diff options
Diffstat (limited to 'drivers/gpu/drm/i915/display/intel_vrr.c')
| -rw-r--r-- | drivers/gpu/drm/i915/display/intel_vrr.c | 900 |
1 files changed, 900 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/display/intel_vrr.c b/drivers/gpu/drm/i915/display/intel_vrr.c new file mode 100644 index 000000000000..b92c42fde937 --- /dev/null +++ b/drivers/gpu/drm/i915/display/intel_vrr.c @@ -0,0 +1,900 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2020 Intel Corporation + * + */ + +#include <drm/drm_print.h> + +#include "intel_de.h" +#include "intel_display_regs.h" +#include "intel_display_types.h" +#include "intel_dp.h" +#include "intel_psr.h" +#include "intel_vrr.h" +#include "intel_vrr_regs.h" +#include "skl_prefill.h" +#include "skl_watermark.h" + +#define FIXED_POINT_PRECISION 100 +#define CMRR_PRECISION_TOLERANCE 10 + +bool intel_vrr_is_capable(struct intel_connector *connector) +{ + struct intel_display *display = to_intel_display(connector); + const struct drm_display_info *info = &connector->base.display_info; + struct intel_dp *intel_dp; + + if (!HAS_VRR(display)) + return false; + + /* + * DP Sink is capable of VRR video timings if + * Ignore MSA bit is set in DPCD. + * EDID monitor range also should be atleast 10 for reasonable + * Adaptive Sync or Variable Refresh Rate end user experience. + */ + switch (connector->base.connector_type) { + case DRM_MODE_CONNECTOR_eDP: + if (!connector->panel.vbt.vrr) + return false; + fallthrough; + case DRM_MODE_CONNECTOR_DisplayPort: + if (connector->mst.dp) + return false; + intel_dp = intel_attached_dp(connector); + + if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd)) + return false; + + break; + default: + return false; + } + + return info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10; +} + +bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh) +{ + const struct drm_display_info *info = &connector->base.display_info; + + return intel_vrr_is_capable(connector) && + vrefresh >= info->monitor_range.min_vfreq && + vrefresh <= info->monitor_range.max_vfreq; +} + +bool intel_vrr_possible(const struct intel_crtc_state *crtc_state) +{ + return crtc_state->vrr.flipline; +} + +void +intel_vrr_check_modeset(struct intel_atomic_state *state) +{ + int i; + struct intel_crtc_state *old_crtc_state, *new_crtc_state; + struct intel_crtc *crtc; + + for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, + new_crtc_state, i) { + if (new_crtc_state->uapi.vrr_enabled != + old_crtc_state->uapi.vrr_enabled) + new_crtc_state->uapi.mode_changed = true; + } +} + +static int intel_vrr_extra_vblank_delay(struct intel_display *display) +{ + /* + * On ICL/TGL VRR hardware inserts one extra scanline + * just after vactive, which pushes the vmin decision + * boundary ahead accordingly, and thus reduces the + * max guardband length by one scanline. + */ + return DISPLAY_VER(display) < 13 ? 1 : 0; +} + +static int intel_vrr_vmin_flipline_offset(struct intel_display *display) +{ + /* + * ICL/TGL hardware imposes flipline>=vmin+1 + * + * We reduce the vmin value to compensate when programming the + * hardware. This approach allows flipline to remain set at the + * original value, and thus the frame will have the desired + * minimum vtotal. + */ + return DISPLAY_VER(display) < 13 ? 1 : 0; +} + +static int intel_vrr_guardband_to_pipeline_full(const struct intel_crtc_state *crtc_state, + int guardband) +{ + /* hardware imposes one extra scanline somewhere */ + return guardband - crtc_state->framestart_delay - 1; +} + +static int intel_vrr_pipeline_full_to_guardband(const struct intel_crtc_state *crtc_state, + int pipeline_full) +{ + /* hardware imposes one extra scanline somewhere */ + return pipeline_full + crtc_state->framestart_delay + 1; +} + +/* + * Without VRR registers get latched at: + * vblank_start + * + * With VRR the earliest registers can get latched is: + * intel_vrr_vmin_vblank_start(), which if we want to maintain + * the correct min vtotal is >=vblank_start+1 + * + * The latest point registers can get latched is the vmax decision boundary: + * intel_vrr_vmax_vblank_start() + * + * Between those two points the vblank exit starts (and hence registers get + * latched) ASAP after a push is sent. + * + * framestart_delay is programmable 1-4. + */ + +int intel_vrr_vmin_vtotal(const struct intel_crtc_state *crtc_state) +{ + /* Min vblank actually determined by flipline */ + return crtc_state->vrr.vmin; +} + +int intel_vrr_vmax_vtotal(const struct intel_crtc_state *crtc_state) +{ + return crtc_state->vrr.vmax; +} + +int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_vmin_vtotal(crtc_state) - crtc_state->vrr.guardband; +} + +int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_vmax_vtotal(crtc_state) - crtc_state->vrr.guardband; +} + +static bool +is_cmrr_frac_required(struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line; + struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; + + /* Avoid CMRR for now till we have VRR with fixed timings working */ + if (!HAS_CMRR(display) || true) + return false; + + actual_refresh_k = + drm_mode_vrefresh(adjusted_mode) * FIXED_POINT_PRECISION; + pixel_clock_per_line = + adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal; + calculated_refresh_k = + pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal; + + if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE) + return false; + + return true; +} + +static unsigned int +cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required) +{ + int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate; + u64 adjusted_pixel_rate; + struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; + + desired_refresh_rate = drm_mode_vrefresh(adjusted_mode); + + if (video_mode_required) { + multiplier_m = 1001; + multiplier_n = 1000; + } + + crtc_state->cmrr.cmrr_n = mul_u32_u32(desired_refresh_rate * adjusted_mode->crtc_htotal, + multiplier_n); + vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n), + crtc_state->cmrr.cmrr_n); + adjusted_pixel_rate = mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_m); + crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n); + + return vtotal; +} + +static +void intel_vrr_compute_cmrr_timings(struct intel_crtc_state *crtc_state) +{ + /* + * TODO: Compute precise target refresh rate to determine + * if video_mode_required should be true. Currently set to + * false due to uncertainty about the precise target + * refresh Rate. + */ + crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, false); + crtc_state->vrr.vmin = crtc_state->vrr.vmax; + crtc_state->vrr.flipline = crtc_state->vrr.vmin; + + crtc_state->cmrr.enable = true; + crtc_state->mode_flags |= I915_MODE_FLAG_VRR; +} + +static +void intel_vrr_compute_vrr_timings(struct intel_crtc_state *crtc_state, + int vmin, int vmax) +{ + crtc_state->vrr.vmax = vmax; + crtc_state->vrr.vmin = vmin; + crtc_state->vrr.flipline = crtc_state->vrr.vmin; + + crtc_state->vrr.enable = true; + crtc_state->mode_flags |= I915_MODE_FLAG_VRR; +} + +static +void intel_vrr_compute_fixed_rr_timings(struct intel_crtc_state *crtc_state) +{ + /* For fixed rr, vmin = vmax = flipline */ + crtc_state->vrr.vmax = crtc_state->hw.adjusted_mode.crtc_vtotal; + crtc_state->vrr.vmin = crtc_state->vrr.vmax; + crtc_state->vrr.flipline = crtc_state->vrr.vmin; +} + +static int intel_vrr_hw_value(const struct intel_crtc_state *crtc_state, + int value) +{ + struct intel_display *display = to_intel_display(crtc_state); + + /* + * On TGL vmin/vmax/flipline also need to be + * adjusted by the SCL to maintain correct vtotals. + */ + if (DISPLAY_VER(display) >= 13) + return value; + else + return value - crtc_state->set_context_latency; +} + +/* + * For fixed refresh rate mode Vmin, Vmax and Flipline all are set to + * Vtotal value. + */ +static +int intel_vrr_fixed_rr_hw_vtotal(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_hw_value(crtc_state, crtc_state->hw.adjusted_mode.crtc_vtotal); +} + +static +int intel_vrr_fixed_rr_hw_vmax(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_fixed_rr_hw_vtotal(crtc_state); +} + +static +int intel_vrr_fixed_rr_hw_vmin(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + + return intel_vrr_fixed_rr_hw_vtotal(crtc_state) - + intel_vrr_vmin_flipline_offset(display); +} + +static +int intel_vrr_fixed_rr_hw_flipline(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_fixed_rr_hw_vtotal(crtc_state); +} + +void intel_vrr_set_fixed_rr_timings(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + + if (!intel_vrr_possible(crtc_state)) + return; + + intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder), + intel_vrr_fixed_rr_hw_vmin(crtc_state) - 1); + intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder), + intel_vrr_fixed_rr_hw_vmax(crtc_state) - 1); + intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder), + intel_vrr_fixed_rr_hw_flipline(crtc_state) - 1); +} + +static +int intel_vrr_compute_vmin(struct intel_crtc_state *crtc_state) +{ + /* + * To make fixed rr and vrr work seamless the guardband/pipeline full + * should be set such that it satisfies both the fixed and variable + * timings. + * For this set the vmin as crtc_vtotal. With this we never need to + * change anything to do with the guardband. + */ + return crtc_state->hw.adjusted_mode.crtc_vtotal; +} + +static +int intel_vrr_compute_vmax(struct intel_connector *connector, + const struct drm_display_mode *adjusted_mode) +{ + const struct drm_display_info *info = &connector->base.display_info; + int vmax; + + vmax = adjusted_mode->crtc_clock * 1000 / + (adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq); + vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal); + + return vmax; +} + +void +intel_vrr_compute_config(struct intel_crtc_state *crtc_state, + struct drm_connector_state *conn_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + struct intel_connector *connector = + to_intel_connector(conn_state->connector); + struct intel_dp *intel_dp = intel_attached_dp(connector); + bool is_edp = intel_dp_is_edp(intel_dp); + struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; + int vmin, vmax; + + if (!HAS_VRR(display)) + return; + + if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) + return; + + crtc_state->vrr.in_range = + intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode)); + + /* + * Allow fixed refresh rate with VRR Timing Generator. + * For now set the vrr.in_range to 0, to allow fixed_rr but skip actual + * VRR and LRR. + * #TODO For actual VRR with joiner, we need to figure out how to + * correctly sequence transcoder level stuff vs. pipe level stuff + * in the commit. + */ + if (crtc_state->joiner_pipes) + crtc_state->vrr.in_range = false; + + vmin = intel_vrr_compute_vmin(crtc_state); + + if (crtc_state->vrr.in_range) { + if (HAS_LRR(display)) + crtc_state->update_lrr = true; + vmax = intel_vrr_compute_vmax(connector, adjusted_mode); + } else { + vmax = vmin; + } + + if (crtc_state->uapi.vrr_enabled && vmin < vmax) + intel_vrr_compute_vrr_timings(crtc_state, vmin, vmax); + else if (is_cmrr_frac_required(crtc_state) && is_edp) + intel_vrr_compute_cmrr_timings(crtc_state); + else + intel_vrr_compute_fixed_rr_timings(crtc_state); + + if (HAS_AS_SDP(display)) { + crtc_state->vrr.vsync_start = + (crtc_state->hw.adjusted_mode.crtc_vtotal - + crtc_state->hw.adjusted_mode.crtc_vsync_start); + crtc_state->vrr.vsync_end = + (crtc_state->hw.adjusted_mode.crtc_vtotal - + crtc_state->hw.adjusted_mode.crtc_vsync_end); + } +} + +static int +intel_vrr_max_hw_guardband(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + int max_pipeline_full = REG_FIELD_MAX(VRR_CTL_PIPELINE_FULL_MASK); + + if (DISPLAY_VER(display) >= 13) + return REG_FIELD_MAX(XELPD_VRR_CTL_VRR_GUARDBAND_MASK); + else + return intel_vrr_pipeline_full_to_guardband(crtc_state, + max_pipeline_full); +} + +static int +intel_vrr_max_vblank_guardband(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; + + return crtc_state->vrr.vmin - + adjusted_mode->crtc_vdisplay - + crtc_state->set_context_latency - + intel_vrr_extra_vblank_delay(display); +} + +static int +intel_vrr_max_guardband(struct intel_crtc_state *crtc_state) +{ + return min(intel_vrr_max_hw_guardband(crtc_state), + intel_vrr_max_vblank_guardband(crtc_state)); +} + +static +int intel_vrr_compute_optimized_guardband(struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + struct skl_prefill_ctx prefill_ctx; + int prefill_latency_us; + int guardband = 0; + + skl_prefill_init_worst(&prefill_ctx, crtc_state); + + /* + * The SoC power controller runs SAGV mutually exclusive with package C states, + * so the max of package C and SAGV latencies is used to compute the min prefill guardband. + * PM delay = max(sagv_latency, pkgc_max_latency (highest enabled wm level 1 and up)) + */ + prefill_latency_us = max(display->sagv.block_time_us, + skl_watermark_max_latency(display, 1)); + + guardband = skl_prefill_min_guardband(&prefill_ctx, + crtc_state, + prefill_latency_us); + + if (intel_crtc_has_dp_encoder(crtc_state)) { + guardband = max(guardband, intel_psr_min_guardband(crtc_state)); + guardband = max(guardband, intel_dp_sdp_min_guardband(crtc_state, true)); + } + + return guardband; +} + +static bool intel_vrr_use_optimized_guardband(const struct intel_crtc_state *crtc_state) +{ + /* + * #TODO: Enable optimized guardband for HDMI + * For HDMI lot of infoframes are transmitted a line or two after vsync. + * Since with optimized guardband the double bufferring point is at delayed vblank, + * we need to ensure that vsync happens after delayed vblank for the HDMI case. + */ + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) + return false; + + return true; +} + +void intel_vrr_compute_guardband(struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; + struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; + int guardband; + + if (!intel_vrr_possible(crtc_state)) + return; + + if (intel_vrr_use_optimized_guardband(crtc_state)) + guardband = intel_vrr_compute_optimized_guardband(crtc_state); + else + guardband = crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay; + + crtc_state->vrr.guardband = min(guardband, intel_vrr_max_guardband(crtc_state)); + + if (intel_vrr_always_use_vrr_tg(display)) { + adjusted_mode->crtc_vblank_start = + adjusted_mode->crtc_vtotal - crtc_state->vrr.guardband; + /* + * pipe_mode has already been derived from the + * original adjusted_mode, keep the two in sync. + */ + pipe_mode->crtc_vblank_start = + adjusted_mode->crtc_vblank_start; + } + + if (DISPLAY_VER(display) < 13) + crtc_state->vrr.pipeline_full = + intel_vrr_guardband_to_pipeline_full(crtc_state, + crtc_state->vrr.guardband); +} + +static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + + if (DISPLAY_VER(display) >= 14) + return VRR_CTL_FLIP_LINE_EN | + XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); + else if (DISPLAY_VER(display) >= 13) + return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | + XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); + else + return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | + VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) | + VRR_CTL_PIPELINE_FULL_OVERRIDE; +} + +void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + + if (!HAS_VRR(display)) + return; + + /* + * This bit seems to have two meanings depending on the platform: + * TGL: generate VRR "safe window" for DSB vblank waits + * ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR + */ + if (IS_DISPLAY_VER(display, 12, 13)) + intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder), + 0, PIPE_VBLANK_WITH_DELAY); + + if (!intel_vrr_possible(crtc_state)) { + intel_de_write(display, + TRANS_VRR_CTL(display, cpu_transcoder), 0); + return; + } + + if (crtc_state->cmrr.enable) { + intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder), + upper_32_bits(crtc_state->cmrr.cmrr_m)); + intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder), + lower_32_bits(crtc_state->cmrr.cmrr_m)); + intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder), + upper_32_bits(crtc_state->cmrr.cmrr_n)); + intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder), + lower_32_bits(crtc_state->cmrr.cmrr_n)); + } + + intel_vrr_set_fixed_rr_timings(crtc_state); + + if (!intel_vrr_always_use_vrr_tg(display)) + intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), + trans_vrr_ctl(crtc_state)); + + if (HAS_AS_SDP(display)) + intel_de_write(display, + TRANS_VRR_VSYNC(display, cpu_transcoder), + VRR_VSYNC_END(crtc_state->vrr.vsync_end) | + VRR_VSYNC_START(crtc_state->vrr.vsync_start)); + + /* + * For BMG and LNL+ onwards the EMP_AS_SDP_TL is used for programming + * double buffering point and transmission line for VRR packets for + * HDMI2.1/DP/eDP/DP->HDMI2.1 PCON. + * Since currently we support VRR only for DP/eDP, so this is programmed + * to for Adaptive Sync SDP to Vsync start. + */ + if (DISPLAY_VERx100(display) == 1401 || DISPLAY_VER(display) >= 20) + intel_de_write(display, + EMP_AS_SDP_TL(display, cpu_transcoder), + EMP_AS_SDP_DB_TL(crtc_state->vrr.vsync_start)); +} + +void intel_vrr_send_push(struct intel_dsb *dsb, + const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + + if (!crtc_state->vrr.enable) + return; + + if (dsb) + intel_dsb_nonpost_start(dsb); + + intel_de_write_dsb(display, dsb, + TRANS_PUSH(display, cpu_transcoder), + TRANS_PUSH_EN | TRANS_PUSH_SEND); + + if (dsb) + intel_dsb_nonpost_end(dsb); +} + +void intel_vrr_check_push_sent(struct intel_dsb *dsb, + const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + + if (!crtc_state->vrr.enable) + return; + + /* + * Make sure the push send bit has cleared. This should + * already be the case as long as the caller makes sure + * this is called after the delayed vblank has occurred. + */ + if (dsb) { + int wait_us, count; + + wait_us = 2; + count = 1; + + /* + * If the bit hasn't cleared the DSB will + * raise the poll error interrupt. + */ + intel_dsb_poll(dsb, TRANS_PUSH(display, cpu_transcoder), + TRANS_PUSH_SEND, 0, wait_us, count); + } else { + if (intel_vrr_is_push_sent(crtc_state)) + drm_err(display->drm, "[CRTC:%d:%s] VRR push send still pending\n", + crtc->base.base.id, crtc->base.name); + } +} + +bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + + if (!crtc_state->vrr.enable) + return false; + + return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND; +} + +bool intel_vrr_always_use_vrr_tg(struct intel_display *display) +{ + if (!HAS_VRR(display)) + return false; + + if (DISPLAY_VER(display) >= 30) + return true; + + return false; +} + +static int intel_vrr_hw_vmin(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + + return intel_vrr_hw_value(crtc_state, crtc_state->vrr.vmin) - + intel_vrr_vmin_flipline_offset(display); +} + +static int intel_vrr_hw_vmax(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_hw_value(crtc_state, crtc_state->vrr.vmax); +} + +static int intel_vrr_hw_flipline(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_hw_value(crtc_state, crtc_state->vrr.flipline); +} + +static void intel_vrr_set_vrr_timings(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + + intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder), + intel_vrr_hw_vmin(crtc_state) - 1); + intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder), + intel_vrr_hw_vmax(crtc_state) - 1); + intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder), + intel_vrr_hw_flipline(crtc_state) - 1); +} + +static void intel_vrr_tg_enable(const struct intel_crtc_state *crtc_state, + bool cmrr_enable) +{ + struct intel_display *display = to_intel_display(crtc_state); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + u32 vrr_ctl; + + intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), TRANS_PUSH_EN); + + vrr_ctl = VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state); + + /* + * FIXME this might be broken as bspec seems to imply that + * even VRR_CTL_CMRR_ENABLE is armed by TRANS_CMRR_N_HI + * when enabling CMRR (but not when disabling CMRR?). + */ + if (cmrr_enable) + vrr_ctl |= VRR_CTL_CMRR_ENABLE; + + intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), vrr_ctl); +} + +static void intel_vrr_tg_disable(const struct intel_crtc_state *old_crtc_state) +{ + struct intel_display *display = to_intel_display(old_crtc_state); + enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; + + intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), + trans_vrr_ctl(old_crtc_state)); + + if (intel_de_wait_for_clear_ms(display, + TRANS_VRR_STATUS(display, cpu_transcoder), + VRR_STATUS_VRR_EN_LIVE, 1000)) + drm_err(display->drm, "Timed out waiting for VRR live status to clear\n"); + + intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0); +} + +void intel_vrr_enable(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + + if (!crtc_state->vrr.enable) + return; + + intel_vrr_set_vrr_timings(crtc_state); + + if (!intel_vrr_always_use_vrr_tg(display)) + intel_vrr_tg_enable(crtc_state, crtc_state->cmrr.enable); +} + +void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state) +{ + struct intel_display *display = to_intel_display(old_crtc_state); + + if (!old_crtc_state->vrr.enable) + return; + + if (!intel_vrr_always_use_vrr_tg(display)) + intel_vrr_tg_disable(old_crtc_state); + + intel_vrr_set_fixed_rr_timings(old_crtc_state); +} + +void intel_vrr_transcoder_enable(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + + if (!intel_vrr_possible(crtc_state)) + return; + + if (intel_vrr_always_use_vrr_tg(display)) + intel_vrr_tg_enable(crtc_state, false); +} + +void intel_vrr_transcoder_disable(const struct intel_crtc_state *old_crtc_state) +{ + struct intel_display *display = to_intel_display(old_crtc_state); + + if (!intel_vrr_possible(old_crtc_state)) + return; + + if (intel_vrr_always_use_vrr_tg(display)) + intel_vrr_tg_disable(old_crtc_state); +} + +bool intel_vrr_is_fixed_rr(const struct intel_crtc_state *crtc_state) +{ + return crtc_state->vrr.flipline && + crtc_state->vrr.flipline == crtc_state->vrr.vmax && + crtc_state->vrr.flipline == crtc_state->vrr.vmin; +} + +void intel_vrr_get_config(struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; + u32 trans_vrr_ctl, trans_vrr_vsync; + bool vrr_enable; + + trans_vrr_ctl = intel_de_read(display, + TRANS_VRR_CTL(display, cpu_transcoder)); + + if (HAS_CMRR(display)) + crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE); + + if (crtc_state->cmrr.enable) { + crtc_state->cmrr.cmrr_n = + intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder), + TRANS_CMRR_N_HI(display, cpu_transcoder)); + crtc_state->cmrr.cmrr_m = + intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder), + TRANS_CMRR_M_HI(display, cpu_transcoder)); + } + + if (DISPLAY_VER(display) >= 13) { + crtc_state->vrr.guardband = + REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl); + } else { + if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE) { + crtc_state->vrr.pipeline_full = + REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl); + + crtc_state->vrr.guardband = + intel_vrr_pipeline_full_to_guardband(crtc_state, + crtc_state->vrr.pipeline_full); + } + } + + if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) { + crtc_state->vrr.flipline = intel_de_read(display, + TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1; + crtc_state->vrr.vmax = intel_de_read(display, + TRANS_VRR_VMAX(display, cpu_transcoder)) + 1; + crtc_state->vrr.vmin = intel_de_read(display, + TRANS_VRR_VMIN(display, cpu_transcoder)) + 1; + + if (DISPLAY_VER(display) < 13) { + /* undo what intel_vrr_hw_value() does when writing the values */ + crtc_state->vrr.flipline += crtc_state->set_context_latency; + crtc_state->vrr.vmax += crtc_state->set_context_latency; + crtc_state->vrr.vmin += crtc_state->set_context_latency; + + crtc_state->vrr.vmin += intel_vrr_vmin_flipline_offset(display); + } + + /* + * For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal + * bits are not filled. Since for these platforms TRAN_VMIN is always + * filled with crtc_vtotal, use TRAN_VRR_VMIN to get the vtotal for + * adjusted_mode. + */ + if (intel_vrr_always_use_vrr_tg(display)) + crtc_state->hw.adjusted_mode.crtc_vtotal = + intel_vrr_vmin_vtotal(crtc_state); + + if (HAS_AS_SDP(display)) { + trans_vrr_vsync = + intel_de_read(display, + TRANS_VRR_VSYNC(display, cpu_transcoder)); + crtc_state->vrr.vsync_start = + REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync); + crtc_state->vrr.vsync_end = + REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync); + } + } + + vrr_enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE; + + if (intel_vrr_always_use_vrr_tg(display)) + crtc_state->vrr.enable = vrr_enable && !intel_vrr_is_fixed_rr(crtc_state); + else + crtc_state->vrr.enable = vrr_enable; + + /* + * #TODO: For Both VRR and CMRR the flag I915_MODE_FLAG_VRR is set for mode_flags. + * Since CMRR is currently disabled, set this flag for VRR for now. + * Need to keep this in mind while re-enabling CMRR. + */ + if (crtc_state->vrr.enable) + crtc_state->mode_flags |= I915_MODE_FLAG_VRR; + + /* + * For platforms that always use the VRR timing generator, we overwrite + * crtc_vblank_start with vtotal - guardband to reflect the delayed + * vblank start. This works for both default and optimized guardband values. + * On other platforms, we keep the original value from + * intel_get_transcoder_timings() and apply adjustments only in VRR-specific + * paths as needed. + */ + if (intel_vrr_always_use_vrr_tg(display)) + crtc_state->hw.adjusted_mode.crtc_vblank_start = + crtc_state->hw.adjusted_mode.crtc_vtotal - + crtc_state->vrr.guardband; +} + +int intel_vrr_safe_window_start(const struct intel_crtc_state *crtc_state) +{ + struct intel_display *display = to_intel_display(crtc_state); + + if (DISPLAY_VER(display) >= 30) + return crtc_state->hw.adjusted_mode.crtc_vdisplay - + crtc_state->set_context_latency; + else + return crtc_state->hw.adjusted_mode.crtc_vdisplay; +} + +int intel_vrr_vmin_safe_window_end(const struct intel_crtc_state *crtc_state) +{ + return intel_vrr_vmin_vblank_start(crtc_state) - + crtc_state->set_context_latency; +} |
