diff options
Diffstat (limited to 'drivers/gpu/drm/i915/gt/uc/intel_huc.c')
| -rw-r--r-- | drivers/gpu/drm/i915/gt/uc/intel_huc.c | 692 |
1 files changed, 692 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gt/uc/intel_huc.c b/drivers/gpu/drm/i915/gt/uc/intel_huc.c new file mode 100644 index 000000000000..456d3372eef8 --- /dev/null +++ b/drivers/gpu/drm/i915/gt/uc/intel_huc.c @@ -0,0 +1,692 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2016-2019 Intel Corporation + */ + +#include <linux/types.h> + +#include "gt/intel_gt.h" +#include "gt/intel_rps.h" +#include "intel_guc_reg.h" +#include "intel_huc.h" +#include "intel_huc_print.h" +#include "i915_drv.h" +#include "i915_reg.h" +#include "pxp/intel_pxp_cmd_interface_43.h" + +#include <linux/device/bus.h> +#include <linux/mei_aux.h> + +/** + * DOC: HuC + * + * The HuC is a dedicated microcontroller for usage in media HEVC (High + * Efficiency Video Coding) operations. Userspace can directly use the firmware + * capabilities by adding HuC specific commands to batch buffers. + * + * The kernel driver is only responsible for loading the HuC firmware and + * triggering its security authentication. This is done differently depending + * on the platform: + * + * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA + * and the authentication via GuC + * - DG2: load and authentication are both performed via GSC. + * - MTL and newer platforms: the load is performed via DMA (same as with + * not-DG2 older platforms), while the authentication is done in 2-steps, + * a first auth for clear-media workloads via GuC and a second one for all + * workloads via GSC. + * + * On platforms where the GuC does the authentication, to correctly do so the + * HuC binary must be loaded before the GuC one. + * Loading the HuC is optional; however, not using the HuC might negatively + * impact power usage and/or performance of media workloads, depending on the + * use-cases. + * HuC must be reloaded on events that cause the WOPCM to lose its contents + * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT + * reset, while on newer ones it will survive that. + * + * See https://github.com/intel/media-driver for the latest details on HuC + * functionality. + */ + +/** + * DOC: HuC Memory Management + * + * Similarly to the GuC, the HuC can't do any memory allocations on its own, + * with the difference being that the allocations for HuC usage are handled by + * the userspace driver instead of the kernel one. The HuC accesses the memory + * via the PPGTT belonging to the context loaded on the VCS executing the + * HuC-specific commands. + */ + +/* + * MEI-GSC load is an async process. The probing of the exposed aux device + * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending + * on when the kernel schedules it. Unless something goes terribly wrong, we're + * guaranteed for this to happen during boot, so the big timeout is a safety net + * that we never expect to need. + * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed + * and/or reset, this can take longer. Note that the kernel might schedule + * other work between the i915 init/resume and the MEI one, which can add to + * the delay. + */ +#define GSC_INIT_TIMEOUT_MS 10000 +#define PXP_INIT_TIMEOUT_MS 5000 + +static int sw_fence_dummy_notify(struct i915_sw_fence *sf, + enum i915_sw_fence_notify state) +{ + return NOTIFY_DONE; +} + +static void __delayed_huc_load_complete(struct intel_huc *huc) +{ + if (!i915_sw_fence_done(&huc->delayed_load.fence)) + i915_sw_fence_complete(&huc->delayed_load.fence); +} + +static void delayed_huc_load_complete(struct intel_huc *huc) +{ + hrtimer_cancel(&huc->delayed_load.timer); + __delayed_huc_load_complete(huc); +} + +static void __gsc_init_error(struct intel_huc *huc) +{ + huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR; + __delayed_huc_load_complete(huc); +} + +static void gsc_init_error(struct intel_huc *huc) +{ + hrtimer_cancel(&huc->delayed_load.timer); + __gsc_init_error(huc); +} + +static void gsc_init_done(struct intel_huc *huc) +{ + hrtimer_cancel(&huc->delayed_load.timer); + + /* MEI-GSC init is done, now we wait for MEI-PXP to bind */ + huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP; + if (!i915_sw_fence_done(&huc->delayed_load.fence)) + hrtimer_start(&huc->delayed_load.timer, + ms_to_ktime(PXP_INIT_TIMEOUT_MS), + HRTIMER_MODE_REL); +} + +static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer) +{ + struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer); + + if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) { + if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC) + huc_notice(huc, "timed out waiting for MEI GSC\n"); + else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP) + huc_notice(huc, "timed out waiting for MEI PXP\n"); + else + MISSING_CASE(huc->delayed_load.status); + + __gsc_init_error(huc); + } + + return HRTIMER_NORESTART; +} + +static void huc_delayed_load_start(struct intel_huc *huc) +{ + ktime_t delay; + + GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)); + + /* + * On resume we don't have to wait for MEI-GSC to be re-probed, but we + * do need to wait for MEI-PXP to reset & re-bind + */ + switch (huc->delayed_load.status) { + case INTEL_HUC_WAITING_ON_GSC: + delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS); + break; + case INTEL_HUC_WAITING_ON_PXP: + delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS); + break; + default: + gsc_init_error(huc); + return; + } + + /* + * This fence is always complete unless we're waiting for the + * GSC device to come up to load the HuC. We arm the fence here + * and complete it when we confirm that the HuC is loaded from + * the PXP bind callback. + */ + GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence)); + i915_sw_fence_fini(&huc->delayed_load.fence); + i915_sw_fence_reinit(&huc->delayed_load.fence); + i915_sw_fence_await(&huc->delayed_load.fence); + i915_sw_fence_commit(&huc->delayed_load.fence); + + hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL); +} + +static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data) +{ + struct device *dev = data; + struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb); + struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0]; + + if (!intf->adev || &intf->adev->aux_dev.dev != dev) + return 0; + + switch (action) { + case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */ + gsc_init_done(huc); + break; + + case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */ + case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */ + huc_info(huc, "MEI driver not bound, disabling load\n"); + gsc_init_error(huc); + break; + } + + return 0; +} + +void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) +{ + int ret; + + if (!intel_huc_is_loaded_by_gsc(huc)) + return; + + huc->delayed_load.nb.notifier_call = gsc_notifier; + ret = bus_register_notifier(bus, &huc->delayed_load.nb); + if (ret) { + huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret)); + huc->delayed_load.nb.notifier_call = NULL; + gsc_init_error(huc); + } +} + +void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) +{ + if (!huc->delayed_load.nb.notifier_call) + return; + + delayed_huc_load_complete(huc); + + bus_unregister_notifier(bus, &huc->delayed_load.nb); + huc->delayed_load.nb.notifier_call = NULL; +} + +static void delayed_huc_load_init(struct intel_huc *huc) +{ + /* + * Initialize fence to be complete as this is expected to be complete + * unless there is a delayed HuC load in progress. + */ + i915_sw_fence_init(&huc->delayed_load.fence, + sw_fence_dummy_notify); + i915_sw_fence_commit(&huc->delayed_load.fence); + + hrtimer_setup(&huc->delayed_load.timer, huc_delayed_load_timer_callback, CLOCK_MONOTONIC, + HRTIMER_MODE_REL); +} + +static void delayed_huc_load_fini(struct intel_huc *huc) +{ + /* + * the fence is initialized in init_early, so we need to clean it up + * even if HuC loading is off. + */ + delayed_huc_load_complete(huc); + i915_sw_fence_fini(&huc->delayed_load.fence); +} + +int intel_huc_sanitize(struct intel_huc *huc) +{ + delayed_huc_load_complete(huc); + intel_uc_fw_sanitize(&huc->fw); + return 0; +} + +static bool vcs_supported(struct intel_gt *gt) +{ + intel_engine_mask_t mask = gt->info.engine_mask; + + /* + * We reach here from i915_driver_early_probe for the primary GT before + * its engine mask is set, so we use the device info engine mask for it; + * this means we're not taking VCS fusing into account, but if the + * primary GT supports VCS engines we expect at least one of them to + * remain unfused so we're fine. + * For other GTs we expect the GT-specific mask to be set before we + * call this function. + */ + GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); + + if (gt_is_root(gt)) + mask = INTEL_INFO(gt->i915)->platform_engine_mask; + else + mask = gt->info.engine_mask; + + return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS); +} + +void intel_huc_init_early(struct intel_huc *huc) +{ + struct drm_i915_private *i915 = huc_to_gt(huc)->i915; + struct intel_gt *gt = huc_to_gt(huc); + + intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true); + + /* + * we always init the fence as already completed, even if HuC is not + * supported. This way we don't have to distinguish between HuC not + * supported/disabled or already loaded, and can focus on if the load + * is currently in progress (fence not complete) or not, which is what + * we care about for stalling userspace submissions. + */ + delayed_huc_load_init(huc); + + if (!vcs_supported(gt)) { + intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); + return; + } + + if (GRAPHICS_VER(i915) >= 11) { + huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO; + huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL; + huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL; + } else { + huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2; + huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED; + huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED; + } + + if (IS_DG2(i915)) { + huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO; + huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL; + huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL; + } else { + huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5); + huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE; + huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE; + } +} + +void intel_huc_fini_late(struct intel_huc *huc) +{ + delayed_huc_load_fini(huc); +} + +#define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy") +static int check_huc_loading_mode(struct intel_huc *huc) +{ + struct intel_gt *gt = huc_to_gt(huc); + bool gsc_enabled = huc->fw.has_gsc_headers; + + /* + * The fuse for HuC load via GSC is only valid on platforms that have + * GuC deprivilege. + */ + if (HAS_GUC_DEPRIVILEGE(gt->i915)) + huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) & + GSC_LOADS_HUC; + + if (huc->loaded_via_gsc && !gsc_enabled) { + huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n"); + return -ENOEXEC; + } + + /* + * On newer platforms we have GSC-enabled binaries but we load the HuC + * via DMA. To do so we need to find the location of the legacy-style + * binary inside the GSC-enabled one, which we do at fetch time. Make + * sure that we were able to do so if the fuse says we need to load via + * DMA and the binary is GSC-enabled. + */ + if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) { + huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n"); + return -ENOEXEC; + } + + /* + * If the HuC is loaded via GSC, we need to be able to access the GSC. + * On DG2 this is done via the mei components, while on newer platforms + * it is done via the GSCCS, + */ + if (huc->loaded_via_gsc) { + if (IS_DG2(gt->i915)) { + if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) || + !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) { + huc_info(huc, "can't load due to missing mei modules\n"); + return -EIO; + } + } else { + if (!HAS_ENGINE(gt, GSC0)) { + huc_info(huc, "can't load due to missing GSCCS\n"); + return -EIO; + } + } + } + + huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc)); + + return 0; +} + +int intel_huc_init(struct intel_huc *huc) +{ + struct intel_gt *gt = huc_to_gt(huc); + int err; + + err = check_huc_loading_mode(huc); + if (err) + goto out; + + if (HAS_ENGINE(gt, GSC0)) { + struct i915_vma *vma; + + vma = intel_guc_allocate_vma(gt_to_guc(gt), PXP43_HUC_AUTH_INOUT_SIZE * 2); + if (IS_ERR(vma)) { + err = PTR_ERR(vma); + huc_info(huc, "Failed to allocate heci pkt\n"); + goto out; + } + + huc->heci_pkt = vma; + } + + err = intel_uc_fw_init(&huc->fw); + if (err) + goto out_pkt; + + intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); + + return 0; + +out_pkt: + if (huc->heci_pkt) + i915_vma_unpin_and_release(&huc->heci_pkt, 0); +out: + intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); + huc_info(huc, "initialization failed %pe\n", ERR_PTR(err)); + return err; +} + +void intel_huc_fini(struct intel_huc *huc) +{ + if (huc->heci_pkt) + i915_vma_unpin_and_release(&huc->heci_pkt, 0); + + if (intel_uc_fw_is_loadable(&huc->fw)) + intel_uc_fw_fini(&huc->fw); +} + +static const char *auth_mode_string(struct intel_huc *huc, + enum intel_huc_authentication_type type) +{ + bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC; + + return partial ? "clear media" : "all workloads"; +} + +/* + * Use a longer timeout for debug builds so that problems can be detected + * and analysed. But a shorter timeout for releases so that user's don't + * wait forever to find out there is a problem. Note that the only reason + * an end user should hit the timeout is in case of extreme thermal throttling. + * And a system that is that hot during boot is probably dead anyway! + */ +#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) +#define HUC_LOAD_RETRY_LIMIT 20 +#else +#define HUC_LOAD_RETRY_LIMIT 3 +#endif + +int intel_huc_wait_for_auth_complete(struct intel_huc *huc, + enum intel_huc_authentication_type type) +{ + struct intel_gt *gt = huc_to_gt(huc); + struct intel_uncore *uncore = gt->uncore; + ktime_t before, after, delta; + int ret, count; + u64 delta_ms; + u32 before_freq; + + /* + * The KMD requests maximum frequency during driver load, however thermal + * throttling can force the frequency down to minimum (although the board + * really should never get that hot in real life!). IFWI issues have been + * seen to cause sporadic failures to grant the higher frequency. And at + * minimum frequency, the authentication time can be in the seconds range. + * Note that there is a limit on how long an individual wait_for() can wait. + * So wrap it in a loop. + */ + before_freq = intel_rps_read_actual_frequency(>->rps); + before = ktime_get(); + for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) { + ret = __intel_wait_for_register(gt->uncore, + huc->status[type].reg, + huc->status[type].mask, + huc->status[type].value, + 2, 1000, NULL); + if (!ret) + break; + + huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n", + count, intel_rps_read_actual_frequency(>->rps), + huc->status[type].reg.reg); + } + after = ktime_get(); + delta = ktime_sub(after, before); + delta_ms = ktime_to_ms(delta); + + if (delta_ms > 50) { + huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n", + delta_ms, huc->status[type].reg.reg, count, ret); + huc_warn(huc, "excessive auth time: [freq = %dMHz -> %dMHz vs %dMHz, perf_limit_reasons = 0x%08X]\n", + before_freq, intel_rps_read_actual_frequency(>->rps), + intel_rps_get_requested_frequency(>->rps), + intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt))); + } else { + huc_dbg(huc, "auth took %lldms, freq = %dMHz -> %dMHz vs %dMHz, status = 0x%08X, count = %d, ret = %d\n", + delta_ms, before_freq, intel_rps_read_actual_frequency(>->rps), + intel_rps_get_requested_frequency(>->rps), + huc->status[type].reg.reg, count, ret); + } + + /* mark the load process as complete even if the wait failed */ + delayed_huc_load_complete(huc); + + if (ret) { + huc_err(huc, "firmware not verified for %s: %pe\n", + auth_mode_string(huc, type), ERR_PTR(ret)); + intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); + return ret; + } + + intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); + huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type)); + return 0; +} + +/** + * intel_huc_auth() - Authenticate HuC uCode + * @huc: intel_huc structure + * @type: authentication type (via GuC or via GSC) + * + * Called after HuC and GuC firmware loading during intel_uc_init_hw(). + * + * This function invokes the GuC action to authenticate the HuC firmware, + * passing the offset of the RSA signature to intel_guc_auth_huc(). It then + * waits for up to 50ms for firmware verification ACK. + */ +int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type) +{ + struct intel_gt *gt = huc_to_gt(huc); + struct intel_guc *guc = gt_to_guc(gt); + int ret; + + if (!intel_uc_fw_is_loaded(&huc->fw)) + return -ENOEXEC; + + /* GSC will do the auth with the load */ + if (intel_huc_is_loaded_by_gsc(huc)) + return -ENODEV; + + if (intel_huc_is_authenticated(huc, type)) + return -EEXIST; + + ret = i915_inject_probe_error(gt->i915, -ENXIO); + if (ret) + goto fail; + + switch (type) { + case INTEL_HUC_AUTH_BY_GUC: + ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data)); + break; + case INTEL_HUC_AUTH_BY_GSC: + ret = intel_huc_fw_auth_via_gsccs(huc); + break; + default: + MISSING_CASE(type); + ret = -EINVAL; + } + if (ret) + goto fail; + + /* Check authentication status, it should be done by now */ + ret = intel_huc_wait_for_auth_complete(huc, type); + if (ret) + goto fail; + + return 0; + +fail: + huc_probe_error(huc, "%s authentication failed %pe\n", + auth_mode_string(huc, type), ERR_PTR(ret)); + return ret; +} + +bool intel_huc_is_authenticated(struct intel_huc *huc, + enum intel_huc_authentication_type type) +{ + struct intel_gt *gt = huc_to_gt(huc); + intel_wakeref_t wakeref; + u32 status = 0; + + with_intel_runtime_pm(gt->uncore->rpm, wakeref) + status = intel_uncore_read(gt->uncore, huc->status[type].reg); + + return (status & huc->status[type].mask) == huc->status[type].value; +} + +static bool huc_is_fully_authenticated(struct intel_huc *huc) +{ + struct intel_uc_fw *huc_fw = &huc->fw; + + if (!huc_fw->has_gsc_headers) + return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC); + else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0)) + return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC); + else + return false; +} + +/** + * intel_huc_check_status() - check HuC status + * @huc: intel_huc structure + * + * This function reads status register to verify if HuC + * firmware was successfully loaded. + * + * The return values match what is expected for the I915_PARAM_HUC_STATUS + * getparam. + */ +int intel_huc_check_status(struct intel_huc *huc) +{ + struct intel_uc_fw *huc_fw = &huc->fw; + + switch (__intel_uc_fw_status(huc_fw)) { + case INTEL_UC_FIRMWARE_NOT_SUPPORTED: + return -ENODEV; + case INTEL_UC_FIRMWARE_DISABLED: + return -EOPNOTSUPP; + case INTEL_UC_FIRMWARE_MISSING: + return -ENOPKG; + case INTEL_UC_FIRMWARE_ERROR: + return -ENOEXEC; + case INTEL_UC_FIRMWARE_INIT_FAIL: + return -ENOMEM; + case INTEL_UC_FIRMWARE_LOAD_FAIL: + return -EIO; + default: + break; + } + + /* + * GSC-enabled binaries loaded via DMA are first partially + * authenticated by GuC and then fully authenticated by GSC + */ + if (huc_is_fully_authenticated(huc)) + return 1; /* full auth */ + else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) && + intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC)) + return 2; /* clear media only */ + else + return 0; +} + +static bool huc_has_delayed_load(struct intel_huc *huc) +{ + return intel_huc_is_loaded_by_gsc(huc) && + (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR); +} + +void intel_huc_update_auth_status(struct intel_huc *huc) +{ + if (!intel_uc_fw_is_loadable(&huc->fw)) + return; + + if (!huc->fw.has_gsc_headers) + return; + + if (huc_is_fully_authenticated(huc)) + intel_uc_fw_change_status(&huc->fw, + INTEL_UC_FIRMWARE_RUNNING); + else if (huc_has_delayed_load(huc)) + huc_delayed_load_start(huc); +} + +/** + * intel_huc_load_status - dump information about HuC load status + * @huc: the HuC + * @p: the &drm_printer + * + * Pretty printer for HuC load status. + */ +void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) +{ + struct intel_gt *gt = huc_to_gt(huc); + intel_wakeref_t wakeref; + + if (!intel_huc_is_supported(huc)) { + drm_printf(p, "HuC not supported\n"); + return; + } + + if (!intel_huc_is_wanted(huc)) { + drm_printf(p, "HuC disabled\n"); + return; + } + + intel_uc_fw_dump(&huc->fw, p); + + with_intel_runtime_pm(gt->uncore->rpm, wakeref) + drm_printf(p, "HuC status: 0x%08x\n", + intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg)); +} |
