summaryrefslogtreecommitdiff
path: root/drivers/cpuidle/governors/teo.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpuidle/governors/teo.c')
-rw-r--r--drivers/cpuidle/governors/teo.c536
1 files changed, 536 insertions, 0 deletions
diff --git a/drivers/cpuidle/governors/teo.c b/drivers/cpuidle/governors/teo.c
new file mode 100644
index 000000000000..81ac5fd58a1c
--- /dev/null
+++ b/drivers/cpuidle/governors/teo.c
@@ -0,0 +1,536 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Timer events oriented CPU idle governor
+ *
+ * Copyright (C) 2018 - 2021 Intel Corporation
+ * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ */
+
+/**
+ * DOC: teo-description
+ *
+ * The idea of this governor is based on the observation that on many systems
+ * timer interrupts are two or more orders of magnitude more frequent than any
+ * other interrupt types, so they are likely to dominate CPU wakeup patterns.
+ * Moreover, in principle, the time when the next timer event is going to occur
+ * can be determined at the idle state selection time, although doing that may
+ * be costly, so it can be regarded as the most reliable source of information
+ * for idle state selection.
+ *
+ * Of course, non-timer wakeup sources are more important in some use cases,
+ * but even then it is generally unnecessary to consider idle duration values
+ * greater than the time till the next timer event, referred as the sleep
+ * length in what follows, because the closest timer will ultimately wake up the
+ * CPU anyway unless it is woken up earlier.
+ *
+ * However, since obtaining the sleep length may be costly, the governor first
+ * checks if it can select a shallow idle state using wakeup pattern information
+ * from recent times, in which case it can do without knowing the sleep length
+ * at all. For this purpose, it counts CPU wakeup events and looks for an idle
+ * state whose target residency has not exceeded the idle duration (measured
+ * after wakeup) in the majority of relevant recent cases. If the target
+ * residency of that state is small enough, it may be used right away and the
+ * sleep length need not be determined.
+ *
+ * The computations carried out by this governor are based on using bins whose
+ * boundaries are aligned with the target residency parameter values of the CPU
+ * idle states provided by the %CPUIdle driver in the ascending order. That is,
+ * the first bin spans from 0 up to, but not including, the target residency of
+ * the second idle state (idle state 1), the second bin spans from the target
+ * residency of idle state 1 up to, but not including, the target residency of
+ * idle state 2, the third bin spans from the target residency of idle state 2
+ * up to, but not including, the target residency of idle state 3 and so on.
+ * The last bin spans from the target residency of the deepest idle state
+ * supplied by the driver to infinity.
+ *
+ * Two metrics called "hits" and "intercepts" are associated with each bin.
+ * They are updated every time before selecting an idle state for the given CPU
+ * in accordance with what happened last time.
+ *
+ * The "hits" metric reflects the relative frequency of situations in which the
+ * sleep length and the idle duration measured after CPU wakeup fall into the
+ * same bin (that is, the CPU appears to wake up "on time" relative to the sleep
+ * length). In turn, the "intercepts" metric reflects the relative frequency of
+ * non-timer wakeup events for which the measured idle duration falls into a bin
+ * that corresponds to an idle state shallower than the one whose bin is fallen
+ * into by the sleep length (these events are also referred to as "intercepts"
+ * below).
+ *
+ * The governor also counts "intercepts" with the measured idle duration below
+ * the tick period length and uses this information when deciding whether or not
+ * to stop the scheduler tick.
+ *
+ * In order to select an idle state for a CPU, the governor takes the following
+ * steps (modulo the possible latency constraint that must be taken into account
+ * too):
+ *
+ * 1. Find the deepest enabled CPU idle state (the candidate idle state) and
+ * compute 2 sums as follows:
+ *
+ * - The sum of the "hits" metric for all of the idle states shallower than
+ * the candidate one (it represents the cases in which the CPU was likely
+ * woken up by a timer).
+ *
+ * - The sum of the "intercepts" metric for all of the idle states shallower
+ * than the candidate one (it represents the cases in which the CPU was
+ * likely woken up by a non-timer wakeup source).
+ *
+ * 2. If the second sum computed in step 1 is greater than a half of the sum of
+ * both metrics for the candidate state bin and all subsequent bins (if any),
+ * a shallower idle state is likely to be more suitable, so look for it.
+ *
+ * - Traverse the enabled idle states shallower than the candidate one in the
+ * descending order.
+ *
+ * - For each of them compute the sum of the "intercepts" metrics over all
+ * of the idle states between it and the candidate one (including the
+ * former and excluding the latter).
+ *
+ * - If this sum is greater than a half of the second sum computed in step 1,
+ * use the given idle state as the new candidate one.
+ *
+ * 3. If the current candidate state is state 0 or its target residency is short
+ * enough, return it and prevent the scheduler tick from being stopped.
+ *
+ * 4. Obtain the sleep length value and check if it is below the target
+ * residency of the current candidate state, in which case a new shallower
+ * candidate state needs to be found, so look for it.
+ */
+
+#include <linux/cpuidle.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/sched/clock.h>
+#include <linux/tick.h>
+
+#include "gov.h"
+
+/*
+ * Idle state exit latency threshold used for deciding whether or not to check
+ * the time till the closest expected timer event.
+ */
+#define LATENCY_THRESHOLD_NS (RESIDENCY_THRESHOLD_NS / 2)
+
+/*
+ * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value
+ * is used for decreasing metrics on a regular basis.
+ */
+#define PULSE 1024
+#define DECAY_SHIFT 3
+
+/**
+ * struct teo_bin - Metrics used by the TEO cpuidle governor.
+ * @intercepts: The "intercepts" metric.
+ * @hits: The "hits" metric.
+ */
+struct teo_bin {
+ unsigned int intercepts;
+ unsigned int hits;
+};
+
+/**
+ * struct teo_cpu - CPU data used by the TEO cpuidle governor.
+ * @sleep_length_ns: Time till the closest timer event (at the selection time).
+ * @state_bins: Idle state data bins for this CPU.
+ * @total: Grand total of the "intercepts" and "hits" metrics for all bins.
+ * @total_tick: Wakeups by the scheduler tick.
+ * @tick_intercepts: "Intercepts" before TICK_NSEC.
+ * @short_idles: Wakeups after short idle periods.
+ * @tick_wakeup: Set if the last wakeup was by the scheduler tick.
+ */
+struct teo_cpu {
+ s64 sleep_length_ns;
+ struct teo_bin state_bins[CPUIDLE_STATE_MAX];
+ unsigned int total;
+ unsigned int total_tick;
+ unsigned int tick_intercepts;
+ unsigned int short_idles;
+ bool tick_wakeup;
+};
+
+static DEFINE_PER_CPU(struct teo_cpu, teo_cpus);
+
+static void teo_decay(unsigned int *metric)
+{
+ unsigned int delta = *metric >> DECAY_SHIFT;
+
+ if (delta)
+ *metric -= delta;
+ else
+ *metric = 0;
+}
+
+/**
+ * teo_update - Update CPU metrics after wakeup.
+ * @drv: cpuidle driver containing state data.
+ * @dev: Target CPU.
+ */
+static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
+{
+ struct teo_cpu *cpu_data = this_cpu_ptr(&teo_cpus);
+ int i, idx_timer = 0, idx_duration = 0;
+ s64 target_residency_ns, measured_ns;
+ unsigned int total = 0;
+
+ teo_decay(&cpu_data->short_idles);
+
+ if (dev->poll_time_limit) {
+ dev->poll_time_limit = false;
+ /*
+ * Polling state timeout has triggered, so assume that this
+ * might have been a long sleep.
+ */
+ measured_ns = S64_MAX;
+ } else {
+ s64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns;
+
+ measured_ns = dev->last_residency_ns;
+ /*
+ * The delay between the wakeup and the first instruction
+ * executed by the CPU is not likely to be worst-case every
+ * time, so take 1/2 of the exit latency as a very rough
+ * approximation of the average of it.
+ */
+ if (measured_ns >= lat_ns) {
+ measured_ns -= lat_ns / 2;
+ if (measured_ns < RESIDENCY_THRESHOLD_NS)
+ cpu_data->short_idles += PULSE;
+ } else {
+ measured_ns /= 2;
+ cpu_data->short_idles += PULSE;
+ }
+ }
+
+ /*
+ * Decay the "hits" and "intercepts" metrics for all of the bins and
+ * find the bins that the sleep length and the measured idle duration
+ * fall into.
+ */
+ for (i = 0; i < drv->state_count; i++) {
+ struct teo_bin *bin = &cpu_data->state_bins[i];
+
+ teo_decay(&bin->hits);
+ total += bin->hits;
+ teo_decay(&bin->intercepts);
+ total += bin->intercepts;
+
+ target_residency_ns = drv->states[i].target_residency_ns;
+
+ if (target_residency_ns <= cpu_data->sleep_length_ns) {
+ idx_timer = i;
+ if (target_residency_ns <= measured_ns)
+ idx_duration = i;
+ }
+ }
+
+ cpu_data->total = total + PULSE;
+
+ teo_decay(&cpu_data->tick_intercepts);
+
+ teo_decay(&cpu_data->total_tick);
+ if (cpu_data->tick_wakeup) {
+ cpu_data->total_tick += PULSE;
+ /*
+ * If tick wakeups dominate the wakeup pattern, count this one
+ * as a hit on the deepest available idle state to increase the
+ * likelihood of stopping the tick.
+ */
+ if (3 * cpu_data->total_tick > 2 * cpu_data->total) {
+ cpu_data->state_bins[drv->state_count-1].hits += PULSE;
+ return;
+ }
+ }
+
+ /*
+ * If the measured idle duration falls into the same bin as the sleep
+ * length, this is a "hit", so update the "hits" metric for that bin.
+ * Otherwise, update the "intercepts" metric for the bin fallen into by
+ * the measured idle duration.
+ */
+ if (idx_timer == idx_duration) {
+ cpu_data->state_bins[idx_timer].hits += PULSE;
+ } else {
+ cpu_data->state_bins[idx_duration].intercepts += PULSE;
+ if (measured_ns <= TICK_NSEC)
+ cpu_data->tick_intercepts += PULSE;
+ }
+}
+
+/**
+ * teo_find_shallower_state - Find shallower idle state matching given duration.
+ * @drv: cpuidle driver containing state data.
+ * @dev: Target CPU.
+ * @state_idx: Index of the capping idle state.
+ * @duration_ns: Idle duration value to match.
+ */
+static int teo_find_shallower_state(struct cpuidle_driver *drv,
+ struct cpuidle_device *dev, int state_idx,
+ s64 duration_ns)
+{
+ int i;
+
+ for (i = state_idx - 1; i >= 0; i--) {
+ if (dev->states_usage[i].disable)
+ continue;
+
+ state_idx = i;
+ if (drv->states[i].target_residency_ns <= duration_ns)
+ break;
+ }
+ return state_idx;
+}
+
+/**
+ * teo_select - Selects the next idle state to enter.
+ * @drv: cpuidle driver containing state data.
+ * @dev: Target CPU.
+ * @stop_tick: Indication on whether or not to stop the scheduler tick.
+ */
+static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
+ bool *stop_tick)
+{
+ struct teo_cpu *cpu_data = this_cpu_ptr(&teo_cpus);
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
+ ktime_t delta_tick = TICK_NSEC / 2;
+ unsigned int idx_intercept_sum = 0;
+ unsigned int intercept_sum = 0;
+ unsigned int idx_hit_sum = 0;
+ unsigned int hit_sum = 0;
+ int constraint_idx = 0;
+ int idx0 = 0, idx = -1;
+ s64 duration_ns;
+ int i;
+
+ if (dev->last_state_idx >= 0) {
+ teo_update(drv, dev);
+ dev->last_state_idx = -1;
+ }
+
+ /*
+ * Set the sleep length to infinity in case the invocation of
+ * tick_nohz_get_sleep_length() below is skipped, in which case it won't
+ * be known whether or not the subsequent wakeup is caused by a timer.
+ * It is generally fine to count the wakeup as an intercept then, except
+ * for the cases when the CPU is mostly woken up by timers and there may
+ * be opportunities to ask for a deeper idle state when no imminent
+ * timers are scheduled which may be missed.
+ */
+ cpu_data->sleep_length_ns = KTIME_MAX;
+
+ /* Check if there is any choice in the first place. */
+ if (drv->state_count < 2) {
+ idx = 0;
+ goto out_tick;
+ }
+
+ if (!dev->states_usage[0].disable)
+ idx = 0;
+
+ /* Compute the sums of metrics for early wakeup pattern detection. */
+ for (i = 1; i < drv->state_count; i++) {
+ struct teo_bin *prev_bin = &cpu_data->state_bins[i-1];
+ struct cpuidle_state *s = &drv->states[i];
+
+ /*
+ * Update the sums of idle state metrics for all of the states
+ * shallower than the current one.
+ */
+ intercept_sum += prev_bin->intercepts;
+ hit_sum += prev_bin->hits;
+
+ if (dev->states_usage[i].disable)
+ continue;
+
+ if (idx < 0)
+ idx0 = i; /* first enabled state */
+
+ idx = i;
+
+ if (s->exit_latency_ns <= latency_req)
+ constraint_idx = i;
+
+ /* Save the sums for the current state. */
+ idx_intercept_sum = intercept_sum;
+ idx_hit_sum = hit_sum;
+ }
+
+ /* Avoid unnecessary overhead. */
+ if (idx < 0) {
+ idx = 0; /* No states enabled, must use 0. */
+ goto out_tick;
+ }
+
+ if (idx == idx0) {
+ /*
+ * Only one idle state is enabled, so use it, but do not
+ * allow the tick to be stopped it is shallow enough.
+ */
+ duration_ns = drv->states[idx].target_residency_ns;
+ goto end;
+ }
+
+ /*
+ * If the sum of the intercepts metric for all of the idle states
+ * shallower than the current candidate one (idx) is greater than the
+ * sum of the intercepts and hits metrics for the candidate state and
+ * all of the deeper states, a shallower idle state is likely to be a
+ * better choice.
+ */
+ if (2 * idx_intercept_sum > cpu_data->total - idx_hit_sum) {
+ int min_idx = idx0;
+
+ if (tick_nohz_tick_stopped()) {
+ /*
+ * Look for the shallowest idle state below the current
+ * candidate one whose target residency is at least
+ * equal to the tick period length.
+ */
+ while (min_idx < idx &&
+ drv->states[min_idx].target_residency_ns < TICK_NSEC)
+ min_idx++;
+ }
+
+ /*
+ * Look for the deepest idle state whose target residency had
+ * not exceeded the idle duration in over a half of the relevant
+ * cases in the past.
+ *
+ * Take the possible duration limitation present if the tick
+ * has been stopped already into account.
+ */
+ for (i = idx - 1, intercept_sum = 0; i >= min_idx; i--) {
+ intercept_sum += cpu_data->state_bins[i].intercepts;
+
+ if (dev->states_usage[i].disable)
+ continue;
+
+ idx = i;
+ if (2 * intercept_sum > idx_intercept_sum)
+ break;
+ }
+ }
+
+ /*
+ * If there is a latency constraint, it may be necessary to select an
+ * idle state shallower than the current candidate one.
+ */
+ if (idx > constraint_idx)
+ idx = constraint_idx;
+
+ /*
+ * If either the candidate state is state 0 or its target residency is
+ * low enough, there is basically nothing more to do, but if the sleep
+ * length is not updated, the subsequent wakeup will be counted as an
+ * "intercept" which may be problematic in the cases when timer wakeups
+ * are dominant. Namely, it may effectively prevent deeper idle states
+ * from being selected at one point even if no imminent timers are
+ * scheduled.
+ *
+ * However, frequent timers in the RESIDENCY_THRESHOLD_NS range on one
+ * CPU are unlikely (user space has a default 50 us slack value for
+ * hrtimers and there are relatively few timers with a lower deadline
+ * value in the kernel), and even if they did happen, the potential
+ * benefit from using a deep idle state in that case would be
+ * questionable anyway for latency reasons. Thus if the measured idle
+ * duration falls into that range in the majority of cases, assume
+ * non-timer wakeups to be dominant and skip updating the sleep length
+ * to reduce latency.
+ *
+ * Also, if the latency constraint is sufficiently low, it will force
+ * shallow idle states regardless of the wakeup type, so the sleep
+ * length need not be known in that case.
+ */
+ if ((!idx || drv->states[idx].target_residency_ns < RESIDENCY_THRESHOLD_NS) &&
+ (2 * cpu_data->short_idles >= cpu_data->total ||
+ latency_req < LATENCY_THRESHOLD_NS))
+ goto out_tick;
+
+ duration_ns = tick_nohz_get_sleep_length(&delta_tick);
+ cpu_data->sleep_length_ns = duration_ns;
+
+ if (!idx)
+ goto out_tick;
+
+ /*
+ * If the closest expected timer is before the target residency of the
+ * candidate state, a shallower one needs to be found.
+ */
+ if (drv->states[idx].target_residency_ns > duration_ns)
+ idx = teo_find_shallower_state(drv, dev, idx, duration_ns);
+
+ /*
+ * If the selected state's target residency is below the tick length
+ * and intercepts occurring before the tick length are the majority of
+ * total wakeup events, do not stop the tick.
+ */
+ if (drv->states[idx].target_residency_ns < TICK_NSEC &&
+ cpu_data->tick_intercepts > cpu_data->total / 2 + cpu_data->total / 8)
+ duration_ns = TICK_NSEC / 2;
+
+end:
+ /*
+ * Allow the tick to be stopped unless the selected state is a polling
+ * one or the expected idle duration is shorter than the tick period
+ * length.
+ */
+ if ((!(drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
+ duration_ns >= TICK_NSEC) || tick_nohz_tick_stopped())
+ return idx;
+
+ /*
+ * The tick is not going to be stopped, so if the target residency of
+ * the state to be returned is not within the time till the closest
+ * timer including the tick, try to correct that.
+ */
+ if (idx > idx0 &&
+ drv->states[idx].target_residency_ns > delta_tick)
+ idx = teo_find_shallower_state(drv, dev, idx, delta_tick);
+
+out_tick:
+ *stop_tick = false;
+ return idx;
+}
+
+/**
+ * teo_reflect - Note that governor data for the CPU need to be updated.
+ * @dev: Target CPU.
+ * @state: Entered state.
+ */
+static void teo_reflect(struct cpuidle_device *dev, int state)
+{
+ struct teo_cpu *cpu_data = this_cpu_ptr(&teo_cpus);
+
+ cpu_data->tick_wakeup = tick_nohz_idle_got_tick();
+
+ dev->last_state_idx = state;
+}
+
+/**
+ * teo_enable_device - Initialize the governor's data for the target CPU.
+ * @drv: cpuidle driver (not used).
+ * @dev: Target CPU.
+ */
+static int teo_enable_device(struct cpuidle_driver *drv,
+ struct cpuidle_device *dev)
+{
+ struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
+
+ memset(cpu_data, 0, sizeof(*cpu_data));
+
+ return 0;
+}
+
+static struct cpuidle_governor teo_governor = {
+ .name = "teo",
+ .rating = 19,
+ .enable = teo_enable_device,
+ .select = teo_select,
+ .reflect = teo_reflect,
+};
+
+static int __init teo_governor_init(void)
+{
+ return cpuidle_register_governor(&teo_governor);
+}
+
+postcore_initcall(teo_governor_init);