diff options
Diffstat (limited to 'drivers/gpu/drm/amd/amdkfd/kfd_events.c')
| -rw-r--r-- | drivers/gpu/drm/amd/amdkfd/kfd_events.c | 1315 |
1 files changed, 863 insertions, 452 deletions
diff --git a/drivers/gpu/drm/amd/amdkfd/kfd_events.c b/drivers/gpu/drm/amd/amdkfd/kfd_events.c index d1ce83d73a87..5a190dd6be4e 100644 --- a/drivers/gpu/drm/amd/amdkfd/kfd_events.c +++ b/drivers/gpu/drm/amd/amdkfd/kfd_events.c @@ -1,5 +1,6 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT /* - * Copyright 2014 Advanced Micro Devices, Inc. + * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), @@ -24,365 +25,283 @@ #include <linux/slab.h> #include <linux/types.h> #include <linux/sched/signal.h> +#include <linux/sched/mm.h> #include <linux/uaccess.h> -#include <linux/mm.h> #include <linux/mman.h> #include <linux/memory.h> #include "kfd_priv.h" #include "kfd_events.h" +#include "kfd_device_queue_manager.h" #include <linux/device.h> /* - * A task can only be on a single wait_queue at a time, but we need to support - * waiting on multiple events (any/all). - * Instead of each event simply having a wait_queue with sleeping tasks, it - * has a singly-linked list of tasks. - * A thread that wants to sleep creates an array of these, one for each event - * and adds one to each event's waiter chain. + * Wrapper around wait_queue_entry_t */ struct kfd_event_waiter { - struct list_head waiters; - struct task_struct *sleeping_task; - - /* Transitions to true when the event this belongs to is signaled. */ - bool activated; - - /* Event */ - struct kfd_event *event; - uint32_t input_index; + wait_queue_entry_t wait; + struct kfd_event *event; /* Event to wait for */ + bool activated; /* Becomes true when event is signaled */ + bool event_age_enabled; /* set to true when last_event_age is non-zero */ }; /* - * Over-complicated pooled allocator for event notification slots. - * * Each signal event needs a 64-bit signal slot where the signaler will write - * a 1 before sending an interrupt.l (This is needed because some interrupts + * a 1 before sending an interrupt. (This is needed because some interrupts * do not contain enough spare data bits to identify an event.) - * We get whole pages from vmalloc and map them to the process VA. - * Individual signal events are then allocated a slot in a page. + * We get whole pages and map them to the process VA. + * Individual signal events use their event_id as slot index. */ - -struct signal_page { - struct list_head event_pages; /* kfd_process.signal_event_pages */ +struct kfd_signal_page { uint64_t *kernel_address; uint64_t __user *user_address; - uint32_t page_index; /* Index into the mmap aperture. */ - unsigned int free_slots; - unsigned long used_slot_bitmap[0]; + bool need_to_free_pages; }; -#define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT -#define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE) -#define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1) -#define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \ - SLOT_BITMAP_SIZE * sizeof(long)) - -/* - * For signal events, the event ID is used as the interrupt user data. - * For SQ s_sendmsg interrupts, this is limited to 8 bits. - */ - -#define INTERRUPT_DATA_BITS 8 -#define SIGNAL_EVENT_ID_SLOT_SHIFT 0 - -static uint64_t *page_slots(struct signal_page *page) +static uint64_t *page_slots(struct kfd_signal_page *page) { return page->kernel_address; } -static bool allocate_free_slot(struct kfd_process *process, - struct signal_page **out_page, - unsigned int *out_slot_index) -{ - struct signal_page *page; - - list_for_each_entry(page, &process->signal_event_pages, event_pages) { - if (page->free_slots > 0) { - unsigned int slot = - find_first_zero_bit(page->used_slot_bitmap, - SLOTS_PER_PAGE); - - __set_bit(slot, page->used_slot_bitmap); - page->free_slots--; - - page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT; - - *out_page = page; - *out_slot_index = slot; - - pr_debug("allocated event signal slot in page %p, slot %d\n", - page, slot); - - return true; - } - } - - pr_debug("No free event signal slots were found for process %p\n", - process); - - return false; -} - -#define list_tail_entry(head, type, member) \ - list_entry((head)->prev, type, member) - -static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p) +static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) { void *backing_store; - struct signal_page *page; + struct kfd_signal_page *page; - page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL); + page = kzalloc(sizeof(*page), GFP_KERNEL); if (!page) - goto fail_alloc_signal_page; + return NULL; - page->free_slots = SLOTS_PER_PAGE; - - backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, + backing_store = (void *) __get_free_pages(GFP_KERNEL, get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); if (!backing_store) goto fail_alloc_signal_store; - /* prevent user-mode info leaks */ + /* Initialize all events to unsignaled */ memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, - KFD_SIGNAL_EVENT_LIMIT * 8); + KFD_SIGNAL_EVENT_LIMIT * 8); page->kernel_address = backing_store; - - if (list_empty(&p->signal_event_pages)) - page->page_index = 0; - else - page->page_index = list_tail_entry(&p->signal_event_pages, - struct signal_page, - event_pages)->page_index + 1; - - pr_debug("allocated new event signal page at %p, for process %p\n", + page->need_to_free_pages = true; + pr_debug("Allocated new event signal page at %p, for process %p\n", page, p); - pr_debug("page index is %d\n", page->page_index); - - list_add(&page->event_pages, &p->signal_event_pages); - return true; + return page; fail_alloc_signal_store: kfree(page); -fail_alloc_signal_page: - return false; + return NULL; } -static bool allocate_event_notification_slot(struct file *devkfd, - struct kfd_process *p, - struct signal_page **page, - unsigned int *signal_slot_index) +static int allocate_event_notification_slot(struct kfd_process *p, + struct kfd_event *ev, + const int *restore_id) { - bool ret; - - ret = allocate_free_slot(p, page, signal_slot_index); - if (!ret) { - ret = allocate_signal_page(devkfd, p); - if (ret) - ret = allocate_free_slot(p, page, signal_slot_index); + int id; + + if (!p->signal_page) { + p->signal_page = allocate_signal_page(p); + if (!p->signal_page) + return -ENOMEM; + /* Oldest user mode expects 256 event slots */ + p->signal_mapped_size = 256*8; } - return ret; -} - -/* Assumes that the process's event_mutex is locked. */ -static void release_event_notification_slot(struct signal_page *page, - size_t slot_index) -{ - __clear_bit(slot_index, page->used_slot_bitmap); - page->free_slots++; - - /* We don't free signal pages, they are retained by the process - * and reused until it exits. */ -} - -static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p, - unsigned int page_index) -{ - struct signal_page *page; + if (restore_id) { + id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, + GFP_KERNEL); + } else { + /* + * Compatibility with old user mode: Only use signal slots + * user mode has mapped, may be less than + * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase + * of the event limit without breaking user mode. + */ + id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, + GFP_KERNEL); + } + if (id < 0) + return id; - /* - * This is safe because we don't delete signal pages until the - * process exits. - */ - list_for_each_entry(page, &p->signal_event_pages, event_pages) - if (page->page_index == page_index) - return page; + ev->event_id = id; + page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; - return NULL; + return 0; } /* - * Assumes that p->event_mutex is held and of course that p is not going - * away (current or locked). + * Assumes that p->event_mutex or rcu_readlock is held and of course that p is + * not going away. */ static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) { - struct kfd_event *ev; - - hash_for_each_possible(p->events, ev, events, id) - if (ev->event_id == id) - return ev; - - return NULL; -} - -static u32 make_signal_event_id(struct signal_page *page, - unsigned int signal_slot_index) -{ - return page->page_index | - (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT); + return idr_find(&p->event_idr, id); } -/* - * Produce a kfd event id for a nonsignal event. - * These are arbitrary numbers, so we do a sequential search through - * the hash table for an unused number. +/** + * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID + * @p: Pointer to struct kfd_process + * @id: ID to look up + * @bits: Number of valid bits in @id + * + * Finds the first signaled event with a matching partial ID. If no + * matching signaled event is found, returns NULL. In that case the + * caller should assume that the partial ID is invalid and do an + * exhaustive search of all siglaned events. + * + * If multiple events with the same partial ID signal at the same + * time, they will be found one interrupt at a time, not necessarily + * in the same order the interrupts occurred. As long as the number of + * interrupts is correct, all signaled events will be seen by the + * driver. */ -static u32 make_nonsignal_event_id(struct kfd_process *p) +static struct kfd_event *lookup_signaled_event_by_partial_id( + struct kfd_process *p, uint32_t id, uint32_t bits) { - u32 id; - - for (id = p->next_nonsignal_event_id; - id < KFD_LAST_NONSIGNAL_EVENT_ID && - lookup_event_by_id(p, id) != NULL; - id++) - ; + struct kfd_event *ev; - if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { + if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) + return NULL; - /* - * What if id == LAST_NONSIGNAL_EVENT_ID - 1? - * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so - * the first loop fails immediately and we proceed with the - * wraparound loop below. - */ - p->next_nonsignal_event_id = id + 1; + /* Fast path for the common case that @id is not a partial ID + * and we only need a single lookup. + */ + if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { + if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) + return NULL; - return id; + return idr_find(&p->event_idr, id); } - for (id = KFD_FIRST_NONSIGNAL_EVENT_ID; - id < KFD_LAST_NONSIGNAL_EVENT_ID && - lookup_event_by_id(p, id) != NULL; - id++) - ; - + /* General case for partial IDs: Iterate over all matching IDs + * and find the first one that has signaled. + */ + for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { + if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) + continue; - if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { - p->next_nonsignal_event_id = id + 1; - return id; + ev = idr_find(&p->event_idr, id); } - p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; - return 0; + return ev; } -static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p, - struct signal_page *page, - unsigned int signal_slot) +static int create_signal_event(struct file *devkfd, struct kfd_process *p, + struct kfd_event *ev, const int *restore_id) { - return lookup_event_by_id(p, make_signal_event_id(page, signal_slot)); -} + int ret; -static int create_signal_event(struct file *devkfd, - struct kfd_process *p, - struct kfd_event *ev) -{ - if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) { - pr_warn("amdkfd: Signal event wasn't created because limit was reached\n"); - return -ENOMEM; + if (p->signal_mapped_size && + p->signal_event_count == p->signal_mapped_size / 8) { + if (!p->signal_event_limit_reached) { + pr_debug("Signal event wasn't created because limit was reached\n"); + p->signal_event_limit_reached = true; + } + return -ENOSPC; } - if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page, - &ev->signal_slot_index)) { - pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n"); - return -ENOMEM; + ret = allocate_event_notification_slot(p, ev, restore_id); + if (ret) { + pr_warn("Signal event wasn't created because out of kernel memory\n"); + return ret; } p->signal_event_count++; - ev->user_signal_address = - &ev->signal_page->user_address[ev->signal_slot_index]; - - ev->event_id = make_signal_event_id(ev->signal_page, - ev->signal_slot_index); - - pr_debug("signal event number %zu created with id %d, address %p\n", - p->signal_event_count, ev->event_id, - ev->user_signal_address); - - pr_debug("signal event number %zu created with id %d, address %p\n", + ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; + pr_debug("Signal event number %zu created with id %d, address %p\n", p->signal_event_count, ev->event_id, ev->user_signal_address); return 0; } -/* - * No non-signal events are supported yet. - * We create them as events that never signal. - * Set event calls from user-mode are failed. - */ -static int create_other_event(struct kfd_process *p, struct kfd_event *ev) +static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) { - ev->event_id = make_nonsignal_event_id(p); - if (ev->event_id == 0) - return -ENOMEM; + int id; + + if (restore_id) + id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, + GFP_KERNEL); + else + /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an + * intentional integer overflow to -1 without a compiler + * warning. idr_alloc treats a negative value as "maximum + * signed integer". + */ + id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, + (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, + GFP_KERNEL); + + if (id < 0) + return id; + ev->event_id = id; return 0; } -void kfd_event_init_process(struct kfd_process *p) +int kfd_event_init_process(struct kfd_process *p) { + int id; + mutex_init(&p->event_mutex); - hash_init(p->events); - INIT_LIST_HEAD(&p->signal_event_pages); - p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; - p->signal_event_count = 0; + idr_init(&p->event_idr); + p->signal_page = NULL; + p->signal_event_count = 1; + /* Allocate event ID 0. It is used for a fast path to ignore bogus events + * that are sent by the CP without a context ID + */ + id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL); + if (id < 0) { + idr_destroy(&p->event_idr); + mutex_destroy(&p->event_mutex); + return id; + } + return 0; } static void destroy_event(struct kfd_process *p, struct kfd_event *ev) { - if (ev->signal_page != NULL) { - release_event_notification_slot(ev->signal_page, - ev->signal_slot_index); - p->signal_event_count--; - } + struct kfd_event_waiter *waiter; - /* - * Abandon the list of waiters. Individual waiting threads will - * clean up their own data. - */ - list_del(&ev->waiters); + /* Wake up pending waiters. They will return failure */ + spin_lock(&ev->lock); + list_for_each_entry(waiter, &ev->wq.head, wait.entry) + WRITE_ONCE(waiter->event, NULL); + wake_up_all(&ev->wq); + spin_unlock(&ev->lock); - hash_del(&ev->events); - kfree(ev); + if (ev->type == KFD_EVENT_TYPE_SIGNAL || + ev->type == KFD_EVENT_TYPE_DEBUG) + p->signal_event_count--; + + idr_remove(&p->event_idr, ev->event_id); + kfree_rcu(ev, rcu); } static void destroy_events(struct kfd_process *p) { struct kfd_event *ev; - struct hlist_node *tmp; - unsigned int hash_bkt; + uint32_t id; - hash_for_each_safe(p->events, hash_bkt, tmp, ev, events) - destroy_event(p, ev); + idr_for_each_entry(&p->event_idr, ev, id) + if (ev) + destroy_event(p, ev); + idr_destroy(&p->event_idr); + mutex_destroy(&p->event_mutex); } /* * We assume that the process is being destroyed and there is no need to * unmap the pages or keep bookkeeping data in order. */ -static void shutdown_signal_pages(struct kfd_process *p) +static void shutdown_signal_page(struct kfd_process *p) { - struct signal_page *page, *tmp; + struct kfd_signal_page *page = p->signal_page; - list_for_each_entry_safe(page, tmp, &p->signal_event_pages, - event_pages) { - free_pages((unsigned long)page->kernel_address, - get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); + if (page) { + if (page->need_to_free_pages) + free_pages((unsigned long)page->kernel_address, + get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); kfree(page); } } @@ -390,7 +309,7 @@ static void shutdown_signal_pages(struct kfd_process *p) void kfd_event_free_process(struct kfd_process *p) { destroy_events(p); - shutdown_signal_pages(p); + shutdown_signal_page(p); } static bool event_can_be_gpu_signaled(const struct kfd_event *ev) @@ -404,6 +323,76 @@ static bool event_can_be_cpu_signaled(const struct kfd_event *ev) return ev->type == KFD_EVENT_TYPE_SIGNAL; } +static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, + uint64_t size, uint64_t user_handle) +{ + struct kfd_signal_page *page; + + if (p->signal_page) + return -EBUSY; + + page = kzalloc(sizeof(*page), GFP_KERNEL); + if (!page) + return -ENOMEM; + + /* Initialize all events to unsignaled */ + memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, + KFD_SIGNAL_EVENT_LIMIT * 8); + + page->kernel_address = kernel_address; + + p->signal_page = page; + p->signal_mapped_size = size; + p->signal_handle = user_handle; + return 0; +} + +int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) +{ + struct kfd_node *kfd; + struct kfd_process_device *pdd; + void *mem, *kern_addr; + uint64_t size; + int err = 0; + + if (p->signal_page) { + pr_err("Event page is already set\n"); + return -EINVAL; + } + + pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); + if (!pdd) { + pr_err("Getting device by id failed in %s\n", __func__); + return -EINVAL; + } + kfd = pdd->dev; + + pdd = kfd_bind_process_to_device(kfd, p); + if (IS_ERR(pdd)) + return PTR_ERR(pdd); + + mem = kfd_process_device_translate_handle(pdd, + GET_IDR_HANDLE(event_page_offset)); + if (!mem) { + pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); + return -EINVAL; + } + + err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size); + if (err) { + pr_err("Failed to map event page to kernel\n"); + return err; + } + + err = kfd_event_page_set(p, kern_addr, size, event_page_offset); + if (err) { + pr_err("Failed to set event page\n"); + amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); + return err; + } + return err; +} + int kfd_event_create(struct file *devkfd, struct kfd_process *p, uint32_t event_type, bool auto_reset, uint32_t node_id, uint32_t *event_id, uint32_t *event_trigger_data, @@ -419,7 +408,8 @@ int kfd_event_create(struct file *devkfd, struct kfd_process *p, ev->auto_reset = auto_reset; ev->signaled = false; - INIT_LIST_HEAD(&ev->waiters); + spin_lock_init(&ev->lock); + init_waitqueue_head(&ev->wq); *event_page_offset = 0; @@ -428,24 +418,21 @@ int kfd_event_create(struct file *devkfd, struct kfd_process *p, switch (event_type) { case KFD_EVENT_TYPE_SIGNAL: case KFD_EVENT_TYPE_DEBUG: - ret = create_signal_event(devkfd, p, ev); + ret = create_signal_event(devkfd, p, ev, NULL); if (!ret) { - *event_page_offset = (ev->signal_page->page_index | - KFD_MMAP_EVENTS_MASK); - *event_page_offset <<= PAGE_SHIFT; - *event_slot_index = ev->signal_slot_index; + *event_page_offset = KFD_MMAP_TYPE_EVENTS; + *event_slot_index = ev->event_id; } break; default: - ret = create_other_event(p, ev); + ret = create_other_event(p, ev, NULL); break; } if (!ret) { - hash_add(p->events, &ev->events, ev->event_id); - *event_id = ev->event_id; *event_trigger_data = ev->event_id; + ev->event_age = 1; } else { kfree(ev); } @@ -455,6 +442,166 @@ int kfd_event_create(struct file *devkfd, struct kfd_process *p, return ret; } +int kfd_criu_restore_event(struct file *devkfd, + struct kfd_process *p, + uint8_t __user *user_priv_ptr, + uint64_t *priv_data_offset, + uint64_t max_priv_data_size) +{ + struct kfd_criu_event_priv_data *ev_priv; + struct kfd_event *ev = NULL; + int ret = 0; + + ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); + if (!ev_priv) + return -ENOMEM; + + ev = kzalloc(sizeof(*ev), GFP_KERNEL); + if (!ev) { + ret = -ENOMEM; + goto exit; + } + + if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { + ret = -EINVAL; + goto exit; + } + + ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); + if (ret) { + ret = -EFAULT; + goto exit; + } + *priv_data_offset += sizeof(*ev_priv); + + if (ev_priv->user_handle) { + ret = kfd_kmap_event_page(p, ev_priv->user_handle); + if (ret) + goto exit; + } + + ev->type = ev_priv->type; + ev->auto_reset = ev_priv->auto_reset; + ev->signaled = ev_priv->signaled; + + spin_lock_init(&ev->lock); + init_waitqueue_head(&ev->wq); + + mutex_lock(&p->event_mutex); + switch (ev->type) { + case KFD_EVENT_TYPE_SIGNAL: + case KFD_EVENT_TYPE_DEBUG: + ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); + break; + case KFD_EVENT_TYPE_MEMORY: + memcpy(&ev->memory_exception_data, + &ev_priv->memory_exception_data, + sizeof(struct kfd_hsa_memory_exception_data)); + + ret = create_other_event(p, ev, &ev_priv->event_id); + break; + case KFD_EVENT_TYPE_HW_EXCEPTION: + memcpy(&ev->hw_exception_data, + &ev_priv->hw_exception_data, + sizeof(struct kfd_hsa_hw_exception_data)); + + ret = create_other_event(p, ev, &ev_priv->event_id); + break; + } + mutex_unlock(&p->event_mutex); + +exit: + if (ret) + kfree(ev); + + kfree(ev_priv); + + return ret; +} + +int kfd_criu_checkpoint_events(struct kfd_process *p, + uint8_t __user *user_priv_data, + uint64_t *priv_data_offset) +{ + struct kfd_criu_event_priv_data *ev_privs; + int i = 0; + int ret = 0; + struct kfd_event *ev; + uint32_t ev_id; + + uint32_t num_events = kfd_get_num_events(p); + + if (!num_events) + return 0; + + ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); + if (!ev_privs) + return -ENOMEM; + + + idr_for_each_entry(&p->event_idr, ev, ev_id) { + struct kfd_criu_event_priv_data *ev_priv; + + /* + * Currently, all events have same size of private_data, but the current ioctl's + * and CRIU plugin supports private_data of variable sizes + */ + ev_priv = &ev_privs[i]; + + ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; + + /* We store the user_handle with the first event */ + if (i == 0 && p->signal_page) + ev_priv->user_handle = p->signal_handle; + + ev_priv->event_id = ev->event_id; + ev_priv->auto_reset = ev->auto_reset; + ev_priv->type = ev->type; + ev_priv->signaled = ev->signaled; + + if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) + memcpy(&ev_priv->memory_exception_data, + &ev->memory_exception_data, + sizeof(struct kfd_hsa_memory_exception_data)); + else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) + memcpy(&ev_priv->hw_exception_data, + &ev->hw_exception_data, + sizeof(struct kfd_hsa_hw_exception_data)); + + pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", + i, + ev_priv->event_id, + ev_priv->auto_reset, + ev_priv->type, + ev_priv->signaled); + i++; + } + + ret = copy_to_user(user_priv_data + *priv_data_offset, + ev_privs, num_events * sizeof(*ev_privs)); + if (ret) { + pr_err("Failed to copy events priv to user\n"); + ret = -EFAULT; + } + + *priv_data_offset += num_events * sizeof(*ev_privs); + + kvfree(ev_privs); + return ret; +} + +int kfd_get_num_events(struct kfd_process *p) +{ + struct kfd_event *ev; + uint32_t id; + u32 num_events = 0; + + idr_for_each_entry(&p->event_idr, ev, id) + num_events++; + + return num_events; +} + /* Assumes that p is current. */ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) { @@ -477,19 +624,23 @@ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) static void set_event(struct kfd_event *ev) { struct kfd_event_waiter *waiter; - struct kfd_event_waiter *next; - - /* Auto reset if the list is non-empty and we're waking someone. */ - ev->signaled = !ev->auto_reset || list_empty(&ev->waiters); - list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) { - waiter->activated = true; + /* Auto reset if the list is non-empty and we're waking + * someone. waitqueue_active is safe here because we're + * protected by the ev->lock, which is also held when + * updating the wait queues in kfd_wait_on_events. + */ + ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); + if (!(++ev->event_age)) { + /* Never wrap back to reserved/default event age 0/1 */ + ev->event_age = 2; + WARN_ONCE(1, "event_age wrap back!"); + } - /* _init because free_waiters will call list_del */ - list_del_init(&waiter->waiters); + list_for_each_entry(waiter, &ev->wq.head, wait.entry) + WRITE_ONCE(waiter->activated, true); - wake_up_process(waiter->sleeping_task); - } + wake_up_all(&ev->wq); } /* Assumes that p is current. */ @@ -498,16 +649,23 @@ int kfd_set_event(struct kfd_process *p, uint32_t event_id) int ret = 0; struct kfd_event *ev; - mutex_lock(&p->event_mutex); + rcu_read_lock(); ev = lookup_event_by_id(p, event_id); + if (!ev) { + ret = -EINVAL; + goto unlock_rcu; + } + spin_lock(&ev->lock); - if (ev && event_can_be_cpu_signaled(ev)) + if (event_can_be_cpu_signaled(ev)) set_event(ev); else ret = -EINVAL; - mutex_unlock(&p->event_mutex); + spin_unlock(&ev->lock); +unlock_rcu: + rcu_read_unlock(); return ret; } @@ -522,29 +680,30 @@ int kfd_reset_event(struct kfd_process *p, uint32_t event_id) int ret = 0; struct kfd_event *ev; - mutex_lock(&p->event_mutex); + rcu_read_lock(); ev = lookup_event_by_id(p, event_id); + if (!ev) { + ret = -EINVAL; + goto unlock_rcu; + } + spin_lock(&ev->lock); - if (ev && event_can_be_cpu_signaled(ev)) + if (event_can_be_cpu_signaled(ev)) reset_event(ev); else ret = -EINVAL; - mutex_unlock(&p->event_mutex); + spin_unlock(&ev->lock); +unlock_rcu: + rcu_read_unlock(); return ret; } static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) { - page_slots(ev->signal_page)[ev->signal_slot_index] = - UNSIGNALED_EVENT_SLOT; -} - -static bool is_slot_signaled(struct signal_page *page, unsigned int index) -{ - return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT; + WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); } static void set_event_from_interrupt(struct kfd_process *p, @@ -552,51 +711,73 @@ static void set_event_from_interrupt(struct kfd_process *p, { if (ev && event_can_be_gpu_signaled(ev)) { acknowledge_signal(p, ev); + spin_lock(&ev->lock); set_event(ev); + spin_unlock(&ev->lock); } } -void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, +void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, uint32_t valid_id_bits) { - struct kfd_event *ev; + struct kfd_event *ev = NULL; /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are - * running so the lookup function returns a locked process. + * running so the lookup function increments the process ref count. */ - struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); + struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, NULL); if (!p) return; /* Presumably process exited. */ - mutex_lock(&p->event_mutex); + rcu_read_lock(); - if (valid_id_bits >= INTERRUPT_DATA_BITS) { - /* Partial ID is a full ID. */ - ev = lookup_event_by_id(p, partial_id); + if (valid_id_bits) + ev = lookup_signaled_event_by_partial_id(p, partial_id, + valid_id_bits); + if (ev) { set_event_from_interrupt(p, ev); - } else { + } else if (p->signal_page) { /* - * Partial ID is in fact partial. For now we completely - * ignore it, but we could use any bits we did receive to - * search faster. + * Partial ID lookup failed. Assume that the event ID + * in the interrupt payload was invalid and do an + * exhaustive search of signaled events. */ - struct signal_page *page; - unsigned i; - - list_for_each_entry(page, &p->signal_event_pages, event_pages) - for (i = 0; i < SLOTS_PER_PAGE; i++) - if (is_slot_signaled(page, i)) { - ev = lookup_event_by_page_slot(p, - page, i); + uint64_t *slots = page_slots(p->signal_page); + uint32_t id; + + if (valid_id_bits) + pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", + partial_id, valid_id_bits); + + if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { + /* With relatively few events, it's faster to + * iterate over the event IDR + */ + idr_for_each_entry(&p->event_idr, ev, id) { + if (id >= KFD_SIGNAL_EVENT_LIMIT) + break; + + if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) + set_event_from_interrupt(p, ev); + } + } else { + /* With relatively many events, it's faster to + * iterate over the signal slots and lookup + * only signaled events from the IDR. + */ + for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++) + if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { + ev = lookup_event_by_id(p, id); set_event_from_interrupt(p, ev); } + } } - mutex_unlock(&p->event_mutex); - mutex_unlock(&p->mutex); + rcu_read_unlock(); + kfd_unref_process(p); } static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) @@ -604,89 +785,120 @@ static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) struct kfd_event_waiter *event_waiters; uint32_t i; - event_waiters = kmalloc_array(num_events, - sizeof(struct kfd_event_waiter), - GFP_KERNEL); + event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter), + GFP_KERNEL); + if (!event_waiters) + return NULL; - for (i = 0; (event_waiters) && (i < num_events) ; i++) { - INIT_LIST_HEAD(&event_waiters[i].waiters); - event_waiters[i].sleeping_task = current; - event_waiters[i].activated = false; - } + for (i = 0; i < num_events; i++) + init_wait(&event_waiters[i].wait); return event_waiters; } static int init_event_waiter(struct kfd_process *p, struct kfd_event_waiter *waiter, - uint32_t event_id, - uint32_t input_index) + struct kfd_event_data *event_data) { - struct kfd_event *ev = lookup_event_by_id(p, event_id); + struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id); if (!ev) return -EINVAL; + spin_lock(&ev->lock); waiter->event = ev; - waiter->input_index = input_index; waiter->activated = ev->signaled; ev->signaled = ev->signaled && !ev->auto_reset; - list_add(&waiter->waiters, &ev->waiters); + /* last_event_age = 0 reserved for backward compatible */ + if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL && + event_data->signal_event_data.last_event_age) { + waiter->event_age_enabled = true; + if (ev->event_age != event_data->signal_event_data.last_event_age) + waiter->activated = true; + } + + if (!waiter->activated) + add_wait_queue(&ev->wq, &waiter->wait); + spin_unlock(&ev->lock); return 0; } -static bool test_event_condition(bool all, uint32_t num_events, +/* test_event_condition - Test condition of events being waited for + * @all: Return completion only if all events have signaled + * @num_events: Number of events to wait for + * @event_waiters: Array of event waiters, one per event + * + * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have + * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) + * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of + * the events have been destroyed. + */ +static uint32_t test_event_condition(bool all, uint32_t num_events, struct kfd_event_waiter *event_waiters) { uint32_t i; uint32_t activated_count = 0; for (i = 0; i < num_events; i++) { - if (event_waiters[i].activated) { + if (!READ_ONCE(event_waiters[i].event)) + return KFD_IOC_WAIT_RESULT_FAIL; + + if (READ_ONCE(event_waiters[i].activated)) { if (!all) - return true; + return KFD_IOC_WAIT_RESULT_COMPLETE; activated_count++; } } - return activated_count == num_events; + return activated_count == num_events ? + KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; } /* * Copy event specific data, if defined. * Currently only memory exception events have additional data to copy to user */ -static bool copy_signaled_event_data(uint32_t num_events, +static int copy_signaled_event_data(uint32_t num_events, struct kfd_event_waiter *event_waiters, struct kfd_event_data __user *data) { - struct kfd_hsa_memory_exception_data *src; - struct kfd_hsa_memory_exception_data __user *dst; + void *src; + void __user *dst; struct kfd_event_waiter *waiter; struct kfd_event *event; - uint32_t i; + uint32_t i, size = 0; for (i = 0; i < num_events; i++) { waiter = &event_waiters[i]; event = waiter->event; - if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { - dst = &data[waiter->input_index].memory_exception_data; - src = &event->memory_exception_data; - if (copy_to_user(dst, src, - sizeof(struct kfd_hsa_memory_exception_data))) - return false; + if (!event) + return -EINVAL; /* event was destroyed */ + if (waiter->activated) { + if (event->type == KFD_EVENT_TYPE_MEMORY) { + dst = &data[i].memory_exception_data; + src = &event->memory_exception_data; + size = sizeof(struct kfd_hsa_memory_exception_data); + } else if (event->type == KFD_EVENT_TYPE_HW_EXCEPTION) { + dst = &data[i].memory_exception_data; + src = &event->hw_exception_data; + size = sizeof(struct kfd_hsa_hw_exception_data); + } else if (event->type == KFD_EVENT_TYPE_SIGNAL && + waiter->event_age_enabled) { + dst = &data[i].signal_event_data.last_event_age; + src = &event->event_age; + size = sizeof(u64); + } + if (size && copy_to_user(dst, src, size)) + return -EFAULT; } } - return true; - + return 0; } - - static long user_timeout_to_jiffies(uint32_t user_timeout_ms) { if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) @@ -705,49 +917,74 @@ static long user_timeout_to_jiffies(uint32_t user_timeout_ms) return msecs_to_jiffies(user_timeout_ms) + 1; } -static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) +static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters, + bool undo_auto_reset) { uint32_t i; for (i = 0; i < num_events; i++) - list_del(&waiters[i].waiters); + if (waiters[i].event) { + spin_lock(&waiters[i].event->lock); + remove_wait_queue(&waiters[i].event->wq, + &waiters[i].wait); + if (undo_auto_reset && waiters[i].activated && + waiters[i].event && waiters[i].event->auto_reset) + set_event(waiters[i].event); + spin_unlock(&waiters[i].event->lock); + } kfree(waiters); } int kfd_wait_on_events(struct kfd_process *p, uint32_t num_events, void __user *data, - bool all, uint32_t user_timeout_ms, - enum kfd_event_wait_result *wait_result) + bool all, uint32_t *user_timeout_ms, + uint32_t *wait_result) { struct kfd_event_data __user *events = (struct kfd_event_data __user *) data; uint32_t i; int ret = 0; - struct kfd_event_waiter *event_waiters = NULL; - long timeout = user_timeout_to_jiffies(user_timeout_ms); - mutex_lock(&p->event_mutex); + struct kfd_event_waiter *event_waiters = NULL; + long timeout = user_timeout_to_jiffies(*user_timeout_ms); event_waiters = alloc_event_waiters(num_events); if (!event_waiters) { ret = -ENOMEM; - goto fail; + goto out; } + /* Use p->event_mutex here to protect against concurrent creation and + * destruction of events while we initialize event_waiters. + */ + mutex_lock(&p->event_mutex); + for (i = 0; i < num_events; i++) { struct kfd_event_data event_data; if (copy_from_user(&event_data, &events[i], sizeof(struct kfd_event_data))) { ret = -EFAULT; - goto fail; + goto out_unlock; } - ret = init_event_waiter(p, &event_waiters[i], - event_data.event_id, i); + ret = init_event_waiter(p, &event_waiters[i], &event_data); if (ret) - goto fail; + goto out_unlock; + } + + /* Check condition once. */ + *wait_result = test_event_condition(all, num_events, event_waiters); + if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { + ret = copy_signaled_event_data(num_events, + event_waiters, events); + goto out_unlock; + } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { + /* This should not happen. Events shouldn't be + * destroyed while we're holding the event_mutex + */ + goto out_unlock; } mutex_unlock(&p->event_mutex); @@ -759,84 +996,89 @@ int kfd_wait_on_events(struct kfd_process *p, } if (signal_pending(current)) { - /* - * This is wrong when a nonzero, non-infinite timeout - * is specified. We need to use - * ERESTARTSYS_RESTARTBLOCK, but struct restart_block - * contains a union with data for each user and it's - * in generic kernel code that I don't want to - * touch yet. - */ ret = -ERESTARTSYS; + if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE && + *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE) + *user_timeout_ms = jiffies_to_msecs( + max(0l, timeout-1)); break; } - if (test_event_condition(all, num_events, event_waiters)) { - if (copy_signaled_event_data(num_events, - event_waiters, events)) - *wait_result = KFD_WAIT_COMPLETE; - else - *wait_result = KFD_WAIT_ERROR; + /* Set task state to interruptible sleep before + * checking wake-up conditions. A concurrent wake-up + * will put the task back into runnable state. In that + * case schedule_timeout will not put the task to + * sleep and we'll get a chance to re-check the + * updated conditions almost immediately. Otherwise, + * this race condition would lead to a soft hang or a + * very long sleep. + */ + set_current_state(TASK_INTERRUPTIBLE); + + *wait_result = test_event_condition(all, num_events, + event_waiters); + if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) break; - } - if (timeout <= 0) { - *wait_result = KFD_WAIT_TIMEOUT; + if (timeout <= 0) break; - } - timeout = schedule_timeout_interruptible(timeout); + timeout = schedule_timeout(timeout); } __set_current_state(TASK_RUNNING); mutex_lock(&p->event_mutex); - free_waiters(num_events, event_waiters); - mutex_unlock(&p->event_mutex); - - return ret; - -fail: - if (event_waiters) - free_waiters(num_events, event_waiters); + /* copy_signaled_event_data may sleep. So this has to happen + * after the task state is set back to RUNNING. + * + * The event may also have been destroyed after signaling. So + * copy_signaled_event_data also must confirm that the event + * still exists. Therefore this must be under the p->event_mutex + * which is also held when events are destroyed. + */ + if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) + ret = copy_signaled_event_data(num_events, + event_waiters, events); +out_unlock: + free_waiters(num_events, event_waiters, ret == -ERESTARTSYS); mutex_unlock(&p->event_mutex); - - *wait_result = KFD_WAIT_ERROR; +out: + if (ret) + *wait_result = KFD_IOC_WAIT_RESULT_FAIL; + else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) + ret = -EIO; return ret; } int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) { - - unsigned int page_index; unsigned long pfn; - struct signal_page *page; + struct kfd_signal_page *page; + int ret; - /* check required size is logical */ - if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) != + /* check required size doesn't exceed the allocated size */ + if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < get_order(vma->vm_end - vma->vm_start)) { - pr_err("amdkfd: event page mmap requested illegal size\n"); + pr_err("Event page mmap requested illegal size\n"); return -EINVAL; } - page_index = vma->vm_pgoff; - - page = lookup_signal_page_by_index(p, page_index); + page = p->signal_page; if (!page) { /* Probably KFD bug, but mmap is user-accessible. */ - pr_debug("signal page could not be found for page_index %u\n", - page_index); + pr_debug("Signal page could not be found\n"); return -EINVAL; } pfn = __pa(page->kernel_address); pfn >>= PAGE_SHIFT; - vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE - | VM_DONTDUMP | VM_PFNMAP; + vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE + | VM_DONTDUMP | VM_PFNMAP); - pr_debug("mapping signal page\n"); + pr_debug("Mapping signal page\n"); pr_debug(" start user address == 0x%08lx\n", vma->vm_start); pr_debug(" end user address == 0x%08lx\n", vma->vm_end); pr_debug(" pfn == 0x%016lX\n", pfn); @@ -847,125 +1089,294 @@ int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) page->user_address = (uint64_t __user *)vma->vm_start; /* mapping the page to user process */ - return remap_pfn_range(vma, vma->vm_start, pfn, + ret = remap_pfn_range(vma, vma->vm_start, pfn, vma->vm_end - vma->vm_start, vma->vm_page_prot); + if (!ret) + p->signal_mapped_size = vma->vm_end - vma->vm_start; + + return ret; } /* - * Assumes that p->event_mutex is held and of course - * that p is not going away (current or locked). + * Assumes that p is not going away. */ static void lookup_events_by_type_and_signal(struct kfd_process *p, int type, void *event_data) { struct kfd_hsa_memory_exception_data *ev_data; struct kfd_event *ev; - int bkt; + uint32_t id; bool send_signal = true; ev_data = (struct kfd_hsa_memory_exception_data *) event_data; - hash_for_each(p->events, bkt, ev, events) + rcu_read_lock(); + + id = KFD_FIRST_NONSIGNAL_EVENT_ID; + idr_for_each_entry_continue(&p->event_idr, ev, id) if (ev->type == type) { send_signal = false; dev_dbg(kfd_device, "Event found: id %X type %d", ev->event_id, ev->type); + spin_lock(&ev->lock); set_event(ev); if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) ev->memory_exception_data = *ev_data; + spin_unlock(&ev->lock); } + if (type == KFD_EVENT_TYPE_MEMORY) { + dev_warn(kfd_device, + "Sending SIGSEGV to process pid %d", + p->lead_thread->pid); + send_sig(SIGSEGV, p->lead_thread, 0); + } + /* Send SIGTERM no event of type "type" has been found*/ if (send_signal) { if (send_sigterm) { dev_warn(kfd_device, - "Sending SIGTERM to HSA Process with PID %d ", + "Sending SIGTERM to process pid %d", p->lead_thread->pid); send_sig(SIGTERM, p->lead_thread, 0); } else { dev_err(kfd_device, - "HSA Process (PID %d) got unhandled exception", + "Process pid %d got unhandled exception", p->lead_thread->pid); } } + + rcu_read_unlock(); } -void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, - unsigned long address, bool is_write_requested, - bool is_execute_requested) +void kfd_signal_hw_exception_event(u32 pasid) { - struct kfd_hsa_memory_exception_data memory_exception_data; - struct vm_area_struct *vma; - /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are - * running so the lookup function returns a locked process. + * running so the lookup function increments the process ref count. */ - struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); + struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, NULL); if (!p) return; /* Presumably process exited. */ - memset(&memory_exception_data, 0, sizeof(memory_exception_data)); + lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); + kfd_unref_process(p); +} - down_read(&p->mm->mmap_sem); - vma = find_vma(p->mm, address); - - memory_exception_data.gpu_id = dev->id; - memory_exception_data.va = address; - /* Set failure reason */ - memory_exception_data.failure.NotPresent = 1; - memory_exception_data.failure.NoExecute = 0; - memory_exception_data.failure.ReadOnly = 0; - if (vma) { - if (vma->vm_start > address) { - memory_exception_data.failure.NotPresent = 1; - memory_exception_data.failure.NoExecute = 0; - memory_exception_data.failure.ReadOnly = 0; - } else { - memory_exception_data.failure.NotPresent = 0; - if (is_write_requested && !(vma->vm_flags & VM_WRITE)) - memory_exception_data.failure.ReadOnly = 1; - else - memory_exception_data.failure.ReadOnly = 0; - if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) - memory_exception_data.failure.NoExecute = 1; - else - memory_exception_data.failure.NoExecute = 0; +void kfd_signal_vm_fault_event_with_userptr(struct kfd_process *p, uint64_t gpu_va) +{ + struct kfd_process_device *pdd; + struct kfd_hsa_memory_exception_data exception_data; + int i; + + memset(&exception_data, 0, sizeof(exception_data)); + exception_data.va = gpu_va; + exception_data.failure.NotPresent = 1; + + // Send VM seg fault to all kfd process device + for (i = 0; i < p->n_pdds; i++) { + pdd = p->pdds[i]; + exception_data.gpu_id = pdd->user_gpu_id; + kfd_evict_process_device(pdd); + kfd_signal_vm_fault_event(pdd, NULL, &exception_data); + } +} + +void kfd_signal_vm_fault_event(struct kfd_process_device *pdd, + struct kfd_vm_fault_info *info, + struct kfd_hsa_memory_exception_data *data) +{ + struct kfd_event *ev; + uint32_t id; + struct kfd_process *p = pdd->process; + struct kfd_hsa_memory_exception_data memory_exception_data; + int user_gpu_id; + + user_gpu_id = kfd_process_get_user_gpu_id(p, pdd->dev->id); + if (unlikely(user_gpu_id == -EINVAL)) { + WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", + pdd->dev->id); + return; + } + + /* SoC15 chips and onwards will pass in data from now on. */ + if (!data) { + memset(&memory_exception_data, 0, sizeof(memory_exception_data)); + memory_exception_data.gpu_id = user_gpu_id; + memory_exception_data.failure.imprecise = true; + + /* Set failure reason */ + if (info) { + memory_exception_data.va = (info->page_addr) << + PAGE_SHIFT; + memory_exception_data.failure.NotPresent = + info->prot_valid ? 1 : 0; + memory_exception_data.failure.NoExecute = + info->prot_exec ? 1 : 0; + memory_exception_data.failure.ReadOnly = + info->prot_write ? 1 : 0; + memory_exception_data.failure.imprecise = 0; } } - up_read(&p->mm->mmap_sem); + rcu_read_lock(); - mutex_lock(&p->event_mutex); + id = KFD_FIRST_NONSIGNAL_EVENT_ID; + idr_for_each_entry_continue(&p->event_idr, ev, id) + if (ev->type == KFD_EVENT_TYPE_MEMORY) { + spin_lock(&ev->lock); + ev->memory_exception_data = data ? *data : + memory_exception_data; + set_event(ev); + spin_unlock(&ev->lock); + } - /* Lookup events by type and signal them */ - lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, - &memory_exception_data); + rcu_read_unlock(); +} - mutex_unlock(&p->event_mutex); - mutex_unlock(&p->mutex); +void kfd_signal_reset_event(struct kfd_node *dev) +{ + struct kfd_hsa_hw_exception_data hw_exception_data; + struct kfd_hsa_memory_exception_data memory_exception_data; + struct kfd_process *p; + struct kfd_event *ev; + unsigned int temp; + uint32_t id, idx; + int reset_cause = atomic_read(&dev->sram_ecc_flag) ? + KFD_HW_EXCEPTION_ECC : + KFD_HW_EXCEPTION_GPU_HANG; + + /* Whole gpu reset caused by GPU hang and memory is lost */ + memset(&hw_exception_data, 0, sizeof(hw_exception_data)); + hw_exception_data.memory_lost = 1; + hw_exception_data.reset_cause = reset_cause; + + memset(&memory_exception_data, 0, sizeof(memory_exception_data)); + memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; + memory_exception_data.failure.imprecise = true; + + idx = srcu_read_lock(&kfd_processes_srcu); + hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { + int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); + struct kfd_process_device *pdd = kfd_get_process_device_data(dev, p); + + if (unlikely(user_gpu_id == -EINVAL)) { + WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); + continue; + } + + if (unlikely(!pdd)) { + WARN_ONCE(1, "Could not get device data from process pid:%d\n", + p->lead_thread->pid); + continue; + } + + if (dev->dqm->detect_hang_count && !pdd->has_reset_queue) + continue; + + if (dev->dqm->detect_hang_count) { + struct amdgpu_task_info *ti; + struct amdgpu_fpriv *drv_priv; + + if (unlikely(amdgpu_file_to_fpriv(pdd->drm_file, &drv_priv))) { + WARN_ONCE(1, "Could not get vm for device %x from pid:%d\n", + dev->id, p->lead_thread->pid); + continue; + } + + ti = amdgpu_vm_get_task_info_vm(&drv_priv->vm); + if (ti) { + dev_err(dev->adev->dev, + "Queues reset on process %s tid %d thread %s pid %d\n", + ti->process_name, ti->tgid, ti->task.comm, ti->task.pid); + amdgpu_vm_put_task_info(ti); + } + } + + rcu_read_lock(); + + id = KFD_FIRST_NONSIGNAL_EVENT_ID; + idr_for_each_entry_continue(&p->event_idr, ev, id) { + if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { + spin_lock(&ev->lock); + ev->hw_exception_data = hw_exception_data; + ev->hw_exception_data.gpu_id = user_gpu_id; + set_event(ev); + spin_unlock(&ev->lock); + } + if (ev->type == KFD_EVENT_TYPE_MEMORY && + reset_cause == KFD_HW_EXCEPTION_ECC) { + spin_lock(&ev->lock); + ev->memory_exception_data = memory_exception_data; + ev->memory_exception_data.gpu_id = user_gpu_id; + set_event(ev); + spin_unlock(&ev->lock); + } + } + + rcu_read_unlock(); + } + srcu_read_unlock(&kfd_processes_srcu, idx); } -void kfd_signal_hw_exception_event(unsigned int pasid) +void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid) { - /* - * Because we are called from arbitrary context (workqueue) as opposed - * to process context, kfd_process could attempt to exit while we are - * running so the lookup function returns a locked process. - */ - struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); + struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, NULL); + struct kfd_hsa_memory_exception_data memory_exception_data; + struct kfd_hsa_hw_exception_data hw_exception_data; + struct kfd_event *ev; + uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; + int user_gpu_id; - if (!p) + if (!p) { + dev_warn(dev->adev->dev, "Not find process with pasid:%d\n", pasid); return; /* Presumably process exited. */ + } - mutex_lock(&p->event_mutex); + user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); + if (unlikely(user_gpu_id == -EINVAL)) { + WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); + kfd_unref_process(p); + return; + } - /* Lookup events by type and signal them */ - lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); + memset(&hw_exception_data, 0, sizeof(hw_exception_data)); + hw_exception_data.gpu_id = user_gpu_id; + hw_exception_data.memory_lost = 1; + hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; - mutex_unlock(&p->event_mutex); - mutex_unlock(&p->mutex); + memset(&memory_exception_data, 0, sizeof(memory_exception_data)); + memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; + memory_exception_data.gpu_id = user_gpu_id; + memory_exception_data.failure.imprecise = true; + + rcu_read_lock(); + + idr_for_each_entry_continue(&p->event_idr, ev, id) { + if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { + spin_lock(&ev->lock); + ev->hw_exception_data = hw_exception_data; + set_event(ev); + spin_unlock(&ev->lock); + } + + if (ev->type == KFD_EVENT_TYPE_MEMORY) { + spin_lock(&ev->lock); + ev->memory_exception_data = memory_exception_data; + set_event(ev); + spin_unlock(&ev->lock); + } + } + + dev_warn(dev->adev->dev, "Send SIGBUS to process %s(pasid:%d)\n", + p->lead_thread->comm, pasid); + rcu_read_unlock(); + + /* user application will handle SIGBUS signal */ + send_sig(SIGBUS, p->lead_thread, 0); + + kfd_unref_process(p); } |
