diff options
Diffstat (limited to 'drivers/clocksource/arm_arch_timer.c')
| -rw-r--r-- | drivers/clocksource/arm_arch_timer.c | 1277 |
1 files changed, 1089 insertions, 188 deletions
diff --git a/drivers/clocksource/arm_arch_timer.c b/drivers/clocksource/arm_arch_timer.c index 053d846ab5b1..90aeff44a276 100644 --- a/drivers/clocksource/arm_arch_timer.c +++ b/drivers/clocksource/arm_arch_timer.c @@ -1,56 +1,575 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/clocksource/arm_arch_timer.c * * Copyright (C) 2011 ARM Ltd. * All Rights Reserved - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. */ + +#define pr_fmt(fmt) "arch_timer: " fmt + #include <linux/init.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/smp.h> #include <linux/cpu.h> +#include <linux/cpu_pm.h> #include <linux/clockchips.h> +#include <linux/clocksource.h> +#include <linux/clocksource_ids.h> #include <linux/interrupt.h> +#include <linux/kstrtox.h> #include <linux/of_irq.h> +#include <linux/of_address.h> #include <linux/io.h> +#include <linux/slab.h> +#include <linux/sched/clock.h> +#include <linux/sched_clock.h> +#include <linux/acpi.h> +#include <linux/arm-smccc.h> +#include <linux/ptp_kvm.h> #include <asm/arch_timer.h> #include <asm/virt.h> #include <clocksource/arm_arch_timer.h> -static u32 arch_timer_rate; +/* + * The minimum amount of time a generic counter is guaranteed to not roll over + * (40 years) + */ +#define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600) -enum ppi_nr { - PHYS_SECURE_PPI, - PHYS_NONSECURE_PPI, - VIRT_PPI, - HYP_PPI, - MAX_TIMER_PPI -}; +static u32 arch_timer_rate __ro_after_init; +static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; -static int arch_timer_ppi[MAX_TIMER_PPI]; +static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { + [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", + [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", + [ARCH_TIMER_VIRT_PPI] = "virt", + [ARCH_TIMER_HYP_PPI] = "hyp-phys", + [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", +}; static struct clock_event_device __percpu *arch_timer_evt; -static bool arch_timer_use_virtual = true; +static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; +static bool arch_timer_c3stop __ro_after_init; +static bool arch_counter_suspend_stop __ro_after_init; +#ifdef CONFIG_GENERIC_GETTIMEOFDAY +static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; +#else +static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; +#endif /* CONFIG_GENERIC_GETTIMEOFDAY */ + +static cpumask_t evtstrm_available = CPU_MASK_NONE; +static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); + +static int __init early_evtstrm_cfg(char *buf) +{ + return kstrtobool(buf, &evtstrm_enable); +} +early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); + +/* + * Makes an educated guess at a valid counter width based on the Generic Timer + * specification. Of note: + * 1) the system counter is at least 56 bits wide + * 2) a roll-over time of not less than 40 years + * + * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details. + */ +static int arch_counter_get_width(void) +{ + u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate; + + /* guarantee the returned width is within the valid range */ + return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64); +} /* * Architected system timer support. */ +static noinstr u64 raw_counter_get_cntpct_stable(void) +{ + return __arch_counter_get_cntpct_stable(); +} + +static notrace u64 arch_counter_get_cntpct_stable(void) +{ + u64 val; + preempt_disable_notrace(); + val = __arch_counter_get_cntpct_stable(); + preempt_enable_notrace(); + return val; +} + +static noinstr u64 arch_counter_get_cntpct(void) +{ + return __arch_counter_get_cntpct(); +} + +static noinstr u64 raw_counter_get_cntvct_stable(void) +{ + return __arch_counter_get_cntvct_stable(); +} + +static notrace u64 arch_counter_get_cntvct_stable(void) +{ + u64 val; + preempt_disable_notrace(); + val = __arch_counter_get_cntvct_stable(); + preempt_enable_notrace(); + return val; +} + +static noinstr u64 arch_counter_get_cntvct(void) +{ + return __arch_counter_get_cntvct(); +} + +/* + * Default to cp15 based access because arm64 uses this function for + * sched_clock() before DT is probed and the cp15 method is guaranteed + * to exist on arm64. arm doesn't use this before DT is probed so even + * if we don't have the cp15 accessors we won't have a problem. + */ +u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; +EXPORT_SYMBOL_GPL(arch_timer_read_counter); + +static u64 arch_counter_read(struct clocksource *cs) +{ + return arch_timer_read_counter(); +} + +static u64 arch_counter_read_cc(struct cyclecounter *cc) +{ + return arch_timer_read_counter(); +} + +static struct clocksource clocksource_counter = { + .name = "arch_sys_counter", + .id = CSID_ARM_ARCH_COUNTER, + .rating = 400, + .read = arch_counter_read, + .flags = CLOCK_SOURCE_IS_CONTINUOUS, +}; + +static struct cyclecounter cyclecounter __ro_after_init = { + .read = arch_counter_read_cc, +}; + +struct ate_acpi_oem_info { + char oem_id[ACPI_OEM_ID_SIZE + 1]; + char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; + u32 oem_revision; +}; + +#ifdef CONFIG_FSL_ERRATUM_A008585 +/* + * The number of retries is an arbitrary value well beyond the highest number + * of iterations the loop has been observed to take. + */ +#define __fsl_a008585_read_reg(reg) ({ \ + u64 _old, _new; \ + int _retries = 200; \ + \ + do { \ + _old = read_sysreg(reg); \ + _new = read_sysreg(reg); \ + _retries--; \ + } while (unlikely(_old != _new) && _retries); \ + \ + WARN_ON_ONCE(!_retries); \ + _new; \ +}) + +static u64 notrace fsl_a008585_read_cntpct_el0(void) +{ + return __fsl_a008585_read_reg(cntpct_el0); +} + +static u64 notrace fsl_a008585_read_cntvct_el0(void) +{ + return __fsl_a008585_read_reg(cntvct_el0); +} +#endif + +#ifdef CONFIG_HISILICON_ERRATUM_161010101 +/* + * Verify whether the value of the second read is larger than the first by + * less than 32 is the only way to confirm the value is correct, so clear the + * lower 5 bits to check whether the difference is greater than 32 or not. + * Theoretically the erratum should not occur more than twice in succession + * when reading the system counter, but it is possible that some interrupts + * may lead to more than twice read errors, triggering the warning, so setting + * the number of retries far beyond the number of iterations the loop has been + * observed to take. + */ +#define __hisi_161010101_read_reg(reg) ({ \ + u64 _old, _new; \ + int _retries = 50; \ + \ + do { \ + _old = read_sysreg(reg); \ + _new = read_sysreg(reg); \ + _retries--; \ + } while (unlikely((_new - _old) >> 5) && _retries); \ + \ + WARN_ON_ONCE(!_retries); \ + _new; \ +}) + +static u64 notrace hisi_161010101_read_cntpct_el0(void) +{ + return __hisi_161010101_read_reg(cntpct_el0); +} + +static u64 notrace hisi_161010101_read_cntvct_el0(void) +{ + return __hisi_161010101_read_reg(cntvct_el0); +} + +static const struct ate_acpi_oem_info hisi_161010101_oem_info[] = { + /* + * Note that trailing spaces are required to properly match + * the OEM table information. + */ + { + .oem_id = "HISI ", + .oem_table_id = "HIP05 ", + .oem_revision = 0, + }, + { + .oem_id = "HISI ", + .oem_table_id = "HIP06 ", + .oem_revision = 0, + }, + { + .oem_id = "HISI ", + .oem_table_id = "HIP07 ", + .oem_revision = 0, + }, + { /* Sentinel indicating the end of the OEM array */ }, +}; +#endif + +#ifdef CONFIG_ARM64_ERRATUM_858921 +static u64 notrace arm64_858921_read_cntpct_el0(void) +{ + u64 old, new; + + old = read_sysreg(cntpct_el0); + new = read_sysreg(cntpct_el0); + return (((old ^ new) >> 32) & 1) ? old : new; +} + +static u64 notrace arm64_858921_read_cntvct_el0(void) +{ + u64 old, new; + + old = read_sysreg(cntvct_el0); + new = read_sysreg(cntvct_el0); + return (((old ^ new) >> 32) & 1) ? old : new; +} +#endif + +#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 +/* + * The low bits of the counter registers are indeterminate while bit 10 or + * greater is rolling over. Since the counter value can jump both backward + * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values + * with all ones or all zeros in the low bits. Bound the loop by the maximum + * number of CPU cycles in 3 consecutive 24 MHz counter periods. + */ +#define __sun50i_a64_read_reg(reg) ({ \ + u64 _val; \ + int _retries = 150; \ + \ + do { \ + _val = read_sysreg(reg); \ + _retries--; \ + } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \ + \ + WARN_ON_ONCE(!_retries); \ + _val; \ +}) + +static u64 notrace sun50i_a64_read_cntpct_el0(void) +{ + return __sun50i_a64_read_reg(cntpct_el0); +} + +static u64 notrace sun50i_a64_read_cntvct_el0(void) +{ + return __sun50i_a64_read_reg(cntvct_el0); +} +#endif + +#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND +DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); +EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); + +static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); + +/* + * Force the inlining of this function so that the register accesses + * can be themselves correctly inlined. + */ +static __always_inline +void erratum_set_next_event_generic(const int access, unsigned long evt, + struct clock_event_device *clk) +{ + unsigned long ctrl; + u64 cval; + + ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL); + ctrl |= ARCH_TIMER_CTRL_ENABLE; + ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; + + if (access == ARCH_TIMER_PHYS_ACCESS) { + cval = evt + arch_counter_get_cntpct_stable(); + write_sysreg(cval, cntp_cval_el0); + } else { + cval = evt + arch_counter_get_cntvct_stable(); + write_sysreg(cval, cntv_cval_el0); + } + + arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl); +} + +static __maybe_unused int erratum_set_next_event_virt(unsigned long evt, + struct clock_event_device *clk) +{ + erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); + return 0; +} + +static __maybe_unused int erratum_set_next_event_phys(unsigned long evt, + struct clock_event_device *clk) +{ + erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); + return 0; +} + +static const struct arch_timer_erratum_workaround ool_workarounds[] = { +#ifdef CONFIG_FSL_ERRATUM_A008585 + { + .match_type = ate_match_dt, + .id = "fsl,erratum-a008585", + .desc = "Freescale erratum a005858", + .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, + .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, + .set_next_event_phys = erratum_set_next_event_phys, + .set_next_event_virt = erratum_set_next_event_virt, + }, +#endif +#ifdef CONFIG_HISILICON_ERRATUM_161010101 + { + .match_type = ate_match_dt, + .id = "hisilicon,erratum-161010101", + .desc = "HiSilicon erratum 161010101", + .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, + .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, + .set_next_event_phys = erratum_set_next_event_phys, + .set_next_event_virt = erratum_set_next_event_virt, + }, + { + .match_type = ate_match_acpi_oem_info, + .id = hisi_161010101_oem_info, + .desc = "HiSilicon erratum 161010101", + .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, + .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, + .set_next_event_phys = erratum_set_next_event_phys, + .set_next_event_virt = erratum_set_next_event_virt, + }, +#endif +#ifdef CONFIG_ARM64_ERRATUM_858921 + { + .match_type = ate_match_local_cap_id, + .id = (void *)ARM64_WORKAROUND_858921, + .desc = "ARM erratum 858921", + .read_cntpct_el0 = arm64_858921_read_cntpct_el0, + .read_cntvct_el0 = arm64_858921_read_cntvct_el0, + .set_next_event_phys = erratum_set_next_event_phys, + .set_next_event_virt = erratum_set_next_event_virt, + }, +#endif +#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 + { + .match_type = ate_match_dt, + .id = "allwinner,erratum-unknown1", + .desc = "Allwinner erratum UNKNOWN1", + .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, + .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, + .set_next_event_phys = erratum_set_next_event_phys, + .set_next_event_virt = erratum_set_next_event_virt, + }, +#endif +#ifdef CONFIG_ARM64_ERRATUM_1418040 + { + .match_type = ate_match_local_cap_id, + .id = (void *)ARM64_WORKAROUND_1418040, + .desc = "ARM erratum 1418040", + .disable_compat_vdso = true, + }, +#endif +}; + +typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, + const void *); + +static +bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, + const void *arg) +{ + const struct device_node *np = arg; + + return of_property_read_bool(np, wa->id); +} + +static +bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, + const void *arg) +{ + return this_cpu_has_cap((uintptr_t)wa->id); +} + + +static +bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, + const void *arg) +{ + static const struct ate_acpi_oem_info empty_oem_info = {}; + const struct ate_acpi_oem_info *info = wa->id; + const struct acpi_table_header *table = arg; + + /* Iterate over the ACPI OEM info array, looking for a match */ + while (memcmp(info, &empty_oem_info, sizeof(*info))) { + if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && + !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && + info->oem_revision == table->oem_revision) + return true; + + info++; + } + + return false; +} + +static const struct arch_timer_erratum_workaround * +arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, + ate_match_fn_t match_fn, + void *arg) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { + if (ool_workarounds[i].match_type != type) + continue; + + if (match_fn(&ool_workarounds[i], arg)) + return &ool_workarounds[i]; + } + + return NULL; +} + +static +void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, + bool local) +{ + int i; + + if (local) { + __this_cpu_write(timer_unstable_counter_workaround, wa); + } else { + for_each_possible_cpu(i) + per_cpu(timer_unstable_counter_workaround, i) = wa; + } + + if (wa->read_cntvct_el0 || wa->read_cntpct_el0) + atomic_set(&timer_unstable_counter_workaround_in_use, 1); + + /* + * Don't use the vdso fastpath if errata require using the + * out-of-line counter accessor. We may change our mind pretty + * late in the game (with a per-CPU erratum, for example), so + * change both the default value and the vdso itself. + */ + if (wa->read_cntvct_el0) { + clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; + vdso_default = VDSO_CLOCKMODE_NONE; + } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { + vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; + clocksource_counter.vdso_clock_mode = vdso_default; + } +} + +static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, + void *arg) +{ + const struct arch_timer_erratum_workaround *wa, *__wa; + ate_match_fn_t match_fn = NULL; + bool local = false; + + switch (type) { + case ate_match_dt: + match_fn = arch_timer_check_dt_erratum; + break; + case ate_match_local_cap_id: + match_fn = arch_timer_check_local_cap_erratum; + local = true; + break; + case ate_match_acpi_oem_info: + match_fn = arch_timer_check_acpi_oem_erratum; + break; + default: + WARN_ON(1); + return; + } + + wa = arch_timer_iterate_errata(type, match_fn, arg); + if (!wa) + return; + + __wa = __this_cpu_read(timer_unstable_counter_workaround); + if (__wa && wa != __wa) + pr_warn("Can't enable workaround for %s (clashes with %s\n)", + wa->desc, __wa->desc); + + if (__wa) + return; -static inline irqreturn_t timer_handler(const int access, + arch_timer_enable_workaround(wa, local); + pr_info("Enabling %s workaround for %s\n", + local ? "local" : "global", wa->desc); +} + +static bool arch_timer_this_cpu_has_cntvct_wa(void) +{ + return has_erratum_handler(read_cntvct_el0); +} + +static bool arch_timer_counter_has_wa(void) +{ + return atomic_read(&timer_unstable_counter_workaround_in_use); +} +#else +#define arch_timer_check_ool_workaround(t,a) do { } while(0) +#define arch_timer_this_cpu_has_cntvct_wa() ({false;}) +#define arch_timer_counter_has_wa() ({false;}) +#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ + +static __always_inline irqreturn_t timer_handler(const int access, struct clock_event_device *evt) { unsigned long ctrl; - ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); + + ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL); if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { ctrl |= ARCH_TIMER_CTRL_IT_MASK; - arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); + arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl); evt->event_handler(evt); return IRQ_HANDLED; } @@ -72,304 +591,686 @@ static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); } -static inline void timer_set_mode(const int access, int mode) +static __always_inline int arch_timer_shutdown(const int access, + struct clock_event_device *clk) { unsigned long ctrl; - switch (mode) { - case CLOCK_EVT_MODE_UNUSED: - case CLOCK_EVT_MODE_SHUTDOWN: - ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); - ctrl &= ~ARCH_TIMER_CTRL_ENABLE; - arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); - break; - default: - break; - } + + ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL); + ctrl &= ~ARCH_TIMER_CTRL_ENABLE; + arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl); + + return 0; } -static void arch_timer_set_mode_virt(enum clock_event_mode mode, - struct clock_event_device *clk) +static int arch_timer_shutdown_virt(struct clock_event_device *clk) { - timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode); + return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); } -static void arch_timer_set_mode_phys(enum clock_event_mode mode, - struct clock_event_device *clk) +static int arch_timer_shutdown_phys(struct clock_event_device *clk) { - timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode); + return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); } -static inline void set_next_event(const int access, unsigned long evt) +static __always_inline void set_next_event(const int access, unsigned long evt, + struct clock_event_device *clk) { unsigned long ctrl; - ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); + u64 cnt; + + ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL); ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; - arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt); - arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); + + if (access == ARCH_TIMER_PHYS_ACCESS) + cnt = __arch_counter_get_cntpct(); + else + cnt = __arch_counter_get_cntvct(); + + arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CVAL, evt + cnt); + arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl); } static int arch_timer_set_next_event_virt(unsigned long evt, - struct clock_event_device *unused) + struct clock_event_device *clk) { - set_next_event(ARCH_TIMER_VIRT_ACCESS, evt); + set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_phys(unsigned long evt, - struct clock_event_device *unused) + struct clock_event_device *clk) { - set_next_event(ARCH_TIMER_PHYS_ACCESS, evt); + set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); return 0; } -static int __cpuinit arch_timer_setup(struct clock_event_device *clk) +static u64 __arch_timer_check_delta(void) +{ +#ifdef CONFIG_ARM64 + const struct midr_range broken_cval_midrs[] = { + /* + * XGene-1 implements CVAL in terms of TVAL, meaning + * that the maximum timer range is 32bit. Shame on them. + * + * Note that TVAL is signed, thus has only 31 of its + * 32 bits to express magnitude. + */ + MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM, + APM_CPU_PART_XGENE), + APM_CPU_VAR_POTENZA, 0x0, 0xf), + {}, + }; + + if (is_midr_in_range_list(broken_cval_midrs)) { + pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n"); + return CLOCKSOURCE_MASK(31); + } +#endif + return CLOCKSOURCE_MASK(arch_counter_get_width()); +} + +static void __arch_timer_setup(struct clock_event_device *clk) { - clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; + typeof(clk->set_next_event) sne; + u64 max_delta; + + clk->features = CLOCK_EVT_FEAT_ONESHOT; + + arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); + + if (arch_timer_c3stop) + clk->features |= CLOCK_EVT_FEAT_C3STOP; clk->name = "arch_sys_timer"; clk->rating = 450; - if (arch_timer_use_virtual) { - clk->irq = arch_timer_ppi[VIRT_PPI]; - clk->set_mode = arch_timer_set_mode_virt; - clk->set_next_event = arch_timer_set_next_event_virt; - } else { - clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; - clk->set_mode = arch_timer_set_mode_phys; - clk->set_next_event = arch_timer_set_next_event_phys; + clk->cpumask = cpumask_of(smp_processor_id()); + clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; + switch (arch_timer_uses_ppi) { + case ARCH_TIMER_VIRT_PPI: + clk->set_state_shutdown = arch_timer_shutdown_virt; + clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; + sne = erratum_handler(set_next_event_virt); + break; + case ARCH_TIMER_PHYS_SECURE_PPI: + case ARCH_TIMER_PHYS_NONSECURE_PPI: + case ARCH_TIMER_HYP_PPI: + clk->set_state_shutdown = arch_timer_shutdown_phys; + clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; + sne = erratum_handler(set_next_event_phys); + break; + default: + BUG(); } - clk->cpumask = cpumask_of(smp_processor_id()); + clk->set_next_event = sne; + max_delta = __arch_timer_check_delta(); - clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL); + clk->set_state_shutdown(clk); - clockevents_config_and_register(clk, arch_timer_rate, - 0xf, 0x7fffffff); + clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta); +} + +static void arch_timer_evtstrm_enable(unsigned int divider) +{ + u32 cntkctl = arch_timer_get_cntkctl(); - if (arch_timer_use_virtual) - enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); - else { - enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); - if (arch_timer_ppi[PHYS_NONSECURE_PPI]) - enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); +#ifdef CONFIG_ARM64 + /* ECV is likely to require a large divider. Use the EVNTIS flag. */ + if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) { + cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE; + divider -= 8; } +#endif + + divider = min(divider, 15U); + cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; + /* Set the divider and enable virtual event stream */ + cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) + | ARCH_TIMER_VIRT_EVT_EN; + arch_timer_set_cntkctl(cntkctl); + arch_timer_set_evtstrm_feature(); + cpumask_set_cpu(smp_processor_id(), &evtstrm_available); +} - arch_counter_set_user_access(); +static void arch_timer_configure_evtstream(void) +{ + int evt_stream_div, lsb; + + /* + * As the event stream can at most be generated at half the frequency + * of the counter, use half the frequency when computing the divider. + */ + evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; + /* + * Find the closest power of two to the divisor. If the adjacent bit + * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). + */ + lsb = fls(evt_stream_div) - 1; + if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) + lsb++; + + /* enable event stream */ + arch_timer_evtstrm_enable(max(0, lsb)); +} + +static int arch_timer_evtstrm_starting_cpu(unsigned int cpu) +{ + arch_timer_configure_evtstream(); return 0; } -static int arch_timer_available(void) +static int arch_timer_evtstrm_dying_cpu(unsigned int cpu) { - u32 freq; + cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); + return 0; +} + +static int __init arch_timer_evtstrm_register(void) +{ + if (!arch_timer_evt || !evtstrm_enable) + return 0; - if (arch_timer_rate == 0) { - freq = arch_timer_get_cntfrq(); + return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING, + "clockevents/arm/arch_timer_evtstrm:starting", + arch_timer_evtstrm_starting_cpu, + arch_timer_evtstrm_dying_cpu); +} +core_initcall(arch_timer_evtstrm_register); - /* Check the timer frequency. */ - if (freq == 0) { - pr_warn("Architected timer frequency not available\n"); - return -EINVAL; - } +static void arch_counter_set_user_access(void) +{ + u32 cntkctl = arch_timer_get_cntkctl(); + + /* Disable user access to the timers and both counters */ + /* Also disable virtual event stream */ + cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN + | ARCH_TIMER_USR_VT_ACCESS_EN + | ARCH_TIMER_USR_VCT_ACCESS_EN + | ARCH_TIMER_VIRT_EVT_EN + | ARCH_TIMER_USR_PCT_ACCESS_EN); + + /* + * Enable user access to the virtual counter if it doesn't + * need to be workaround. The vdso may have been already + * disabled though. + */ + if (arch_timer_this_cpu_has_cntvct_wa()) + pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); + else + cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; + + arch_timer_set_cntkctl(cntkctl); +} + +static bool arch_timer_has_nonsecure_ppi(void) +{ + return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && + arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); +} + +static u32 check_ppi_trigger(int irq) +{ + u32 flags = irq_get_trigger_type(irq); + + if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { + pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); + pr_warn("WARNING: Please fix your firmware\n"); + flags = IRQF_TRIGGER_LOW; + } + + return flags; +} + +static int arch_timer_starting_cpu(unsigned int cpu) +{ + struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); + u32 flags; + + __arch_timer_setup(clk); + + flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); + enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); - arch_timer_rate = freq; + if (arch_timer_has_nonsecure_ppi()) { + flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); + enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], + flags); } - pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n", - (unsigned long)arch_timer_rate / 1000000, - (unsigned long)(arch_timer_rate / 10000) % 100, - arch_timer_use_virtual ? "virt" : "phys"); + arch_counter_set_user_access(); + return 0; } -u32 arch_timer_get_rate(void) +static int validate_timer_rate(void) { - return arch_timer_rate; + if (!arch_timer_rate) + return -EINVAL; + + /* Arch timer frequency < 1MHz can cause trouble */ + WARN_ON(arch_timer_rate < 1000000); + + return 0; } -u64 arch_timer_read_counter(void) +/* + * For historical reasons, when probing with DT we use whichever (non-zero) + * rate was probed first, and don't verify that others match. If the first node + * probed has a clock-frequency property, this overrides the HW register. + */ +static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) { - return arch_counter_get_cntvct(); + /* Who has more than one independent system counter? */ + if (arch_timer_rate) + return; + + if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) + arch_timer_rate = rate; + + /* Check the timer frequency. */ + if (validate_timer_rate()) + pr_warn("frequency not available\n"); } -static cycle_t arch_counter_read(struct clocksource *cs) +static void __init arch_timer_banner(void) { - return arch_counter_get_cntvct(); + pr_info("cp15 timer running at %lu.%02luMHz (%s).\n", + (unsigned long)arch_timer_rate / 1000000, + (unsigned long)(arch_timer_rate / 10000) % 100, + (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys"); } -static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) +u32 arch_timer_get_rate(void) { - return arch_counter_get_cntvct(); + return arch_timer_rate; } -static struct clocksource clocksource_counter = { - .name = "arch_sys_counter", - .rating = 400, - .read = arch_counter_read, - .mask = CLOCKSOURCE_MASK(56), - .flags = CLOCK_SOURCE_IS_CONTINUOUS, -}; +bool arch_timer_evtstrm_available(void) +{ + /* + * We might get called from a preemptible context. This is fine + * because availability of the event stream should be always the same + * for a preemptible context and context where we might resume a task. + */ + return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); +} -static struct cyclecounter cyclecounter = { - .read = arch_counter_read_cc, - .mask = CLOCKSOURCE_MASK(56), -}; +static struct arch_timer_kvm_info arch_timer_kvm_info; -static struct timecounter timecounter; +struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) +{ + return &arch_timer_kvm_info; +} -struct timecounter *arch_timer_get_timecounter(void) +static void __init arch_counter_register(void) { - return &timecounter; + u64 (*scr)(void); + u64 (*rd)(void); + u64 start_count; + int width; + + if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || + arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { + if (arch_timer_counter_has_wa()) { + rd = arch_counter_get_cntvct_stable; + scr = raw_counter_get_cntvct_stable; + } else { + rd = arch_counter_get_cntvct; + scr = arch_counter_get_cntvct; + } + } else { + if (arch_timer_counter_has_wa()) { + rd = arch_counter_get_cntpct_stable; + scr = raw_counter_get_cntpct_stable; + } else { + rd = arch_counter_get_cntpct; + scr = arch_counter_get_cntpct; + } + } + + arch_timer_read_counter = rd; + clocksource_counter.vdso_clock_mode = vdso_default; + + width = arch_counter_get_width(); + clocksource_counter.mask = CLOCKSOURCE_MASK(width); + cyclecounter.mask = CLOCKSOURCE_MASK(width); + + if (!arch_counter_suspend_stop) + clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; + start_count = arch_timer_read_counter(); + clocksource_register_hz(&clocksource_counter, arch_timer_rate); + cyclecounter.mult = clocksource_counter.mult; + cyclecounter.shift = clocksource_counter.shift; + timecounter_init(&arch_timer_kvm_info.timecounter, + &cyclecounter, start_count); + + sched_clock_register(scr, width, arch_timer_rate); } -static void __cpuinit arch_timer_stop(struct clock_event_device *clk) +static void arch_timer_stop(struct clock_event_device *clk) { - pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", - clk->irq, smp_processor_id()); + pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); - if (arch_timer_use_virtual) - disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); - else { - disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); - if (arch_timer_ppi[PHYS_NONSECURE_PPI]) - disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); - } + disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); + if (arch_timer_has_nonsecure_ppi()) + disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); +} - clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); +static int arch_timer_dying_cpu(unsigned int cpu) +{ + struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); + + arch_timer_stop(clk); + return 0; } -static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self, - unsigned long action, void *hcpu) +#ifdef CONFIG_CPU_PM +static DEFINE_PER_CPU(unsigned long, saved_cntkctl); +static int arch_timer_cpu_pm_notify(struct notifier_block *self, + unsigned long action, void *hcpu) { - /* - * Grab cpu pointer in each case to avoid spurious - * preemptible warnings - */ - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_STARTING: - arch_timer_setup(this_cpu_ptr(arch_timer_evt)); - break; - case CPU_DYING: - arch_timer_stop(this_cpu_ptr(arch_timer_evt)); - break; - } + if (action == CPU_PM_ENTER) { + __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); + + cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); + } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { + arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); + if (arch_timer_have_evtstrm_feature()) + cpumask_set_cpu(smp_processor_id(), &evtstrm_available); + } return NOTIFY_OK; } -static struct notifier_block arch_timer_cpu_nb __cpuinitdata = { - .notifier_call = arch_timer_cpu_notify, +static struct notifier_block arch_timer_cpu_pm_notifier = { + .notifier_call = arch_timer_cpu_pm_notify, }; +static int __init arch_timer_cpu_pm_init(void) +{ + return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); +} + +static void __init arch_timer_cpu_pm_deinit(void) +{ + WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); +} + +#else +static int __init arch_timer_cpu_pm_init(void) +{ + return 0; +} + +static void __init arch_timer_cpu_pm_deinit(void) +{ +} +#endif + static int __init arch_timer_register(void) { int err; int ppi; - err = arch_timer_available(); - if (err) - goto out; - arch_timer_evt = alloc_percpu(struct clock_event_device); if (!arch_timer_evt) { err = -ENOMEM; goto out; } - clocksource_register_hz(&clocksource_counter, arch_timer_rate); - cyclecounter.mult = clocksource_counter.mult; - cyclecounter.shift = clocksource_counter.shift; - timecounter_init(&timecounter, &cyclecounter, - arch_counter_get_cntvct()); - - if (arch_timer_use_virtual) { - ppi = arch_timer_ppi[VIRT_PPI]; + ppi = arch_timer_ppi[arch_timer_uses_ppi]; + switch (arch_timer_uses_ppi) { + case ARCH_TIMER_VIRT_PPI: err = request_percpu_irq(ppi, arch_timer_handler_virt, "arch_timer", arch_timer_evt); - } else { - ppi = arch_timer_ppi[PHYS_SECURE_PPI]; + break; + case ARCH_TIMER_PHYS_SECURE_PPI: + case ARCH_TIMER_PHYS_NONSECURE_PPI: err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); - if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { - ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; + if (!err && arch_timer_has_nonsecure_ppi()) { + ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); if (err) - free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], + free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], arch_timer_evt); } + break; + case ARCH_TIMER_HYP_PPI: + err = request_percpu_irq(ppi, arch_timer_handler_phys, + "arch_timer", arch_timer_evt); + break; + default: + BUG(); } if (err) { - pr_err("arch_timer: can't register interrupt %d (%d)\n", - ppi, err); + pr_err("can't register interrupt %d (%d)\n", ppi, err); goto out_free; } - err = register_cpu_notifier(&arch_timer_cpu_nb); + err = arch_timer_cpu_pm_init(); if (err) - goto out_free_irq; - - /* Immediately configure the timer on the boot CPU */ - arch_timer_setup(this_cpu_ptr(arch_timer_evt)); + goto out_unreg_notify; + /* Register and immediately configure the timer on the boot CPU */ + err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, + "clockevents/arm/arch_timer:starting", + arch_timer_starting_cpu, arch_timer_dying_cpu); + if (err) + goto out_unreg_cpupm; return 0; -out_free_irq: - if (arch_timer_use_virtual) - free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); - else { - free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], +out_unreg_cpupm: + arch_timer_cpu_pm_deinit(); + +out_unreg_notify: + free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); + if (arch_timer_has_nonsecure_ppi()) + free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], arch_timer_evt); - if (arch_timer_ppi[PHYS_NONSECURE_PPI]) - free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], - arch_timer_evt); - } out_free: free_percpu(arch_timer_evt); + arch_timer_evt = NULL; out: return err; } -static void __init arch_timer_init(struct device_node *np) +static int __init arch_timer_common_init(void) { - u32 freq; - int i; + arch_timer_banner(); + arch_counter_register(); + return arch_timer_arch_init(); +} - if (arch_timer_get_rate()) { - pr_warn("arch_timer: multiple nodes in dt, skipping\n"); - return; +/** + * arch_timer_select_ppi() - Select suitable PPI for the current system. + * + * If HYP mode is available, we know that the physical timer + * has been configured to be accessible from PL1. Use it, so + * that a guest can use the virtual timer instead. + * + * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE + * accesses to CNTP_*_EL1 registers are silently redirected to + * their CNTHP_*_EL2 counterparts, and use a different PPI + * number. + * + * If no interrupt provided for virtual timer, we'll have to + * stick to the physical timer. It'd better be accessible... + * For arm64 we never use the secure interrupt. + * + * Return: a suitable PPI type for the current system. + */ +static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) +{ + if (is_kernel_in_hyp_mode()) + return ARCH_TIMER_HYP_PPI; + + if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) + return ARCH_TIMER_VIRT_PPI; + + if (IS_ENABLED(CONFIG_ARM64)) + return ARCH_TIMER_PHYS_NONSECURE_PPI; + + return ARCH_TIMER_PHYS_SECURE_PPI; +} + +static void __init arch_timer_populate_kvm_info(void) +{ + arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; + if (is_kernel_in_hyp_mode()) + arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; +} + +static int __init arch_timer_of_init(struct device_node *np) +{ + int i, irq, ret; + u32 rate; + bool has_names; + + if (arch_timer_evt) { + pr_warn("multiple nodes in dt, skipping\n"); + return 0; } - /* Try to determine the frequency from the device tree or CNTFRQ */ - if (!of_property_read_u32(np, "clock-frequency", &freq)) - arch_timer_rate = freq; + has_names = of_property_present(np, "interrupt-names"); + + for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { + if (has_names) + irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); + else + irq = of_irq_get(np, i); + if (irq > 0) + arch_timer_ppi[i] = irq; + } - for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) - arch_timer_ppi[i] = irq_of_parse_and_map(np, i); + arch_timer_populate_kvm_info(); - of_node_put(np); + rate = arch_timer_get_cntfrq(); + arch_timer_of_configure_rate(rate, np); + + arch_timer_c3stop = !of_property_read_bool(np, "always-on"); + + /* Check for globally applicable workarounds */ + arch_timer_check_ool_workaround(ate_match_dt, np); /* - * If HYP mode is available, we know that the physical timer - * has been configured to be accessible from PL1. Use it, so - * that a guest can use the virtual timer instead. - * - * If no interrupt provided for virtual timer, we'll have to - * stick to the physical timer. It'd better be accessible... + * If we cannot rely on firmware initializing the timer registers then + * we should use the physical timers instead. */ - if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { - arch_timer_use_virtual = false; + if (IS_ENABLED(CONFIG_ARM) && + of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) + arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; + else + arch_timer_uses_ppi = arch_timer_select_ppi(); + + if (!arch_timer_ppi[arch_timer_uses_ppi]) { + pr_err("No interrupt available, giving up\n"); + return -EINVAL; + } - if (!arch_timer_ppi[PHYS_SECURE_PPI] || - !arch_timer_ppi[PHYS_NONSECURE_PPI]) { - pr_warn("arch_timer: No interrupt available, giving up\n"); - return; - } + /* On some systems, the counter stops ticking when in suspend. */ + arch_counter_suspend_stop = of_property_read_bool(np, + "arm,no-tick-in-suspend"); + + ret = arch_timer_register(); + if (ret) + return ret; + + return arch_timer_common_init(); +} +TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); +TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); + +#ifdef CONFIG_ACPI_GTDT +static int __init arch_timer_acpi_init(struct acpi_table_header *table) +{ + int ret; + + if (arch_timer_evt) { + pr_warn("already initialized, skipping\n"); + return -EINVAL; + } + + ret = acpi_gtdt_init(table, NULL); + if (ret) + return ret; + + arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = + acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); + + arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = + acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); + + arch_timer_ppi[ARCH_TIMER_HYP_PPI] = + acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); + + arch_timer_populate_kvm_info(); + + /* + * When probing via ACPI, we have no mechanism to override the sysreg + * CNTFRQ value. This *must* be correct. + */ + arch_timer_rate = arch_timer_get_cntfrq(); + ret = validate_timer_rate(); + if (ret) { + pr_err(FW_BUG "frequency not available.\n"); + return ret; + } + + arch_timer_uses_ppi = arch_timer_select_ppi(); + if (!arch_timer_ppi[arch_timer_uses_ppi]) { + pr_err("No interrupt available, giving up\n"); + return -EINVAL; } - arch_timer_register(); - arch_timer_arch_init(); + /* Always-on capability */ + arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); + + /* Check for globally applicable workarounds */ + arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); + + ret = arch_timer_register(); + if (ret) + return ret; + + return arch_timer_common_init(); +} +TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); +#endif + +int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, + enum clocksource_ids *cs_id) +{ + struct arm_smccc_res hvc_res; + u32 ptp_counter; + ktime_t ktime; + + if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) + return -EOPNOTSUPP; + + if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) + ptp_counter = KVM_PTP_VIRT_COUNTER; + else + ptp_counter = KVM_PTP_PHYS_COUNTER; + + arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, + ptp_counter, &hvc_res); + + if ((int)(hvc_res.a0) < 0) + return -EOPNOTSUPP; + + ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; + *ts = ktime_to_timespec64(ktime); + if (cycle) + *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; + if (cs_id) + *cs_id = CSID_ARM_ARCH_COUNTER; + + return 0; } -CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init); -CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init); +EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp); |
