diff options
Diffstat (limited to 'drivers/gpu/drm/i915/display/intel_dpio_phy.c')
| -rw-r--r-- | drivers/gpu/drm/i915/display/intel_dpio_phy.c | 1202 |
1 files changed, 1202 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/display/intel_dpio_phy.c b/drivers/gpu/drm/i915/display/intel_dpio_phy.c new file mode 100644 index 000000000000..8027bab2951b --- /dev/null +++ b/drivers/gpu/drm/i915/display/intel_dpio_phy.c @@ -0,0 +1,1202 @@ +/* + * Copyright © 2014-2016 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +#include <drm/drm_print.h> + +#include "bxt_dpio_phy_regs.h" +#include "intel_ddi.h" +#include "intel_ddi_buf_trans.h" +#include "intel_de.h" +#include "intel_display_power_well.h" +#include "intel_display_regs.h" +#include "intel_display_types.h" +#include "intel_display_utils.h" +#include "intel_dp.h" +#include "intel_dpio_phy.h" +#include "vlv_dpio_phy_regs.h" +#include "vlv_sideband.h" + +/** + * DOC: DPIO + * + * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI + * ports. DPIO is the name given to such a display PHY. These PHYs + * don't follow the standard programming model using direct MMIO + * registers, and instead their registers must be accessed through IOSF + * sideband. VLV has one such PHY for driving ports B and C, and CHV + * adds another PHY for driving port D. Each PHY responds to specific + * IOSF-SB port. + * + * Each display PHY is made up of one or two channels. Each channel + * houses a common lane part which contains the PLL and other common + * logic. CH0 common lane also contains the IOSF-SB logic for the + * Common Register Interface (CRI) ie. the DPIO registers. CRI clock + * must be running when any DPIO registers are accessed. + * + * In addition to having their own registers, the PHYs are also + * controlled through some dedicated signals from the display + * controller. These include PLL reference clock enable, PLL enable, + * and CRI clock selection, for example. + * + * Eeach channel also has two splines (also called data lanes), and + * each spline is made up of one Physical Access Coding Sub-Layer + * (PCS) block and two TX lanes. So each channel has two PCS blocks + * and four TX lanes. The TX lanes are used as DP lanes or TMDS + * data/clock pairs depending on the output type. + * + * Additionally the PHY also contains an AUX lane with AUX blocks + * for each channel. This is used for DP AUX communication, but + * this fact isn't really relevant for the driver since AUX is + * controlled from the display controller side. No DPIO registers + * need to be accessed during AUX communication, + * + * Generally on VLV/CHV the common lane corresponds to the pipe and + * the spline (PCS/TX) corresponds to the port. + * + * For dual channel PHY (VLV/CHV): + * + * pipe A == CMN/PLL/REF CH0 + * + * pipe B == CMN/PLL/REF CH1 + * + * port B == PCS/TX CH0 + * + * port C == PCS/TX CH1 + * + * This is especially important when we cross the streams + * ie. drive port B with pipe B, or port C with pipe A. + * + * For single channel PHY (CHV): + * + * pipe C == CMN/PLL/REF CH0 + * + * port D == PCS/TX CH0 + * + * On BXT the entire PHY channel corresponds to the port. That means + * the PLL is also now associated with the port rather than the pipe, + * and so the clock needs to be routed to the appropriate transcoder. + * Port A PLL is directly connected to transcoder EDP and port B/C + * PLLs can be routed to any transcoder A/B/C. + * + * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is + * digital port D (CHV) or port A (BXT). :: + * + * + * Dual channel PHY (VLV/CHV/BXT) + * --------------------------------- + * | CH0 | CH1 | + * | CMN/PLL/REF | CMN/PLL/REF | + * |---------------|---------------| Display PHY + * | PCS01 | PCS23 | PCS01 | PCS23 | + * |-------|-------|-------|-------| + * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3| + * --------------------------------- + * | DDI0 | DDI1 | DP/HDMI ports + * --------------------------------- + * + * Single channel PHY (CHV/BXT) + * ----------------- + * | CH0 | + * | CMN/PLL/REF | + * |---------------| Display PHY + * | PCS01 | PCS23 | + * |-------|-------| + * |TX0|TX1|TX2|TX3| + * ----------------- + * | DDI2 | DP/HDMI port + * ----------------- + */ + +/** + * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy + */ +struct bxt_dpio_phy_info { + /** + * @dual_channel: true if this phy has a second channel. + */ + bool dual_channel; + + /** + * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor. + * Otherwise the GRC value will be copied from the phy indicated by + * this field. + */ + enum dpio_phy rcomp_phy; + + /** + * @reset_delay: delay in us to wait before setting the common reset + * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy. + */ + int reset_delay; + + /** + * @pwron_mask: Mask with the appropriate bit set that would cause the + * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON. + */ + u32 pwron_mask; + + /** + * @channel: struct containing per channel information. + */ + struct { + /** + * @channel.port: which port maps to this channel. + */ + enum port port; + } channel[2]; +}; + +static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = { + [DPIO_PHY0] = { + .dual_channel = true, + .rcomp_phy = DPIO_PHY1, + .pwron_mask = BIT(0), + + .channel = { + [DPIO_CH0] = { .port = PORT_B }, + [DPIO_CH1] = { .port = PORT_C }, + } + }, + [DPIO_PHY1] = { + .dual_channel = false, + .rcomp_phy = -1, + .pwron_mask = BIT(1), + + .channel = { + [DPIO_CH0] = { .port = PORT_A }, + } + }, +}; + +static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = { + [DPIO_PHY0] = { + .dual_channel = false, + .rcomp_phy = DPIO_PHY1, + .pwron_mask = BIT(0), + .reset_delay = 20, + + .channel = { + [DPIO_CH0] = { .port = PORT_B }, + } + }, + [DPIO_PHY1] = { + .dual_channel = false, + .rcomp_phy = -1, + .pwron_mask = BIT(3), + .reset_delay = 20, + + .channel = { + [DPIO_CH0] = { .port = PORT_A }, + } + }, + [DPIO_PHY2] = { + .dual_channel = false, + .rcomp_phy = DPIO_PHY1, + .pwron_mask = BIT(1), + .reset_delay = 20, + + .channel = { + [DPIO_CH0] = { .port = PORT_C }, + } + }, +}; + +static const struct bxt_dpio_phy_info * +bxt_get_phy_list(struct intel_display *display, int *count) +{ + if (display->platform.geminilake) { + *count = ARRAY_SIZE(glk_dpio_phy_info); + return glk_dpio_phy_info; + } else { + *count = ARRAY_SIZE(bxt_dpio_phy_info); + return bxt_dpio_phy_info; + } +} + +static const struct bxt_dpio_phy_info * +bxt_get_phy_info(struct intel_display *display, enum dpio_phy phy) +{ + int count; + const struct bxt_dpio_phy_info *phy_list = + bxt_get_phy_list(display, &count); + + return &phy_list[phy]; +} + +void bxt_port_to_phy_channel(struct intel_display *display, enum port port, + enum dpio_phy *phy, enum dpio_channel *ch) +{ + const struct bxt_dpio_phy_info *phy_info, *phys; + int i, count; + + phys = bxt_get_phy_list(display, &count); + + for (i = 0; i < count; i++) { + phy_info = &phys[i]; + + if (port == phy_info->channel[DPIO_CH0].port) { + *phy = i; + *ch = DPIO_CH0; + return; + } + + if (phy_info->dual_channel && + port == phy_info->channel[DPIO_CH1].port) { + *phy = i; + *ch = DPIO_CH1; + return; + } + } + + drm_WARN(display->drm, 1, "PHY not found for PORT %c", + port_name(port)); + *phy = DPIO_PHY0; + *ch = DPIO_CH0; +} + +/* + * Like intel_de_rmw() but reads from a single per-lane register and + * writes to the group register to write the same value to all the lanes. + */ +static u32 bxt_dpio_phy_rmw_grp(struct intel_display *display, + i915_reg_t reg_single, + i915_reg_t reg_group, + u32 clear, u32 set) +{ + u32 old, val; + + old = intel_de_read(display, reg_single); + val = (old & ~clear) | set; + intel_de_write(display, reg_group, val); + + return old; +} + +void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(encoder); + const struct intel_ddi_buf_trans *trans; + enum dpio_channel ch; + enum dpio_phy phy; + int lane, n_entries; + + trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries); + if (drm_WARN_ON_ONCE(display->drm, !trans)) + return; + + bxt_port_to_phy_channel(display, encoder->port, &phy, &ch); + + /* + * While we write to the group register to program all lanes at once we + * can read only lane registers and we pick lanes 0/1 for that. + */ + bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch), + BXT_PORT_PCS_DW10_GRP(phy, ch), + TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0); + + for (lane = 0; lane < crtc_state->lane_count; lane++) { + int level = intel_ddi_level(encoder, crtc_state, lane); + + intel_de_rmw(display, BXT_PORT_TX_DW2_LN(phy, ch, lane), + MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK, + MARGIN_000(trans->entries[level].bxt.margin) | + UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale)); + } + + for (lane = 0; lane < crtc_state->lane_count; lane++) { + int level = intel_ddi_level(encoder, crtc_state, lane); + u32 val; + + intel_de_rmw(display, BXT_PORT_TX_DW3_LN(phy, ch, lane), + SCALE_DCOMP_METHOD, + trans->entries[level].bxt.enable ? + SCALE_DCOMP_METHOD : 0); + + val = intel_de_read(display, BXT_PORT_TX_DW3_LN(phy, ch, lane)); + if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) + drm_err(display->drm, + "Disabled scaling while ouniqetrangenmethod was set"); + } + + for (lane = 0; lane < crtc_state->lane_count; lane++) { + int level = intel_ddi_level(encoder, crtc_state, lane); + + intel_de_rmw(display, BXT_PORT_TX_DW4_LN(phy, ch, lane), + DE_EMPHASIS_MASK, + DE_EMPHASIS(trans->entries[level].bxt.deemphasis)); + } + + bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch), + BXT_PORT_PCS_DW10_GRP(phy, ch), + 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); +} + +bool bxt_dpio_phy_is_enabled(struct intel_display *display, + enum dpio_phy phy) +{ + const struct bxt_dpio_phy_info *phy_info; + + phy_info = bxt_get_phy_info(display, phy); + + if (!(intel_de_read(display, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask)) + return false; + + if ((intel_de_read(display, BXT_PORT_CL1CM_DW0(phy)) & + (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) { + drm_dbg(display->drm, + "DDI PHY %d powered, but power hasn't settled\n", phy); + + return false; + } + + if (!(intel_de_read(display, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) { + drm_dbg(display->drm, + "DDI PHY %d powered, but still in reset\n", phy); + + return false; + } + + return true; +} + +static u32 bxt_get_grc(struct intel_display *display, enum dpio_phy phy) +{ + u32 val = intel_de_read(display, BXT_PORT_REF_DW6(phy)); + + return REG_FIELD_GET(GRC_CODE_MASK, val); +} + +static void bxt_phy_wait_grc_done(struct intel_display *display, + enum dpio_phy phy) +{ + if (intel_de_wait_for_set_ms(display, BXT_PORT_REF_DW3(phy), GRC_DONE, 10)) + drm_err(display->drm, "timeout waiting for PHY%d GRC\n", phy); +} + +static void _bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy) +{ + const struct bxt_dpio_phy_info *phy_info; + u32 val; + + phy_info = bxt_get_phy_info(display, phy); + + if (bxt_dpio_phy_is_enabled(display, phy)) { + /* Still read out the GRC value for state verification */ + if (phy_info->rcomp_phy != -1) + display->state.bxt_phy_grc = bxt_get_grc(display, phy); + + if (bxt_dpio_phy_verify_state(display, phy)) { + drm_dbg(display->drm, "DDI PHY %d already enabled, " + "won't reprogram it\n", phy); + return; + } + + drm_dbg(display->drm, + "DDI PHY %d enabled with invalid state, " + "force reprogramming it\n", phy); + } + + intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask); + + /* + * The PHY registers start out inaccessible and respond to reads with + * all 1s. Eventually they become accessible as they power up, then + * the reserved bit will give the default 0. Poll on the reserved bit + * becoming 0 to find when the PHY is accessible. + * The flag should get set in 100us according to the HW team, but + * use 1ms due to occasional timeouts observed with that. + */ + if (intel_de_wait_ms(display, BXT_PORT_CL1CM_DW0(phy), + PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1, NULL)) + drm_err(display->drm, "timeout during PHY%d power on\n", + phy); + + /* Program PLL Rcomp code offset */ + intel_de_rmw(display, BXT_PORT_CL1CM_DW9(phy), + IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4)); + + intel_de_rmw(display, BXT_PORT_CL1CM_DW10(phy), + IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4)); + + /* Program power gating */ + intel_de_rmw(display, BXT_PORT_CL1CM_DW28(phy), 0, + OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG); + + if (phy_info->dual_channel) + intel_de_rmw(display, BXT_PORT_CL2CM_DW6(phy), 0, + DW6_OLDO_DYN_PWR_DOWN_EN); + + if (phy_info->rcomp_phy != -1) { + u32 grc_code; + + bxt_phy_wait_grc_done(display, phy_info->rcomp_phy); + + /* + * PHY0 isn't connected to an RCOMP resistor so copy over + * the corresponding calibrated value from PHY1, and disable + * the automatic calibration on PHY0. + */ + val = bxt_get_grc(display, phy_info->rcomp_phy); + display->state.bxt_phy_grc = val; + + grc_code = GRC_CODE_FAST(val) | + GRC_CODE_SLOW(val) | + GRC_CODE_NOM(val); + intel_de_write(display, BXT_PORT_REF_DW6(phy), grc_code); + intel_de_rmw(display, BXT_PORT_REF_DW8(phy), + 0, GRC_DIS | GRC_RDY_OVRD); + } + + if (phy_info->reset_delay) + udelay(phy_info->reset_delay); + + intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS); +} + +void bxt_dpio_phy_uninit(struct intel_display *display, enum dpio_phy phy) +{ + const struct bxt_dpio_phy_info *phy_info; + + phy_info = bxt_get_phy_info(display, phy); + + intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0); + + intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0); +} + +void bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy) +{ + const struct bxt_dpio_phy_info *phy_info = bxt_get_phy_info(display, phy); + enum dpio_phy rcomp_phy = phy_info->rcomp_phy; + bool was_enabled; + + lockdep_assert_held(&display->power.domains.lock); + + was_enabled = true; + if (rcomp_phy != -1) + was_enabled = bxt_dpio_phy_is_enabled(display, rcomp_phy); + + /* + * We need to copy the GRC calibration value from rcomp_phy, + * so make sure it's powered up. + */ + if (!was_enabled) + _bxt_dpio_phy_init(display, rcomp_phy); + + _bxt_dpio_phy_init(display, phy); + + if (!was_enabled) + bxt_dpio_phy_uninit(display, rcomp_phy); +} + +static bool __printf(6, 7) +__phy_reg_verify_state(struct intel_display *display, enum dpio_phy phy, + i915_reg_t reg, u32 mask, u32 expected, + const char *reg_fmt, ...) +{ + struct va_format vaf; + va_list args; + u32 val; + + val = intel_de_read(display, reg); + if ((val & mask) == expected) + return true; + + va_start(args, reg_fmt); + vaf.fmt = reg_fmt; + vaf.va = &args; + + drm_dbg(display->drm, "DDI PHY %d reg %pV [%08x] state mismatch: " + "current %08x, expected %08x (mask %08x)\n", + phy, &vaf, reg.reg, val, (val & ~mask) | expected, + mask); + + va_end(args); + + return false; +} + +bool bxt_dpio_phy_verify_state(struct intel_display *display, + enum dpio_phy phy) +{ + const struct bxt_dpio_phy_info *phy_info; + u32 mask; + bool ok; + + phy_info = bxt_get_phy_info(display, phy); + +#define _CHK(reg, mask, exp, fmt, ...) \ + __phy_reg_verify_state(display, phy, reg, mask, exp, fmt, \ + ## __VA_ARGS__) + + if (!bxt_dpio_phy_is_enabled(display, phy)) + return false; + + ok = true; + + /* PLL Rcomp code offset */ + ok &= _CHK(BXT_PORT_CL1CM_DW9(phy), + IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4), + "BXT_PORT_CL1CM_DW9(%d)", phy); + ok &= _CHK(BXT_PORT_CL1CM_DW10(phy), + IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4), + "BXT_PORT_CL1CM_DW10(%d)", phy); + + /* Power gating */ + mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; + ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask, + "BXT_PORT_CL1CM_DW28(%d)", phy); + + if (phy_info->dual_channel) + ok &= _CHK(BXT_PORT_CL2CM_DW6(phy), + DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN, + "BXT_PORT_CL2CM_DW6(%d)", phy); + + if (phy_info->rcomp_phy != -1) { + u32 grc_code = display->state.bxt_phy_grc; + + grc_code = GRC_CODE_FAST(grc_code) | + GRC_CODE_SLOW(grc_code) | + GRC_CODE_NOM(grc_code); + mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK | + GRC_CODE_NOM_MASK; + ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code, + "BXT_PORT_REF_DW6(%d)", phy); + + mask = GRC_DIS | GRC_RDY_OVRD; + ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask, + "BXT_PORT_REF_DW8(%d)", phy); + } + + return ok; +#undef _CHK +} + +u8 +bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count) +{ + switch (lane_count) { + case 1: + return 0; + case 2: + return BIT(2) | BIT(0); + case 4: + return BIT(3) | BIT(2) | BIT(0); + default: + MISSING_CASE(lane_count); + + return 0; + } +} + +void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder, + u8 lane_lat_optim_mask) +{ + struct intel_display *display = to_intel_display(encoder); + enum port port = encoder->port; + enum dpio_phy phy; + enum dpio_channel ch; + int lane; + + bxt_port_to_phy_channel(display, port, &phy, &ch); + + for (lane = 0; lane < 4; lane++) { + /* + * Note that on CHV this flag is called UPAR, but has + * the same function. + */ + intel_de_rmw(display, BXT_PORT_TX_DW14_LN(phy, ch, lane), + LATENCY_OPTIM, + lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0); + } +} + +u8 +bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder) +{ + struct intel_display *display = to_intel_display(encoder); + enum port port = encoder->port; + enum dpio_phy phy; + enum dpio_channel ch; + int lane; + u8 mask; + + bxt_port_to_phy_channel(display, port, &phy, &ch); + + mask = 0; + for (lane = 0; lane < 4; lane++) { + u32 val = intel_de_read(display, + BXT_PORT_TX_DW14_LN(phy, ch, lane)); + + if (val & LATENCY_OPTIM) + mask |= BIT(lane); + } + + return mask; +} + +enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port) +{ + switch (dig_port->base.port) { + default: + MISSING_CASE(dig_port->base.port); + fallthrough; + case PORT_B: + case PORT_D: + return DPIO_CH0; + case PORT_C: + return DPIO_CH1; + } +} + +enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port) +{ + switch (dig_port->base.port) { + default: + MISSING_CASE(dig_port->base.port); + fallthrough; + case PORT_B: + case PORT_C: + return DPIO_PHY0; + case PORT_D: + return DPIO_PHY1; + } +} + +enum dpio_phy vlv_pipe_to_phy(enum pipe pipe) +{ + switch (pipe) { + default: + MISSING_CASE(pipe); + fallthrough; + case PIPE_A: + case PIPE_B: + return DPIO_PHY0; + case PIPE_C: + return DPIO_PHY1; + } +} + +enum dpio_channel vlv_pipe_to_channel(enum pipe pipe) +{ + switch (pipe) { + default: + MISSING_CASE(pipe); + fallthrough; + case PIPE_A: + case PIPE_C: + return DPIO_CH0; + case PIPE_B: + return DPIO_CH1; + } +} + +void chv_set_phy_signal_level(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state, + u32 deemph_reg_value, u32 margin_reg_value, + bool uniq_trans_scale) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_digital_port *dig_port = enc_to_dig_port(encoder); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + u32 val; + int i; + + vlv_dpio_get(display->drm); + + /* Clear calc init */ + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW10(ch)); + val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); + val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); + val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW10(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW10(ch)); + val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); + val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); + val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW10(ch), val); + } + + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW9(ch)); + val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); + val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW9(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW9(ch)); + val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); + val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW9(ch), val); + } + + /* Program swing deemph */ + for (i = 0; i < crtc_state->lane_count; i++) { + val = vlv_dpio_read(display->drm, phy, CHV_TX_DW4(ch, i)); + val &= ~DPIO_SWING_DEEMPH9P5_MASK; + val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value); + vlv_dpio_write(display->drm, phy, CHV_TX_DW4(ch, i), val); + } + + /* Program swing margin */ + for (i = 0; i < crtc_state->lane_count; i++) { + val = vlv_dpio_read(display->drm, phy, CHV_TX_DW2(ch, i)); + + val &= ~DPIO_SWING_MARGIN000_MASK; + val |= DPIO_SWING_MARGIN000(margin_reg_value); + + /* + * Supposedly this value shouldn't matter when unique transition + * scale is disabled, but in fact it does matter. Let's just + * always program the same value and hope it's OK. + */ + val &= ~DPIO_UNIQ_TRANS_SCALE_MASK; + val |= DPIO_UNIQ_TRANS_SCALE(0x9a); + + vlv_dpio_write(display->drm, phy, CHV_TX_DW2(ch, i), val); + } + + /* + * The document said it needs to set bit 27 for ch0 and bit 26 + * for ch1. Might be a typo in the doc. + * For now, for this unique transition scale selection, set bit + * 27 for ch0 and ch1. + */ + for (i = 0; i < crtc_state->lane_count; i++) { + val = vlv_dpio_read(display->drm, phy, CHV_TX_DW3(ch, i)); + if (uniq_trans_scale) + val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; + else + val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; + vlv_dpio_write(display->drm, phy, CHV_TX_DW3(ch, i), val); + } + + /* Start swing calculation */ + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW10(ch)); + val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW10(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW10(ch)); + val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW10(ch), val); + } + + vlv_dpio_put(display->drm); +} + +static void __chv_data_lane_soft_reset(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state, + bool reset) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_digital_port *dig_port = enc_to_dig_port(encoder); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + u32 val; + + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW0(ch)); + if (reset) + val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); + else + val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW0(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW0(ch)); + if (reset) + val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); + else + val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW0(ch), val); + } + + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW1(ch)); + val |= CHV_PCS_REQ_SOFTRESET_EN; + if (reset) + val &= ~DPIO_PCS_CLK_SOFT_RESET; + else + val |= DPIO_PCS_CLK_SOFT_RESET; + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW1(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW1(ch)); + val |= CHV_PCS_REQ_SOFTRESET_EN; + if (reset) + val &= ~DPIO_PCS_CLK_SOFT_RESET; + else + val |= DPIO_PCS_CLK_SOFT_RESET; + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW1(ch), val); + } +} + +void chv_data_lane_soft_reset(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state, + bool reset) +{ + struct intel_display *display = to_intel_display(encoder); + + vlv_dpio_get(display->drm); + __chv_data_lane_soft_reset(encoder, crtc_state, reset); + vlv_dpio_put(display->drm); +} + +void chv_phy_pre_pll_enable(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_digital_port *dig_port = enc_to_dig_port(encoder); + struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + enum pipe pipe = crtc->pipe; + unsigned int lane_mask = + intel_dp_unused_lane_mask(crtc_state->lane_count); + u32 val; + + /* + * Must trick the second common lane into life. + * Otherwise we can't even access the PLL. + */ + if (ch == DPIO_CH0 && pipe == PIPE_B) + dig_port->release_cl2_override = + !chv_phy_powergate_ch(display, DPIO_PHY0, DPIO_CH1, true); + + chv_phy_powergate_lanes(encoder, true, lane_mask); + + vlv_dpio_get(display->drm); + + /* Assert data lane reset */ + __chv_data_lane_soft_reset(encoder, crtc_state, true); + + /* program left/right clock distribution */ + if (pipe != PIPE_B) { + val = vlv_dpio_read(display->drm, phy, CHV_CMN_DW5_CH0); + val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); + if (ch == DPIO_CH0) + val |= CHV_BUFLEFTENA1_FORCE; + if (ch == DPIO_CH1) + val |= CHV_BUFRIGHTENA1_FORCE; + vlv_dpio_write(display->drm, phy, CHV_CMN_DW5_CH0, val); + } else { + val = vlv_dpio_read(display->drm, phy, CHV_CMN_DW1_CH1); + val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); + if (ch == DPIO_CH0) + val |= CHV_BUFLEFTENA2_FORCE; + if (ch == DPIO_CH1) + val |= CHV_BUFRIGHTENA2_FORCE; + vlv_dpio_write(display->drm, phy, CHV_CMN_DW1_CH1, val); + } + + /* program clock channel usage */ + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW8(ch)); + val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; + if (pipe == PIPE_B) + val |= DPIO_PCS_USEDCLKCHANNEL; + else + val &= ~DPIO_PCS_USEDCLKCHANNEL; + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW8(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW8(ch)); + val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; + if (pipe == PIPE_B) + val |= DPIO_PCS_USEDCLKCHANNEL; + else + val &= ~DPIO_PCS_USEDCLKCHANNEL; + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW8(ch), val); + } + + /* + * This a a bit weird since generally CL + * matches the pipe, but here we need to + * pick the CL based on the port. + */ + val = vlv_dpio_read(display->drm, phy, CHV_CMN_DW19(ch)); + if (pipe == PIPE_B) + val |= CHV_CMN_USEDCLKCHANNEL; + else + val &= ~CHV_CMN_USEDCLKCHANNEL; + vlv_dpio_write(display->drm, phy, CHV_CMN_DW19(ch), val); + + vlv_dpio_put(display->drm); +} + +void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_dp *intel_dp = enc_to_intel_dp(encoder); + struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + int data, i, stagger; + u32 val; + + vlv_dpio_get(display->drm); + + /* allow hardware to manage TX FIFO reset source */ + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW11(ch)); + val &= ~DPIO_LANEDESKEW_STRAP_OVRD; + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW11(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW11(ch)); + val &= ~DPIO_LANEDESKEW_STRAP_OVRD; + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW11(ch), val); + } + + /* Program Tx lane latency optimal setting*/ + for (i = 0; i < crtc_state->lane_count; i++) { + /* Set the upar bit */ + if (crtc_state->lane_count == 1) + data = 0; + else + data = (i == 1) ? 0 : DPIO_UPAR; + vlv_dpio_write(display->drm, phy, CHV_TX_DW14(ch, i), data); + } + + /* Data lane stagger programming */ + if (crtc_state->port_clock > 270000) + stagger = 0x18; + else if (crtc_state->port_clock > 135000) + stagger = 0xd; + else if (crtc_state->port_clock > 67500) + stagger = 0x7; + else if (crtc_state->port_clock > 33750) + stagger = 0x4; + else + stagger = 0x2; + + val = vlv_dpio_read(display->drm, phy, VLV_PCS01_DW11(ch)); + val |= DPIO_TX2_STAGGER_MASK(0x1f); + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW11(ch), val); + + if (crtc_state->lane_count > 2) { + val = vlv_dpio_read(display->drm, phy, VLV_PCS23_DW11(ch)); + val |= DPIO_TX2_STAGGER_MASK(0x1f); + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW11(ch), val); + } + + vlv_dpio_write(display->drm, phy, VLV_PCS01_DW12(ch), + DPIO_LANESTAGGER_STRAP(stagger) | + DPIO_LANESTAGGER_STRAP_OVRD | + DPIO_TX1_STAGGER_MASK(0x1f) | + DPIO_TX1_STAGGER_MULT(6) | + DPIO_TX2_STAGGER_MULT(0)); + + if (crtc_state->lane_count > 2) { + vlv_dpio_write(display->drm, phy, VLV_PCS23_DW12(ch), + DPIO_LANESTAGGER_STRAP(stagger) | + DPIO_LANESTAGGER_STRAP_OVRD | + DPIO_TX1_STAGGER_MASK(0x1f) | + DPIO_TX1_STAGGER_MULT(7) | + DPIO_TX2_STAGGER_MULT(5)); + } + + /* Deassert data lane reset */ + __chv_data_lane_soft_reset(encoder, crtc_state, false); + + vlv_dpio_put(display->drm); +} + +void chv_phy_release_cl2_override(struct intel_encoder *encoder) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_digital_port *dig_port = enc_to_dig_port(encoder); + + if (dig_port->release_cl2_override) { + chv_phy_powergate_ch(display, DPIO_PHY0, DPIO_CH1, false); + dig_port->release_cl2_override = false; + } +} + +void chv_phy_post_pll_disable(struct intel_encoder *encoder, + const struct intel_crtc_state *old_crtc_state) +{ + struct intel_display *display = to_intel_display(encoder); + enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder)); + enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe; + u32 val; + + vlv_dpio_get(display->drm); + + /* disable left/right clock distribution */ + if (pipe != PIPE_B) { + val = vlv_dpio_read(display->drm, phy, CHV_CMN_DW5_CH0); + val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); + vlv_dpio_write(display->drm, phy, CHV_CMN_DW5_CH0, val); + } else { + val = vlv_dpio_read(display->drm, phy, CHV_CMN_DW1_CH1); + val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); + vlv_dpio_write(display->drm, phy, CHV_CMN_DW1_CH1, val); + } + + vlv_dpio_put(display->drm); + + /* + * Leave the power down bit cleared for at least one + * lane so that chv_powergate_phy_ch() will power + * on something when the channel is otherwise unused. + * When the port is off and the override is removed + * the lanes power down anyway, so otherwise it doesn't + * really matter what the state of power down bits is + * after this. + */ + chv_phy_powergate_lanes(encoder, false, 0x0); +} + +void vlv_set_phy_signal_level(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state, + u32 demph_reg_value, u32 preemph_reg_value, + u32 uniqtranscale_reg_value, u32 tx3_demph) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_digital_port *dig_port = enc_to_dig_port(encoder); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + + vlv_dpio_get(display->drm); + + vlv_dpio_write(display->drm, phy, VLV_TX_DW5_GRP(ch), 0x00000000); + vlv_dpio_write(display->drm, phy, VLV_TX_DW4_GRP(ch), demph_reg_value); + vlv_dpio_write(display->drm, phy, VLV_TX_DW2_GRP(ch), + uniqtranscale_reg_value); + vlv_dpio_write(display->drm, phy, VLV_TX_DW3_GRP(ch), 0x0C782040); + + if (tx3_demph) + vlv_dpio_write(display->drm, phy, VLV_TX_DW4(ch, 3), tx3_demph); + + vlv_dpio_write(display->drm, phy, VLV_PCS_DW11_GRP(ch), 0x00030000); + vlv_dpio_write(display->drm, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value); + vlv_dpio_write(display->drm, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN); + + vlv_dpio_put(display->drm); +} + +void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_digital_port *dig_port = enc_to_dig_port(encoder); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + + /* Program Tx lane resets to default */ + vlv_dpio_get(display->drm); + + vlv_dpio_write(display->drm, phy, VLV_PCS_DW0_GRP(ch), + DPIO_PCS_TX_LANE2_RESET | + DPIO_PCS_TX_LANE1_RESET); + vlv_dpio_write(display->drm, phy, VLV_PCS_DW1_GRP(ch), + DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | + DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | + DPIO_PCS_CLK_DATAWIDTH_8_10 | + DPIO_PCS_CLK_SOFT_RESET); + + /* Fix up inter-pair skew failure */ + vlv_dpio_write(display->drm, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00); + vlv_dpio_write(display->drm, phy, VLV_TX_DW11_GRP(ch), 0x00001500); + vlv_dpio_write(display->drm, phy, VLV_TX_DW14_GRP(ch), 0x40400000); + + vlv_dpio_put(display->drm); +} + +void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, + const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_dp *intel_dp = enc_to_intel_dp(encoder); + struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); + struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + enum pipe pipe = crtc->pipe; + u32 val; + + vlv_dpio_get(display->drm); + + /* Enable clock channels for this port */ + val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; + if (pipe == PIPE_B) + val |= DPIO_PCS_USEDCLKCHANNEL; + val |= 0xc4; + vlv_dpio_write(display->drm, phy, VLV_PCS_DW8_GRP(ch), val); + + /* Program lane clock */ + vlv_dpio_write(display->drm, phy, VLV_PCS_DW14_GRP(ch), 0x00760018); + vlv_dpio_write(display->drm, phy, VLV_PCS_DW23_GRP(ch), 0x00400888); + + vlv_dpio_put(display->drm); +} + +void vlv_phy_reset_lanes(struct intel_encoder *encoder, + const struct intel_crtc_state *old_crtc_state) +{ + struct intel_display *display = to_intel_display(encoder); + struct intel_digital_port *dig_port = enc_to_dig_port(encoder); + enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); + enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); + + vlv_dpio_get(display->drm); + vlv_dpio_write(display->drm, phy, VLV_PCS_DW0_GRP(ch), 0x00000000); + vlv_dpio_write(display->drm, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060); + vlv_dpio_put(display->drm); +} + +void vlv_wait_port_ready(struct intel_encoder *encoder, + unsigned int expected_mask) +{ + struct intel_display *display = to_intel_display(encoder); + u32 port_mask; + i915_reg_t dpll_reg; + u32 val; + + switch (encoder->port) { + default: + MISSING_CASE(encoder->port); + fallthrough; + case PORT_B: + port_mask = DPLL_PORTB_READY_MASK; + dpll_reg = DPLL(display, 0); + break; + case PORT_C: + port_mask = DPLL_PORTC_READY_MASK; + dpll_reg = DPLL(display, 0); + expected_mask <<= 4; + break; + case PORT_D: + port_mask = DPLL_PORTD_READY_MASK; + dpll_reg = DPIO_PHY_STATUS; + break; + } + + if (intel_de_wait_ms(display, dpll_reg, port_mask, expected_mask, 1000, &val)) + drm_WARN(display->drm, 1, + "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", + encoder->base.base.id, encoder->base.name, + val & port_mask, expected_mask); +} |
