diff options
Diffstat (limited to 'drivers/firmware/efi/libstub/arm-stub.c')
| -rw-r--r-- | drivers/firmware/efi/libstub/arm-stub.c | 391 |
1 files changed, 0 insertions, 391 deletions
diff --git a/drivers/firmware/efi/libstub/arm-stub.c b/drivers/firmware/efi/libstub/arm-stub.c deleted file mode 100644 index 8181ac179d14..000000000000 --- a/drivers/firmware/efi/libstub/arm-stub.c +++ /dev/null @@ -1,391 +0,0 @@ -/* - * EFI stub implementation that is shared by arm and arm64 architectures. - * This should be #included by the EFI stub implementation files. - * - * Copyright (C) 2013,2014 Linaro Limited - * Roy Franz <roy.franz@linaro.org - * Copyright (C) 2013 Red Hat, Inc. - * Mark Salter <msalter@redhat.com> - * - * This file is part of the Linux kernel, and is made available under the - * terms of the GNU General Public License version 2. - * - */ - -#include <linux/efi.h> -#include <linux/sort.h> -#include <asm/efi.h> - -#include "efistub.h" - -/* - * This is the base address at which to start allocating virtual memory ranges - * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use - * any allocation we choose, and eliminate the risk of a conflict after kexec. - * The value chosen is the largest non-zero power of 2 suitable for this purpose - * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can - * be mapped efficiently. - * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, - * map everything below 1 GB. (512 MB is a reasonable upper bound for the - * entire footprint of the UEFI runtime services memory regions) - */ -#define EFI_RT_VIRTUAL_BASE SZ_512M -#define EFI_RT_VIRTUAL_SIZE SZ_512M - -#ifdef CONFIG_ARM64 -# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64 -#else -# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE -#endif - -static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; - -efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg, - void *__image, void **__fh) -{ - efi_file_io_interface_t *io; - efi_loaded_image_t *image = __image; - efi_file_handle_t *fh; - efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; - efi_status_t status; - void *handle = (void *)(unsigned long)image->device_handle; - - status = sys_table_arg->boottime->handle_protocol(handle, - &fs_proto, (void **)&io); - if (status != EFI_SUCCESS) { - efi_printk(sys_table_arg, "Failed to handle fs_proto\n"); - return status; - } - - status = io->open_volume(io, &fh); - if (status != EFI_SUCCESS) - efi_printk(sys_table_arg, "Failed to open volume\n"); - - *__fh = fh; - return status; -} - -void efi_char16_printk(efi_system_table_t *sys_table_arg, - efi_char16_t *str) -{ - struct efi_simple_text_output_protocol *out; - - out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out; - out->output_string(out, str); -} - -static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg) -{ - efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; - efi_status_t status; - unsigned long size; - void **gop_handle = NULL; - struct screen_info *si = NULL; - - size = 0; - status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, - &gop_proto, NULL, &size, gop_handle); - if (status == EFI_BUFFER_TOO_SMALL) { - si = alloc_screen_info(sys_table_arg); - if (!si) - return NULL; - efi_setup_gop(sys_table_arg, si, &gop_proto, size); - } - return si; -} - -/* - * This function handles the architcture specific differences between arm and - * arm64 regarding where the kernel image must be loaded and any memory that - * must be reserved. On failure it is required to free all - * all allocations it has made. - */ -efi_status_t handle_kernel_image(efi_system_table_t *sys_table, - unsigned long *image_addr, - unsigned long *image_size, - unsigned long *reserve_addr, - unsigned long *reserve_size, - unsigned long dram_base, - efi_loaded_image_t *image); -/* - * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint - * that is described in the PE/COFF header. Most of the code is the same - * for both archictectures, with the arch-specific code provided in the - * handle_kernel_image() function. - */ -unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, - unsigned long *image_addr) -{ - efi_loaded_image_t *image; - efi_status_t status; - unsigned long image_size = 0; - unsigned long dram_base; - /* addr/point and size pairs for memory management*/ - unsigned long initrd_addr; - u64 initrd_size = 0; - unsigned long fdt_addr = 0; /* Original DTB */ - unsigned long fdt_size = 0; - char *cmdline_ptr = NULL; - int cmdline_size = 0; - unsigned long new_fdt_addr; - efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; - unsigned long reserve_addr = 0; - unsigned long reserve_size = 0; - enum efi_secureboot_mode secure_boot; - struct screen_info *si; - - /* Check if we were booted by the EFI firmware */ - if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) - goto fail; - - status = check_platform_features(sys_table); - if (status != EFI_SUCCESS) - goto fail; - - /* - * Get a handle to the loaded image protocol. This is used to get - * information about the running image, such as size and the command - * line. - */ - status = sys_table->boottime->handle_protocol(handle, - &loaded_image_proto, (void *)&image); - if (status != EFI_SUCCESS) { - pr_efi_err(sys_table, "Failed to get loaded image protocol\n"); - goto fail; - } - - dram_base = get_dram_base(sys_table); - if (dram_base == EFI_ERROR) { - pr_efi_err(sys_table, "Failed to find DRAM base\n"); - goto fail; - } - - /* - * Get the command line from EFI, using the LOADED_IMAGE - * protocol. We are going to copy the command line into the - * device tree, so this can be allocated anywhere. - */ - cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size); - if (!cmdline_ptr) { - pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n"); - goto fail; - } - - if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || - IS_ENABLED(CONFIG_CMDLINE_FORCE) || - cmdline_size == 0) - efi_parse_options(CONFIG_CMDLINE); - - if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) - efi_parse_options(cmdline_ptr); - - pr_efi(sys_table, "Booting Linux Kernel...\n"); - - si = setup_graphics(sys_table); - - status = handle_kernel_image(sys_table, image_addr, &image_size, - &reserve_addr, - &reserve_size, - dram_base, image); - if (status != EFI_SUCCESS) { - pr_efi_err(sys_table, "Failed to relocate kernel\n"); - goto fail_free_cmdline; - } - - secure_boot = efi_get_secureboot(sys_table); - - /* - * Unauthenticated device tree data is a security hazard, so ignore - * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure - * boot is enabled if we can't determine its state. - */ - if (secure_boot != efi_secureboot_mode_disabled && - strstr(cmdline_ptr, "dtb=")) { - pr_efi(sys_table, "Ignoring DTB from command line.\n"); - } else { - status = handle_cmdline_files(sys_table, image, cmdline_ptr, - "dtb=", - ~0UL, &fdt_addr, &fdt_size); - - if (status != EFI_SUCCESS) { - pr_efi_err(sys_table, "Failed to load device tree!\n"); - goto fail_free_image; - } - } - - if (fdt_addr) { - pr_efi(sys_table, "Using DTB from command line\n"); - } else { - /* Look for a device tree configuration table entry. */ - fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size); - if (fdt_addr) - pr_efi(sys_table, "Using DTB from configuration table\n"); - } - - if (!fdt_addr) - pr_efi(sys_table, "Generating empty DTB\n"); - - status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=", - efi_get_max_initrd_addr(dram_base, - *image_addr), - (unsigned long *)&initrd_addr, - (unsigned long *)&initrd_size); - if (status != EFI_SUCCESS) - pr_efi_err(sys_table, "Failed initrd from command line!\n"); - - efi_random_get_seed(sys_table); - - if (!nokaslr()) { - /* - * Randomize the base of the UEFI runtime services region. - * Preserve the 2 MB alignment of the region by taking a - * shift of 21 bit positions into account when scaling - * the headroom value using a 32-bit random value. - */ - static const u64 headroom = EFI_RT_VIRTUAL_LIMIT - - EFI_RT_VIRTUAL_BASE - - EFI_RT_VIRTUAL_SIZE; - u32 rnd; - - status = efi_get_random_bytes(sys_table, sizeof(rnd), - (u8 *)&rnd); - if (status == EFI_SUCCESS) { - virtmap_base = EFI_RT_VIRTUAL_BASE + - (((headroom >> 21) * rnd) >> (32 - 21)); - } - } - - new_fdt_addr = fdt_addr; - status = allocate_new_fdt_and_exit_boot(sys_table, handle, - &new_fdt_addr, efi_get_max_fdt_addr(dram_base), - initrd_addr, initrd_size, cmdline_ptr, - fdt_addr, fdt_size); - - /* - * If all went well, we need to return the FDT address to the - * calling function so it can be passed to kernel as part of - * the kernel boot protocol. - */ - if (status == EFI_SUCCESS) - return new_fdt_addr; - - pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n"); - - efi_free(sys_table, initrd_size, initrd_addr); - efi_free(sys_table, fdt_size, fdt_addr); - -fail_free_image: - efi_free(sys_table, image_size, *image_addr); - efi_free(sys_table, reserve_size, reserve_addr); -fail_free_cmdline: - free_screen_info(sys_table, si); - efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr); -fail: - return EFI_ERROR; -} - -static int cmp_mem_desc(const void *l, const void *r) -{ - const efi_memory_desc_t *left = l, *right = r; - - return (left->phys_addr > right->phys_addr) ? 1 : -1; -} - -/* - * Returns whether region @left ends exactly where region @right starts, - * or false if either argument is NULL. - */ -static bool regions_are_adjacent(efi_memory_desc_t *left, - efi_memory_desc_t *right) -{ - u64 left_end; - - if (left == NULL || right == NULL) - return false; - - left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE; - - return left_end == right->phys_addr; -} - -/* - * Returns whether region @left and region @right have compatible memory type - * mapping attributes, and are both EFI_MEMORY_RUNTIME regions. - */ -static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left, - efi_memory_desc_t *right) -{ - static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT | - EFI_MEMORY_WC | EFI_MEMORY_UC | - EFI_MEMORY_RUNTIME; - - return ((left->attribute ^ right->attribute) & mem_type_mask) == 0; -} - -/* - * efi_get_virtmap() - create a virtual mapping for the EFI memory map - * - * This function populates the virt_addr fields of all memory region descriptors - * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors - * are also copied to @runtime_map, and their total count is returned in @count. - */ -void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, - unsigned long desc_size, efi_memory_desc_t *runtime_map, - int *count) -{ - u64 efi_virt_base = virtmap_base; - efi_memory_desc_t *in, *prev = NULL, *out = runtime_map; - int l; - - /* - * To work around potential issues with the Properties Table feature - * introduced in UEFI 2.5, which may split PE/COFF executable images - * in memory into several RuntimeServicesCode and RuntimeServicesData - * regions, we need to preserve the relative offsets between adjacent - * EFI_MEMORY_RUNTIME regions with the same memory type attributes. - * The easiest way to find adjacent regions is to sort the memory map - * before traversing it. - */ - sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL); - - for (l = 0; l < map_size; l += desc_size, prev = in) { - u64 paddr, size; - - in = (void *)memory_map + l; - if (!(in->attribute & EFI_MEMORY_RUNTIME)) - continue; - - paddr = in->phys_addr; - size = in->num_pages * EFI_PAGE_SIZE; - - /* - * Make the mapping compatible with 64k pages: this allows - * a 4k page size kernel to kexec a 64k page size kernel and - * vice versa. - */ - if (!regions_are_adjacent(prev, in) || - !regions_have_compatible_memory_type_attrs(prev, in)) { - - paddr = round_down(in->phys_addr, SZ_64K); - size += in->phys_addr - paddr; - - /* - * Avoid wasting memory on PTEs by choosing a virtual - * base that is compatible with section mappings if this - * region has the appropriate size and physical - * alignment. (Sections are 2 MB on 4k granule kernels) - */ - if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) - efi_virt_base = round_up(efi_virt_base, SZ_2M); - else - efi_virt_base = round_up(efi_virt_base, SZ_64K); - } - - in->virt_addr = efi_virt_base + in->phys_addr - paddr; - efi_virt_base += size; - - memcpy(out, in, desc_size); - out = (void *)out + desc_size; - ++*count; - } -} |
