summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/vkms/vkms_composer.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/vkms/vkms_composer.c')
-rw-r--r--drivers/gpu/drm/vkms/vkms_composer.c711
1 files changed, 541 insertions, 170 deletions
diff --git a/drivers/gpu/drm/vkms/vkms_composer.c b/drivers/gpu/drm/vkms/vkms_composer.c
index e49523866e1d..3cf3f26e0d8e 100644
--- a/drivers/gpu/drm/vkms/vkms_composer.c
+++ b/drivers/gpu/drm/vkms/vkms_composer.c
@@ -4,210 +4,583 @@
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
+#include <drm/drm_blend.h>
#include <drm/drm_fourcc.h>
+#include <drm/drm_fixed.h>
#include <drm/drm_gem_framebuffer_helper.h>
-#include <drm/drm_gem_shmem_helper.h>
+#include <drm/drm_print.h>
#include <drm/drm_vblank.h>
+#include <linux/minmax.h>
+#include <kunit/visibility.h>
-#include "vkms_drv.h"
+#include "vkms_composer.h"
+#include "vkms_luts.h"
-static u32 get_pixel_from_buffer(int x, int y, const u8 *buffer,
- const struct vkms_composer *composer)
+static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
{
- u32 pixel;
- int src_offset = composer->offset + (y * composer->pitch)
- + (x * composer->cpp);
+ u32 new_color;
- pixel = *(u32 *)&buffer[src_offset];
+ new_color = (src * 0xffff + dst * (0xffff - alpha));
- return pixel;
+ return DIV_ROUND_CLOSEST(new_color, 0xffff);
}
/**
- * compute_crc - Compute CRC value on output frame
+ * pre_mul_alpha_blend - alpha blending equation
+ * @stage_buffer: The line with the pixels from src_plane
+ * @output_buffer: A line buffer that receives all the blends output
+ * @x_start: The start offset
+ * @pixel_count: The number of pixels to blend
*
- * @vaddr: address to final framebuffer
- * @composer: framebuffer's metadata
+ * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at
+ * [@x_start;@x_start+@pixel_count) in output_buffer.
*
- * returns CRC value computed using crc32 on the visible portion of
- * the final framebuffer at vaddr_out
+ * The current DRM assumption is that pixel color values have been already
+ * pre-multiplied with the alpha channel values. See more
+ * drm_plane_create_blend_mode_property(). Also, this formula assumes a
+ * completely opaque background.
*/
-static uint32_t compute_crc(const u8 *vaddr,
- const struct vkms_composer *composer)
+static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer,
+ struct line_buffer *output_buffer, int x_start, int pixel_count)
{
- int x, y;
- u32 crc = 0, pixel = 0;
- int x_src = composer->src.x1 >> 16;
- int y_src = composer->src.y1 >> 16;
- int h_src = drm_rect_height(&composer->src) >> 16;
- int w_src = drm_rect_width(&composer->src) >> 16;
-
- for (y = y_src; y < y_src + h_src; ++y) {
- for (x = x_src; x < x_src + w_src; ++x) {
- pixel = get_pixel_from_buffer(x, y, vaddr, composer);
- crc = crc32_le(crc, (void *)&pixel, sizeof(u32));
- }
+ struct pixel_argb_u16 *out = &output_buffer->pixels[x_start];
+ const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start];
+
+ for (int i = 0; i < pixel_count; i++) {
+ out[i].a = (u16)0xffff;
+ out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a);
+ out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a);
+ out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a);
}
+}
- return crc;
+
+static void fill_background(const struct pixel_argb_u16 *background_color,
+ struct line_buffer *output_buffer)
+{
+ for (size_t i = 0; i < output_buffer->n_pixels; i++)
+ output_buffer->pixels[i] = *background_color;
}
-static u8 blend_channel(u8 src, u8 dst, u8 alpha)
+// lerp(a, b, t) = a + (b - a) * t
+VISIBLE_IF_KUNIT u16 lerp_u16(u16 a, u16 b, s64 t)
{
- u32 pre_blend;
- u8 new_color;
+ s64 a_fp = drm_int2fixp(a);
+ s64 b_fp = drm_int2fixp(b);
- pre_blend = (src * 255 + dst * (255 - alpha));
+ s64 delta = drm_fixp_mul(b_fp - a_fp, t);
- /* Faster div by 255 */
- new_color = ((pre_blend + ((pre_blend + 257) >> 8)) >> 8);
+ return drm_fixp2int_round(a_fp + delta);
+}
+EXPORT_SYMBOL_IF_KUNIT(lerp_u16);
+
+VISIBLE_IF_KUNIT s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
+{
+ s64 color_channel_fp = drm_int2fixp(channel_value);
- return new_color;
+ return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
}
+EXPORT_SYMBOL_IF_KUNIT(get_lut_index);
-/**
- * alpha_blend - alpha blending equation
- * @argb_src: src pixel on premultiplied alpha mode
- * @argb_dst: dst pixel completely opaque
- *
- * blend pixels using premultiplied blend formula. The current DRM assumption
- * is that pixel color values have been already pre-multiplied with the alpha
- * channel values. See more drm_plane_create_blend_mode_property(). Also, this
- * formula assumes a completely opaque background.
- */
-static void alpha_blend(const u8 *argb_src, u8 *argb_dst)
+VISIBLE_IF_KUNIT u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
+ enum lut_channel channel)
+{
+ s64 lut_index = get_lut_index(lut, channel_value);
+ u16 *floor_lut_value, *ceil_lut_value;
+ u16 floor_channel_value, ceil_channel_value;
+
+ /*
+ * This checks if `struct drm_color_lut` has any gap added by the compiler
+ * between the struct fields.
+ */
+ static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
+
+ floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
+ if (drm_fixp2int(lut_index) == (lut->lut_length - 1))
+ /* We're at the end of the LUT array, use same value for ceil and floor */
+ ceil_lut_value = floor_lut_value;
+ else
+ ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
+
+ floor_channel_value = floor_lut_value[channel];
+ ceil_channel_value = ceil_lut_value[channel];
+
+ return lerp_u16(floor_channel_value, ceil_channel_value,
+ lut_index & DRM_FIXED_DECIMAL_MASK);
+}
+EXPORT_SYMBOL_IF_KUNIT(apply_lut_to_channel_value);
+
+
+static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
+{
+ if (!crtc_state->gamma_lut.base)
+ return;
+
+ if (!crtc_state->gamma_lut.lut_length)
+ return;
+
+ for (size_t x = 0; x < output_buffer->n_pixels; x++) {
+ struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
+
+ pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
+ pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
+ pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
+ }
+}
+
+VISIBLE_IF_KUNIT void apply_3x4_matrix(struct pixel_argb_s32 *pixel,
+ const struct drm_color_ctm_3x4 *matrix)
+{
+ s64 rf, gf, bf;
+ s64 r, g, b;
+
+ r = drm_int2fixp(pixel->r);
+ g = drm_int2fixp(pixel->g);
+ b = drm_int2fixp(pixel->b);
+
+ rf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[0]), r) +
+ drm_fixp_mul(drm_sm2fixp(matrix->matrix[1]), g) +
+ drm_fixp_mul(drm_sm2fixp(matrix->matrix[2]), b) +
+ drm_sm2fixp(matrix->matrix[3]);
+
+ gf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[4]), r) +
+ drm_fixp_mul(drm_sm2fixp(matrix->matrix[5]), g) +
+ drm_fixp_mul(drm_sm2fixp(matrix->matrix[6]), b) +
+ drm_sm2fixp(matrix->matrix[7]);
+
+ bf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[8]), r) +
+ drm_fixp_mul(drm_sm2fixp(matrix->matrix[9]), g) +
+ drm_fixp_mul(drm_sm2fixp(matrix->matrix[10]), b) +
+ drm_sm2fixp(matrix->matrix[11]);
+
+ pixel->r = drm_fixp2int_round(rf);
+ pixel->g = drm_fixp2int_round(gf);
+ pixel->b = drm_fixp2int_round(bf);
+}
+EXPORT_SYMBOL_IF_KUNIT(apply_3x4_matrix);
+
+static void apply_colorop(struct pixel_argb_s32 *pixel, struct drm_colorop *colorop)
{
- u8 alpha;
+ struct drm_colorop_state *colorop_state = colorop->state;
+ struct drm_device *dev = colorop->dev;
+
+ if (colorop->type == DRM_COLOROP_1D_CURVE) {
+ switch (colorop_state->curve_1d_type) {
+ case DRM_COLOROP_1D_CURVE_SRGB_INV_EOTF:
+ pixel->r = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->r, LUT_RED);
+ pixel->g = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->g, LUT_GREEN);
+ pixel->b = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->b, LUT_BLUE);
+ break;
+ case DRM_COLOROP_1D_CURVE_SRGB_EOTF:
+ pixel->r = apply_lut_to_channel_value(&srgb_eotf, pixel->r, LUT_RED);
+ pixel->g = apply_lut_to_channel_value(&srgb_eotf, pixel->g, LUT_GREEN);
+ pixel->b = apply_lut_to_channel_value(&srgb_eotf, pixel->b, LUT_BLUE);
+ break;
+ default:
+ drm_WARN_ONCE(dev, true,
+ "unknown colorop 1D curve type %d\n",
+ colorop_state->curve_1d_type);
+ break;
+ }
+ } else if (colorop->type == DRM_COLOROP_CTM_3X4) {
+ if (colorop_state->data)
+ apply_3x4_matrix(pixel,
+ (struct drm_color_ctm_3x4 *)colorop_state->data->data);
+ }
+}
- alpha = argb_src[3];
- argb_dst[0] = blend_channel(argb_src[0], argb_dst[0], alpha);
- argb_dst[1] = blend_channel(argb_src[1], argb_dst[1], alpha);
- argb_dst[2] = blend_channel(argb_src[2], argb_dst[2], alpha);
+static void pre_blend_color_transform(const struct vkms_plane_state *plane_state,
+ struct line_buffer *output_buffer)
+{
+ struct pixel_argb_s32 pixel;
+
+ for (size_t x = 0; x < output_buffer->n_pixels; x++) {
+ struct drm_colorop *colorop = plane_state->base.base.color_pipeline;
+
+ /*
+ * Some operations, such as applying a BT709 encoding matrix,
+ * followed by a decoding matrix, require that we preserve
+ * values above 1.0 and below 0.0 until the end of the pipeline.
+ *
+ * Pack the 16-bit UNORM values into s32 to give us head-room to
+ * avoid clipping until we're at the end of the pipeline. Clip
+ * intentionally at the end of the pipeline before packing
+ * UNORM values back into u16.
+ */
+ pixel.a = output_buffer->pixels[x].a;
+ pixel.r = output_buffer->pixels[x].r;
+ pixel.g = output_buffer->pixels[x].g;
+ pixel.b = output_buffer->pixels[x].b;
+
+ while (colorop) {
+ struct drm_colorop_state *colorop_state;
+
+ colorop_state = colorop->state;
+
+ if (!colorop_state)
+ return;
+
+ if (!colorop_state->bypass)
+ apply_colorop(&pixel, colorop);
+
+ colorop = colorop->next;
+ }
+
+ /* clamp values */
+ output_buffer->pixels[x].a = clamp_val(pixel.a, 0, 0xffff);
+ output_buffer->pixels[x].r = clamp_val(pixel.r, 0, 0xffff);
+ output_buffer->pixels[x].g = clamp_val(pixel.g, 0, 0xffff);
+ output_buffer->pixels[x].b = clamp_val(pixel.b, 0, 0xffff);
+ }
}
/**
- * x_blend - blending equation that ignores the pixel alpha
+ * direction_for_rotation() - Get the correct reading direction for a given rotation
*
- * overwrites RGB color value from src pixel to dst pixel.
+ * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation.
+ *
+ * This function will use the @rotation setting of a source plane to compute the reading
+ * direction in this plane which correspond to a "left to right writing" in the CRTC.
+ * For example, if the buffer is reflected on X axis, the pixel must be read from right to left
+ * to be written from left to right on the CRTC.
*/
-static void x_blend(const u8 *xrgb_src, u8 *xrgb_dst)
+static enum pixel_read_direction direction_for_rotation(unsigned int rotation)
{
- memcpy(xrgb_dst, xrgb_src, sizeof(u8) * 3);
+ struct drm_rect tmp_a, tmp_b;
+ int x, y;
+
+ /*
+ * Points A and B are depicted as zero-size rectangles on the CRTC.
+ * The CRTC writing direction is from A to B. The plane reading direction
+ * is discovered by inverse-transforming A and B.
+ * The reading direction is computed by rotating the vector AB (top-left to top-right) in a
+ * 1x1 square.
+ */
+
+ tmp_a = DRM_RECT_INIT(0, 0, 0, 0);
+ tmp_b = DRM_RECT_INIT(1, 0, 0, 0);
+ drm_rect_rotate_inv(&tmp_a, 1, 1, rotation);
+ drm_rect_rotate_inv(&tmp_b, 1, 1, rotation);
+
+ x = tmp_b.x1 - tmp_a.x1;
+ y = tmp_b.y1 - tmp_a.y1;
+
+ if (x == 1 && y == 0)
+ return READ_LEFT_TO_RIGHT;
+ else if (x == -1 && y == 0)
+ return READ_RIGHT_TO_LEFT;
+ else if (y == 1 && x == 0)
+ return READ_TOP_TO_BOTTOM;
+ else if (y == -1 && x == 0)
+ return READ_BOTTOM_TO_TOP;
+
+ WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction.");
+ return READ_LEFT_TO_RIGHT;
}
/**
- * blend - blend value at vaddr_src with value at vaddr_dst
- * @vaddr_dst: destination address
- * @vaddr_src: source address
- * @dst_composer: destination framebuffer's metadata
- * @src_composer: source framebuffer's metadata
- * @pixel_blend: blending equation based on plane format
+ * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend
+ * process.
*
- * Blend the vaddr_src value with the vaddr_dst value using a pixel blend
- * equation according to the supported plane formats DRM_FORMAT_(A/XRGB8888)
- * and clearing alpha channel to an completely opaque background. This function
- * uses buffer's metadata to locate the new composite values at vaddr_dst.
+ * @direction: direction of the reading
+ * @current_plane: current plane blended
+ * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle
+ * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of
+ * pixel_count*1 if @direction is horizontal.
+ * @src_x_start: x start coordinate for the line reading
+ * @src_y_start: y start coordinate for the line reading
+ * @dst_x_start: x coordinate to blend the read line
+ * @pixel_count: number of pixels to blend
*
- * TODO: completely clear the primary plane (a = 0xff) before starting to blend
- * pixel color values
+ * This function is mainly a safety net to avoid reading outside the source buffer. As the
+ * userspace should never ask to read outside the source plane, all the cases covered here should
+ * be dead code.
*/
-static void blend(void *vaddr_dst, void *vaddr_src,
- struct vkms_composer *dst_composer,
- struct vkms_composer *src_composer,
- void (*pixel_blend)(const u8 *, u8 *))
+static void clamp_line_coordinates(enum pixel_read_direction direction,
+ const struct vkms_plane_state *current_plane,
+ const struct drm_rect *src_line, int *src_x_start,
+ int *src_y_start, int *dst_x_start, int *pixel_count)
{
- int i, j, j_dst, i_dst;
- int offset_src, offset_dst;
- u8 *pixel_dst, *pixel_src;
-
- int x_src = src_composer->src.x1 >> 16;
- int y_src = src_composer->src.y1 >> 16;
-
- int x_dst = src_composer->dst.x1;
- int y_dst = src_composer->dst.y1;
- int h_dst = drm_rect_height(&src_composer->dst);
- int w_dst = drm_rect_width(&src_composer->dst);
-
- int y_limit = y_src + h_dst;
- int x_limit = x_src + w_dst;
-
- for (i = y_src, i_dst = y_dst; i < y_limit; ++i) {
- for (j = x_src, j_dst = x_dst; j < x_limit; ++j) {
- offset_dst = dst_composer->offset
- + (i_dst * dst_composer->pitch)
- + (j_dst++ * dst_composer->cpp);
- offset_src = src_composer->offset
- + (i * src_composer->pitch)
- + (j * src_composer->cpp);
-
- pixel_src = (u8 *)(vaddr_src + offset_src);
- pixel_dst = (u8 *)(vaddr_dst + offset_dst);
- pixel_blend(pixel_src, pixel_dst);
- /* clearing alpha channel (0xff)*/
- pixel_dst[3] = 0xff;
+ /* By default the start points are correct */
+ *src_x_start = src_line->x1;
+ *src_y_start = src_line->y1;
+ *dst_x_start = current_plane->frame_info->dst.x1;
+
+ /* Get the correct number of pixel to blend, it depends of the direction */
+ switch (direction) {
+ case READ_LEFT_TO_RIGHT:
+ case READ_RIGHT_TO_LEFT:
+ *pixel_count = drm_rect_width(src_line);
+ break;
+ case READ_BOTTOM_TO_TOP:
+ case READ_TOP_TO_BOTTOM:
+ *pixel_count = drm_rect_height(src_line);
+ break;
+ }
+
+ /*
+ * Clamp the coordinates to avoid reading outside the buffer
+ *
+ * This is mainly a security check to avoid reading outside the buffer, the userspace
+ * should never request to read outside the source buffer.
+ */
+ switch (direction) {
+ case READ_LEFT_TO_RIGHT:
+ case READ_RIGHT_TO_LEFT:
+ if (*src_x_start < 0) {
+ *pixel_count += *src_x_start;
+ *dst_x_start -= *src_x_start;
+ *src_x_start = 0;
}
- i_dst++;
+ if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width)
+ *pixel_count = max(0, (int)current_plane->frame_info->fb->width -
+ *src_x_start);
+ break;
+ case READ_BOTTOM_TO_TOP:
+ case READ_TOP_TO_BOTTOM:
+ if (*src_y_start < 0) {
+ *pixel_count += *src_y_start;
+ *dst_x_start -= *src_y_start;
+ *src_y_start = 0;
+ }
+ if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height)
+ *pixel_count = max(0, (int)current_plane->frame_info->fb->height -
+ *src_y_start);
+ break;
}
}
-static void compose_plane(struct vkms_composer *primary_composer,
- struct vkms_composer *plane_composer,
- void *vaddr_out)
+/**
+ * blend_line() - Blend a line from a plane to the output buffer
+ *
+ * @current_plane: current plane to work on
+ * @y: line to write in the output buffer
+ * @crtc_x_limit: width of the output buffer
+ * @stage_buffer: temporary buffer to convert the pixel line from the source buffer
+ * @output_buffer: buffer to blend the read line into.
+ */
+static void blend_line(struct vkms_plane_state *current_plane, int y,
+ int crtc_x_limit, struct line_buffer *stage_buffer,
+ struct line_buffer *output_buffer)
{
- struct drm_gem_object *plane_obj;
- struct drm_gem_shmem_object *plane_shmem_obj;
- struct drm_framebuffer *fb = &plane_composer->fb;
- void (*pixel_blend)(const u8 *p_src, u8 *p_dst);
+ int src_x_start, src_y_start, dst_x_start, pixel_count;
+ struct drm_rect dst_line, tmp_src, src_line;
+
+ /* Avoid rendering useless lines */
+ if (y < current_plane->frame_info->dst.y1 ||
+ y >= current_plane->frame_info->dst.y2)
+ return;
+
+ /*
+ * dst_line is the line to copy. The initial coordinates are inside the
+ * destination framebuffer, and then drm_rect_* helpers are used to
+ * compute the correct position into the source framebuffer.
+ */
+ dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y,
+ drm_rect_width(&current_plane->frame_info->dst),
+ 1);
- plane_obj = drm_gem_fb_get_obj(&plane_composer->fb, 0);
- plane_shmem_obj = to_drm_gem_shmem_obj(plane_obj);
+ drm_rect_fp_to_int(&tmp_src, &current_plane->frame_info->src);
- if (WARN_ON(!plane_shmem_obj->vaddr))
+ /*
+ * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of
+ * the destination buffer
+ */
+ dst_line.x1 = max_t(int, dst_line.x1, 0);
+ dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit);
+ /* The destination is completely outside of the crtc. */
+ if (dst_line.x2 <= dst_line.x1)
return;
- if (fb->format->format == DRM_FORMAT_ARGB8888)
- pixel_blend = &alpha_blend;
- else
- pixel_blend = &x_blend;
+ src_line = dst_line;
+
+ /*
+ * Transform the coordinate x/y from the crtc to coordinates into
+ * coordinates for the src buffer.
+ *
+ * - Cancel the offset of the dst buffer.
+ * - Invert the rotation. This assumes that
+ * dst = drm_rect_rotate(src, rotation) (dst and src have the
+ * same size, but can be rotated).
+ * - Apply the offset of the source rectangle to the coordinate.
+ */
+ drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1,
+ -current_plane->frame_info->dst.y1);
+ drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src),
+ drm_rect_height(&tmp_src),
+ current_plane->frame_info->rotation);
+ drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1);
+
+ /* Get the correct reading direction in the source buffer. */
+
+ enum pixel_read_direction direction =
+ direction_for_rotation(current_plane->frame_info->rotation);
- blend(vaddr_out, plane_shmem_obj->vaddr, primary_composer,
- plane_composer, pixel_blend);
+ /* [2]: Compute and clamp the number of pixel to read */
+ clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start,
+ &dst_x_start, &pixel_count);
+
+ if (pixel_count <= 0) {
+ /* Nothing to read, so avoid multiple function calls */
+ return;
+ }
+
+ /*
+ * Modify the starting point to take in account the rotation
+ *
+ * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or
+ * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left
+ * corner.
+ */
+ if (direction == READ_RIGHT_TO_LEFT) {
+ // src_x_start is now the right point
+ src_x_start += pixel_count - 1;
+ } else if (direction == READ_BOTTOM_TO_TOP) {
+ // src_y_start is now the bottom point
+ src_y_start += pixel_count - 1;
+ }
+
+ /*
+ * Perform the conversion and the blending
+ *
+ * Here we know that the read line (x_start, y_start, pixel_count) is
+ * inside the source buffer [2] and we don't write outside the stage
+ * buffer [1].
+ */
+ current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction,
+ pixel_count, &stage_buffer->pixels[dst_x_start]);
+ pre_blend_color_transform(current_plane, stage_buffer);
+ pre_mul_alpha_blend(stage_buffer, output_buffer,
+ dst_x_start, pixel_count);
}
-static int compose_active_planes(void **vaddr_out,
- struct vkms_composer *primary_composer,
- struct vkms_crtc_state *crtc_state)
+/**
+ * blend - blend the pixels from all planes and compute crc
+ * @wb: The writeback frame buffer metadata
+ * @crtc_state: The crtc state
+ * @crc32: The crc output of the final frame
+ * @output_buffer: A buffer of a row that will receive the result of the blend(s)
+ * @stage_buffer: The line with the pixels from plane being blend to the output
+ * @row_size: The size, in bytes, of a single row
+ *
+ * This function blends the pixels (Using the `pre_mul_alpha_blend`)
+ * from all planes, calculates the crc32 of the output from the former step,
+ * and, if necessary, convert and store the output to the writeback buffer.
+ */
+static void blend(struct vkms_writeback_job *wb,
+ struct vkms_crtc_state *crtc_state,
+ u32 *crc32, struct line_buffer *stage_buffer,
+ struct line_buffer *output_buffer, size_t row_size)
{
- struct drm_framebuffer *fb = &primary_composer->fb;
- struct drm_gem_object *gem_obj = drm_gem_fb_get_obj(fb, 0);
- struct drm_gem_shmem_object *shmem_obj = to_drm_gem_shmem_obj(gem_obj);
- int i;
-
- if (!*vaddr_out) {
- *vaddr_out = kzalloc(shmem_obj->base.size, GFP_KERNEL);
- if (!*vaddr_out) {
- DRM_ERROR("Cannot allocate memory for output frame.");
- return -ENOMEM;
+ struct vkms_plane_state **plane = crtc_state->active_planes;
+ u32 n_active_planes = crtc_state->num_active_planes;
+
+ const struct pixel_argb_u16 background_color = { .a = 0xffff };
+
+ int crtc_y_limit = crtc_state->base.mode.vdisplay;
+ int crtc_x_limit = crtc_state->base.mode.hdisplay;
+
+ /*
+ * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary
+ * complexity to avoid poor blending performance.
+ *
+ * The function pixel_read_line callback is used to read a line, using an efficient
+ * algorithm for a specific format, into the staging buffer.
+ */
+ for (int y = 0; y < crtc_y_limit; y++) {
+ fill_background(&background_color, output_buffer);
+
+ /* The active planes are composed associatively in z-order. */
+ for (size_t i = 0; i < n_active_planes; i++) {
+ blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer);
}
+
+ apply_lut(crtc_state, output_buffer);
+
+ *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
+
+ if (wb)
+ vkms_writeback_row(wb, output_buffer, y);
}
+}
- if (WARN_ON(!shmem_obj->vaddr))
- return -EINVAL;
+static int check_format_funcs(struct vkms_crtc_state *crtc_state,
+ struct vkms_writeback_job *active_wb)
+{
+ struct vkms_plane_state **planes = crtc_state->active_planes;
+ u32 n_active_planes = crtc_state->num_active_planes;
- memcpy(*vaddr_out, shmem_obj->vaddr, shmem_obj->base.size);
+ for (size_t i = 0; i < n_active_planes; i++)
+ if (!planes[i]->pixel_read_line)
+ return -1;
- /* If there are other planes besides primary, we consider the active
- * planes should be in z-order and compose them associatively:
- * ((primary <- overlay) <- cursor)
- */
- for (i = 1; i < crtc_state->num_active_planes; i++)
- compose_plane(primary_composer,
- crtc_state->active_planes[i]->composer,
- *vaddr_out);
+ if (active_wb && !active_wb->pixel_write)
+ return -1;
return 0;
}
+static int check_iosys_map(struct vkms_crtc_state *crtc_state)
+{
+ struct vkms_plane_state **plane_state = crtc_state->active_planes;
+ u32 n_active_planes = crtc_state->num_active_planes;
+
+ for (size_t i = 0; i < n_active_planes; i++)
+ if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
+ return -1;
+
+ return 0;
+}
+
+static int compose_active_planes(struct vkms_writeback_job *active_wb,
+ struct vkms_crtc_state *crtc_state,
+ u32 *crc32)
+{
+ size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
+ struct line_buffer output_buffer, stage_buffer;
+ int ret = 0;
+
+ /*
+ * This check exists so we can call `crc32_le` for the entire line
+ * instead doing it for each channel of each pixel in case
+ * `struct `pixel_argb_u16` had any gap added by the compiler
+ * between the struct fields.
+ */
+ static_assert(sizeof(struct pixel_argb_u16) == 8);
+
+ if (WARN_ON(check_iosys_map(crtc_state)))
+ return -EINVAL;
+
+ if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
+ return -EINVAL;
+
+ line_width = crtc_state->base.mode.hdisplay;
+ stage_buffer.n_pixels = line_width;
+ output_buffer.n_pixels = line_width;
+
+ stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
+ if (!stage_buffer.pixels) {
+ DRM_ERROR("Cannot allocate memory for the output line buffer");
+ return -ENOMEM;
+ }
+
+ output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
+ if (!output_buffer.pixels) {
+ DRM_ERROR("Cannot allocate memory for intermediate line buffer");
+ ret = -ENOMEM;
+ goto free_stage_buffer;
+ }
+
+ blend(active_wb, crtc_state, crc32, &stage_buffer,
+ &output_buffer, line_width * pixel_size);
+
+ kvfree(output_buffer.pixels);
+free_stage_buffer:
+ kvfree(stage_buffer.pixels);
+
+ return ret;
+}
+
/**
* vkms_composer_worker - ordered work_struct to compute CRC
*
@@ -215,21 +588,19 @@ static int compose_active_planes(void **vaddr_out,
*
* Work handler for composing and computing CRCs. work_struct scheduled in
* an ordered workqueue that's periodically scheduled to run by
- * _vblank_handle() and flushed at vkms_atomic_crtc_destroy_state().
+ * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
*/
void vkms_composer_worker(struct work_struct *work)
{
struct vkms_crtc_state *crtc_state = container_of(work,
- struct vkms_crtc_state,
- composer_work);
+ struct vkms_crtc_state,
+ composer_work);
struct drm_crtc *crtc = crtc_state->base.crtc;
+ struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
- struct vkms_composer *primary_composer = NULL;
- struct vkms_plane_state *act_plane = NULL;
bool crc_pending, wb_pending;
- void *vaddr_out = NULL;
- u32 crc32 = 0;
u64 frame_start, frame_end;
+ u32 crc32 = 0;
int ret;
spin_lock_irq(&out->composer_lock);
@@ -240,6 +611,22 @@ void vkms_composer_worker(struct work_struct *work)
crtc_state->frame_start = 0;
crtc_state->frame_end = 0;
crtc_state->crc_pending = false;
+
+ if (crtc->state->gamma_lut) {
+ s64 max_lut_index_fp;
+ s64 u16_max_fp = drm_int2fixp(0xffff);
+
+ crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
+ crtc_state->gamma_lut.lut_length =
+ crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
+ max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1);
+ crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
+ u16_max_fp);
+
+ } else {
+ crtc_state->gamma_lut.base = NULL;
+ }
+
spin_unlock_irq(&out->composer_lock);
/*
@@ -249,35 +636,19 @@ void vkms_composer_worker(struct work_struct *work)
if (!crc_pending)
return;
- if (crtc_state->num_active_planes >= 1) {
- act_plane = crtc_state->active_planes[0];
- if (act_plane->base.plane->type == DRM_PLANE_TYPE_PRIMARY)
- primary_composer = act_plane->composer;
- }
-
- if (!primary_composer)
- return;
-
if (wb_pending)
- vaddr_out = crtc_state->active_writeback;
+ ret = compose_active_planes(active_wb, crtc_state, &crc32);
+ else
+ ret = compose_active_planes(NULL, crtc_state, &crc32);
- ret = compose_active_planes(&vaddr_out, primary_composer,
- crtc_state);
- if (ret) {
- if (ret == -EINVAL && !wb_pending)
- kfree(vaddr_out);
+ if (ret)
return;
- }
-
- crc32 = compute_crc(vaddr_out, primary_composer);
if (wb_pending) {
drm_writeback_signal_completion(&out->wb_connector, 0);
spin_lock_irq(&out->composer_lock);
crtc_state->wb_pending = false;
spin_unlock_irq(&out->composer_lock);
- } else {
- kfree(vaddr_out);
}
/*
@@ -287,7 +658,7 @@ void vkms_composer_worker(struct work_struct *work)
drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
}
-static const char * const pipe_crc_sources[] = {"auto"};
+static const char *const pipe_crc_sources[] = { "auto" };
const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
size_t *count)