summaryrefslogtreecommitdiff
path: root/drivers/base/arch_topology.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/base/arch_topology.c')
-rw-r--r--drivers/base/arch_topology.c972
1 files changed, 972 insertions, 0 deletions
diff --git a/drivers/base/arch_topology.c b/drivers/base/arch_topology.c
new file mode 100644
index 000000000000..84ec92bff642
--- /dev/null
+++ b/drivers/base/arch_topology.c
@@ -0,0 +1,972 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Arch specific cpu topology information
+ *
+ * Copyright (C) 2016, ARM Ltd.
+ * Written by: Juri Lelli, ARM Ltd.
+ */
+
+#include <linux/acpi.h>
+#include <linux/cacheinfo.h>
+#include <linux/cleanup.h>
+#include <linux/cpu.h>
+#include <linux/cpufreq.h>
+#include <linux/cpu_smt.h>
+#include <linux/device.h>
+#include <linux/of.h>
+#include <linux/slab.h>
+#include <linux/sched/topology.h>
+#include <linux/cpuset.h>
+#include <linux/cpumask.h>
+#include <linux/init.h>
+#include <linux/rcupdate.h>
+#include <linux/sched.h>
+#include <linux/units.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/hw_pressure.h>
+
+static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
+static struct cpumask scale_freq_counters_mask;
+static bool scale_freq_invariant;
+DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 0;
+EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
+
+static bool supports_scale_freq_counters(const struct cpumask *cpus)
+{
+ return cpumask_subset(cpus, &scale_freq_counters_mask);
+}
+
+bool topology_scale_freq_invariant(void)
+{
+ return cpufreq_supports_freq_invariance() ||
+ supports_scale_freq_counters(cpu_online_mask);
+}
+
+static void update_scale_freq_invariant(bool status)
+{
+ if (scale_freq_invariant == status)
+ return;
+
+ /*
+ * Task scheduler behavior depends on frequency invariance support,
+ * either cpufreq or counter driven. If the support status changes as
+ * a result of counter initialisation and use, retrigger the build of
+ * scheduling domains to ensure the information is propagated properly.
+ */
+ if (topology_scale_freq_invariant() == status) {
+ scale_freq_invariant = status;
+ rebuild_sched_domains_energy();
+ }
+}
+
+void topology_set_scale_freq_source(struct scale_freq_data *data,
+ const struct cpumask *cpus)
+{
+ struct scale_freq_data *sfd;
+ int cpu;
+
+ /*
+ * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
+ * supported by cpufreq.
+ */
+ if (cpumask_empty(&scale_freq_counters_mask))
+ scale_freq_invariant = topology_scale_freq_invariant();
+
+ rcu_read_lock();
+
+ for_each_cpu(cpu, cpus) {
+ sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
+
+ /* Use ARCH provided counters whenever possible */
+ if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
+ rcu_assign_pointer(per_cpu(sft_data, cpu), data);
+ cpumask_set_cpu(cpu, &scale_freq_counters_mask);
+ }
+ }
+
+ rcu_read_unlock();
+
+ update_scale_freq_invariant(true);
+}
+EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
+
+void topology_clear_scale_freq_source(enum scale_freq_source source,
+ const struct cpumask *cpus)
+{
+ struct scale_freq_data *sfd;
+ int cpu;
+
+ rcu_read_lock();
+
+ for_each_cpu(cpu, cpus) {
+ sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
+
+ if (sfd && sfd->source == source) {
+ rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
+ cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
+ }
+ }
+
+ rcu_read_unlock();
+
+ /*
+ * Make sure all references to previous sft_data are dropped to avoid
+ * use-after-free races.
+ */
+ synchronize_rcu();
+
+ update_scale_freq_invariant(false);
+}
+EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
+
+void topology_scale_freq_tick(void)
+{
+ struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
+
+ if (sfd)
+ sfd->set_freq_scale();
+}
+
+DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
+EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
+
+void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
+ unsigned long max_freq)
+{
+ unsigned long scale;
+ int i;
+
+ if (WARN_ON_ONCE(!cur_freq || !max_freq))
+ return;
+
+ /*
+ * If the use of counters for FIE is enabled, just return as we don't
+ * want to update the scale factor with information from CPUFREQ.
+ * Instead the scale factor will be updated from arch_scale_freq_tick.
+ */
+ if (supports_scale_freq_counters(cpus))
+ return;
+
+ scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
+
+ for_each_cpu(i, cpus)
+ per_cpu(arch_freq_scale, i) = scale;
+}
+
+DEFINE_PER_CPU(unsigned long, hw_pressure);
+
+/**
+ * topology_update_hw_pressure() - Update HW pressure for CPUs
+ * @cpus : The related CPUs for which capacity has been reduced
+ * @capped_freq : The maximum allowed frequency that CPUs can run at
+ *
+ * Update the value of HW pressure for all @cpus in the mask. The
+ * cpumask should include all (online+offline) affected CPUs, to avoid
+ * operating on stale data when hot-plug is used for some CPUs. The
+ * @capped_freq reflects the currently allowed max CPUs frequency due to
+ * HW capping. It might be also a boost frequency value, which is bigger
+ * than the internal 'capacity_freq_ref' max frequency. In such case the
+ * pressure value should simply be removed, since this is an indication that
+ * there is no HW throttling. The @capped_freq must be provided in kHz.
+ */
+void topology_update_hw_pressure(const struct cpumask *cpus,
+ unsigned long capped_freq)
+{
+ unsigned long max_capacity, capacity, pressure;
+ u32 max_freq;
+ int cpu;
+
+ cpu = cpumask_first(cpus);
+ max_capacity = arch_scale_cpu_capacity(cpu);
+ max_freq = arch_scale_freq_ref(cpu);
+
+ /*
+ * Handle properly the boost frequencies, which should simply clean
+ * the HW pressure value.
+ */
+ if (max_freq <= capped_freq)
+ capacity = max_capacity;
+ else
+ capacity = mult_frac(max_capacity, capped_freq, max_freq);
+
+ pressure = max_capacity - capacity;
+
+ trace_hw_pressure_update(cpu, pressure);
+
+ for_each_cpu(cpu, cpus)
+ WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
+}
+EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
+
+static void update_topology_flags_workfn(struct work_struct *work);
+static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
+
+static int update_topology;
+
+int topology_update_cpu_topology(void)
+{
+ return update_topology;
+}
+
+/*
+ * Updating the sched_domains can't be done directly from cpufreq callbacks
+ * due to locking, so queue the work for later.
+ */
+static void update_topology_flags_workfn(struct work_struct *work)
+{
+ update_topology = 1;
+ rebuild_sched_domains();
+ pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
+ update_topology = 0;
+}
+
+static u32 *raw_capacity;
+
+static int free_raw_capacity(void)
+{
+ kfree(raw_capacity);
+ raw_capacity = NULL;
+
+ return 0;
+}
+
+void topology_normalize_cpu_scale(void)
+{
+ u64 capacity;
+ u64 capacity_scale;
+ int cpu;
+
+ if (!raw_capacity)
+ return;
+
+ capacity_scale = 1;
+ for_each_possible_cpu(cpu) {
+ capacity = raw_capacity[cpu] *
+ (per_cpu(capacity_freq_ref, cpu) ?: 1);
+ capacity_scale = max(capacity, capacity_scale);
+ }
+
+ pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
+ for_each_possible_cpu(cpu) {
+ capacity = raw_capacity[cpu] *
+ (per_cpu(capacity_freq_ref, cpu) ?: 1);
+ capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
+ capacity_scale);
+ topology_set_cpu_scale(cpu, capacity);
+ pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
+ cpu, topology_get_cpu_scale(cpu));
+ }
+}
+
+bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
+{
+ struct clk *cpu_clk;
+ static bool cap_parsing_failed;
+ int ret;
+ u32 cpu_capacity;
+
+ if (cap_parsing_failed)
+ return false;
+
+ ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
+ &cpu_capacity);
+ if (!ret) {
+ if (!raw_capacity) {
+ raw_capacity = kcalloc(num_possible_cpus(),
+ sizeof(*raw_capacity),
+ GFP_KERNEL);
+ if (!raw_capacity) {
+ cap_parsing_failed = true;
+ return false;
+ }
+ }
+ raw_capacity[cpu] = cpu_capacity;
+ pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
+ cpu_node, raw_capacity[cpu]);
+
+ /*
+ * Update capacity_freq_ref for calculating early boot CPU capacities.
+ * For non-clk CPU DVFS mechanism, there's no way to get the
+ * frequency value now, assuming they are running at the same
+ * frequency (by keeping the initial capacity_freq_ref value).
+ */
+ cpu_clk = of_clk_get(cpu_node, 0);
+ if (!IS_ERR_OR_NULL(cpu_clk)) {
+ per_cpu(capacity_freq_ref, cpu) =
+ clk_get_rate(cpu_clk) / HZ_PER_KHZ;
+ clk_put(cpu_clk);
+ }
+ } else {
+ if (raw_capacity) {
+ pr_err("cpu_capacity: missing %pOF raw capacity\n",
+ cpu_node);
+ pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
+ }
+ cap_parsing_failed = true;
+ free_raw_capacity();
+ }
+
+ return !ret;
+}
+
+void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
+{
+}
+
+#ifdef CONFIG_ACPI_CPPC_LIB
+#include <acpi/cppc_acpi.h>
+
+static inline void topology_init_cpu_capacity_cppc(void)
+{
+ u64 capacity, capacity_scale = 0;
+ struct cppc_perf_caps perf_caps;
+ int cpu;
+
+ if (likely(!acpi_cpc_valid()))
+ return;
+
+ raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
+ GFP_KERNEL);
+ if (!raw_capacity)
+ return;
+
+ for_each_possible_cpu(cpu) {
+ if (!cppc_get_perf_caps(cpu, &perf_caps) &&
+ (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
+ (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
+ raw_capacity[cpu] = perf_caps.highest_perf;
+ capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
+
+ per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
+
+ pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
+ cpu, raw_capacity[cpu]);
+ continue;
+ }
+
+ pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
+ pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
+ goto exit;
+ }
+
+ for_each_possible_cpu(cpu) {
+ freq_inv_set_max_ratio(cpu,
+ per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
+
+ capacity = raw_capacity[cpu];
+ capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
+ capacity_scale);
+ topology_set_cpu_scale(cpu, capacity);
+ pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
+ cpu, topology_get_cpu_scale(cpu));
+ }
+
+ schedule_work(&update_topology_flags_work);
+ pr_debug("cpu_capacity: cpu_capacity initialization done\n");
+
+exit:
+ free_raw_capacity();
+}
+void acpi_processor_init_invariance_cppc(void)
+{
+ topology_init_cpu_capacity_cppc();
+}
+#endif
+
+#ifdef CONFIG_CPU_FREQ
+static cpumask_var_t cpus_to_visit;
+static void parsing_done_workfn(struct work_struct *work);
+static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
+
+static int
+init_cpu_capacity_callback(struct notifier_block *nb,
+ unsigned long val,
+ void *data)
+{
+ struct cpufreq_policy *policy = data;
+ int cpu;
+
+ if (val != CPUFREQ_CREATE_POLICY)
+ return 0;
+
+ pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
+ cpumask_pr_args(policy->related_cpus),
+ cpumask_pr_args(cpus_to_visit));
+
+ cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
+
+ for_each_cpu(cpu, policy->related_cpus) {
+ per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
+ freq_inv_set_max_ratio(cpu,
+ per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
+ }
+
+ if (cpumask_empty(cpus_to_visit)) {
+ if (raw_capacity) {
+ topology_normalize_cpu_scale();
+ schedule_work(&update_topology_flags_work);
+ free_raw_capacity();
+ }
+ pr_debug("cpu_capacity: parsing done\n");
+ schedule_work(&parsing_done_work);
+ }
+
+ return 0;
+}
+
+static struct notifier_block init_cpu_capacity_notifier = {
+ .notifier_call = init_cpu_capacity_callback,
+};
+
+static int __init register_cpufreq_notifier(void)
+{
+ int ret;
+
+ /*
+ * On ACPI-based systems skip registering cpufreq notifier as cpufreq
+ * information is not needed for cpu capacity initialization.
+ */
+ if (!acpi_disabled)
+ return -EINVAL;
+
+ if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
+ return -ENOMEM;
+
+ cpumask_copy(cpus_to_visit, cpu_possible_mask);
+
+ ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
+ CPUFREQ_POLICY_NOTIFIER);
+
+ if (ret)
+ free_cpumask_var(cpus_to_visit);
+
+ return ret;
+}
+core_initcall(register_cpufreq_notifier);
+
+static void parsing_done_workfn(struct work_struct *work)
+{
+ cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
+ CPUFREQ_POLICY_NOTIFIER);
+ free_cpumask_var(cpus_to_visit);
+}
+
+#else
+core_initcall(free_raw_capacity);
+#endif
+
+#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
+
+/* Used to enable the SMT control */
+static unsigned int max_smt_thread_num = 1;
+
+/*
+ * This function returns the logic cpu number of the node.
+ * There are basically three kinds of return values:
+ * (1) logic cpu number which is > 0.
+ * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
+ * there is no possible logical CPU in the kernel to match. This happens
+ * when CONFIG_NR_CPUS is configure to be smaller than the number of
+ * CPU nodes in DT. We need to just ignore this case.
+ * (3) -1 if the node does not exist in the device tree
+ */
+static int __init get_cpu_for_node(struct device_node *node)
+{
+ int cpu;
+ struct device_node *cpu_node __free(device_node) =
+ of_parse_phandle(node, "cpu", 0);
+
+ if (!cpu_node)
+ return -1;
+
+ cpu = of_cpu_node_to_id(cpu_node);
+ if (cpu >= 0)
+ topology_parse_cpu_capacity(cpu_node, cpu);
+ else
+ pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
+ cpu_node, cpumask_pr_args(cpu_possible_mask));
+
+ return cpu;
+}
+
+static int __init parse_core(struct device_node *core, int package_id,
+ int cluster_id, int core_id)
+{
+ char name[20];
+ bool leaf = true;
+ int i = 0;
+ int cpu;
+
+ do {
+ snprintf(name, sizeof(name), "thread%d", i);
+ struct device_node *t __free(device_node) =
+ of_get_child_by_name(core, name);
+
+ if (!t)
+ break;
+
+ leaf = false;
+ cpu = get_cpu_for_node(t);
+ if (cpu >= 0) {
+ cpu_topology[cpu].package_id = package_id;
+ cpu_topology[cpu].cluster_id = cluster_id;
+ cpu_topology[cpu].core_id = core_id;
+ cpu_topology[cpu].thread_id = i;
+ } else if (cpu != -ENODEV) {
+ pr_err("%pOF: Can't get CPU for thread\n", t);
+ return -EINVAL;
+ }
+ i++;
+ } while (1);
+
+ max_smt_thread_num = max_t(unsigned int, max_smt_thread_num, i);
+
+ cpu = get_cpu_for_node(core);
+ if (cpu >= 0) {
+ if (!leaf) {
+ pr_err("%pOF: Core has both threads and CPU\n",
+ core);
+ return -EINVAL;
+ }
+
+ cpu_topology[cpu].package_id = package_id;
+ cpu_topology[cpu].cluster_id = cluster_id;
+ cpu_topology[cpu].core_id = core_id;
+ } else if (leaf && cpu != -ENODEV) {
+ pr_err("%pOF: Can't get CPU for leaf core\n", core);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int __init parse_cluster(struct device_node *cluster, int package_id,
+ int cluster_id, int depth)
+{
+ char name[20];
+ bool leaf = true;
+ bool has_cores = false;
+ int core_id = 0;
+ int i, ret;
+
+ /*
+ * First check for child clusters; we currently ignore any
+ * information about the nesting of clusters and present the
+ * scheduler with a flat list of them.
+ */
+ i = 0;
+ do {
+ snprintf(name, sizeof(name), "cluster%d", i);
+ struct device_node *c __free(device_node) =
+ of_get_child_by_name(cluster, name);
+
+ if (!c)
+ break;
+
+ leaf = false;
+ ret = parse_cluster(c, package_id, i, depth + 1);
+ if (depth > 0)
+ pr_warn("Topology for clusters of clusters not yet supported\n");
+ if (ret != 0)
+ return ret;
+ i++;
+ } while (1);
+
+ /* Now check for cores */
+ i = 0;
+ do {
+ snprintf(name, sizeof(name), "core%d", i);
+ struct device_node *c __free(device_node) =
+ of_get_child_by_name(cluster, name);
+
+ if (!c)
+ break;
+
+ has_cores = true;
+
+ if (depth == 0) {
+ pr_err("%pOF: cpu-map children should be clusters\n", c);
+ return -EINVAL;
+ }
+
+ if (leaf) {
+ ret = parse_core(c, package_id, cluster_id, core_id++);
+ if (ret != 0)
+ return ret;
+ } else {
+ pr_err("%pOF: Non-leaf cluster with core %s\n",
+ cluster, name);
+ return -EINVAL;
+ }
+
+ i++;
+ } while (1);
+
+ if (leaf && !has_cores)
+ pr_warn("%pOF: empty cluster\n", cluster);
+
+ return 0;
+}
+
+static int __init parse_socket(struct device_node *socket)
+{
+ char name[20];
+ bool has_socket = false;
+ int package_id = 0, ret;
+
+ do {
+ snprintf(name, sizeof(name), "socket%d", package_id);
+ struct device_node *c __free(device_node) =
+ of_get_child_by_name(socket, name);
+
+ if (!c)
+ break;
+
+ has_socket = true;
+ ret = parse_cluster(c, package_id, -1, 0);
+ if (ret != 0)
+ return ret;
+
+ package_id++;
+ } while (1);
+
+ if (!has_socket)
+ ret = parse_cluster(socket, 0, -1, 0);
+
+ /*
+ * Reset the max_smt_thread_num to 1 on failure. Since on failure
+ * we need to notify the framework the SMT is not supported, but
+ * max_smt_thread_num can be initialized to the SMT thread number
+ * of the cores which are successfully parsed.
+ */
+ if (ret)
+ max_smt_thread_num = 1;
+
+ cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
+
+ return ret;
+}
+
+static int __init parse_dt_topology(void)
+{
+ int ret = 0;
+ int cpu;
+ struct device_node *cn __free(device_node) =
+ of_find_node_by_path("/cpus");
+
+ if (!cn) {
+ pr_err("No CPU information found in DT\n");
+ return 0;
+ }
+
+ /*
+ * When topology is provided cpu-map is essentially a root
+ * cluster with restricted subnodes.
+ */
+ struct device_node *map __free(device_node) =
+ of_get_child_by_name(cn, "cpu-map");
+
+ if (!map)
+ return ret;
+
+ ret = parse_socket(map);
+ if (ret != 0)
+ return ret;
+
+ topology_normalize_cpu_scale();
+
+ /*
+ * Check that all cores are in the topology; the SMP code will
+ * only mark cores described in the DT as possible.
+ */
+ for_each_possible_cpu(cpu)
+ if (cpu_topology[cpu].package_id < 0) {
+ return -EINVAL;
+ }
+
+ return ret;
+}
+#endif
+
+/*
+ * cpu topology table
+ */
+struct cpu_topology cpu_topology[NR_CPUS];
+EXPORT_SYMBOL_GPL(cpu_topology);
+
+const struct cpumask *cpu_coregroup_mask(int cpu)
+{
+ const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
+
+ /* Find the smaller of NUMA, core or LLC siblings */
+ if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
+ /* not numa in package, lets use the package siblings */
+ core_mask = &cpu_topology[cpu].core_sibling;
+ }
+
+ if (last_level_cache_is_valid(cpu)) {
+ if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
+ core_mask = &cpu_topology[cpu].llc_sibling;
+ }
+
+ /*
+ * For systems with no shared cpu-side LLC but with clusters defined,
+ * extend core_mask to cluster_siblings. The sched domain builder will
+ * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
+ */
+ if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
+ cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
+ core_mask = &cpu_topology[cpu].cluster_sibling;
+
+ return core_mask;
+}
+
+const struct cpumask *cpu_clustergroup_mask(int cpu)
+{
+ /*
+ * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
+ * cpu_coregroup_mask().
+ */
+ if (cpumask_subset(cpu_coregroup_mask(cpu),
+ &cpu_topology[cpu].cluster_sibling))
+ return topology_sibling_cpumask(cpu);
+
+ return &cpu_topology[cpu].cluster_sibling;
+}
+
+void update_siblings_masks(unsigned int cpuid)
+{
+ struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
+ int cpu, ret;
+
+ ret = detect_cache_attributes(cpuid);
+ if (ret && ret != -ENOENT)
+ pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
+
+ /* update core and thread sibling masks */
+ for_each_online_cpu(cpu) {
+ cpu_topo = &cpu_topology[cpu];
+
+ if (last_level_cache_is_shared(cpu, cpuid)) {
+ cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
+ cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
+ }
+
+ if (cpuid_topo->package_id != cpu_topo->package_id)
+ continue;
+
+ cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
+ cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
+
+ if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
+ continue;
+
+ if (cpuid_topo->cluster_id >= 0) {
+ cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
+ cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
+ }
+
+ if (cpuid_topo->core_id != cpu_topo->core_id)
+ continue;
+
+ cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
+ cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
+ }
+}
+
+static void clear_cpu_topology(int cpu)
+{
+ struct cpu_topology *cpu_topo = &cpu_topology[cpu];
+
+ cpumask_clear(&cpu_topo->llc_sibling);
+ cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
+
+ cpumask_clear(&cpu_topo->cluster_sibling);
+ cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
+
+ cpumask_clear(&cpu_topo->core_sibling);
+ cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
+ cpumask_clear(&cpu_topo->thread_sibling);
+ cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
+}
+
+void __init reset_cpu_topology(void)
+{
+ unsigned int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct cpu_topology *cpu_topo = &cpu_topology[cpu];
+
+ cpu_topo->thread_id = -1;
+ cpu_topo->core_id = -1;
+ cpu_topo->cluster_id = -1;
+ cpu_topo->package_id = -1;
+
+ clear_cpu_topology(cpu);
+ }
+}
+
+void remove_cpu_topology(unsigned int cpu)
+{
+ int sibling;
+
+ for_each_cpu(sibling, topology_core_cpumask(cpu))
+ cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
+ for_each_cpu(sibling, topology_sibling_cpumask(cpu))
+ cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
+ for_each_cpu(sibling, topology_cluster_cpumask(cpu))
+ cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
+ for_each_cpu(sibling, topology_llc_cpumask(cpu))
+ cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
+
+ clear_cpu_topology(cpu);
+}
+
+#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
+struct cpu_smt_info {
+ unsigned int thread_num;
+ int core_id;
+};
+
+static bool __init acpi_cpu_is_threaded(int cpu)
+{
+ int is_threaded = acpi_pptt_cpu_is_thread(cpu);
+
+ /*
+ * if the PPTT doesn't have thread information, check for architecture
+ * specific fallback if available
+ */
+ if (is_threaded < 0)
+ is_threaded = arch_cpu_is_threaded();
+
+ return !!is_threaded;
+}
+
+/*
+ * Propagate the topology information of the processor_topology_node tree to the
+ * cpu_topology array.
+ */
+__weak int __init parse_acpi_topology(void)
+{
+ unsigned int max_smt_thread_num = 1;
+ struct cpu_smt_info *entry;
+ struct xarray hetero_cpu;
+ unsigned long hetero_id;
+ int cpu, topology_id;
+
+ if (acpi_disabled)
+ return 0;
+
+ xa_init(&hetero_cpu);
+
+ for_each_possible_cpu(cpu) {
+ topology_id = find_acpi_cpu_topology(cpu, 0);
+ if (topology_id < 0)
+ return topology_id;
+
+ if (acpi_cpu_is_threaded(cpu)) {
+ cpu_topology[cpu].thread_id = topology_id;
+ topology_id = find_acpi_cpu_topology(cpu, 1);
+ cpu_topology[cpu].core_id = topology_id;
+
+ /*
+ * In the PPTT, CPUs below a node with the 'identical
+ * implementation' flag have the same number of threads.
+ * Count the number of threads for only one CPU (i.e.
+ * one core_id) among those with the same hetero_id.
+ * See the comment of find_acpi_cpu_topology_hetero_id()
+ * for more details.
+ *
+ * One entry is created for each node having:
+ * - the 'identical implementation' flag
+ * - its parent not having the flag
+ */
+ hetero_id = find_acpi_cpu_topology_hetero_id(cpu);
+ entry = xa_load(&hetero_cpu, hetero_id);
+ if (!entry) {
+ entry = kzalloc(sizeof(*entry), GFP_KERNEL);
+ WARN_ON_ONCE(!entry);
+
+ if (entry) {
+ entry->core_id = topology_id;
+ entry->thread_num = 1;
+ xa_store(&hetero_cpu, hetero_id,
+ entry, GFP_KERNEL);
+ }
+ } else if (entry->core_id == topology_id) {
+ entry->thread_num++;
+ }
+ } else {
+ cpu_topology[cpu].thread_id = -1;
+ cpu_topology[cpu].core_id = topology_id;
+ }
+ topology_id = find_acpi_cpu_topology_cluster(cpu);
+ cpu_topology[cpu].cluster_id = topology_id;
+ topology_id = find_acpi_cpu_topology_package(cpu);
+ cpu_topology[cpu].package_id = topology_id;
+ }
+
+ /*
+ * This is a short loop since the number of XArray elements is the
+ * number of heterogeneous CPU clusters. On a homogeneous system
+ * there's only one entry in the XArray.
+ */
+ xa_for_each(&hetero_cpu, hetero_id, entry) {
+ max_smt_thread_num = max(max_smt_thread_num, entry->thread_num);
+ xa_erase(&hetero_cpu, hetero_id);
+ kfree(entry);
+ }
+
+ cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
+ xa_destroy(&hetero_cpu);
+ return 0;
+}
+
+void __init init_cpu_topology(void)
+{
+ int cpu, ret;
+
+ reset_cpu_topology();
+ ret = parse_acpi_topology();
+ if (!ret)
+ ret = of_have_populated_dt() && parse_dt_topology();
+
+ if (ret) {
+ /*
+ * Discard anything that was parsed if we hit an error so we
+ * don't use partial information. But do not return yet to give
+ * arch-specific early cache level detection a chance to run.
+ */
+ reset_cpu_topology();
+ }
+
+ for_each_possible_cpu(cpu) {
+ ret = fetch_cache_info(cpu);
+ if (!ret)
+ continue;
+ else if (ret != -ENOENT)
+ pr_err("Early cacheinfo failed, ret = %d\n", ret);
+ return;
+ }
+}
+
+void store_cpu_topology(unsigned int cpuid)
+{
+ struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
+
+ if (cpuid_topo->package_id != -1)
+ goto topology_populated;
+
+ cpuid_topo->thread_id = -1;
+ cpuid_topo->core_id = cpuid;
+ cpuid_topo->package_id = cpu_to_node(cpuid);
+
+ pr_debug("CPU%u: package %d core %d thread %d\n",
+ cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
+ cpuid_topo->thread_id);
+
+topology_populated:
+ update_siblings_masks(cpuid);
+}
+#endif