ENOENT; + + for_each_possible_cpu(cpu) { + bool empty; + int level = 1; + u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); + struct acpi_pptt_cache *cache; + struct acpi_pptt_processor *cpu_node; + + cpu_node = acpi_find_processor_node(table, acpi_cpu_id); + if (!cpu_node) + continue; + + do { + int cache_type[] = {CACHE_TYPE_INST, CACHE_TYPE_DATA, CACHE_TYPE_UNIFIED}; + + empty = true; + for (int i = 0; i < ARRAY_SIZE(cache_type); i++) { + struct acpi_pptt_cache_v1_full *cache_v1; + + cache = acpi_find_cache_node(table, acpi_cpu_id, cache_type[i], + level, &cpu_node); + if (!cache) + continue; + + empty = false; + + cache_v1 = upgrade_pptt_cache(cache); + if (cache_v1 && cache_v1->cache_id == cache_id) + return level; + } + level++; + } while (!empty); + } + + return -ENOENT; +} + +/** + * acpi_pptt_get_cpumask_from_cache_id() - Get the cpus associated with the + * specified cache + * @cache_id: The id field of the cache + * @cpus: Where to build the cpumask + * + * Determine which CPUs are below this cache in the PPTT. This allows the property + * to be found even if the CPUs are offline. + * + * The PPTT table must be rev 3 or later, + * + * Return: -ENOENT if the PPTT doesn't exist, or the cache cannot be found. + * Otherwise returns 0 and sets the cpus in the provided cpumask. + */ +int acpi_pptt_get_cpumask_from_cache_id(u32 cache_id, cpumask_t *cpus) +{ + int cpu; + struct acpi_table_header *table; + + cpumask_clear(cpus); + + table = acpi_get_pptt(); + if (!table) + return -ENOENT; + + if (table->revision < 3) + return -ENOENT; + + for_each_possible_cpu(cpu) { + bool empty; + int level = 1; + u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); + struct acpi_pptt_cache *cache; + struct acpi_pptt_processor *cpu_node; + + cpu_node = acpi_find_processor_node(table, acpi_cpu_id); + if (!cpu_node) + continue; + + do { + int cache_type[] = {CACHE_TYPE_INST, CACHE_TYPE_DATA, CACHE_TYPE_UNIFIED}; + + empty = true; + for (int i = 0; i < ARRAY_SIZE(cache_type); i++) { + struct acpi_pptt_cache_v1_full *cache_v1; + + cache = acpi_find_cache_node(table, acpi_cpu_id, cache_type[i], + level, &cpu_node); + + if (!cache) + continue; + + empty = false; + + cache_v1 = upgrade_pptt_cache(cache); + if (cache_v1 && cache_v1->cache_id == cache_id) + cpumask_set_cpu(cpu, cpus); + } + level++; + } while (!empty); + } + + return 0; +} |
