summaryrefslogtreecommitdiff
path: root/drivers/clocksource/arm_arch_timer.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/clocksource/arm_arch_timer.c')
-rw-r--r--drivers/clocksource/arm_arch_timer.c1277
1 files changed, 1089 insertions, 188 deletions
diff --git a/drivers/clocksource/arm_arch_timer.c b/drivers/clocksource/arm_arch_timer.c
index 053d846ab5b1..90aeff44a276 100644
--- a/drivers/clocksource/arm_arch_timer.c
+++ b/drivers/clocksource/arm_arch_timer.c
@@ -1,56 +1,575 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/clocksource/arm_arch_timer.c
*
* Copyright (C) 2011 ARM Ltd.
* All Rights Reserved
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
*/
+
+#define pr_fmt(fmt) "arch_timer: " fmt
+
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
+#include <linux/cpu_pm.h>
#include <linux/clockchips.h>
+#include <linux/clocksource.h>
+#include <linux/clocksource_ids.h>
#include <linux/interrupt.h>
+#include <linux/kstrtox.h>
#include <linux/of_irq.h>
+#include <linux/of_address.h>
#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/sched/clock.h>
+#include <linux/sched_clock.h>
+#include <linux/acpi.h>
+#include <linux/arm-smccc.h>
+#include <linux/ptp_kvm.h>
#include <asm/arch_timer.h>
#include <asm/virt.h>
#include <clocksource/arm_arch_timer.h>
-static u32 arch_timer_rate;
+/*
+ * The minimum amount of time a generic counter is guaranteed to not roll over
+ * (40 years)
+ */
+#define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
-enum ppi_nr {
- PHYS_SECURE_PPI,
- PHYS_NONSECURE_PPI,
- VIRT_PPI,
- HYP_PPI,
- MAX_TIMER_PPI
-};
+static u32 arch_timer_rate __ro_after_init;
+static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
-static int arch_timer_ppi[MAX_TIMER_PPI];
+static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
+ [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
+ [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
+ [ARCH_TIMER_VIRT_PPI] = "virt",
+ [ARCH_TIMER_HYP_PPI] = "hyp-phys",
+ [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
+};
static struct clock_event_device __percpu *arch_timer_evt;
-static bool arch_timer_use_virtual = true;
+static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
+static bool arch_timer_c3stop __ro_after_init;
+static bool arch_counter_suspend_stop __ro_after_init;
+#ifdef CONFIG_GENERIC_GETTIMEOFDAY
+static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
+#else
+static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
+#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
+
+static cpumask_t evtstrm_available = CPU_MASK_NONE;
+static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
+
+static int __init early_evtstrm_cfg(char *buf)
+{
+ return kstrtobool(buf, &evtstrm_enable);
+}
+early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
+
+/*
+ * Makes an educated guess at a valid counter width based on the Generic Timer
+ * specification. Of note:
+ * 1) the system counter is at least 56 bits wide
+ * 2) a roll-over time of not less than 40 years
+ *
+ * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
+ */
+static int arch_counter_get_width(void)
+{
+ u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
+
+ /* guarantee the returned width is within the valid range */
+ return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
+}
/*
* Architected system timer support.
*/
+static noinstr u64 raw_counter_get_cntpct_stable(void)
+{
+ return __arch_counter_get_cntpct_stable();
+}
+
+static notrace u64 arch_counter_get_cntpct_stable(void)
+{
+ u64 val;
+ preempt_disable_notrace();
+ val = __arch_counter_get_cntpct_stable();
+ preempt_enable_notrace();
+ return val;
+}
+
+static noinstr u64 arch_counter_get_cntpct(void)
+{
+ return __arch_counter_get_cntpct();
+}
+
+static noinstr u64 raw_counter_get_cntvct_stable(void)
+{
+ return __arch_counter_get_cntvct_stable();
+}
+
+static notrace u64 arch_counter_get_cntvct_stable(void)
+{
+ u64 val;
+ preempt_disable_notrace();
+ val = __arch_counter_get_cntvct_stable();
+ preempt_enable_notrace();
+ return val;
+}
+
+static noinstr u64 arch_counter_get_cntvct(void)
+{
+ return __arch_counter_get_cntvct();
+}
+
+/*
+ * Default to cp15 based access because arm64 uses this function for
+ * sched_clock() before DT is probed and the cp15 method is guaranteed
+ * to exist on arm64. arm doesn't use this before DT is probed so even
+ * if we don't have the cp15 accessors we won't have a problem.
+ */
+u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
+EXPORT_SYMBOL_GPL(arch_timer_read_counter);
+
+static u64 arch_counter_read(struct clocksource *cs)
+{
+ return arch_timer_read_counter();
+}
+
+static u64 arch_counter_read_cc(struct cyclecounter *cc)
+{
+ return arch_timer_read_counter();
+}
+
+static struct clocksource clocksource_counter = {
+ .name = "arch_sys_counter",
+ .id = CSID_ARM_ARCH_COUNTER,
+ .rating = 400,
+ .read = arch_counter_read,
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
+};
+
+static struct cyclecounter cyclecounter __ro_after_init = {
+ .read = arch_counter_read_cc,
+};
+
+struct ate_acpi_oem_info {
+ char oem_id[ACPI_OEM_ID_SIZE + 1];
+ char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
+ u32 oem_revision;
+};
+
+#ifdef CONFIG_FSL_ERRATUM_A008585
+/*
+ * The number of retries is an arbitrary value well beyond the highest number
+ * of iterations the loop has been observed to take.
+ */
+#define __fsl_a008585_read_reg(reg) ({ \
+ u64 _old, _new; \
+ int _retries = 200; \
+ \
+ do { \
+ _old = read_sysreg(reg); \
+ _new = read_sysreg(reg); \
+ _retries--; \
+ } while (unlikely(_old != _new) && _retries); \
+ \
+ WARN_ON_ONCE(!_retries); \
+ _new; \
+})
+
+static u64 notrace fsl_a008585_read_cntpct_el0(void)
+{
+ return __fsl_a008585_read_reg(cntpct_el0);
+}
+
+static u64 notrace fsl_a008585_read_cntvct_el0(void)
+{
+ return __fsl_a008585_read_reg(cntvct_el0);
+}
+#endif
+
+#ifdef CONFIG_HISILICON_ERRATUM_161010101
+/*
+ * Verify whether the value of the second read is larger than the first by
+ * less than 32 is the only way to confirm the value is correct, so clear the
+ * lower 5 bits to check whether the difference is greater than 32 or not.
+ * Theoretically the erratum should not occur more than twice in succession
+ * when reading the system counter, but it is possible that some interrupts
+ * may lead to more than twice read errors, triggering the warning, so setting
+ * the number of retries far beyond the number of iterations the loop has been
+ * observed to take.
+ */
+#define __hisi_161010101_read_reg(reg) ({ \
+ u64 _old, _new; \
+ int _retries = 50; \
+ \
+ do { \
+ _old = read_sysreg(reg); \
+ _new = read_sysreg(reg); \
+ _retries--; \
+ } while (unlikely((_new - _old) >> 5) && _retries); \
+ \
+ WARN_ON_ONCE(!_retries); \
+ _new; \
+})
+
+static u64 notrace hisi_161010101_read_cntpct_el0(void)
+{
+ return __hisi_161010101_read_reg(cntpct_el0);
+}
+
+static u64 notrace hisi_161010101_read_cntvct_el0(void)
+{
+ return __hisi_161010101_read_reg(cntvct_el0);
+}
+
+static const struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
+ /*
+ * Note that trailing spaces are required to properly match
+ * the OEM table information.
+ */
+ {
+ .oem_id = "HISI ",
+ .oem_table_id = "HIP05 ",
+ .oem_revision = 0,
+ },
+ {
+ .oem_id = "HISI ",
+ .oem_table_id = "HIP06 ",
+ .oem_revision = 0,
+ },
+ {
+ .oem_id = "HISI ",
+ .oem_table_id = "HIP07 ",
+ .oem_revision = 0,
+ },
+ { /* Sentinel indicating the end of the OEM array */ },
+};
+#endif
+
+#ifdef CONFIG_ARM64_ERRATUM_858921
+static u64 notrace arm64_858921_read_cntpct_el0(void)
+{
+ u64 old, new;
+
+ old = read_sysreg(cntpct_el0);
+ new = read_sysreg(cntpct_el0);
+ return (((old ^ new) >> 32) & 1) ? old : new;
+}
+
+static u64 notrace arm64_858921_read_cntvct_el0(void)
+{
+ u64 old, new;
+
+ old = read_sysreg(cntvct_el0);
+ new = read_sysreg(cntvct_el0);
+ return (((old ^ new) >> 32) & 1) ? old : new;
+}
+#endif
+
+#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
+/*
+ * The low bits of the counter registers are indeterminate while bit 10 or
+ * greater is rolling over. Since the counter value can jump both backward
+ * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
+ * with all ones or all zeros in the low bits. Bound the loop by the maximum
+ * number of CPU cycles in 3 consecutive 24 MHz counter periods.
+ */
+#define __sun50i_a64_read_reg(reg) ({ \
+ u64 _val; \
+ int _retries = 150; \
+ \
+ do { \
+ _val = read_sysreg(reg); \
+ _retries--; \
+ } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
+ \
+ WARN_ON_ONCE(!_retries); \
+ _val; \
+})
+
+static u64 notrace sun50i_a64_read_cntpct_el0(void)
+{
+ return __sun50i_a64_read_reg(cntpct_el0);
+}
+
+static u64 notrace sun50i_a64_read_cntvct_el0(void)
+{
+ return __sun50i_a64_read_reg(cntvct_el0);
+}
+#endif
+
+#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
+DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
+EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
+
+static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
+
+/*
+ * Force the inlining of this function so that the register accesses
+ * can be themselves correctly inlined.
+ */
+static __always_inline
+void erratum_set_next_event_generic(const int access, unsigned long evt,
+ struct clock_event_device *clk)
+{
+ unsigned long ctrl;
+ u64 cval;
+
+ ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
+ ctrl |= ARCH_TIMER_CTRL_ENABLE;
+ ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
+
+ if (access == ARCH_TIMER_PHYS_ACCESS) {
+ cval = evt + arch_counter_get_cntpct_stable();
+ write_sysreg(cval, cntp_cval_el0);
+ } else {
+ cval = evt + arch_counter_get_cntvct_stable();
+ write_sysreg(cval, cntv_cval_el0);
+ }
+
+ arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
+}
+
+static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
+ struct clock_event_device *clk)
+{
+ erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
+ return 0;
+}
+
+static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
+ struct clock_event_device *clk)
+{
+ erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
+ return 0;
+}
+
+static const struct arch_timer_erratum_workaround ool_workarounds[] = {
+#ifdef CONFIG_FSL_ERRATUM_A008585
+ {
+ .match_type = ate_match_dt,
+ .id = "fsl,erratum-a008585",
+ .desc = "Freescale erratum a005858",
+ .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
+ .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
+ .set_next_event_phys = erratum_set_next_event_phys,
+ .set_next_event_virt = erratum_set_next_event_virt,
+ },
+#endif
+#ifdef CONFIG_HISILICON_ERRATUM_161010101
+ {
+ .match_type = ate_match_dt,
+ .id = "hisilicon,erratum-161010101",
+ .desc = "HiSilicon erratum 161010101",
+ .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
+ .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
+ .set_next_event_phys = erratum_set_next_event_phys,
+ .set_next_event_virt = erratum_set_next_event_virt,
+ },
+ {
+ .match_type = ate_match_acpi_oem_info,
+ .id = hisi_161010101_oem_info,
+ .desc = "HiSilicon erratum 161010101",
+ .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
+ .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
+ .set_next_event_phys = erratum_set_next_event_phys,
+ .set_next_event_virt = erratum_set_next_event_virt,
+ },
+#endif
+#ifdef CONFIG_ARM64_ERRATUM_858921
+ {
+ .match_type = ate_match_local_cap_id,
+ .id = (void *)ARM64_WORKAROUND_858921,
+ .desc = "ARM erratum 858921",
+ .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
+ .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
+ .set_next_event_phys = erratum_set_next_event_phys,
+ .set_next_event_virt = erratum_set_next_event_virt,
+ },
+#endif
+#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
+ {
+ .match_type = ate_match_dt,
+ .id = "allwinner,erratum-unknown1",
+ .desc = "Allwinner erratum UNKNOWN1",
+ .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
+ .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
+ .set_next_event_phys = erratum_set_next_event_phys,
+ .set_next_event_virt = erratum_set_next_event_virt,
+ },
+#endif
+#ifdef CONFIG_ARM64_ERRATUM_1418040
+ {
+ .match_type = ate_match_local_cap_id,
+ .id = (void *)ARM64_WORKAROUND_1418040,
+ .desc = "ARM erratum 1418040",
+ .disable_compat_vdso = true,
+ },
+#endif
+};
+
+typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
+ const void *);
+
+static
+bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
+ const void *arg)
+{
+ const struct device_node *np = arg;
+
+ return of_property_read_bool(np, wa->id);
+}
+
+static
+bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
+ const void *arg)
+{
+ return this_cpu_has_cap((uintptr_t)wa->id);
+}
+
+
+static
+bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
+ const void *arg)
+{
+ static const struct ate_acpi_oem_info empty_oem_info = {};
+ const struct ate_acpi_oem_info *info = wa->id;
+ const struct acpi_table_header *table = arg;
+
+ /* Iterate over the ACPI OEM info array, looking for a match */
+ while (memcmp(info, &empty_oem_info, sizeof(*info))) {
+ if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
+ !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
+ info->oem_revision == table->oem_revision)
+ return true;
+
+ info++;
+ }
+
+ return false;
+}
+
+static const struct arch_timer_erratum_workaround *
+arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
+ ate_match_fn_t match_fn,
+ void *arg)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
+ if (ool_workarounds[i].match_type != type)
+ continue;
+
+ if (match_fn(&ool_workarounds[i], arg))
+ return &ool_workarounds[i];
+ }
+
+ return NULL;
+}
+
+static
+void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
+ bool local)
+{
+ int i;
+
+ if (local) {
+ __this_cpu_write(timer_unstable_counter_workaround, wa);
+ } else {
+ for_each_possible_cpu(i)
+ per_cpu(timer_unstable_counter_workaround, i) = wa;
+ }
+
+ if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
+ atomic_set(&timer_unstable_counter_workaround_in_use, 1);
+
+ /*
+ * Don't use the vdso fastpath if errata require using the
+ * out-of-line counter accessor. We may change our mind pretty
+ * late in the game (with a per-CPU erratum, for example), so
+ * change both the default value and the vdso itself.
+ */
+ if (wa->read_cntvct_el0) {
+ clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
+ vdso_default = VDSO_CLOCKMODE_NONE;
+ } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
+ vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
+ clocksource_counter.vdso_clock_mode = vdso_default;
+ }
+}
+
+static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
+ void *arg)
+{
+ const struct arch_timer_erratum_workaround *wa, *__wa;
+ ate_match_fn_t match_fn = NULL;
+ bool local = false;
+
+ switch (type) {
+ case ate_match_dt:
+ match_fn = arch_timer_check_dt_erratum;
+ break;
+ case ate_match_local_cap_id:
+ match_fn = arch_timer_check_local_cap_erratum;
+ local = true;
+ break;
+ case ate_match_acpi_oem_info:
+ match_fn = arch_timer_check_acpi_oem_erratum;
+ break;
+ default:
+ WARN_ON(1);
+ return;
+ }
+
+ wa = arch_timer_iterate_errata(type, match_fn, arg);
+ if (!wa)
+ return;
+
+ __wa = __this_cpu_read(timer_unstable_counter_workaround);
+ if (__wa && wa != __wa)
+ pr_warn("Can't enable workaround for %s (clashes with %s\n)",
+ wa->desc, __wa->desc);
+
+ if (__wa)
+ return;
-static inline irqreturn_t timer_handler(const int access,
+ arch_timer_enable_workaround(wa, local);
+ pr_info("Enabling %s workaround for %s\n",
+ local ? "local" : "global", wa->desc);
+}
+
+static bool arch_timer_this_cpu_has_cntvct_wa(void)
+{
+ return has_erratum_handler(read_cntvct_el0);
+}
+
+static bool arch_timer_counter_has_wa(void)
+{
+ return atomic_read(&timer_unstable_counter_workaround_in_use);
+}
+#else
+#define arch_timer_check_ool_workaround(t,a) do { } while(0)
+#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
+#define arch_timer_counter_has_wa() ({false;})
+#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
+
+static __always_inline irqreturn_t timer_handler(const int access,
struct clock_event_device *evt)
{
unsigned long ctrl;
- ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
+
+ ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
ctrl |= ARCH_TIMER_CTRL_IT_MASK;
- arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
+ arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
evt->event_handler(evt);
return IRQ_HANDLED;
}
@@ -72,304 +591,686 @@ static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}
-static inline void timer_set_mode(const int access, int mode)
+static __always_inline int arch_timer_shutdown(const int access,
+ struct clock_event_device *clk)
{
unsigned long ctrl;
- switch (mode) {
- case CLOCK_EVT_MODE_UNUSED:
- case CLOCK_EVT_MODE_SHUTDOWN:
- ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
- ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
- arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
- break;
- default:
- break;
- }
+
+ ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
+ ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
+ arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
+
+ return 0;
}
-static void arch_timer_set_mode_virt(enum clock_event_mode mode,
- struct clock_event_device *clk)
+static int arch_timer_shutdown_virt(struct clock_event_device *clk)
{
- timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
+ return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
}
-static void arch_timer_set_mode_phys(enum clock_event_mode mode,
- struct clock_event_device *clk)
+static int arch_timer_shutdown_phys(struct clock_event_device *clk)
{
- timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
+ return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
}
-static inline void set_next_event(const int access, unsigned long evt)
+static __always_inline void set_next_event(const int access, unsigned long evt,
+ struct clock_event_device *clk)
{
unsigned long ctrl;
- ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
+ u64 cnt;
+
+ ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
- arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
- arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
+
+ if (access == ARCH_TIMER_PHYS_ACCESS)
+ cnt = __arch_counter_get_cntpct();
+ else
+ cnt = __arch_counter_get_cntvct();
+
+ arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CVAL, evt + cnt);
+ arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
}
static int arch_timer_set_next_event_virt(unsigned long evt,
- struct clock_event_device *unused)
+ struct clock_event_device *clk)
{
- set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
+ set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0;
}
static int arch_timer_set_next_event_phys(unsigned long evt,
- struct clock_event_device *unused)
+ struct clock_event_device *clk)
{
- set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
+ set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0;
}
-static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
+static u64 __arch_timer_check_delta(void)
+{
+#ifdef CONFIG_ARM64
+ const struct midr_range broken_cval_midrs[] = {
+ /*
+ * XGene-1 implements CVAL in terms of TVAL, meaning
+ * that the maximum timer range is 32bit. Shame on them.
+ *
+ * Note that TVAL is signed, thus has only 31 of its
+ * 32 bits to express magnitude.
+ */
+ MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
+ APM_CPU_PART_XGENE),
+ APM_CPU_VAR_POTENZA, 0x0, 0xf),
+ {},
+ };
+
+ if (is_midr_in_range_list(broken_cval_midrs)) {
+ pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
+ return CLOCKSOURCE_MASK(31);
+ }
+#endif
+ return CLOCKSOURCE_MASK(arch_counter_get_width());
+}
+
+static void __arch_timer_setup(struct clock_event_device *clk)
{
- clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
+ typeof(clk->set_next_event) sne;
+ u64 max_delta;
+
+ clk->features = CLOCK_EVT_FEAT_ONESHOT;
+
+ arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
+
+ if (arch_timer_c3stop)
+ clk->features |= CLOCK_EVT_FEAT_C3STOP;
clk->name = "arch_sys_timer";
clk->rating = 450;
- if (arch_timer_use_virtual) {
- clk->irq = arch_timer_ppi[VIRT_PPI];
- clk->set_mode = arch_timer_set_mode_virt;
- clk->set_next_event = arch_timer_set_next_event_virt;
- } else {
- clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
- clk->set_mode = arch_timer_set_mode_phys;
- clk->set_next_event = arch_timer_set_next_event_phys;
+ clk->cpumask = cpumask_of(smp_processor_id());
+ clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
+ switch (arch_timer_uses_ppi) {
+ case ARCH_TIMER_VIRT_PPI:
+ clk->set_state_shutdown = arch_timer_shutdown_virt;
+ clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
+ sne = erratum_handler(set_next_event_virt);
+ break;
+ case ARCH_TIMER_PHYS_SECURE_PPI:
+ case ARCH_TIMER_PHYS_NONSECURE_PPI:
+ case ARCH_TIMER_HYP_PPI:
+ clk->set_state_shutdown = arch_timer_shutdown_phys;
+ clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
+ sne = erratum_handler(set_next_event_phys);
+ break;
+ default:
+ BUG();
}
- clk->cpumask = cpumask_of(smp_processor_id());
+ clk->set_next_event = sne;
+ max_delta = __arch_timer_check_delta();
- clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
+ clk->set_state_shutdown(clk);
- clockevents_config_and_register(clk, arch_timer_rate,
- 0xf, 0x7fffffff);
+ clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
+}
+
+static void arch_timer_evtstrm_enable(unsigned int divider)
+{
+ u32 cntkctl = arch_timer_get_cntkctl();
- if (arch_timer_use_virtual)
- enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
- else {
- enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
- if (arch_timer_ppi[PHYS_NONSECURE_PPI])
- enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
+#ifdef CONFIG_ARM64
+ /* ECV is likely to require a large divider. Use the EVNTIS flag. */
+ if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) {
+ cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
+ divider -= 8;
}
+#endif
+
+ divider = min(divider, 15U);
+ cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
+ /* Set the divider and enable virtual event stream */
+ cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
+ | ARCH_TIMER_VIRT_EVT_EN;
+ arch_timer_set_cntkctl(cntkctl);
+ arch_timer_set_evtstrm_feature();
+ cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
+}
- arch_counter_set_user_access();
+static void arch_timer_configure_evtstream(void)
+{
+ int evt_stream_div, lsb;
+
+ /*
+ * As the event stream can at most be generated at half the frequency
+ * of the counter, use half the frequency when computing the divider.
+ */
+ evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
+ /*
+ * Find the closest power of two to the divisor. If the adjacent bit
+ * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
+ */
+ lsb = fls(evt_stream_div) - 1;
+ if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
+ lsb++;
+
+ /* enable event stream */
+ arch_timer_evtstrm_enable(max(0, lsb));
+}
+
+static int arch_timer_evtstrm_starting_cpu(unsigned int cpu)
+{
+ arch_timer_configure_evtstream();
return 0;
}
-static int arch_timer_available(void)
+static int arch_timer_evtstrm_dying_cpu(unsigned int cpu)
{
- u32 freq;
+ cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
+ return 0;
+}
+
+static int __init arch_timer_evtstrm_register(void)
+{
+ if (!arch_timer_evt || !evtstrm_enable)
+ return 0;
- if (arch_timer_rate == 0) {
- freq = arch_timer_get_cntfrq();
+ return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING,
+ "clockevents/arm/arch_timer_evtstrm:starting",
+ arch_timer_evtstrm_starting_cpu,
+ arch_timer_evtstrm_dying_cpu);
+}
+core_initcall(arch_timer_evtstrm_register);
- /* Check the timer frequency. */
- if (freq == 0) {
- pr_warn("Architected timer frequency not available\n");
- return -EINVAL;
- }
+static void arch_counter_set_user_access(void)
+{
+ u32 cntkctl = arch_timer_get_cntkctl();
+
+ /* Disable user access to the timers and both counters */
+ /* Also disable virtual event stream */
+ cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
+ | ARCH_TIMER_USR_VT_ACCESS_EN
+ | ARCH_TIMER_USR_VCT_ACCESS_EN
+ | ARCH_TIMER_VIRT_EVT_EN
+ | ARCH_TIMER_USR_PCT_ACCESS_EN);
+
+ /*
+ * Enable user access to the virtual counter if it doesn't
+ * need to be workaround. The vdso may have been already
+ * disabled though.
+ */
+ if (arch_timer_this_cpu_has_cntvct_wa())
+ pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
+ else
+ cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
+
+ arch_timer_set_cntkctl(cntkctl);
+}
+
+static bool arch_timer_has_nonsecure_ppi(void)
+{
+ return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
+ arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
+}
+
+static u32 check_ppi_trigger(int irq)
+{
+ u32 flags = irq_get_trigger_type(irq);
+
+ if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
+ pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
+ pr_warn("WARNING: Please fix your firmware\n");
+ flags = IRQF_TRIGGER_LOW;
+ }
+
+ return flags;
+}
+
+static int arch_timer_starting_cpu(unsigned int cpu)
+{
+ struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
+ u32 flags;
+
+ __arch_timer_setup(clk);
+
+ flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
+ enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
- arch_timer_rate = freq;
+ if (arch_timer_has_nonsecure_ppi()) {
+ flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
+ enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
+ flags);
}
- pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
- (unsigned long)arch_timer_rate / 1000000,
- (unsigned long)(arch_timer_rate / 10000) % 100,
- arch_timer_use_virtual ? "virt" : "phys");
+ arch_counter_set_user_access();
+
return 0;
}
-u32 arch_timer_get_rate(void)
+static int validate_timer_rate(void)
{
- return arch_timer_rate;
+ if (!arch_timer_rate)
+ return -EINVAL;
+
+ /* Arch timer frequency < 1MHz can cause trouble */
+ WARN_ON(arch_timer_rate < 1000000);
+
+ return 0;
}
-u64 arch_timer_read_counter(void)
+/*
+ * For historical reasons, when probing with DT we use whichever (non-zero)
+ * rate was probed first, and don't verify that others match. If the first node
+ * probed has a clock-frequency property, this overrides the HW register.
+ */
+static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
{
- return arch_counter_get_cntvct();
+ /* Who has more than one independent system counter? */
+ if (arch_timer_rate)
+ return;
+
+ if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
+ arch_timer_rate = rate;
+
+ /* Check the timer frequency. */
+ if (validate_timer_rate())
+ pr_warn("frequency not available\n");
}
-static cycle_t arch_counter_read(struct clocksource *cs)
+static void __init arch_timer_banner(void)
{
- return arch_counter_get_cntvct();
+ pr_info("cp15 timer running at %lu.%02luMHz (%s).\n",
+ (unsigned long)arch_timer_rate / 1000000,
+ (unsigned long)(arch_timer_rate / 10000) % 100,
+ (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys");
}
-static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
+u32 arch_timer_get_rate(void)
{
- return arch_counter_get_cntvct();
+ return arch_timer_rate;
}
-static struct clocksource clocksource_counter = {
- .name = "arch_sys_counter",
- .rating = 400,
- .read = arch_counter_read,
- .mask = CLOCKSOURCE_MASK(56),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
-};
+bool arch_timer_evtstrm_available(void)
+{
+ /*
+ * We might get called from a preemptible context. This is fine
+ * because availability of the event stream should be always the same
+ * for a preemptible context and context where we might resume a task.
+ */
+ return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
+}
-static struct cyclecounter cyclecounter = {
- .read = arch_counter_read_cc,
- .mask = CLOCKSOURCE_MASK(56),
-};
+static struct arch_timer_kvm_info arch_timer_kvm_info;
-static struct timecounter timecounter;
+struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
+{
+ return &arch_timer_kvm_info;
+}
-struct timecounter *arch_timer_get_timecounter(void)
+static void __init arch_counter_register(void)
{
- return &timecounter;
+ u64 (*scr)(void);
+ u64 (*rd)(void);
+ u64 start_count;
+ int width;
+
+ if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
+ arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
+ if (arch_timer_counter_has_wa()) {
+ rd = arch_counter_get_cntvct_stable;
+ scr = raw_counter_get_cntvct_stable;
+ } else {
+ rd = arch_counter_get_cntvct;
+ scr = arch_counter_get_cntvct;
+ }
+ } else {
+ if (arch_timer_counter_has_wa()) {
+ rd = arch_counter_get_cntpct_stable;
+ scr = raw_counter_get_cntpct_stable;
+ } else {
+ rd = arch_counter_get_cntpct;
+ scr = arch_counter_get_cntpct;
+ }
+ }
+
+ arch_timer_read_counter = rd;
+ clocksource_counter.vdso_clock_mode = vdso_default;
+
+ width = arch_counter_get_width();
+ clocksource_counter.mask = CLOCKSOURCE_MASK(width);
+ cyclecounter.mask = CLOCKSOURCE_MASK(width);
+
+ if (!arch_counter_suspend_stop)
+ clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
+ start_count = arch_timer_read_counter();
+ clocksource_register_hz(&clocksource_counter, arch_timer_rate);
+ cyclecounter.mult = clocksource_counter.mult;
+ cyclecounter.shift = clocksource_counter.shift;
+ timecounter_init(&arch_timer_kvm_info.timecounter,
+ &cyclecounter, start_count);
+
+ sched_clock_register(scr, width, arch_timer_rate);
}
-static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
+static void arch_timer_stop(struct clock_event_device *clk)
{
- pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
- clk->irq, smp_processor_id());
+ pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
- if (arch_timer_use_virtual)
- disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
- else {
- disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
- if (arch_timer_ppi[PHYS_NONSECURE_PPI])
- disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
- }
+ disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
+ if (arch_timer_has_nonsecure_ppi())
+ disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
+}
- clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
+static int arch_timer_dying_cpu(unsigned int cpu)
+{
+ struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
+
+ arch_timer_stop(clk);
+ return 0;
}
-static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
- unsigned long action, void *hcpu)
+#ifdef CONFIG_CPU_PM
+static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
+static int arch_timer_cpu_pm_notify(struct notifier_block *self,
+ unsigned long action, void *hcpu)
{
- /*
- * Grab cpu pointer in each case to avoid spurious
- * preemptible warnings
- */
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_STARTING:
- arch_timer_setup(this_cpu_ptr(arch_timer_evt));
- break;
- case CPU_DYING:
- arch_timer_stop(this_cpu_ptr(arch_timer_evt));
- break;
- }
+ if (action == CPU_PM_ENTER) {
+ __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
+
+ cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
+ } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
+ arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
+ if (arch_timer_have_evtstrm_feature())
+ cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
+ }
return NOTIFY_OK;
}
-static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
- .notifier_call = arch_timer_cpu_notify,
+static struct notifier_block arch_timer_cpu_pm_notifier = {
+ .notifier_call = arch_timer_cpu_pm_notify,
};
+static int __init arch_timer_cpu_pm_init(void)
+{
+ return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
+}
+
+static void __init arch_timer_cpu_pm_deinit(void)
+{
+ WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
+}
+
+#else
+static int __init arch_timer_cpu_pm_init(void)
+{
+ return 0;
+}
+
+static void __init arch_timer_cpu_pm_deinit(void)
+{
+}
+#endif
+
static int __init arch_timer_register(void)
{
int err;
int ppi;
- err = arch_timer_available();
- if (err)
- goto out;
-
arch_timer_evt = alloc_percpu(struct clock_event_device);
if (!arch_timer_evt) {
err = -ENOMEM;
goto out;
}
- clocksource_register_hz(&clocksource_counter, arch_timer_rate);
- cyclecounter.mult = clocksource_counter.mult;
- cyclecounter.shift = clocksource_counter.shift;
- timecounter_init(&timecounter, &cyclecounter,
- arch_counter_get_cntvct());
-
- if (arch_timer_use_virtual) {
- ppi = arch_timer_ppi[VIRT_PPI];
+ ppi = arch_timer_ppi[arch_timer_uses_ppi];
+ switch (arch_timer_uses_ppi) {
+ case ARCH_TIMER_VIRT_PPI:
err = request_percpu_irq(ppi, arch_timer_handler_virt,
"arch_timer", arch_timer_evt);
- } else {
- ppi = arch_timer_ppi[PHYS_SECURE_PPI];
+ break;
+ case ARCH_TIMER_PHYS_SECURE_PPI:
+ case ARCH_TIMER_PHYS_NONSECURE_PPI:
err = request_percpu_irq(ppi, arch_timer_handler_phys,
"arch_timer", arch_timer_evt);
- if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
- ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
+ if (!err && arch_timer_has_nonsecure_ppi()) {
+ ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
err = request_percpu_irq(ppi, arch_timer_handler_phys,
"arch_timer", arch_timer_evt);
if (err)
- free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
+ free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
arch_timer_evt);
}
+ break;
+ case ARCH_TIMER_HYP_PPI:
+ err = request_percpu_irq(ppi, arch_timer_handler_phys,
+ "arch_timer", arch_timer_evt);
+ break;
+ default:
+ BUG();
}
if (err) {
- pr_err("arch_timer: can't register interrupt %d (%d)\n",
- ppi, err);
+ pr_err("can't register interrupt %d (%d)\n", ppi, err);
goto out_free;
}
- err = register_cpu_notifier(&arch_timer_cpu_nb);
+ err = arch_timer_cpu_pm_init();
if (err)
- goto out_free_irq;
-
- /* Immediately configure the timer on the boot CPU */
- arch_timer_setup(this_cpu_ptr(arch_timer_evt));
+ goto out_unreg_notify;
+ /* Register and immediately configure the timer on the boot CPU */
+ err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
+ "clockevents/arm/arch_timer:starting",
+ arch_timer_starting_cpu, arch_timer_dying_cpu);
+ if (err)
+ goto out_unreg_cpupm;
return 0;
-out_free_irq:
- if (arch_timer_use_virtual)
- free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
- else {
- free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
+out_unreg_cpupm:
+ arch_timer_cpu_pm_deinit();
+
+out_unreg_notify:
+ free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
+ if (arch_timer_has_nonsecure_ppi())
+ free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
arch_timer_evt);
- if (arch_timer_ppi[PHYS_NONSECURE_PPI])
- free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
- arch_timer_evt);
- }
out_free:
free_percpu(arch_timer_evt);
+ arch_timer_evt = NULL;
out:
return err;
}
-static void __init arch_timer_init(struct device_node *np)
+static int __init arch_timer_common_init(void)
{
- u32 freq;
- int i;
+ arch_timer_banner();
+ arch_counter_register();
+ return arch_timer_arch_init();
+}
- if (arch_timer_get_rate()) {
- pr_warn("arch_timer: multiple nodes in dt, skipping\n");
- return;
+/**
+ * arch_timer_select_ppi() - Select suitable PPI for the current system.
+ *
+ * If HYP mode is available, we know that the physical timer
+ * has been configured to be accessible from PL1. Use it, so
+ * that a guest can use the virtual timer instead.
+ *
+ * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
+ * accesses to CNTP_*_EL1 registers are silently redirected to
+ * their CNTHP_*_EL2 counterparts, and use a different PPI
+ * number.
+ *
+ * If no interrupt provided for virtual timer, we'll have to
+ * stick to the physical timer. It'd better be accessible...
+ * For arm64 we never use the secure interrupt.
+ *
+ * Return: a suitable PPI type for the current system.
+ */
+static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
+{
+ if (is_kernel_in_hyp_mode())
+ return ARCH_TIMER_HYP_PPI;
+
+ if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
+ return ARCH_TIMER_VIRT_PPI;
+
+ if (IS_ENABLED(CONFIG_ARM64))
+ return ARCH_TIMER_PHYS_NONSECURE_PPI;
+
+ return ARCH_TIMER_PHYS_SECURE_PPI;
+}
+
+static void __init arch_timer_populate_kvm_info(void)
+{
+ arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
+ if (is_kernel_in_hyp_mode())
+ arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
+}
+
+static int __init arch_timer_of_init(struct device_node *np)
+{
+ int i, irq, ret;
+ u32 rate;
+ bool has_names;
+
+ if (arch_timer_evt) {
+ pr_warn("multiple nodes in dt, skipping\n");
+ return 0;
}
- /* Try to determine the frequency from the device tree or CNTFRQ */
- if (!of_property_read_u32(np, "clock-frequency", &freq))
- arch_timer_rate = freq;
+ has_names = of_property_present(np, "interrupt-names");
+
+ for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
+ if (has_names)
+ irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
+ else
+ irq = of_irq_get(np, i);
+ if (irq > 0)
+ arch_timer_ppi[i] = irq;
+ }
- for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
- arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
+ arch_timer_populate_kvm_info();
- of_node_put(np);
+ rate = arch_timer_get_cntfrq();
+ arch_timer_of_configure_rate(rate, np);
+
+ arch_timer_c3stop = !of_property_read_bool(np, "always-on");
+
+ /* Check for globally applicable workarounds */
+ arch_timer_check_ool_workaround(ate_match_dt, np);
/*
- * If HYP mode is available, we know that the physical timer
- * has been configured to be accessible from PL1. Use it, so
- * that a guest can use the virtual timer instead.
- *
- * If no interrupt provided for virtual timer, we'll have to
- * stick to the physical timer. It'd better be accessible...
+ * If we cannot rely on firmware initializing the timer registers then
+ * we should use the physical timers instead.
*/
- if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
- arch_timer_use_virtual = false;
+ if (IS_ENABLED(CONFIG_ARM) &&
+ of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
+ arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
+ else
+ arch_timer_uses_ppi = arch_timer_select_ppi();
+
+ if (!arch_timer_ppi[arch_timer_uses_ppi]) {
+ pr_err("No interrupt available, giving up\n");
+ return -EINVAL;
+ }
- if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
- !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
- pr_warn("arch_timer: No interrupt available, giving up\n");
- return;
- }
+ /* On some systems, the counter stops ticking when in suspend. */
+ arch_counter_suspend_stop = of_property_read_bool(np,
+ "arm,no-tick-in-suspend");
+
+ ret = arch_timer_register();
+ if (ret)
+ return ret;
+
+ return arch_timer_common_init();
+}
+TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
+TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
+
+#ifdef CONFIG_ACPI_GTDT
+static int __init arch_timer_acpi_init(struct acpi_table_header *table)
+{
+ int ret;
+
+ if (arch_timer_evt) {
+ pr_warn("already initialized, skipping\n");
+ return -EINVAL;
+ }
+
+ ret = acpi_gtdt_init(table, NULL);
+ if (ret)
+ return ret;
+
+ arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
+ acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
+
+ arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
+ acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
+
+ arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
+ acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
+
+ arch_timer_populate_kvm_info();
+
+ /*
+ * When probing via ACPI, we have no mechanism to override the sysreg
+ * CNTFRQ value. This *must* be correct.
+ */
+ arch_timer_rate = arch_timer_get_cntfrq();
+ ret = validate_timer_rate();
+ if (ret) {
+ pr_err(FW_BUG "frequency not available.\n");
+ return ret;
+ }
+
+ arch_timer_uses_ppi = arch_timer_select_ppi();
+ if (!arch_timer_ppi[arch_timer_uses_ppi]) {
+ pr_err("No interrupt available, giving up\n");
+ return -EINVAL;
}
- arch_timer_register();
- arch_timer_arch_init();
+ /* Always-on capability */
+ arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
+
+ /* Check for globally applicable workarounds */
+ arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
+
+ ret = arch_timer_register();
+ if (ret)
+ return ret;
+
+ return arch_timer_common_init();
+}
+TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
+#endif
+
+int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
+ enum clocksource_ids *cs_id)
+{
+ struct arm_smccc_res hvc_res;
+ u32 ptp_counter;
+ ktime_t ktime;
+
+ if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
+ return -EOPNOTSUPP;
+
+ if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
+ ptp_counter = KVM_PTP_VIRT_COUNTER;
+ else
+ ptp_counter = KVM_PTP_PHYS_COUNTER;
+
+ arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
+ ptp_counter, &hvc_res);
+
+ if ((int)(hvc_res.a0) < 0)
+ return -EOPNOTSUPP;
+
+ ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
+ *ts = ktime_to_timespec64(ktime);
+ if (cycle)
+ *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
+ if (cs_id)
+ *cs_id = CSID_ARM_ARCH_COUNTER;
+
+ return 0;
}
-CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
-CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
+EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);