diff options
Diffstat (limited to 'drivers/gpu/drm/i915/i915_active.c')
| -rw-r--r-- | drivers/gpu/drm/i915/i915_active.c | 415 |
1 files changed, 264 insertions, 151 deletions
diff --git a/drivers/gpu/drm/i915/i915_active.c b/drivers/gpu/drm/i915/i915_active.c index d960d0be5bd2..6b0c1162505a 100644 --- a/drivers/gpu/drm/i915/i915_active.c +++ b/drivers/gpu/drm/i915/i915_active.c @@ -13,7 +13,6 @@ #include "i915_drv.h" #include "i915_active.h" -#include "i915_globals.h" /* * Active refs memory management @@ -22,18 +21,17 @@ * they idle (when we know the active requests are inactive) and allocate the * nodes from a local slab cache to hopefully reduce the fragmentation. */ -static struct i915_global_active { - struct i915_global base; - struct kmem_cache *slab_cache; -} global; +static struct kmem_cache *slab_cache; struct active_node { + struct rb_node node; struct i915_active_fence base; struct i915_active *ref; - struct rb_node node; u64 timeline; }; +#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) + static inline struct active_node * node_from_active(struct i915_active_fence *active) { @@ -81,7 +79,7 @@ static void *active_debug_hint(void *addr) return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; } -static struct debug_obj_descr active_debug_desc = { +static const struct debug_obj_descr active_debug_desc = { .name = "i915_active", .debug_hint = active_debug_hint, }; @@ -94,8 +92,7 @@ static void debug_active_init(struct i915_active *ref) static void debug_active_activate(struct i915_active *ref) { lockdep_assert_held(&ref->tree_lock); - if (!atomic_read(&ref->count)) /* before the first inc */ - debug_object_activate(ref, &active_debug_desc); + debug_object_activate(ref, &active_debug_desc); } static void debug_active_deactivate(struct i915_active *ref) @@ -128,8 +125,8 @@ static inline void debug_active_assert(struct i915_active *ref) { } static void __active_retire(struct i915_active *ref) { + struct rb_root root = RB_ROOT; struct active_node *it, *n; - struct rb_root root; unsigned long flags; GEM_BUG_ON(i915_active_is_idle(ref)); @@ -141,9 +138,24 @@ __active_retire(struct i915_active *ref) GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); debug_active_deactivate(ref); - root = ref->tree; - ref->tree = RB_ROOT; - ref->cache = NULL; + /* Even if we have not used the cache, we may still have a barrier */ + if (!ref->cache) + ref->cache = fetch_node(ref->tree.rb_node); + + /* Keep the MRU cached node for reuse */ + if (ref->cache) { + /* Discard all other nodes in the tree */ + rb_erase(&ref->cache->node, &ref->tree); + root = ref->tree; + + /* Rebuild the tree with only the cached node */ + rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); + rb_insert_color(&ref->cache->node, &ref->tree); + GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); + + /* Make the cached node available for reuse with any timeline */ + ref->cache->timeline = 0; /* needs cmpxchg(u64) */ + } spin_unlock_irqrestore(&ref->tree_lock, flags); @@ -154,9 +166,10 @@ __active_retire(struct i915_active *ref) /* ... except if you wait on it, you must manage your own references! */ wake_up_var(ref); + /* Finally free the discarded timeline tree */ rbtree_postorder_for_each_entry_safe(it, n, &root, node) { GEM_BUG_ON(i915_active_fence_isset(&it->base)); - kmem_cache_free(global.slab_cache, it); + kmem_cache_free(slab_cache, it); } } @@ -199,7 +212,7 @@ active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) struct i915_active_fence *active = container_of(cb, typeof(*active), cb); - return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; + return try_cmpxchg(__active_fence_slot(active), &fence, NULL); } static void @@ -216,12 +229,11 @@ excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) active_retire(container_of(cb, struct i915_active, excl.cb)); } -static struct i915_active_fence * -active_instance(struct i915_active *ref, struct intel_timeline *tl) +static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) { - struct active_node *node, *prealloc; - struct rb_node **p, *parent; - u64 idx = tl->fence_context; + struct active_node *it; + + GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ /* * We track the most recently used timeline to skip a rbtree search @@ -230,14 +242,57 @@ active_instance(struct i915_active *ref, struct intel_timeline *tl) * after the previous activity has been retired, or if it matches the * current timeline. */ - node = READ_ONCE(ref->cache); - if (node && node->timeline == idx) - return &node->base; + it = READ_ONCE(ref->cache); + if (it) { + u64 cached = READ_ONCE(it->timeline); - /* Preallocate a replacement, just in case */ - prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); - if (!prealloc) - return NULL; + /* Once claimed, this slot will only belong to this idx */ + if (cached == idx) + return it; + + /* + * An unclaimed cache [.timeline=0] can only be claimed once. + * + * If the value is already non-zero, some other thread has + * claimed the cache and we know that is does not match our + * idx. If, and only if, the timeline is currently zero is it + * worth competing to claim it atomically for ourselves (for + * only the winner of that race will cmpxchg succeed). + */ + if (!cached && try_cmpxchg64(&it->timeline, &cached, idx)) + return it; + } + + BUILD_BUG_ON(offsetof(typeof(*it), node)); + + /* While active, the tree can only be built; not destroyed */ + GEM_BUG_ON(i915_active_is_idle(ref)); + + it = fetch_node(ref->tree.rb_node); + while (it) { + if (it->timeline < idx) { + it = fetch_node(it->node.rb_right); + } else if (it->timeline > idx) { + it = fetch_node(it->node.rb_left); + } else { + WRITE_ONCE(ref->cache, it); + break; + } + } + + /* NB: If the tree rotated beneath us, we may miss our target. */ + return it; +} + +static struct i915_active_fence * +active_instance(struct i915_active *ref, u64 idx) +{ + struct active_node *node; + struct rb_node **p, *parent; + + node = __active_lookup(ref, idx); + if (likely(node)) + return &node->base; spin_lock_irq(&ref->tree_lock); GEM_BUG_ON(i915_active_is_idle(ref)); @@ -248,10 +303,8 @@ active_instance(struct i915_active *ref, struct intel_timeline *tl) parent = *p; node = rb_entry(parent, struct active_node, node); - if (node->timeline == idx) { - kmem_cache_free(global.slab_cache, prealloc); + if (node->timeline == idx) goto out; - } if (node->timeline < idx) p = &parent->rb_right; @@ -259,7 +312,14 @@ active_instance(struct i915_active *ref, struct intel_timeline *tl) p = &parent->rb_left; } - node = prealloc; + /* + * XXX: We should preallocate this before i915_active_ref() is ever + * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. + */ + node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); + if (!node) + goto out; + __i915_active_fence_init(&node->base, NULL, node_retire); node->ref = ref; node->timeline = idx; @@ -268,28 +328,24 @@ active_instance(struct i915_active *ref, struct intel_timeline *tl) rb_insert_color(&node->node, &ref->tree); out: - ref->cache = node; + WRITE_ONCE(ref->cache, node); spin_unlock_irq(&ref->tree_lock); - BUILD_BUG_ON(offsetof(typeof(*node), base)); return &node->base; } void __i915_active_init(struct i915_active *ref, int (*active)(struct i915_active *ref), void (*retire)(struct i915_active *ref), + unsigned long flags, struct lock_class_key *mkey, struct lock_class_key *wkey) { - unsigned long bits; - debug_active_init(ref); - ref->flags = 0; + ref->flags = flags; ref->active = active; - ref->retire = ptr_unpack_bits(retire, &bits, 2); - if (bits & I915_ACTIVE_MAY_SLEEP) - ref->flags |= I915_ACTIVE_RETIRE_SLEEPS; + ref->retire = retire; spin_lock_init(&ref->tree_lock); ref->tree = RB_ROOT; @@ -353,69 +409,96 @@ __active_del_barrier(struct i915_active *ref, struct active_node *node) return ____active_del_barrier(ref, node, barrier_to_engine(node)); } -int i915_active_ref(struct i915_active *ref, - struct intel_timeline *tl, - struct dma_fence *fence) +static bool +replace_barrier(struct i915_active *ref, struct i915_active_fence *active) { + if (!is_barrier(active)) /* proto-node used by our idle barrier? */ + return false; + + /* + * This request is on the kernel_context timeline, and so + * we can use it to substitute for the pending idle-barrer + * request that we want to emit on the kernel_context. + */ + return __active_del_barrier(ref, node_from_active(active)); +} + +int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) +{ + u64 idx = i915_request_timeline(rq)->fence_context; + struct dma_fence *fence = &rq->fence; struct i915_active_fence *active; int err; - lockdep_assert_held(&tl->mutex); - /* Prevent reaping in case we malloc/wait while building the tree */ err = i915_active_acquire(ref); if (err) return err; - active = active_instance(ref, tl); - if (!active) { - err = -ENOMEM; - goto out; - } + do { + active = active_instance(ref, idx); + if (!active) { + err = -ENOMEM; + goto out; + } - if (is_barrier(active)) { /* proto-node used by our idle barrier */ - /* - * This request is on the kernel_context timeline, and so - * we can use it to substitute for the pending idle-barrer - * request that we want to emit on the kernel_context. - */ - __active_del_barrier(ref, node_from_active(active)); - RCU_INIT_POINTER(active->fence, NULL); - atomic_dec(&ref->count); - } - if (!__i915_active_fence_set(active, fence)) - atomic_inc(&ref->count); + if (replace_barrier(ref, active)) { + RCU_INIT_POINTER(active->fence, NULL); + atomic_dec(&ref->count); + } + } while (unlikely(is_barrier(active))); + + fence = __i915_active_fence_set(active, fence); + if (!fence) + __i915_active_acquire(ref); + else + dma_fence_put(fence); out: i915_active_release(ref); return err; } -struct dma_fence * -i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) +static struct dma_fence * +__i915_active_set_fence(struct i915_active *ref, + struct i915_active_fence *active, + struct dma_fence *fence) { struct dma_fence *prev; - /* We expect the caller to manage the exclusive timeline ordering */ - GEM_BUG_ON(i915_active_is_idle(ref)); + if (replace_barrier(ref, active)) { + RCU_INIT_POINTER(active->fence, fence); + return NULL; + } - rcu_read_lock(); - prev = __i915_active_fence_set(&ref->excl, f); - if (prev) - prev = dma_fence_get_rcu(prev); - else - atomic_inc(&ref->count); - rcu_read_unlock(); + prev = __i915_active_fence_set(active, fence); + if (!prev) + __i915_active_acquire(ref); return prev; } +struct dma_fence * +i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) +{ + /* We expect the caller to manage the exclusive timeline ordering */ + return __i915_active_set_fence(ref, &ref->excl, f); +} + bool i915_active_acquire_if_busy(struct i915_active *ref) { debug_active_assert(ref); return atomic_add_unless(&ref->count, 1, 0); } +static void __i915_active_activate(struct i915_active *ref) +{ + spin_lock_irq(&ref->tree_lock); /* __active_retire() */ + if (!atomic_fetch_inc(&ref->count)) + debug_active_activate(ref); + spin_unlock_irq(&ref->tree_lock); +} + int i915_active_acquire(struct i915_active *ref) { int err; @@ -423,19 +506,19 @@ int i915_active_acquire(struct i915_active *ref) if (i915_active_acquire_if_busy(ref)) return 0; + if (!ref->active) { + __i915_active_activate(ref); + return 0; + } + err = mutex_lock_interruptible(&ref->mutex); if (err) return err; if (likely(!i915_active_acquire_if_busy(ref))) { - if (ref->active) - err = ref->active(ref); - if (!err) { - spin_lock_irq(&ref->tree_lock); /* __active_retire() */ - debug_active_activate(ref); - atomic_inc(&ref->count); - spin_unlock_irq(&ref->tree_lock); - } + err = ref->active(ref); + if (!err) + __i915_active_activate(ref); } mutex_unlock(&ref->mutex); @@ -498,24 +581,26 @@ static int flush_lazy_signals(struct i915_active *ref) int __i915_active_wait(struct i915_active *ref, int state) { - int err; - might_sleep(); - if (!i915_active_acquire_if_busy(ref)) - return 0; - /* Any fence added after the wait begins will not be auto-signaled */ - err = flush_lazy_signals(ref); - i915_active_release(ref); - if (err) - return err; + if (i915_active_acquire_if_busy(ref)) { + int err; - if (!i915_active_is_idle(ref) && - ___wait_var_event(ref, i915_active_is_idle(ref), - state, 0, 0, schedule())) - return -EINTR; + err = flush_lazy_signals(ref); + i915_active_release(ref); + if (err) + return err; + if (___wait_var_event(ref, i915_active_is_idle(ref), + state, 0, 0, schedule())) + return -EINTR; + } + + /* + * After the wait is complete, the caller may free the active. + * We have to flush any concurrent retirement before returning. + */ flush_work(&ref->work); return 0; } @@ -651,16 +736,16 @@ int i915_sw_fence_await_active(struct i915_sw_fence *fence, return await_active(ref, flags, sw_await_fence, fence, fence); } -#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) void i915_active_fini(struct i915_active *ref) { debug_active_fini(ref); GEM_BUG_ON(atomic_read(&ref->count)); GEM_BUG_ON(work_pending(&ref->work)); - GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree)); mutex_destroy(&ref->mutex); + + if (ref->cache) + kmem_cache_free(slab_cache, ref->cache); } -#endif static inline bool is_idle_barrier(struct active_node *node, u64 idx) { @@ -674,7 +759,6 @@ static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) if (RB_EMPTY_ROOT(&ref->tree)) return NULL; - spin_lock_irq(&ref->tree_lock); GEM_BUG_ON(i915_active_is_idle(ref)); /* @@ -700,9 +784,9 @@ static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) prev = p; if (node->timeline < idx) - p = p->rb_right; + p = READ_ONCE(p->rb_right); else - p = p->rb_left; + p = READ_ONCE(p->rb_left); } /* @@ -739,14 +823,13 @@ static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) goto match; } - spin_unlock_irq(&ref->tree_lock); - return NULL; match: + spin_lock_irq(&ref->tree_lock); rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ if (p == &ref->cache->node) - ref->cache = NULL; + WRITE_ONCE(ref->cache, NULL); spin_unlock_irq(&ref->tree_lock); return rb_entry(p, struct active_node, node); @@ -758,7 +841,6 @@ int i915_active_acquire_preallocate_barrier(struct i915_active *ref, intel_engine_mask_t tmp, mask = engine->mask; struct llist_node *first = NULL, *last = NULL; struct intel_gt *gt = engine->gt; - int err; GEM_BUG_ON(i915_active_is_idle(ref)); @@ -778,13 +860,13 @@ int i915_active_acquire_preallocate_barrier(struct i915_active *ref, struct llist_node *prev = first; struct active_node *node; + rcu_read_lock(); node = reuse_idle_barrier(ref, idx); + rcu_read_unlock(); if (!node) { - node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); - if (!node) { - err = ENOMEM; + node = kmem_cache_alloc(slab_cache, GFP_KERNEL); + if (!node) goto unwind; - } RCU_INIT_POINTER(node->base.fence, NULL); node->base.cb.func = node_retire; @@ -804,7 +886,7 @@ int i915_active_acquire_preallocate_barrier(struct i915_active *ref, */ RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); node->base.cb.node.prev = (void *)engine; - atomic_inc(&ref->count); + __i915_active_acquire(ref); } GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); @@ -830,9 +912,9 @@ unwind: atomic_dec(&ref->count); intel_engine_pm_put(barrier_to_engine(node)); - kmem_cache_free(global.slab_cache, node); + kmem_cache_free(slab_cache, node); } - return err; + return -ENOMEM; } void i915_active_acquire_barrier(struct i915_active *ref) @@ -874,7 +956,7 @@ void i915_active_acquire_barrier(struct i915_active *ref) GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); llist_add(barrier_to_ll(node), &engine->barrier_tasks); - intel_engine_pm_put_delay(engine, 1); + intel_engine_pm_put_delay(engine, 2); } } @@ -917,10 +999,11 @@ void i915_request_add_active_barriers(struct i915_request *rq) * * Records the new @fence as the last active fence along its timeline in * this active tracker, moving the tracking callbacks from the previous - * fence onto this one. Returns the previous fence (if not already completed), - * which the caller must ensure is executed before the new fence. To ensure - * that the order of fences within the timeline of the i915_active_fence is - * understood, it should be locked by the caller. + * fence onto this one. Gets and returns a reference to the previous fence + * (if not already completed), which the caller must put after making sure + * that it is executed before the new fence. To ensure that the order of + * fences within the timeline of the i915_active_fence is understood, it + * should be locked by the caller. */ struct dma_fence * __i915_active_fence_set(struct i915_active_fence *active, @@ -929,7 +1012,23 @@ __i915_active_fence_set(struct i915_active_fence *active, struct dma_fence *prev; unsigned long flags; - if (fence == rcu_access_pointer(active->fence)) + /* + * In case of fences embedded in i915_requests, their memory is + * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release + * by new requests. Then, there is a risk of passing back a pointer + * to a new, completely unrelated fence that reuses the same memory + * while tracked under a different active tracker. Combined with i915 + * perf open/close operations that build await dependencies between + * engine kernel context requests and user requests from different + * timelines, this can lead to dependency loops and infinite waits. + * + * As a countermeasure, we try to get a reference to the active->fence + * first, so if we succeed and pass it back to our user then it is not + * released and potentially reused by an unrelated request before the + * user has a chance to set up an await dependency on it. + */ + prev = i915_active_fence_get(active); + if (fence == prev) return fence; GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); @@ -938,27 +1037,56 @@ __i915_active_fence_set(struct i915_active_fence *active, * Consider that we have two threads arriving (A and B), with * C already resident as the active->fence. * - * A does the xchg first, and so it sees C or NULL depending - * on the timing of the interrupt handler. If it is NULL, the - * previous fence must have been signaled and we know that - * we are first on the timeline. If it is still present, - * we acquire the lock on that fence and serialise with the interrupt - * handler, in the process removing it from any future interrupt - * callback. A will then wait on C before executing (if present). - * - * As B is second, it sees A as the previous fence and so waits for - * it to complete its transition and takes over the occupancy for - * itself -- remembering that it needs to wait on A before executing. + * Both A and B have got a reference to C or NULL, depending on the + * timing of the interrupt handler. Let's assume that if A has got C + * then it has locked C first (before B). * * Note the strong ordering of the timeline also provides consistent * nesting rules for the fence->lock; the inner lock is always the * older lock. */ spin_lock_irqsave(fence->lock, flags); - prev = xchg(__active_fence_slot(active), fence); - if (prev) { - GEM_BUG_ON(prev == fence); + if (prev) spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); + + /* + * A does the cmpxchg first, and so it sees C or NULL, as before, or + * something else, depending on the timing of other threads and/or + * interrupt handler. If not the same as before then A unlocks C if + * applicable and retries, starting from an attempt to get a new + * active->fence. Meanwhile, B follows the same path as A. + * Once A succeeds with cmpxch, B fails again, retires, gets A from + * active->fence, locks it as soon as A completes, and possibly + * succeeds with cmpxchg. + */ + while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) { + if (prev) { + spin_unlock(prev->lock); + dma_fence_put(prev); + } + spin_unlock_irqrestore(fence->lock, flags); + + prev = i915_active_fence_get(active); + GEM_BUG_ON(prev == fence); + + spin_lock_irqsave(fence->lock, flags); + if (prev) + spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); + } + + /* + * If prev is NULL then the previous fence must have been signaled + * and we know that we are first on the timeline. If it is still + * present then, having the lock on that fence already acquired, we + * serialise with the interrupt handler, in the process of removing it + * from any future interrupt callback. A will then wait on C before + * executing (if present). + * + * As B is second, it sees A as the previous fence and so waits for + * it to complete its transition and takes over the occupancy for + * itself -- remembering that it needs to wait on A before executing. + */ + if (prev) { __list_del_entry(&active->cb.node); spin_unlock(prev->lock); /* serialise with prev->cb_list */ } @@ -975,11 +1103,7 @@ int i915_active_fence_set(struct i915_active_fence *active, int err = 0; /* Must maintain timeline ordering wrt previous active requests */ - rcu_read_lock(); fence = __i915_active_fence_set(active, &rq->fence); - if (fence) /* but the previous fence may not belong to that timeline! */ - fence = dma_fence_get_rcu(fence); - rcu_read_unlock(); if (fence) { err = i915_request_await_dma_fence(rq, fence); dma_fence_put(fence); @@ -1041,7 +1165,7 @@ struct i915_active *i915_active_create(void) return NULL; kref_init(&aa->ref); - i915_active_init(&aa->base, auto_active, auto_retire); + i915_active_init(&aa->base, auto_active, auto_retire, 0); return &aa->base; } @@ -1050,27 +1174,16 @@ struct i915_active *i915_active_create(void) #include "selftests/i915_active.c" #endif -static void i915_global_active_shrink(void) +void i915_active_module_exit(void) { - kmem_cache_shrink(global.slab_cache); + kmem_cache_destroy(slab_cache); } -static void i915_global_active_exit(void) -{ - kmem_cache_destroy(global.slab_cache); -} - -static struct i915_global_active global = { { - .shrink = i915_global_active_shrink, - .exit = i915_global_active_exit, -} }; - -int __init i915_global_active_init(void) +int __init i915_active_module_init(void) { - global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); - if (!global.slab_cache) + slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); + if (!slab_cache) return -ENOMEM; - i915_global_register(&global.base); return 0; } |
