summaryrefslogtreecommitdiff
path: root/drivers/cpufreq/tegra194-cpufreq.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpufreq/tegra194-cpufreq.c')
-rw-r--r--drivers/cpufreq/tegra194-cpufreq.c527
1 files changed, 459 insertions, 68 deletions
diff --git a/drivers/cpufreq/tegra194-cpufreq.c b/drivers/cpufreq/tegra194-cpufreq.c
index ac381db25dbe..695599e1001f 100644
--- a/drivers/cpufreq/tegra194-cpufreq.c
+++ b/drivers/cpufreq/tegra194-cpufreq.c
@@ -1,17 +1,17 @@
// SPDX-License-Identifier: GPL-2.0
/*
- * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
+ * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
*/
#include <linux/cpu.h>
#include <linux/cpufreq.h>
-#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
+#include <linux/units.h>
#include <asm/smp_plat.h>
@@ -20,25 +20,29 @@
#define KHZ 1000
#define REF_CLK_MHZ 408 /* 408 MHz */
-#define US_DELAY 500
#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
#define MAX_CNT ~0U
+#define MAX_DELTA_KHZ 115200
+
+#define NDIV_MASK 0x1FF
+
+#define CORE_OFFSET(cpu) (cpu * 8)
+#define CMU_CLKS_BASE 0x2000
+#define SCRATCH_FREQ_CORE_REG(data, cpu) (data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
+
+#define MMCRAB_CLUSTER_BASE(cl) (0x30000 + (cl * 0x10000))
+#define CLUSTER_ACTMON_BASE(data, cl) \
+ (data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
+#define CORE_ACTMON_CNTR_REG(data, cl, cpu) (CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
+
/* cpufreq transisition latency */
#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
-enum cluster {
- CLUSTER0,
- CLUSTER1,
- CLUSTER2,
- CLUSTER3,
- MAX_CLUSTERS,
-};
-
-struct tegra194_cpufreq_data {
- void __iomem *regs;
- size_t num_clusters;
- struct cpufreq_frequency_table **tables;
+struct tegra_cpu_data {
+ u32 cpuid;
+ u32 clusterid;
+ void __iomem *freq_core_reg;
};
struct tegra_cpu_ctr {
@@ -52,13 +56,164 @@ struct read_counters_work {
struct tegra_cpu_ctr c;
};
+struct tegra_cpufreq_ops {
+ void (*read_counters)(struct tegra_cpu_ctr *c);
+ void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
+ void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
+ int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
+};
+
+struct tegra_cpufreq_soc {
+ struct tegra_cpufreq_ops *ops;
+ int maxcpus_per_cluster;
+ unsigned int num_clusters;
+ phys_addr_t actmon_cntr_base;
+ u32 refclk_delta_min;
+};
+
+struct tegra194_cpufreq_data {
+ void __iomem *regs;
+ struct cpufreq_frequency_table **bpmp_luts;
+ const struct tegra_cpufreq_soc *soc;
+ bool icc_dram_bw_scaling;
+ struct tegra_cpu_data *cpu_data;
+};
+
static struct workqueue_struct *read_counters_wq;
-static void get_cpu_cluster(void *cluster)
+static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz)
+{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ struct dev_pm_opp *opp;
+ struct device *dev;
+ int ret;
+
+ dev = get_cpu_device(policy->cpu);
+ if (!dev)
+ return -ENODEV;
+
+ opp = dev_pm_opp_find_freq_exact(dev, freq_khz * KHZ, true);
+ if (IS_ERR(opp))
+ return PTR_ERR(opp);
+
+ ret = dev_pm_opp_set_opp(dev, opp);
+ if (ret)
+ data->icc_dram_bw_scaling = false;
+
+ dev_pm_opp_put(opp);
+ return ret;
+}
+
+static void tegra_get_cpu_mpidr(void *mpidr)
+{
+ *((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
+}
+
+static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
+{
+ u64 mpidr;
+
+ smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
+
+ if (cpuid)
+ *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
+ if (clusterid)
+ *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
+}
+
+static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
+{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+
+ *ndiv = readl(data->cpu_data[cpu].freq_core_reg) & NDIV_MASK;
+
+ return 0;
+}
+
+static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
+{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ u32 cpu;
+
+ for_each_cpu(cpu, policy->cpus)
+ writel(ndiv, data->cpu_data[cpu].freq_core_reg);
+}
+
+/*
+ * This register provides access to two counter values with a single
+ * 64-bit read. The counter values are used to determine the average
+ * actual frequency a core has run at over a period of time.
+ * [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
+ * [31:0] Core clock counter: Counts on every core clock cycle
+ */
+static void tegra234_read_counters(struct tegra_cpu_ctr *c)
{
- u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ void __iomem *actmon_reg;
+ u32 delta_refcnt;
+ int cnt = 0;
+ u64 val;
+
+ actmon_reg = CORE_ACTMON_CNTR_REG(data, data->cpu_data[c->cpu].clusterid,
+ data->cpu_data[c->cpu].cpuid);
- *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
+ val = readq(actmon_reg);
+ c->last_refclk_cnt = upper_32_bits(val);
+ c->last_coreclk_cnt = lower_32_bits(val);
+
+ /*
+ * The sampling window is based on the minimum number of reference
+ * clock cycles which is known to give a stable value of CPU frequency.
+ */
+ do {
+ val = readq(actmon_reg);
+ c->refclk_cnt = upper_32_bits(val);
+ c->coreclk_cnt = lower_32_bits(val);
+ if (c->refclk_cnt < c->last_refclk_cnt)
+ delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
+ else
+ delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
+ if (++cnt >= 0xFFFF) {
+ pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
+ c->cpu, delta_refcnt, cnt);
+ break;
+ }
+ } while (delta_refcnt < data->soc->refclk_delta_min);
+}
+
+static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
+ .read_counters = tegra234_read_counters,
+ .get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
+ .get_cpu_ndiv = tegra234_get_cpu_ndiv,
+ .set_cpu_ndiv = tegra234_set_cpu_ndiv,
+};
+
+static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
+ .ops = &tegra234_cpufreq_ops,
+ .actmon_cntr_base = 0x9000,
+ .maxcpus_per_cluster = 4,
+ .num_clusters = 3,
+ .refclk_delta_min = 16000,
+};
+
+static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = {
+ .ops = &tegra234_cpufreq_ops,
+ .actmon_cntr_base = 0x4000,
+ .maxcpus_per_cluster = 8,
+ .num_clusters = 1,
+ .refclk_delta_min = 16000,
+};
+
+static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
+{
+ u64 mpidr;
+
+ smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
+
+ if (cpuid)
+ *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
+ if (clusterid)
+ *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}
/*
@@ -85,11 +240,42 @@ static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
}
+static void tegra194_read_counters(struct tegra_cpu_ctr *c)
+{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ u32 delta_refcnt;
+ int cnt = 0;
+ u64 val;
+
+ val = read_freq_feedback();
+ c->last_refclk_cnt = lower_32_bits(val);
+ c->last_coreclk_cnt = upper_32_bits(val);
+
+ /*
+ * The sampling window is based on the minimum number of reference
+ * clock cycles which is known to give a stable value of CPU frequency.
+ */
+ do {
+ val = read_freq_feedback();
+ c->refclk_cnt = lower_32_bits(val);
+ c->coreclk_cnt = upper_32_bits(val);
+ if (c->refclk_cnt < c->last_refclk_cnt)
+ delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
+ else
+ delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
+ if (++cnt >= 0xFFFF) {
+ pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
+ c->cpu, delta_refcnt, cnt);
+ break;
+ }
+ } while (delta_refcnt < data->soc->refclk_delta_min);
+}
+
static void tegra_read_counters(struct work_struct *work)
{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
struct read_counters_work *read_counters_work;
struct tegra_cpu_ctr *c;
- u64 val;
/*
* ref_clk_counter(32 bit counter) runs on constant clk,
@@ -107,13 +293,7 @@ static void tegra_read_counters(struct work_struct *work)
work);
c = &read_counters_work->c;
- val = read_freq_feedback();
- c->last_refclk_cnt = lower_32_bits(val);
- c->last_coreclk_cnt = upper_32_bits(val);
- udelay(US_DELAY);
- val = read_freq_feedback();
- c->refclk_cnt = lower_32_bits(val);
- c->coreclk_cnt = upper_32_bits(val);
+ data->soc->ops->read_counters(c);
}
/*
@@ -146,9 +326,8 @@ static unsigned int tegra194_calculate_speed(u32 cpu)
u32 rate_mhz;
/*
- * udelay() is required to reconstruct cpu frequency over an
- * observation window. Using workqueue to call udelay() with
- * interrupts enabled.
+ * Reconstruct cpu frequency over an observation/sampling window.
+ * Using workqueue to keep interrupts enabled during the interval.
*/
read_counters_work.c.cpu = cpu;
INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
@@ -177,7 +356,7 @@ static unsigned int tegra194_calculate_speed(u32 cpu)
return (rate_mhz * KHZ); /* in KHz */
}
-static void get_cpu_ndiv(void *ndiv)
+static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
{
u64 ndiv_val;
@@ -186,30 +365,37 @@ static void get_cpu_ndiv(void *ndiv)
*(u64 *)ndiv = ndiv_val;
}
-static void set_cpu_ndiv(void *data)
+static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
{
- struct cpufreq_frequency_table *tbl = data;
- u64 ndiv_val = (u64)tbl->driver_data;
+ return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
+}
+
+static void tegra194_set_cpu_ndiv_sysreg(void *data)
+{
+ u64 ndiv_val = *(u64 *)data;
asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
}
+static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
+{
+ on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
+}
+
static unsigned int tegra194_get_speed(u32 cpu)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ u32 clusterid = data->cpu_data[cpu].clusterid;
struct cpufreq_frequency_table *pos;
unsigned int rate;
u64 ndiv;
int ret;
- u32 cl;
-
- smp_call_function_single(cpu, get_cpu_cluster, &cl, true);
/* reconstruct actual cpu freq using counters */
rate = tegra194_calculate_speed(cpu);
/* get last written ndiv value */
- ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true);
+ ret = data->soc->ops->get_cpu_ndiv(cpu, data->cpu_data[cpu].cpuid, clusterid, &ndiv);
if (WARN_ON_ONCE(ret))
return rate;
@@ -219,13 +405,13 @@ static unsigned int tegra194_get_speed(u32 cpu)
* to the last written ndiv value from freq_table. This is
* done to return consistent value.
*/
- cpufreq_for_each_valid_entry(pos, data->tables[cl]) {
+ cpufreq_for_each_valid_entry(pos, data->bpmp_luts[clusterid]) {
if (pos->driver_data != ndiv)
continue;
- if (abs(pos->frequency - rate) > 115200) {
- pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
- cpu, rate, pos->frequency, ndiv);
+ if (abs(pos->frequency - rate) > MAX_DELTA_KHZ) {
+ pr_warn("cpufreq: cpu%d,cur:%u,set:%u,delta:%d,set ndiv:%llu\n",
+ cpu, rate, pos->frequency, abs(rate - pos->frequency), ndiv);
} else {
rate = pos->frequency;
}
@@ -234,50 +420,189 @@ static unsigned int tegra194_get_speed(u32 cpu)
return rate;
}
-static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
+static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy,
+ struct cpufreq_frequency_table *bpmp_lut,
+ struct cpufreq_frequency_table **opp_table)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
- u32 cpu;
- u32 cl;
+ struct cpufreq_frequency_table *freq_table = NULL;
+ struct cpufreq_frequency_table *pos;
+ struct device *cpu_dev;
+ struct dev_pm_opp *opp;
+ unsigned long rate;
+ int ret, max_opps;
+ int j = 0;
+
+ cpu_dev = get_cpu_device(policy->cpu);
+ if (!cpu_dev) {
+ pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu);
+ return -ENODEV;
+ }
+
+ /* Initialize OPP table mentioned in operating-points-v2 property in DT */
+ ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0);
+ if (!ret) {
+ max_opps = dev_pm_opp_get_opp_count(cpu_dev);
+ if (max_opps <= 0) {
+ dev_err(cpu_dev, "Failed to add OPPs\n");
+ return max_opps;
+ }
+
+ /* Disable all opps and cross-validate against LUT later */
+ for (rate = 0; ; rate++) {
+ opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
+ if (IS_ERR(opp))
+ break;
+
+ dev_pm_opp_put(opp);
+ dev_pm_opp_disable(cpu_dev, rate);
+ }
+ } else {
+ dev_err(cpu_dev, "Invalid or empty opp table in device tree\n");
+ data->icc_dram_bw_scaling = false;
+ return ret;
+ }
+
+ freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL);
+ if (!freq_table)
+ return -ENOMEM;
+
+ /*
+ * Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT.
+ * Enable only those DT OPP's which are present in LUT also.
+ */
+ cpufreq_for_each_valid_entry(pos, bpmp_lut) {
+ opp = dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * KHZ, false);
+ if (IS_ERR(opp))
+ continue;
+
+ dev_pm_opp_put(opp);
+
+ ret = dev_pm_opp_enable(cpu_dev, pos->frequency * KHZ);
+ if (ret < 0)
+ return ret;
+
+ freq_table[j].driver_data = pos->driver_data;
+ freq_table[j].frequency = pos->frequency;
+ j++;
+ }
+
+ freq_table[j].driver_data = pos->driver_data;
+ freq_table[j].frequency = CPUFREQ_TABLE_END;
+
+ *opp_table = &freq_table[0];
+
+ dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
+
+ return ret;
+}
- smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
+static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
+{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
+ u32 clusterid = data->cpu_data[policy->cpu].clusterid;
+ struct cpufreq_frequency_table *freq_table;
+ struct cpufreq_frequency_table *bpmp_lut;
+ u32 start_cpu, cpu;
+ int ret;
- if (cl >= data->num_clusters || !data->tables[cl])
+ if (clusterid >= data->soc->num_clusters || !data->bpmp_luts[clusterid])
return -EINVAL;
+ start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
/* set same policy for all cpus in a cluster */
- for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
- cpumask_set_cpu(cpu, policy->cpus);
-
- policy->freq_table = data->tables[cl];
+ for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
+ if (cpu_possible(cpu))
+ cpumask_set_cpu(cpu, policy->cpus);
+ }
policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
+ bpmp_lut = data->bpmp_luts[clusterid];
+
+ if (data->icc_dram_bw_scaling) {
+ ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table);
+ if (!ret) {
+ policy->freq_table = freq_table;
+ return 0;
+ }
+ }
+
+ data->icc_dram_bw_scaling = false;
+ policy->freq_table = bpmp_lut;
+ pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n");
+
+ return 0;
+}
+
+static int tegra194_cpufreq_online(struct cpufreq_policy *policy)
+{
+ /* We did light-weight tear down earlier, nothing to do here */
+ return 0;
+}
+
+static int tegra194_cpufreq_offline(struct cpufreq_policy *policy)
+{
+ /*
+ * Preserve policy->driver_data and don't free resources on light-weight
+ * tear down.
+ */
+
return 0;
}
+static void tegra194_cpufreq_exit(struct cpufreq_policy *policy)
+{
+ struct device *cpu_dev = get_cpu_device(policy->cpu);
+
+ dev_pm_opp_remove_all_dynamic(cpu_dev);
+ dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
+}
+
static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *tbl = policy->freq_table + index;
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
/*
* Each core writes frequency in per core register. Then both cores
* in a cluster run at same frequency which is the maximum frequency
* request out of the values requested by both cores in that cluster.
*/
- on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
+ data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
+
+ if (data->icc_dram_bw_scaling)
+ tegra_cpufreq_set_bw(policy, tbl->frequency);
return 0;
}
static struct cpufreq_driver tegra194_cpufreq_driver = {
.name = "tegra194",
- .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
+ .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
+ CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = tegra194_cpufreq_set_target,
.get = tegra194_get_speed,
.init = tegra194_cpufreq_init,
- .attr = cpufreq_generic_attr,
+ .exit = tegra194_cpufreq_exit,
+ .online = tegra194_cpufreq_online,
+ .offline = tegra194_cpufreq_offline,
+};
+
+static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
+ .read_counters = tegra194_read_counters,
+ .get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
+ .get_cpu_ndiv = tegra194_get_cpu_ndiv,
+ .set_cpu_ndiv = tegra194_set_cpu_ndiv,
+};
+
+static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
+ .ops = &tegra194_cpufreq_ops,
+ .maxcpus_per_cluster = 2,
+ .num_clusters = 4,
+ .refclk_delta_min = 16000,
};
static void tegra194_cpufreq_free_resources(void)
@@ -286,8 +611,8 @@ static void tegra194_cpufreq_free_resources(void)
}
static struct cpufreq_frequency_table *
-init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
- unsigned int cluster_id)
+tegra_cpufreq_bpmp_read_lut(struct platform_device *pdev, struct tegra_bpmp *bpmp,
+ unsigned int cluster_id)
{
struct cpufreq_frequency_table *freq_table;
struct mrq_cpu_ndiv_limits_response resp;
@@ -357,20 +682,66 @@ init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
return freq_table;
}
+static int tegra194_cpufreq_store_physids(unsigned int cpu, struct tegra194_cpufreq_data *data)
+{
+ int num_cpus = data->soc->maxcpus_per_cluster * data->soc->num_clusters;
+ u32 cpuid, clusterid;
+ u64 mpidr_id;
+
+ if (cpu > (num_cpus - 1)) {
+ pr_err("cpufreq: wrong num of cpus or clusters in soc data\n");
+ return -EINVAL;
+ }
+
+ data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
+
+ mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
+
+ data->cpu_data[cpu].cpuid = cpuid;
+ data->cpu_data[cpu].clusterid = clusterid;
+ data->cpu_data[cpu].freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
+
+ return 0;
+}
+
static int tegra194_cpufreq_probe(struct platform_device *pdev)
{
+ const struct tegra_cpufreq_soc *soc;
struct tegra194_cpufreq_data *data;
struct tegra_bpmp *bpmp;
+ struct device *cpu_dev;
int err, i;
+ u32 cpu;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
- data->num_clusters = MAX_CLUSTERS;
- data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
- sizeof(*data->tables), GFP_KERNEL);
- if (!data->tables)
+ soc = of_device_get_match_data(&pdev->dev);
+
+ if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters && soc->refclk_delta_min) {
+ data->soc = soc;
+ } else {
+ dev_err(&pdev->dev, "soc data missing\n");
+ return -EINVAL;
+ }
+
+ data->bpmp_luts = devm_kcalloc(&pdev->dev, data->soc->num_clusters,
+ sizeof(*data->bpmp_luts), GFP_KERNEL);
+ if (!data->bpmp_luts)
+ return -ENOMEM;
+
+ if (soc->actmon_cntr_base) {
+ /* mmio registers are used for frequency request and re-construction */
+ data->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(data->regs))
+ return PTR_ERR(data->regs);
+ }
+
+ data->cpu_data = devm_kcalloc(&pdev->dev, data->soc->num_clusters *
+ data->soc->maxcpus_per_cluster,
+ sizeof(*data->cpu_data), GFP_KERNEL);
+ if (!data->cpu_data)
return -ENOMEM;
platform_set_drvdata(pdev, data);
@@ -379,23 +750,43 @@ static int tegra194_cpufreq_probe(struct platform_device *pdev)
if (IS_ERR(bpmp))
return PTR_ERR(bpmp);
- read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
+ read_counters_wq = alloc_workqueue("read_counters_wq",
+ __WQ_LEGACY | WQ_PERCPU, 1);
if (!read_counters_wq) {
dev_err(&pdev->dev, "fail to create_workqueue\n");
err = -EINVAL;
goto put_bpmp;
}
- for (i = 0; i < data->num_clusters; i++) {
- data->tables[i] = init_freq_table(pdev, bpmp, i);
- if (IS_ERR(data->tables[i])) {
- err = PTR_ERR(data->tables[i]);
+ for (i = 0; i < data->soc->num_clusters; i++) {
+ data->bpmp_luts[i] = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, i);
+ if (IS_ERR(data->bpmp_luts[i])) {
+ err = PTR_ERR(data->bpmp_luts[i]);
goto err_free_res;
}
}
+ for_each_possible_cpu(cpu) {
+ err = tegra194_cpufreq_store_physids(cpu, data);
+ if (err)
+ goto err_free_res;
+ }
+
tegra194_cpufreq_driver.driver_data = data;
+ /* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */
+ cpu_dev = get_cpu_device(0);
+ if (!cpu_dev) {
+ err = -EPROBE_DEFER;
+ goto err_free_res;
+ }
+
+ if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) {
+ err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
+ if (!err)
+ data->icc_dram_bw_scaling = true;
+ }
+
err = cpufreq_register_driver(&tegra194_cpufreq_driver);
if (!err)
goto put_bpmp;
@@ -407,16 +798,16 @@ put_bpmp:
return err;
}
-static int tegra194_cpufreq_remove(struct platform_device *pdev)
+static void tegra194_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&tegra194_cpufreq_driver);
tegra194_cpufreq_free_resources();
-
- return 0;
}
static const struct of_device_id tegra194_cpufreq_of_match[] = {
- { .compatible = "nvidia,tegra194-ccplex", },
+ { .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
+ { .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
+ { .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);