diff options
Diffstat (limited to 'drivers/gpu/drm/amd/display/dc/spl/dc_spl.c')
-rw-r--r-- | drivers/gpu/drm/amd/display/dc/spl/dc_spl.c | 1874 |
1 files changed, 1874 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c b/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c new file mode 100644 index 000000000000..38a9a0d68058 --- /dev/null +++ b/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c @@ -0,0 +1,1874 @@ +// SPDX-License-Identifier: MIT +// +// Copyright 2024 Advanced Micro Devices, Inc. + +#include "dc_spl.h" +#include "dc_spl_scl_filters.h" +#include "dc_spl_scl_easf_filters.h" +#include "dc_spl_isharp_filters.h" +#include "spl_debug.h" + +#define IDENTITY_RATIO(ratio) (spl_fixpt_u2d19(ratio) == (1 << 19)) +#define MIN_VIEWPORT_SIZE 12 + +static bool spl_is_yuv420(enum spl_pixel_format format) +{ + if ((format >= SPL_PIXEL_FORMAT_420BPP8) && + (format <= SPL_PIXEL_FORMAT_420BPP10)) + return true; + + return false; +} + +static bool spl_is_rgb8(enum spl_pixel_format format) +{ + if (format == SPL_PIXEL_FORMAT_ARGB8888) + return true; + + return false; +} + +static bool spl_is_video_format(enum spl_pixel_format format) +{ + if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN + && format <= SPL_PIXEL_FORMAT_VIDEO_END) + return true; + else + return false; +} + +static bool spl_is_subsampled_format(enum spl_pixel_format format) +{ + if (format >= SPL_PIXEL_FORMAT_SUBSAMPLED_BEGIN + && format <= SPL_PIXEL_FORMAT_SUBSAMPLED_END) + return true; + else + return false; +} + +static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1) +{ + struct spl_rect rec; + int r0_x_end = r0->x + r0->width; + int r1_x_end = r1->x + r1->width; + int r0_y_end = r0->y + r0->height; + int r1_y_end = r1->y + r1->height; + + rec.x = r0->x > r1->x ? r0->x : r1->x; + rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x; + rec.y = r0->y > r1->y ? r0->y : r1->y; + rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y; + + /* in case that there is no intersection */ + if (rec.width < 0 || rec.height < 0) + memset(&rec, 0, sizeof(rec)); + + return rec; +} + +static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y) +{ + struct spl_rect rec_out = *rec_in; + + rec_out.x += x; + rec_out.y += y; + + return rec_out; +} + +static struct spl_rect calculate_plane_rec_in_timing_active( + struct spl_in *spl_in, + const struct spl_rect *rec_in) +{ + /* + * The following diagram shows an example where we map a 1920x1200 + * desktop to a 2560x1440 timing with a plane rect in the middle + * of the screen. To map a plane rect from Stream Source to Timing + * Active space, we first multiply stream scaling ratios (i.e 2304/1920 + * horizontal and 1440/1200 vertical) to the plane's x and y, then + * we add stream destination offsets (i.e 128 horizontal, 0 vertical). + * This will give us a plane rect's position in Timing Active. However + * we have to remove the fractional. The rule is that we find left/right + * and top/bottom positions and round the value to the adjacent integer. + * + * Stream Source Space + * ------------ + * __________________________________________________ + * |Stream Source (1920 x 1200) ^ | + * | y | + * | <------- w --------|> | + * | __________________V | + * |<-- x -->|Plane//////////////| ^ | + * | |(pre scale)////////| | | + * | |///////////////////| | | + * | |///////////////////| h | + * | |///////////////////| | | + * | |///////////////////| | | + * | |///////////////////| V | + * | | + * | | + * |__________________________________________________| + * + * + * Timing Active Space + * --------------------------------- + * + * Timing Active (2560 x 1440) + * __________________________________________________ + * |*****| Stteam Destination (2304 x 1440) |*****| + * |*****| |*****| + * |<128>| |*****| + * |*****| __________________ |*****| + * |*****| |Plane/////////////| |*****| + * |*****| |(post scale)//////| |*****| + * |*****| |//////////////////| |*****| + * |*****| |//////////////////| |*****| + * |*****| |//////////////////| |*****| + * |*****| |//////////////////| |*****| + * |*****| |*****| + * |*****| |*****| + * |*****| |*****| + * |*****|______________________________________|*****| + * + * So the resulting formulas are shown below: + * + * recout_x = 128 + round(plane_x * 2304 / 1920) + * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x + * recout_y = 0 + round(plane_y * 1440 / 1200) + * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y + * + * NOTE: fixed point division is not error free. To reduce errors + * introduced by fixed point division, we divide only after + * multiplication is complete. + */ + const struct spl_rect *stream_src = &spl_in->basic_out.src_rect; + const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect; + struct spl_rect rec_out = {0}; + struct spl_fixed31_32 temp; + + + temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width, + stream_src->width); + rec_out.x = stream_dst->x + spl_fixpt_round(temp); + + temp = spl_fixpt_from_fraction( + (rec_in->x + rec_in->width) * (long long)stream_dst->width, + stream_src->width); + rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x; + + temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height, + stream_src->height); + rec_out.y = stream_dst->y + spl_fixpt_round(temp); + + temp = spl_fixpt_from_fraction( + (rec_in->y + rec_in->height) * (long long)stream_dst->height, + stream_src->height); + rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y; + + return rec_out; +} + +static struct spl_rect calculate_mpc_slice_in_timing_active( + struct spl_in *spl_in, + struct spl_rect *plane_clip_rec) +{ + bool use_recout_width_aligned = + spl_in->basic_in.num_h_slices_recout_width_align.use_recout_width_aligned; + int mpc_slice_count = + spl_in->basic_in.num_h_slices_recout_width_align.num_slices_recout_width.mpc_num_h_slices; + int recout_width_align = + spl_in->basic_in.num_h_slices_recout_width_align.num_slices_recout_width.mpc_recout_width_align; + int mpc_slice_idx = spl_in->basic_in.mpc_h_slice_index; + int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1; + struct spl_rect mpc_rec; + + if (use_recout_width_aligned) { + mpc_rec.width = recout_width_align; + if ((mpc_rec.width * (mpc_slice_idx + 1)) > plane_clip_rec->width) { + mpc_rec.width = plane_clip_rec->width % recout_width_align; + mpc_rec.x = plane_clip_rec->x + recout_width_align * mpc_slice_idx; + } else + mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx; + mpc_rec.height = plane_clip_rec->height; + mpc_rec.y = plane_clip_rec->y; + + } else { + mpc_rec.width = plane_clip_rec->width / mpc_slice_count; + mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx; + mpc_rec.height = plane_clip_rec->height; + mpc_rec.y = plane_clip_rec->y; + } + SPL_ASSERT(mpc_slice_count == 1 || + spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE || + mpc_rec.width % 2 == 0); + + /* extra pixels in the division remainder need to go to pipes after + * the extra pixel index minus one(epimo) defined here as: + */ + if (mpc_slice_idx > epimo) { + mpc_rec.x += mpc_slice_idx - epimo - 1; + mpc_rec.width += 1; + } + + if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) { + SPL_ASSERT(mpc_rec.height % 2 == 0); + mpc_rec.height /= 2; + } + return mpc_rec; +} + +static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in) +{ + int odm_slice_count = spl_in->basic_out.odm_combine_factor; + int odm_slice_idx = spl_in->odm_slice_index; + bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count; + int h_active = spl_in->basic_out.output_size.width; + int v_active = spl_in->basic_out.output_size.height; + int odm_slice_width; + struct spl_rect odm_rec; + + if (spl_in->basic_out.odm_combine_factor > 0) { + odm_slice_width = h_active / odm_slice_count; + /* + * deprecated, caller must pass in odm slice rect i.e OPP input + * rect in timing active for the new interface. + */ + if (spl_in->basic_out.use_two_pixels_per_container && (odm_slice_width % 2)) + odm_slice_width++; + + odm_rec.x = odm_slice_width * odm_slice_idx; + odm_rec.width = is_last_odm_slice ? + /* last slice width is the reminder of h_active */ + h_active - odm_slice_width * (odm_slice_count - 1) : + /* odm slice width is the floor of h_active / count */ + odm_slice_width; + odm_rec.y = 0; + odm_rec.height = v_active; + + return odm_rec; + } + + return spl_in->basic_out.odm_slice_rect; +} + +static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out) +{ + /* + * A plane clip represents the desired plane size and position in Stream + * Source Space. Stream Source is the destination where all planes are + * blended (i.e. positioned, scaled and overlaid). It is a canvas where + * all planes associated with the current stream are drawn together. + * After Stream Source is completed, we will further scale and + * reposition the entire canvas of the stream source to Stream + * Destination in Timing Active Space. This could be due to display + * overscan adjustment where we will need to rescale and reposition all + * the planes so they can fit into a TV with overscan or downscale + * upscale features such as GPU scaling or VSR. + * + * This two step blending is a virtual procedure in software. In + * hardware there is no such thing as Stream Source. all planes are + * blended once in Timing Active Space. Software virtualizes a Stream + * Source space to decouple the math complicity so scaling param + * calculation focuses on one step at a time. + * + * In the following two diagrams, user applied 10% overscan adjustment + * so the Stream Source needs to be scaled down a little before mapping + * to Timing Active Space. As a result the Plane Clip is also scaled + * down by the same ratio, Plane Clip position (i.e. x and y) with + * respect to Stream Source is also scaled down. To map it in Timing + * Active Space additional x and y offsets from Stream Destination are + * added to Plane Clip as well. + * + * Stream Source Space + * ------------ + * __________________________________________________ + * |Stream Source (3840 x 2160) ^ | + * | y | + * | | | + * | __________________V | + * |<-- x -->|Plane Clip/////////| | + * | |(pre scale)////////| | + * | |///////////////////| | + * | |///////////////////| | + * | |///////////////////| | + * | |///////////////////| | + * | |///////////////////| | + * | | + * | | + * |__________________________________________________| + * + * + * Timing Active Space (3840 x 2160) + * --------------------------------- + * + * Timing Active + * __________________________________________________ + * | y_____________________________________________ | + * |x |Stream Destination (3456 x 1944) | | + * | | | | + * | | __________________ | | + * | | |Plane Clip////////| | | + * | | |(post scale)//////| | | + * | | |//////////////////| | | + * | | |//////////////////| | | + * | | |//////////////////| | | + * | | |//////////////////| | | + * | | | | + * | | | | + * | |____________________________________________| | + * |__________________________________________________| + * + * + * In Timing Active Space a plane clip could be further sliced into + * pieces called MPC slices. Each Pipe Context is responsible for + * processing only one MPC slice so the plane processing workload can be + * distributed to multiple DPP Pipes. MPC slices could be blended + * together to a single ODM slice. Each ODM slice is responsible for + * processing a portion of Timing Active divided horizontally so the + * output pixel processing workload can be distributed to multiple OPP + * pipes. All ODM slices are mapped together in ODM block so all MPC + * slices belong to different ODM slices could be pieced together to + * form a single image in Timing Active. MPC slices must belong to + * single ODM slice. If an MPC slice goes across ODM slice boundary, it + * needs to be divided into two MPC slices one for each ODM slice. + * + * In the following diagram the output pixel processing workload is + * divided horizontally into two ODM slices one for each OPP blend tree. + * OPP0 blend tree is responsible for processing left half of Timing + * Active, while OPP2 blend tree is responsible for processing right + * half. + * + * The plane has two MPC slices. However since the right MPC slice goes + * across ODM boundary, two DPP pipes are needed one for each OPP blend + * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree). + * + * Assuming that we have a Pipe Context associated with OPP0 and DPP1 + * working on processing the plane in the diagram. We want to know the + * width and height of the shaded rectangle and its relative position + * with respect to the ODM slice0. This is called the recout of the pipe + * context. + * + * Planes can be at arbitrary size and position and there could be an + * arbitrary number of MPC and ODM slices. The algorithm needs to take + * all scenarios into account. + * + * Timing Active Space (3840 x 2160) + * --------------------------------- + * + * Timing Active + * __________________________________________________ + * |OPP0(ODM slice0)^ |OPP2(ODM slice1) | + * | y | | + * | | <- w -> | + * | _____V________|____ | + * | |DPP0 ^ |DPP1 |DPP2| | + * |<------ x |-----|->|/////| | | + * | | | |/////| | | + * | | h |/////| | | + * | | | |/////| | | + * | |_____V__|/////|____| | + * | | | + * | | | + * | | | + * |_________________________|________________________| + * + * + */ + struct spl_rect plane_clip; + struct spl_rect mpc_slice_of_plane_clip; + struct spl_rect odm_slice; + struct spl_rect overlapping_area; + + plane_clip = calculate_plane_rec_in_timing_active(spl_in, + &spl_in->basic_in.clip_rect); + /* guard plane clip from drawing beyond stream dst here */ + plane_clip = intersect_rec(&plane_clip, + &spl_in->basic_out.dst_rect); + mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active( + spl_in, &plane_clip); + odm_slice = calculate_odm_slice_in_timing_active(spl_in); + overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice); + + if (overlapping_area.height > 0 && + overlapping_area.width > 0) { + /* shift the overlapping area so it is with respect to current + * ODM slice's position + */ + spl_scratch->scl_data.recout = shift_rec( + &overlapping_area, + -odm_slice.x, -odm_slice.y); + spl_scratch->scl_data.recout.height -= + spl_in->debug.visual_confirm_base_offset; + spl_scratch->scl_data.recout.height -= + spl_in->debug.visual_confirm_dpp_offset; + } else + /* if there is no overlap, zero recout */ + memset(&spl_scratch->scl_data.recout, 0, + sizeof(struct spl_rect)); +} + +/* Calculate scaling ratios */ +static void spl_calculate_scaling_ratios(struct spl_in *spl_in, + struct spl_scratch *spl_scratch, + struct spl_out *spl_out) +{ + const int in_w = spl_in->basic_out.src_rect.width; + const int in_h = spl_in->basic_out.src_rect.height; + const int out_w = spl_in->basic_out.dst_rect.width; + const int out_h = spl_in->basic_out.dst_rect.height; + struct spl_rect surf_src = spl_in->basic_in.src_rect; + + /*Swap surf_src height and width since scaling ratios are in recout rotation*/ + if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 || + spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) + spl_swap(surf_src.height, surf_src.width); + + spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction( + surf_src.width, + spl_in->basic_in.dst_rect.width); + spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction( + surf_src.height, + spl_in->basic_in.dst_rect.height); + + if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE) + spl_scratch->scl_data.ratios.horz.value *= 2; + else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) + spl_scratch->scl_data.ratios.vert.value *= 2; + + spl_scratch->scl_data.ratios.vert.value = spl_div64_s64( + spl_scratch->scl_data.ratios.vert.value * in_h, out_h); + spl_scratch->scl_data.ratios.horz.value = spl_div64_s64( + spl_scratch->scl_data.ratios.horz.value * in_w, out_w); + + spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz; + spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert; + + if (spl_is_yuv420(spl_in->basic_in.format)) { + spl_scratch->scl_data.ratios.horz_c.value /= 2; + spl_scratch->scl_data.ratios.vert_c.value /= 2; + } + spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate( + spl_scratch->scl_data.ratios.horz, 19); + spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate( + spl_scratch->scl_data.ratios.vert, 19); + spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate( + spl_scratch->scl_data.ratios.horz_c, 19); + spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate( + spl_scratch->scl_data.ratios.vert_c, 19); + + /* + * Coefficient table and some registers are different based on ratio + * that is output/input. Currently we calculate input/output + * Store 1/ratio in recip_ratio for those lookups + */ + spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip( + spl_scratch->scl_data.ratios.horz); + spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip( + spl_scratch->scl_data.ratios.vert); + spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip( + spl_scratch->scl_data.ratios.horz_c); + spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip( + spl_scratch->scl_data.ratios.vert_c); +} + +/* Calculate Viewport size */ +static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch) +{ + spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz, + spl_scratch->scl_data.recout.width)); + spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert, + spl_scratch->scl_data.recout.height)); + spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c, + spl_scratch->scl_data.recout.width)); + spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c, + spl_scratch->scl_data.recout.height)); + if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 || + spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) { + spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height); + spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height); + } +} + +static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation, + bool horizontal_mirror, + bool *orthogonal_rotation, + bool *flip_vert_scan_dir, + bool *flip_horz_scan_dir) +{ + *orthogonal_rotation = false; + *flip_vert_scan_dir = false; + *flip_horz_scan_dir = false; + if (rotation == SPL_ROTATION_ANGLE_180) { + *flip_vert_scan_dir = true; + *flip_horz_scan_dir = true; + } else if (rotation == SPL_ROTATION_ANGLE_90) { + *orthogonal_rotation = true; + *flip_horz_scan_dir = true; + } else if (rotation == SPL_ROTATION_ANGLE_270) { + *orthogonal_rotation = true; + *flip_vert_scan_dir = true; + } + + if (horizontal_mirror) + *flip_horz_scan_dir = !*flip_horz_scan_dir; +} + +/* + * We completely calculate vp offset, size and inits here based entirely on scaling + * ratios and recout for pixel perfect pipe combine. + */ +static void spl_calculate_init_and_vp(bool flip_scan_dir, + int recout_offset_within_recout_full, + int recout_size, + int src_size, + int taps, + struct spl_fixed31_32 ratio, + struct spl_fixed31_32 init_adj, + struct spl_fixed31_32 *init, + int *vp_offset, + int *vp_size) +{ + struct spl_fixed31_32 temp; + int int_part; + + /* + * First of the taps starts sampling pixel number <init_int_part> corresponding to recout + * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on. + * All following calculations are based on this logic. + * + * Init calculated according to formula: + * init = (scaling_ratio + number_of_taps + 1) / 2 + * init_bot = init + scaling_ratio + * to get pixel perfect combine add the fraction from calculating vp offset + */ + temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full); + *vp_offset = spl_fixpt_floor(temp); + temp.value &= 0xffffffff; + *init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp); + *init = spl_fixpt_add(*init, init_adj); + *init = spl_fixpt_truncate(*init, 19); + + /* + * If viewport has non 0 offset and there are more taps than covered by init then + * we should decrease the offset and increase init so we are never sampling + * outside of viewport. + */ + int_part = spl_fixpt_floor(*init); + if (int_part < taps) { + int_part = taps - int_part; + if (int_part > *vp_offset) + int_part = *vp_offset; + *vp_offset -= int_part; + *init = spl_fixpt_add_int(*init, int_part); + } + /* + * If taps are sampling outside of viewport at end of recout and there are more pixels + * available in the surface we should increase the viewport size, regardless set vp to + * only what is used. + */ + temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1)); + *vp_size = spl_fixpt_floor(temp); + if (*vp_size + *vp_offset > src_size) + *vp_size = src_size - *vp_offset; + + /* We did all the math assuming we are scanning same direction as display does, + * however mirror/rotation changes how vp scans vs how it is offset. If scan direction + * is flipped we simply need to calculate offset from the other side of plane. + * Note that outside of viewport all scaling hardware works in recout space. + */ + if (flip_scan_dir) + *vp_offset = src_size - *vp_offset - *vp_size; +} + +/*Calculate inits and viewport */ +static void spl_calculate_inits_and_viewports(struct spl_in *spl_in, + struct spl_scratch *spl_scratch) +{ + struct spl_rect src = spl_in->basic_in.src_rect; + struct spl_rect recout_dst_in_active_timing; + struct spl_rect recout_clip_in_active_timing; + struct spl_rect recout_clip_in_recout_dst; + struct spl_rect overlap_in_active_timing; + struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in); + int vpc_div = spl_is_subsampled_format(spl_in->basic_in.format) ? 2 : 1; + bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir; + struct spl_fixed31_32 init_adj_h = spl_fixpt_zero; + struct spl_fixed31_32 init_adj_v = spl_fixpt_zero; + + recout_clip_in_active_timing = shift_rec( + &spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y); + recout_dst_in_active_timing = calculate_plane_rec_in_timing_active( + spl_in, &spl_in->basic_in.dst_rect); + overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing, + &recout_dst_in_active_timing); + if (overlap_in_active_timing.width > 0 && + overlap_in_active_timing.height > 0) + recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing, + -recout_dst_in_active_timing.x, + -recout_dst_in_active_timing.y); + else + memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect)); + /* + * Work in recout rotation since that requires less transformations + */ + spl_get_vp_scan_direction( + spl_in->basic_in.rotation, + spl_in->basic_in.horizontal_mirror, + &orthogonal_rotation, + &flip_vert_scan_dir, + &flip_horz_scan_dir); + + if (spl_is_subsampled_format(spl_in->basic_in.format)) { + /* this gives the direction of the cositing (negative will move + * left, right otherwise) + */ + int sign = 1; + + switch (spl_in->basic_in.cositing) { + + case CHROMA_COSITING_TOPLEFT: + init_adj_h = spl_fixpt_from_fraction(sign, 4); + init_adj_v = spl_fixpt_from_fraction(sign, 4); + break; + case CHROMA_COSITING_LEFT: + init_adj_h = spl_fixpt_from_fraction(sign, 4); + init_adj_v = spl_fixpt_zero; + break; + case CHROMA_COSITING_NONE: + default: + init_adj_h = spl_fixpt_zero; + init_adj_v = spl_fixpt_zero; + break; + } + } + + if (orthogonal_rotation) { + spl_swap(src.width, src.height); + spl_swap(flip_vert_scan_dir, flip_horz_scan_dir); + spl_swap(init_adj_h, init_adj_v); + } + + spl_calculate_init_and_vp( + flip_horz_scan_dir, + recout_clip_in_recout_dst.x, + spl_scratch->scl_data.recout.width, + src.width, + spl_scratch->scl_data.taps.h_taps, + spl_scratch->scl_data.ratios.horz, + spl_fixpt_zero, + &spl_scratch->scl_data.inits.h, + &spl_scratch->scl_data.viewport.x, + &spl_scratch->scl_data.viewport.width); + spl_calculate_init_and_vp( + flip_horz_scan_dir, + recout_clip_in_recout_dst.x, + spl_scratch->scl_data.recout.width, + src.width / vpc_div, + spl_scratch->scl_data.taps.h_taps_c, + spl_scratch->scl_data.ratios.horz_c, + init_adj_h, + &spl_scratch->scl_data.inits.h_c, + &spl_scratch->scl_data.viewport_c.x, + &spl_scratch->scl_data.viewport_c.width); + spl_calculate_init_and_vp( + flip_vert_scan_dir, + recout_clip_in_recout_dst.y, + spl_scratch->scl_data.recout.height, + src.height, + spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.ratios.vert, + spl_fixpt_zero, + &spl_scratch->scl_data.inits.v, + &spl_scratch->scl_data.viewport.y, + &spl_scratch->scl_data.viewport.height); + spl_calculate_init_and_vp( + flip_vert_scan_dir, + recout_clip_in_recout_dst.y, + spl_scratch->scl_data.recout.height, + src.height / vpc_div, + spl_scratch->scl_data.taps.v_taps_c, + spl_scratch->scl_data.ratios.vert_c, + init_adj_v, + &spl_scratch->scl_data.inits.v_c, + &spl_scratch->scl_data.viewport_c.y, + &spl_scratch->scl_data.viewport_c.height); + if (orthogonal_rotation) { + spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y); + spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height); + spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y); + spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height); + } + spl_scratch->scl_data.viewport.x += src.x; + spl_scratch->scl_data.viewport.y += src.y; + SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0); + spl_scratch->scl_data.viewport_c.x += src.x / vpc_div; + spl_scratch->scl_data.viewport_c.y += src.y / vpc_div; +} + +static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout) +{ + /* + * Handle side by side and top bottom 3d recout offsets after vp calculation + * since 3d is special and needs to calculate vp as if there is no recout offset + * This may break with rotation, good thing we aren't mixing hw rotation and 3d + */ + if (spl_in->basic_in.mpc_h_slice_index) { + SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 || + (spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM && + spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE)); + if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) + recout->y += recout->height; + else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE) + recout->x += recout->width; + } +} + +static void spl_clamp_viewport(struct spl_rect *viewport) +{ + /* Clamp minimum viewport size */ + if (viewport->height < MIN_VIEWPORT_SIZE) + viewport->height = MIN_VIEWPORT_SIZE; + if (viewport->width < MIN_VIEWPORT_SIZE) + viewport->width = MIN_VIEWPORT_SIZE; +} + +static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in, + const struct spl_scaler_data *data, + bool enable_isharp, bool enable_easf) +{ + const long long one = spl_fixpt_one.value; + enum spl_pixel_format pixel_format = spl_in->basic_in.format; + + /* Bypass if ratio is 1:1 with no ISHARP or force scale on */ + if (data->ratios.horz.value == one + && data->ratios.vert.value == one + && data->ratios.horz_c.value == one + && data->ratios.vert_c.value == one + && !spl_in->basic_out.always_scale + && !enable_isharp) + return SCL_MODE_SCALING_444_BYPASS; + + if (!spl_is_subsampled_format(pixel_format)) { + if (spl_is_video_format(pixel_format)) + return SCL_MODE_SCALING_444_YCBCR_ENABLE; + else + return SCL_MODE_SCALING_444_RGB_ENABLE; + } + + /* + * Bypass YUV if Y is 1:1 with no ISHARP + * Do not bypass UV at 1:1 for cositing to be applied + */ + if (!enable_isharp) { + if (data->ratios.horz.value == one && data->ratios.vert.value == one) + return SCL_MODE_SCALING_420_LUMA_BYPASS; + } + + return SCL_MODE_SCALING_420_YCBCR_ENABLE; +} + +static bool spl_choose_lls_policy(enum spl_pixel_format format, + enum spl_transfer_func_type tf_type, + enum spl_transfer_func_predefined tf_predefined_type, + enum linear_light_scaling *lls_pref) +{ + if (spl_is_video_format(format)) { + *lls_pref = LLS_PREF_NO; + if ((tf_type == SPL_TF_TYPE_PREDEFINED) || + (tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS)) + return true; + } else { /* RGB or YUV444 */ + if ((tf_type == SPL_TF_TYPE_PREDEFINED) || + (tf_type == SPL_TF_TYPE_BYPASS)) { + *lls_pref = LLS_PREF_YES; + return true; + } + } + *lls_pref = LLS_PREF_NO; + return false; +} + +/* Enable EASF ?*/ +static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch) +{ + int vratio = 0; + int hratio = 0; + bool skip_easf = false; + bool lls_enable_easf = true; + + if (spl_in->disable_easf) + skip_easf = true; + + vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert); + hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz); + + /* + * No EASF support for downscaling > 2:1 + * EASF support for upscaling or downscaling up to 2:1 + */ + if ((vratio > 2) || (hratio > 2)) + skip_easf = true; + + /* + * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer + * function to determine whether to use LINEAR or NONLINEAR scaling + */ + if (spl_in->lls_pref == LLS_PREF_DONT_CARE) + lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format, + spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type, + &spl_in->lls_pref); + + if (!lls_enable_easf) + skip_easf = true; + + /* Check for linear scaling or EASF preferred */ + if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf) + skip_easf = true; + + return skip_easf; +} + +/* Check if video is in fullscreen mode */ +static bool spl_is_video_fullscreen(struct spl_in *spl_in) +{ + if (spl_is_video_format(spl_in->basic_in.format) && spl_in->is_fullscreen) + return true; + return false; +} + +static bool spl_get_isharp_en(struct spl_in *spl_in, + struct spl_scratch *spl_scratch) +{ + bool enable_isharp = false; + int vratio = 0; + int hratio = 0; + struct spl_taps taps = spl_scratch->scl_data.taps; + bool fullscreen = spl_is_video_fullscreen(spl_in); + + /* Return if adaptive sharpness is disabled */ + if (spl_in->adaptive_sharpness.enable == false) + return enable_isharp; + + vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert); + hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz); + + /* No iSHARP support for downscaling */ + if (vratio > 1 || hratio > 1) + return enable_isharp; + + // Scaling is up to 1:1 (no scaling) or upscaling + + /* + * Apply sharpness to RGB and YUV (NV12/P010) + * surfaces based on policy setting + */ + if (!spl_is_video_format(spl_in->basic_in.format) && + (spl_in->sharpen_policy == SHARPEN_YUV)) + return enable_isharp; + else if ((spl_is_video_format(spl_in->basic_in.format) && !fullscreen) && + (spl_in->sharpen_policy == SHARPEN_RGB_FULLSCREEN_YUV)) + return enable_isharp; + else if (!spl_in->is_fullscreen && + spl_in->sharpen_policy == SHARPEN_FULLSCREEN_ALL) + return enable_isharp; + + /* + * Apply sharpness if supports horizontal taps 4,6 AND + * vertical taps 3, 4, 6 + */ + if ((taps.h_taps == 4 || taps.h_taps == 6) && + (taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6)) + enable_isharp = true; + + return enable_isharp; +} + +/* Calculate number of tap with adaptive scaling off */ +static void spl_get_taps_non_adaptive_scaler( + struct spl_scratch *spl_scratch, const struct spl_taps *in_taps) +{ + if (in_taps->h_taps == 0) { + if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1) + spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil( + spl_scratch->scl_data.ratios.horz), 8); + else + spl_scratch->scl_data.taps.h_taps = 4; + } else + spl_scratch->scl_data.taps.h_taps = in_taps->h_taps; + + if (in_taps->v_taps == 0) { + if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1) + spl_scratch->scl_data.taps.v_taps = spl_min(2 * spl_fixpt_ceil( + spl_scratch->scl_data.ratios.vert), 8); + else + spl_scratch->scl_data.taps.v_taps = 4; + } else + spl_scratch->scl_data.taps.v_taps = in_taps->v_taps; + + if (in_taps->v_taps_c == 0) { + if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1) + spl_scratch->scl_data.taps.v_taps_c = spl_min(2 * spl_fixpt_ceil( + spl_scratch->scl_data.ratios.vert_c), 8); + else + spl_scratch->scl_data.taps.v_taps_c = 4; + } else + spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c; + + if (in_taps->h_taps_c == 0) { + if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1) + spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil( + spl_scratch->scl_data.ratios.horz_c), 8); + else + spl_scratch->scl_data.taps.h_taps_c = 4; + } else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1) + /* Only 1 and even h_taps_c are supported by hw */ + spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1; + else + spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c; + + if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) + spl_scratch->scl_data.taps.h_taps = 1; + if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert)) + spl_scratch->scl_data.taps.v_taps = 1; + if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)) + spl_scratch->scl_data.taps.h_taps_c = 1; + if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)) + spl_scratch->scl_data.taps.v_taps_c = 1; + +} + +/* Calculate optimal number of taps */ +static bool spl_get_optimal_number_of_taps( + int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch, + const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h, + bool *enable_isharp) +{ + int num_part_y, num_part_c; + int max_taps_y, max_taps_c; + int min_taps_y, min_taps_c; + enum lb_memory_config lb_config; + bool skip_easf = false; + bool is_subsampled = spl_is_subsampled_format(spl_in->basic_in.format); + + if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active && + max_downscale_src_width != 0 && + spl_scratch->scl_data.viewport.width > max_downscale_src_width) { + spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps); + *enable_easf_v = false; + *enable_easf_h = false; + *enable_isharp = false; + return false; + } + + /* Disable adaptive scaler and sharpener when integer scaling is enabled */ + if (spl_in->scaling_quality.integer_scaling) { + spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps); + *enable_easf_v = false; + *enable_easf_h = false; + *enable_isharp = false; + return true; + } + + /* Check if we are using EASF or not */ + skip_easf = enable_easf(spl_in, spl_scratch); + + /* + * Set default taps if none are provided + * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling + * taps = 4 for upscaling + */ + if (skip_easf) + spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps); + else { + if (spl_is_video_format(spl_in->basic_in.format)) { + spl_scratch->scl_data.taps.h_taps = 6; + spl_scratch->scl_data.taps.v_taps = 6; + spl_scratch->scl_data.taps.h_taps_c = 4; + spl_scratch->scl_data.taps.v_taps_c = 4; + } else { /* RGB */ + spl_scratch->scl_data.taps.h_taps = 6; + spl_scratch->scl_data.taps.v_taps = 6; + spl_scratch->scl_data.taps.h_taps_c = 6; + spl_scratch->scl_data.taps.v_taps_c = 6; + } + } + + /*Ensure we can support the requested number of vtaps*/ + min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert); + min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c); + + /* Use LB_MEMORY_CONFIG_3 for 4:2:0 */ + if (spl_is_yuv420(spl_in->basic_in.format)) + lb_config = LB_MEMORY_CONFIG_3; + else + lb_config = LB_MEMORY_CONFIG_0; + // Determine max vtap support by calculating how much line buffer can fit + spl_in->callbacks.spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data, + lb_config, &num_part_y, &num_part_c); + /* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */ + if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2) + max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2); + else + max_taps_y = num_part_y; + + if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2) + max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2); + else + max_taps_c = num_part_c; + + if (max_taps_y < min_taps_y) + return false; + else if (max_taps_c < min_taps_c) + return false; + + if (spl_scratch->scl_data.taps.v_taps > max_taps_y) + spl_scratch->scl_data.taps.v_taps = max_taps_y; + + if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c) + spl_scratch->scl_data.taps.v_taps_c = max_taps_c; + + if (!skip_easf) { + /* + * RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3 + * NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV + * + * If LB does not support 3, 4, or 6 taps, then disable EASF_V + * and only enable EASF_H. So for RGB, support 6x2, 4x2 + * and for NL YUV420, support 6x2 for Y and 4x2 for UV + * + * All other cases, have to disable EASF_V and EASF_H + * + * If optimal no of taps is 5, then set it to 4 + * If optimal no of taps is 7 or 8, then fine since max tap is 6 + * + */ + if (spl_scratch->scl_data.taps.v_taps == 5) + spl_scratch->scl_data.taps.v_taps = 4; + + if (spl_scratch->scl_data.taps.v_taps_c == 5) + spl_scratch->scl_data.taps.v_taps_c = 4; + + if (spl_scratch->scl_data.taps.h_taps == 5) + spl_scratch->scl_data.taps.h_taps = 4; + + if (spl_scratch->scl_data.taps.h_taps_c == 5) + spl_scratch->scl_data.taps.h_taps_c = 4; + + if (spl_is_video_format(spl_in->basic_in.format)) { + if (spl_scratch->scl_data.taps.h_taps <= 4) { + *enable_easf_v = false; + *enable_easf_h = false; + } else if (spl_scratch->scl_data.taps.v_taps <= 3) { + *enable_easf_v = false; + *enable_easf_h = true; + } else { + *enable_easf_v = true; + *enable_easf_h = true; + } + SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) && + (spl_scratch->scl_data.taps.v_taps_c > 1)); + } else { /* RGB */ + if (spl_scratch->scl_data.taps.h_taps <= 3) { + *enable_easf_v = false; + *enable_easf_h = false; + } else if (spl_scratch->scl_data.taps.v_taps < 3) { + *enable_easf_v = false; + *enable_easf_h = true; + } else { + *enable_easf_v = true; + *enable_easf_h = true; + } + SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1); + } + } else { + *enable_easf_v = false; + *enable_easf_h = false; + } // end of if prefer_easf + + /* Sharpener requires scaler to be enabled, including for 1:1 + * Check if ISHARP can be enabled + * If ISHARP is not enabled, set taps to 1 if ratio is 1:1 + * except for chroma taps. Keep previous taps so it can + * handle cositing + */ + + *enable_isharp = spl_get_isharp_en(spl_in, spl_scratch); + if (!*enable_isharp && !spl_in->basic_out.always_scale) { + if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) && + (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) { + spl_scratch->scl_data.taps.h_taps = 1; + spl_scratch->scl_data.taps.v_taps = 1; + + if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c) && !is_subsampled) + spl_scratch->scl_data.taps.h_taps_c = 1; + + if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c) && !is_subsampled) + spl_scratch->scl_data.taps.v_taps_c = 1; + + *enable_easf_v = false; + *enable_easf_h = false; + } else { + if ((!*enable_easf_h) && + (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz))) + spl_scratch->scl_data.taps.h_taps = 1; + + if ((!*enable_easf_v) && + (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) + spl_scratch->scl_data.taps.v_taps = 1; + + if ((!*enable_easf_h) && !is_subsampled && + (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c))) + spl_scratch->scl_data.taps.h_taps_c = 1; + + if ((!*enable_easf_v) && !is_subsampled && + (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c))) + spl_scratch->scl_data.taps.v_taps_c = 1; + } + } + return true; +} + +static void spl_set_black_color_data(enum spl_pixel_format format, + struct scl_black_color *scl_black_color) +{ + bool ycbcr = spl_is_video_format(format); + if (ycbcr) { + scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y; + scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR; + } else { + scl_black_color->offset_rgb_y = 0x0; + scl_black_color->offset_rgb_cbcr = 0x0; + } +} + +static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data, + const struct spl_scaler_data *scl_data) +{ + struct spl_fixed31_32 bot; + + dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5; + dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5; + dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5; + dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5; + /* + * 0.24 format for fraction, first five bits zeroed + */ + dscl_prog_data->init.h_filter_init_frac = + spl_fixpt_u0d19(scl_data->inits.h) << 5; + dscl_prog_data->init.h_filter_init_int = + spl_fixpt_floor(scl_data->inits.h); + dscl_prog_data->init.h_filter_init_frac_c = + spl_fixpt_u0d19(scl_data->inits.h_c) << 5; + dscl_prog_data->init.h_filter_init_int_c = + spl_fixpt_floor(scl_data->inits.h_c); + dscl_prog_data->init.v_filter_init_frac = + spl_fixpt_u0d19(scl_data->inits.v) << 5; + dscl_prog_data->init.v_filter_init_int = + spl_fixpt_floor(scl_data->inits.v); + dscl_prog_data->init.v_filter_init_frac_c = + spl_fixpt_u0d19(scl_data->inits.v_c) << 5; + dscl_prog_data->init.v_filter_init_int_c = + spl_fixpt_floor(scl_data->inits.v_c); + + bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert); + dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5; + dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot); + bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c); + dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5; + dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot); +} + +static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data, + const struct spl_scaler_data *scl_data) +{ + dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1; + dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1; + dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1; + dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1; +} + +/* Populate dscl prog data structure from scaler data calculated by SPL */ +static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch, + struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp) +{ + struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data; + + const struct spl_scaler_data *data = &spl_scratch->scl_data; + + struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color; + + bool enable_easf = enable_easf_v || enable_easf_h; + + // Set values for recout + dscl_prog_data->recout = spl_scratch->scl_data.recout; + // Set values for MPC Size + dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active; + dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active; + + // SCL_MODE - Set SCL_MODE data + dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp, + enable_easf); + + // SCL_BLACK_COLOR + spl_set_black_color_data(spl_in->basic_in.format, scl_black_color); + + /* Manually calculate scale ratio and init values */ + spl_set_manual_ratio_init_data(dscl_prog_data, data); + + // Set HTaps/VTaps + spl_set_taps_data(dscl_prog_data, data); + // Set viewport + dscl_prog_data->viewport = spl_scratch->scl_data.viewport; + // Set viewport_c + dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c; + // Set filters data + spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h); +} + +/* Calculate C0-C3 coefficients based on HDR_mult */ +static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t sdr_white_level_nits) +{ + struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult; + struct spl_fixed31_32 c0_calc, c1_calc, c2_calc; + struct spl_custom_float_format fmt; + uint32_t hdr_multx100_int; + + if ((sdr_white_level_nits >= 80) && (sdr_white_level_nits <= 480)) + hdr_multx100_int = sdr_white_level_nits * 100 / 80; + else + hdr_multx100_int = 100; /* default for 80 nits otherwise */ + + hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100_int, 100LL); + c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL); + c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL); + c2_mult = spl_fixpt_from_fraction(722LL, 10000LL); + + c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction( + 16384LL, 125LL))); + c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction( + 16384LL, 125LL))); + c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction( + 16384LL, 125LL))); + + fmt.exponenta_bits = 5; + fmt.mantissa_bits = 10; + fmt.sign = true; + + // fp1.5.10, C0 coefficient (LN_rec709: HDR_MULT * 0.212600 * 2^14/125) + spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0); + // fp1.5.10, C1 coefficient (LN_rec709: HDR_MULT * 0.715200 * 2^14/125) + spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1); + // fp1.5.10, C2 coefficient (LN_rec709: HDR_MULT * 0.072200 * 2^14/125) + spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2); + dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient +} + +/* Set EASF data */ +static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v, + bool enable_easf_h, enum linear_light_scaling lls_pref, + enum spl_pixel_format format, enum system_setup setup, + uint32_t sdr_white_level_nits) +{ + struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data; + if (enable_easf_v) { + dscl_prog_data->easf_v_en = true; + dscl_prog_data->easf_v_ring = 0; + dscl_prog_data->easf_v_sharp_factor = 0; + dscl_prog_data->easf_v_bf1_en = 1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable + dscl_prog_data->easf_v_bf2_mode = 0xF; // 4-bit, BF2 calculation mode + /* 2-bit, BF3 chroma mode correction calculation mode */ + dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode( + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10 [ minCoef ]*/ + dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt = + spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10 [ upTiltMaxVal ]*/ + dscl_prog_data->easf_v_ringest_3tap_uptilt_max = + spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10 [ dnTiltSlope ]*/ + dscl_prog_data->easf_v_ringest_3tap_dntilt_slope = + spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10 [ upTilt1Slope ]*/ + dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope = + spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10 [ upTilt2Slope ]*/ + dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope = + spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10 [ upTilt2Offset ]*/ + dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset = + spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */ + dscl_prog_data->easf_v_ringest_eventap_reduceg1 = + spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */ + dscl_prog_data->easf_v_ringest_eventap_reduceg2 = + spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */ + dscl_prog_data->easf_v_ringest_eventap_gain1 = + spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + /* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */ + dscl_prog_data->easf_v_ringest_eventap_gain2 = + spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps, + spl_scratch->scl_data.recip_ratios.vert); + dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0 + dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1 + dscl_prog_data->easf_v_bf_mina = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0 + dscl_prog_data->easf_v_bf_minb = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1 + if (lls_pref == LLS_PREF_YES) { + dscl_prog_data->easf_v_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control + dscl_prog_data->easf_v_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control + dscl_prog_data->easf_v_bf2_roc_gain = 4; // U2.2, Rate Of Change control + + dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600; // S0.10, BF1 PWL Segment 0 = -512 + dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0 + dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0 + dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC; // S0.10, BF1 PWL Segment 1 = -20 + dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1 + dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1 + dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2 + dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2 + dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2 + dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3 + dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3 + dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8; // S7.3, BF1 Slope PWL Segment 3 = -56 + dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4 + dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4 + dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0; // S7.3, BF1 Slope PWL Segment 4 = -48 + dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5 + dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5 + dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710; // S7.3, BF1 Slope PWL Segment 5 = -240 + dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6 + dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6 + dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760; // S7.3, BF1 Slope PWL Segment 6 = -160 + dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7 + dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7 + + dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0 + dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0 + dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0 + dscl_prog_data->easf_v_bf3_pwl_in_set1 = + 0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3) + dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62; // S0.6, BF3 Base PWL Segment 1 + dscl_prog_data->easf_v_bf3_pwl_slope_set1 = + 0x13B8; // FP1.6.6, BF3 Slope PWL Segment 1 + dscl_prog_data->easf_v_bf3_pwl_in_set2 = + 0x0BB7; // FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3) + dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2 + dscl_prog_data->easf_v_bf3_pwl_slope_set2 = + 0x1356; // FP1.6.6, BF3 Slope PWL Segment 2 + dscl_prog_data->easf_v_bf3_pwl_in_set3 = + 0x0BF7; // FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3) + dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3 + dscl_prog_data->easf_v_bf3_pwl_slope_set3 = + 0x136B; // FP1.6.6, BF3 Slope PWL Segment 3 + dscl_prog_data->easf_v_bf3_pwl_in_set4 = + 0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3) + dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E; // S0.6, BF3 Base PWL Segment 4 = -50 + dscl_prog_data->easf_v_bf3_pwl_slope_set4 = + 0x1200; // FP1.6.6, BF3 Slope PWL Segment 4 + dscl_prog_data->easf_v_bf3_pwl_in_set5 = + 0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3) + dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63 + } else { + dscl_prog_data->easf_v_bf2_flat1_gain = 13; // U1.3, BF2 Flat1 Gain control + dscl_prog_data->easf_v_bf2_flat2_gain = 15; // U4.0, BF2 Flat2 Gain control + dscl_prog_data->easf_v_bf2_roc_gain = 14; // U2.2, Rate Of Change control + + dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440; // S0.10, BF1 PWL Segment 0 = -960 + dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0 + dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2; // S7.3, BF1 Slope PWL Segment 0 + dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4; // S0.10, BF1 PWL Segment 1 = -60 + dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1 + dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109; // S7.3, BF1 Slope PWL Segment 1 + dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2 + dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2 + dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2 + dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48; // S0.10, BF1 PWL Segment 3 + dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3 + dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED; // S7.3, BF1 Slope PWL Segment 3 = -19 + dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96; // S0.10, BF1 PWL Segment 4 + dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4 + dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0; // S7.3, BF1 Slope PWL Segment 4 = -16 + dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144; // S0.10, BF1 PWL Segment 5 + dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5 + dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0; // S7.3, BF1 Slope PWL Segment 5 = -80 + dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192; // S0.10, BF1 PWL Segment 6 + dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6 + dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB; // S7.3, BF1 Slope PWL Segment 6 = -53 + dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240; // S0.10, BF1 PWL Segment 7 + dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7 + + dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0 + dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0 + dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0 + dscl_prog_data->easf_v_bf3_pwl_in_set1 = + 0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625) + dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63; // S0.6, BF3 Base PWL Segment 1 + dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896; // FP1.6.6, BF3 Slope PWL Segment 1 + dscl_prog_data->easf_v_bf3_pwl_in_set2 = + 0x0700; // FP0.6.6, BF3 Input value PWL Segment 2 (0.125) + dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2 + dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810; // FP1.6.6, BF3 Slope PWL Segment 2 + dscl_prog_data->easf_v_bf3_pwl_in_set3 = + 0x0740; // FP0.6.6, BF3 Input value PWL Segment 3 (0.25) + dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3 + dscl_prog_data->easf_v_bf3_pwl_slope_set3 = + 0x1878; // FP1.6.6, BF3 Slope PWL Segment 3 + dscl_prog_data->easf_v_bf3_pwl_in_set4 = + 0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375) + dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44; // S0.6, BF3 Base PWL Segment 4 = -60 + dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4 + dscl_prog_data->easf_v_bf3_pwl_in_set5 = + 0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5) + dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63 + } + } else + dscl_prog_data->easf_v_en = false; + + if (enable_easf_h) { + dscl_prog_data->easf_h_en = true; + dscl_prog_data->easf_h_ring = 0; + dscl_prog_data->easf_h_sharp_factor = 0; + dscl_prog_data->easf_h_bf1_en = + 1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable + dscl_prog_data->easf_h_bf2_mode = + 0xF; // 4-bit, BF2 calculation mode + /* 2-bit, BF3 chroma mode correction calculation mode */ + dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode( + spl_scratch->scl_data.recip_ratios.horz); + /* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */ + dscl_prog_data->easf_h_ringest_eventap_reduceg1 = + spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps, + spl_scratch->scl_data.recip_ratios.horz); + /* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */ + dscl_prog_data->easf_h_ringest_eventap_reduceg2 = + spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps, + spl_scratch->scl_data.recip_ratios.horz); + /* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */ + dscl_prog_data->easf_h_ringest_eventap_gain1 = + spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps, + spl_scratch->scl_data.recip_ratios.horz); + /* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */ + dscl_prog_data->easf_h_ringest_eventap_gain2 = + spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps, + spl_scratch->scl_data.recip_ratios.horz); + dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0 + dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1 + dscl_prog_data->easf_h_bf_mina = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0 + dscl_prog_data->easf_h_bf_minb = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1 + if (lls_pref == LLS_PREF_YES) { + dscl_prog_data->easf_h_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control + dscl_prog_data->easf_h_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control + dscl_prog_data->easf_h_bf2_roc_gain = 4; // U2.2, Rate Of Change control + + dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600; // S0.10, BF1 PWL Segment 0 = -512 + dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0 + dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0 + dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC; // S0.10, BF1 PWL Segment 1 = -20 + dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1 + dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1 + dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2 + dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2 + dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2 + dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3 + dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3 + dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8; // S7.3, BF1 Slope PWL Segment 3 = -56 + dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4 + dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4 + dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0; // S7.3, BF1 Slope PWL Segment 4 = -48 + dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5 + dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5 + dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710; // S7.3, BF1 Slope PWL Segment 5 = -240 + dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6 + dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6 + dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760; // S7.3, BF1 Slope PWL Segment 6 = -160 + dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7 + dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7 + + dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0 + dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0 + dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0 + dscl_prog_data->easf_h_bf3_pwl_in_set1 = + 0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3) + dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62; // S0.6, BF3 Base PWL Segment 1 + dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x13B8; // FP1.6.6, BF3 Slope PWL Segment 1 + dscl_prog_data->easf_h_bf3_pwl_in_set2 = + 0x0BB7; // FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3) + dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2 + dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1356; // FP1.6.6, BF3 Slope PWL Segment 2 + dscl_prog_data->easf_h_bf3_pwl_in_set3 = + 0x0BF7; // FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3) + dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3 + dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x136B; // FP1.6.6, BF3 Slope PWL Segment 3 + dscl_prog_data->easf_h_bf3_pwl_in_set4 = + 0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3) + dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E; // S0.6, BF3 Base PWL Segment 4 = -50 + dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200; // FP1.6.6, BF3 Slope PWL Segment 4 + dscl_prog_data->easf_h_bf3_pwl_in_set5 = + 0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3) + dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63 + } else { + dscl_prog_data->easf_h_bf2_flat1_gain = 13; // U1.3, BF2 Flat1 Gain control + dscl_prog_data->easf_h_bf2_flat2_gain = 15; // U4.0, BF2 Flat2 Gain control + dscl_prog_data->easf_h_bf2_roc_gain = 14; // U2.2, Rate Of Change control + + dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440; // S0.10, BF1 PWL Segment 0 = -960 + dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0 + dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2; // S7.3, BF1 Slope PWL Segment 0 + dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4; // S0.10, BF1 PWL Segment 1 = -60 + dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1 + dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109; // S7.3, BF1 Slope PWL Segment 1 + dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2 + dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2 + dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2 + dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48; // S0.10, BF1 PWL Segment 3 + dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3 + dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED; // S7.3, BF1 Slope PWL Segment 3 = -19 + dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96; // S0.10, BF1 PWL Segment 4 + dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4 + dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0; // S7.3, BF1 Slope PWL Segment 4 = -16 + dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144; // S0.10, BF1 PWL Segment 5 + dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5 + dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0; // S7.3, BF1 Slope PWL Segment 5 = -80 + dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192; // S0.10, BF1 PWL Segment 6 + dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6 + dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB; // S7.3, BF1 Slope PWL Segment 6 = -53 + dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240; // S0.10, BF1 PWL Segment 7 + dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7 + + dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0 + dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0 + dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0 + dscl_prog_data->easf_h_bf3_pwl_in_set1 = + 0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625) + dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63; // S0.6, BF3 Base PWL Segment 1 + dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896; // FP1.6.6, BF3 Slope PWL Segment 1 + dscl_prog_data->easf_h_bf3_pwl_in_set2 = + 0x0700; // FP0.6.6, BF3 Input value PWL Segment 2 (0.125) + dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2 + dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810; // FP1.6.6, BF3 Slope PWL Segment 2 + dscl_prog_data->easf_h_bf3_pwl_in_set3 = + 0x0740; // FP0.6.6, BF3 Input value PWL Segment 3 (0.25) + dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3 + dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878; // FP1.6.6, BF3 Slope PWL Segment 3 + dscl_prog_data->easf_h_bf3_pwl_in_set4 = + 0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375) + dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44; // S0.6, BF3 Base PWL Segment 4 = -60 + dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4 + dscl_prog_data->easf_h_bf3_pwl_in_set5 = + 0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5) + dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63 + } // if (lls_pref == LLS_PREF_YES) + } else + dscl_prog_data->easf_h_en = false; + + if (lls_pref == LLS_PREF_YES) { + dscl_prog_data->easf_ltonl_en = 1; // Linear input + if ((setup == HDR_L) && (spl_is_rgb8(format))) { + /* Calculate C0-C3 coefficients based on HDR multiplier */ + spl_calculate_c0_c3_hdr(dscl_prog_data, sdr_white_level_nits); + } else { // HDR_L ( DWM ) and SDR_L + dscl_prog_data->easf_matrix_c0 = + 0x4EF7; // fp1.5.10, C0 coefficient (LN_rec709: 0.2126 * (2^14)/125 = 27.86590720) + dscl_prog_data->easf_matrix_c1 = + 0x55DC; // fp1.5.10, C1 coefficient (LN_rec709: 0.7152 * (2^14)/125 = 93.74269440) + dscl_prog_data->easf_matrix_c2 = + 0x48BB; // fp1.5.10, C2 coefficient (LN_rec709: 0.0722 * (2^14)/125 = 9.46339840) + dscl_prog_data->easf_matrix_c3 = + 0x0; // fp1.5.10, C3 coefficient + } + } else { + dscl_prog_data->easf_ltonl_en = 0; // Non-Linear input + dscl_prog_data->easf_matrix_c0 = + 0x3434; // fp1.5.10, C0 coefficient (LN_BT2020: 0.262695312500000) + dscl_prog_data->easf_matrix_c1 = + 0x396D; // fp1.5.10, C1 coefficient (LN_BT2020: 0.678222656250000) + dscl_prog_data->easf_matrix_c2 = + 0x2B97; // fp1.5.10, C2 coefficient (LN_BT2020: 0.059295654296875) + dscl_prog_data->easf_matrix_c3 = + 0x0; // fp1.5.10, C3 coefficient + } + + if (spl_is_subsampled_format(format)) { /* TODO: 0 = RGB, 1 = YUV */ + dscl_prog_data->easf_matrix_mode = 1; + /* + * 2-bit, BF3 chroma mode correction calculation mode + * Needs to be disabled for YUV420 mode + * Override lookup value + */ + dscl_prog_data->easf_v_bf3_mode = 0; + dscl_prog_data->easf_h_bf3_mode = 0; + } else + dscl_prog_data->easf_matrix_mode = 0; + +} + +/*Set isharp noise detection */ +static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data, + const struct spl_scaler_data *data) +{ + // ISHARP_NOISEDET_MODE + // 0: 3x5 as VxH + // 1: 4x5 as VxH + // 2: + // 3: 5x5 as VxH + if (data->taps.v_taps == 6) + dscl_prog_data->isharp_noise_det.mode = 3; + else if (data->taps.v_taps == 4) + dscl_prog_data->isharp_noise_det.mode = 1; + else if (data->taps.v_taps == 3) + dscl_prog_data->isharp_noise_det.mode = 0; +}; +/* Set Sharpener data */ +static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data, + struct adaptive_sharpness adp_sharpness, bool enable_isharp, + enum linear_light_scaling lls_pref, enum spl_pixel_format format, + const struct spl_scaler_data *data, struct spl_fixed31_32 ratio, + enum system_setup setup, enum scale_to_sharpness_policy scale_to_sharpness_policy) +{ + /* Turn off sharpener if not required */ + if (!enable_isharp) { + dscl_prog_data->isharp_en = 0; + return; + } + + spl_build_isharp_1dlut_from_reference_curve(ratio, setup, adp_sharpness, + scale_to_sharpness_policy); + memcpy(dscl_prog_data->isharp_delta, spl_get_pregen_filter_isharp_1D_lut(setup), + sizeof(uint32_t) * ISHARP_LUT_TABLE_SIZE); + dscl_prog_data->sharpness_level = adp_sharpness.sharpness_level; + + dscl_prog_data->isharp_en = 1; // ISHARP_EN + // Set ISHARP_NOISEDET_MODE if htaps = 6-tap + if (data->taps.h_taps == 6) { + dscl_prog_data->isharp_noise_det.enable = 1; /* ISHARP_NOISEDET_EN */ + spl_set_isharp_noise_det_mode(dscl_prog_data, data); /* ISHARP_NOISEDET_MODE */ + } else + dscl_prog_data->isharp_noise_det.enable = 0; // ISHARP_NOISEDET_EN + // Program noise detection threshold + dscl_prog_data->isharp_noise_det.uthreshold = 24; // ISHARP_NOISEDET_UTHRE + dscl_prog_data->isharp_noise_det.dthreshold = 4; // ISHARP_NOISEDET_DTHRE + // Program noise detection gain + dscl_prog_data->isharp_noise_det.pwl_start_in = 3; // ISHARP_NOISEDET_PWL_START_IN + dscl_prog_data->isharp_noise_det.pwl_end_in = 13; // ISHARP_NOISEDET_PWL_END_IN + dscl_prog_data->isharp_noise_det.pwl_slope = 1623; // ISHARP_NOISEDET_PWL_SLOPE + + if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */ + dscl_prog_data->isharp_fmt.mode = 1; + else + dscl_prog_data->isharp_fmt.mode = 0; + + dscl_prog_data->isharp_fmt.norm = 0x3C00; // ISHARP_FMT_NORM + dscl_prog_data->isharp_lba.mode = 0; // ISHARP_LBA_MODE + + if (setup == SDR_L) { + // ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0 + dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[0] = 62; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1 + dscl_prog_data->isharp_lba.in_seg[1] = 130; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2 + dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115 + // ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3 + dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4 + dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5 + dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format + } else if (setup == HDR_L) { + // ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0 + dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[0] = 32; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1 + dscl_prog_data->isharp_lba.in_seg[1] = 254; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2 + dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244 + // ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3 + dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4 + dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5 + dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format + } else { + // ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0 + dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[0] = 40; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1 + dscl_prog_data->isharp_lba.in_seg[1] = 204; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2 + dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39 + // ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3 + dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4 + dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format + dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format + // ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5 + dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format + dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format + } + + // Program the nldelta soft clip values + if (lls_pref == LLS_PREF_YES) { + dscl_prog_data->isharp_nldelta_sclip.enable_p = 0; /* ISHARP_NLDELTA_SCLIP_EN_P */ + dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0; /* ISHARP_NLDELTA_SCLIP_PIVOT_P */ + dscl_prog_data->isharp_nldelta_sclip.slope_p = 0; /* ISHARP_NLDELTA_SCLIP_SLOPE_P */ + dscl_prog_data->isharp_nldelta_sclip.enable_n = 1; /* ISHARP_NLDELTA_SCLIP_EN_N */ + dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71; /* ISHARP_NLDELTA_SCLIP_PIVOT_N */ + dscl_prog_data->isharp_nldelta_sclip.slope_n = 16; /* ISHARP_NLDELTA_SCLIP_SLOPE_N */ + } else { + dscl_prog_data->isharp_nldelta_sclip.enable_p = 1; /* ISHARP_NLDELTA_SCLIP_EN_P */ + dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70; /* ISHARP_NLDELTA_SCLIP_PIVOT_P */ + dscl_prog_data->isharp_nldelta_sclip.slope_p = 24; /* ISHARP_NLDELTA_SCLIP_SLOPE_P */ + dscl_prog_data->isharp_nldelta_sclip.enable_n = 1; /* ISHARP_NLDELTA_SCLIP_EN_N */ + dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70; /* ISHARP_NLDELTA_SCLIP_PIVOT_N */ + dscl_prog_data->isharp_nldelta_sclip.slope_n = 24; /* ISHARP_NLDELTA_SCLIP_SLOPE_N */ + } + + // Set the values as per lookup table + spl_set_blur_scale_data(dscl_prog_data, data); +} + +/* Calculate recout, scaling ratio, and viewport, then get optimal number of taps */ +static bool spl_calculate_number_of_taps(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out, + bool *enable_easf_v, bool *enable_easf_h, bool *enable_isharp) +{ + bool res = false; + + memset(spl_scratch, 0, sizeof(struct spl_scratch)); + spl_scratch->scl_data.h_active = spl_in->h_active; + spl_scratch->scl_data.v_active = spl_in->v_active; + + // All SPL calls + /* recout calculation */ + /* depends on h_active */ + spl_calculate_recout(spl_in, spl_scratch, spl_out); + /* depends on pixel format */ + spl_calculate_scaling_ratios(spl_in, spl_scratch, spl_out); + /* depends on scaling ratios and recout, does not calculate offset yet */ + spl_calculate_viewport_size(spl_in, spl_scratch); + + res = spl_get_optimal_number_of_taps( + spl_in->basic_out.max_downscale_src_width, spl_in, + spl_scratch, &spl_in->scaling_quality, enable_easf_v, + enable_easf_h, enable_isharp); + return res; +} + +/* Calculate scaler parameters */ +bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out) +{ + bool res = false; + bool enable_easf_v = false; + bool enable_easf_h = false; + int vratio = 0; + int hratio = 0; + struct spl_scratch spl_scratch; + struct spl_fixed31_32 isharp_scale_ratio; + enum system_setup setup; + bool enable_isharp = false; + const struct spl_scaler_data *data = &spl_scratch.scl_data; + + res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out, + &enable_easf_v, &enable_easf_h, &enable_isharp); + + /* + * Depends on recout, scaling ratios, h_active and taps + * May need to re-check lb size after this in some obscure scenario + */ + if (res) + spl_calculate_inits_and_viewports(spl_in, &spl_scratch); + // Handle 3d recout + spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout); + // Clamp + spl_clamp_viewport(&spl_scratch.scl_data.viewport); + + // Save all calculated parameters in dscl_prog_data structure to program hw registers + spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp); + + if (!res) + return res; + + if (spl_in->lls_pref == LLS_PREF_YES) { + if (spl_in->is_hdr_on) + setup = HDR_L; + else + setup = SDR_L; + } else { + if (spl_in->is_hdr_on) + setup = HDR_NL; + else + setup = SDR_NL; + } + + // Set EASF + spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref, + spl_in->basic_in.format, setup, spl_in->sdr_white_level_nits); + + // Set iSHARP + vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert); + hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz); + if (vratio <= hratio) + isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert; + else + isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz; + + spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp, + spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup, + spl_in->debug.scale_to_sharpness_policy); + + return res; +} + +/* External interface to get number of taps only */ +bool spl_get_number_of_taps(struct spl_in *spl_in, struct spl_out *spl_out) +{ + bool res = false; + bool enable_easf_v = false; + bool enable_easf_h = false; + bool enable_isharp = false; + struct spl_scratch spl_scratch; + struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data; + const struct spl_scaler_data *data = &spl_scratch.scl_data; + + res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out, + &enable_easf_v, &enable_easf_h, &enable_isharp); + spl_set_taps_data(dscl_prog_data, data); + return res; +} |