diff options
Diffstat (limited to 'drivers/gpu/drm/vkms/vkms_composer.c')
| -rw-r--r-- | drivers/gpu/drm/vkms/vkms_composer.c | 711 |
1 files changed, 541 insertions, 170 deletions
diff --git a/drivers/gpu/drm/vkms/vkms_composer.c b/drivers/gpu/drm/vkms/vkms_composer.c index e49523866e1d..3cf3f26e0d8e 100644 --- a/drivers/gpu/drm/vkms/vkms_composer.c +++ b/drivers/gpu/drm/vkms/vkms_composer.c @@ -4,210 +4,583 @@ #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> +#include <drm/drm_blend.h> #include <drm/drm_fourcc.h> +#include <drm/drm_fixed.h> #include <drm/drm_gem_framebuffer_helper.h> -#include <drm/drm_gem_shmem_helper.h> +#include <drm/drm_print.h> #include <drm/drm_vblank.h> +#include <linux/minmax.h> +#include <kunit/visibility.h> -#include "vkms_drv.h" +#include "vkms_composer.h" +#include "vkms_luts.h" -static u32 get_pixel_from_buffer(int x, int y, const u8 *buffer, - const struct vkms_composer *composer) +static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) { - u32 pixel; - int src_offset = composer->offset + (y * composer->pitch) - + (x * composer->cpp); + u32 new_color; - pixel = *(u32 *)&buffer[src_offset]; + new_color = (src * 0xffff + dst * (0xffff - alpha)); - return pixel; + return DIV_ROUND_CLOSEST(new_color, 0xffff); } /** - * compute_crc - Compute CRC value on output frame + * pre_mul_alpha_blend - alpha blending equation + * @stage_buffer: The line with the pixels from src_plane + * @output_buffer: A line buffer that receives all the blends output + * @x_start: The start offset + * @pixel_count: The number of pixels to blend * - * @vaddr: address to final framebuffer - * @composer: framebuffer's metadata + * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at + * [@x_start;@x_start+@pixel_count) in output_buffer. * - * returns CRC value computed using crc32 on the visible portion of - * the final framebuffer at vaddr_out + * The current DRM assumption is that pixel color values have been already + * pre-multiplied with the alpha channel values. See more + * drm_plane_create_blend_mode_property(). Also, this formula assumes a + * completely opaque background. */ -static uint32_t compute_crc(const u8 *vaddr, - const struct vkms_composer *composer) +static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer, + struct line_buffer *output_buffer, int x_start, int pixel_count) { - int x, y; - u32 crc = 0, pixel = 0; - int x_src = composer->src.x1 >> 16; - int y_src = composer->src.y1 >> 16; - int h_src = drm_rect_height(&composer->src) >> 16; - int w_src = drm_rect_width(&composer->src) >> 16; - - for (y = y_src; y < y_src + h_src; ++y) { - for (x = x_src; x < x_src + w_src; ++x) { - pixel = get_pixel_from_buffer(x, y, vaddr, composer); - crc = crc32_le(crc, (void *)&pixel, sizeof(u32)); - } + struct pixel_argb_u16 *out = &output_buffer->pixels[x_start]; + const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start]; + + for (int i = 0; i < pixel_count; i++) { + out[i].a = (u16)0xffff; + out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a); + out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a); + out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a); } +} - return crc; + +static void fill_background(const struct pixel_argb_u16 *background_color, + struct line_buffer *output_buffer) +{ + for (size_t i = 0; i < output_buffer->n_pixels; i++) + output_buffer->pixels[i] = *background_color; } -static u8 blend_channel(u8 src, u8 dst, u8 alpha) +// lerp(a, b, t) = a + (b - a) * t +VISIBLE_IF_KUNIT u16 lerp_u16(u16 a, u16 b, s64 t) { - u32 pre_blend; - u8 new_color; + s64 a_fp = drm_int2fixp(a); + s64 b_fp = drm_int2fixp(b); - pre_blend = (src * 255 + dst * (255 - alpha)); + s64 delta = drm_fixp_mul(b_fp - a_fp, t); - /* Faster div by 255 */ - new_color = ((pre_blend + ((pre_blend + 257) >> 8)) >> 8); + return drm_fixp2int_round(a_fp + delta); +} +EXPORT_SYMBOL_IF_KUNIT(lerp_u16); + +VISIBLE_IF_KUNIT s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) +{ + s64 color_channel_fp = drm_int2fixp(channel_value); - return new_color; + return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio); } +EXPORT_SYMBOL_IF_KUNIT(get_lut_index); -/** - * alpha_blend - alpha blending equation - * @argb_src: src pixel on premultiplied alpha mode - * @argb_dst: dst pixel completely opaque - * - * blend pixels using premultiplied blend formula. The current DRM assumption - * is that pixel color values have been already pre-multiplied with the alpha - * channel values. See more drm_plane_create_blend_mode_property(). Also, this - * formula assumes a completely opaque background. - */ -static void alpha_blend(const u8 *argb_src, u8 *argb_dst) +VISIBLE_IF_KUNIT u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, + enum lut_channel channel) +{ + s64 lut_index = get_lut_index(lut, channel_value); + u16 *floor_lut_value, *ceil_lut_value; + u16 floor_channel_value, ceil_channel_value; + + /* + * This checks if `struct drm_color_lut` has any gap added by the compiler + * between the struct fields. + */ + static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4); + + floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; + if (drm_fixp2int(lut_index) == (lut->lut_length - 1)) + /* We're at the end of the LUT array, use same value for ceil and floor */ + ceil_lut_value = floor_lut_value; + else + ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; + + floor_channel_value = floor_lut_value[channel]; + ceil_channel_value = ceil_lut_value[channel]; + + return lerp_u16(floor_channel_value, ceil_channel_value, + lut_index & DRM_FIXED_DECIMAL_MASK); +} +EXPORT_SYMBOL_IF_KUNIT(apply_lut_to_channel_value); + + +static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer) +{ + if (!crtc_state->gamma_lut.base) + return; + + if (!crtc_state->gamma_lut.lut_length) + return; + + for (size_t x = 0; x < output_buffer->n_pixels; x++) { + struct pixel_argb_u16 *pixel = &output_buffer->pixels[x]; + + pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED); + pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN); + pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE); + } +} + +VISIBLE_IF_KUNIT void apply_3x4_matrix(struct pixel_argb_s32 *pixel, + const struct drm_color_ctm_3x4 *matrix) +{ + s64 rf, gf, bf; + s64 r, g, b; + + r = drm_int2fixp(pixel->r); + g = drm_int2fixp(pixel->g); + b = drm_int2fixp(pixel->b); + + rf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[0]), r) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[1]), g) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[2]), b) + + drm_sm2fixp(matrix->matrix[3]); + + gf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[4]), r) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[5]), g) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[6]), b) + + drm_sm2fixp(matrix->matrix[7]); + + bf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[8]), r) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[9]), g) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[10]), b) + + drm_sm2fixp(matrix->matrix[11]); + + pixel->r = drm_fixp2int_round(rf); + pixel->g = drm_fixp2int_round(gf); + pixel->b = drm_fixp2int_round(bf); +} +EXPORT_SYMBOL_IF_KUNIT(apply_3x4_matrix); + +static void apply_colorop(struct pixel_argb_s32 *pixel, struct drm_colorop *colorop) { - u8 alpha; + struct drm_colorop_state *colorop_state = colorop->state; + struct drm_device *dev = colorop->dev; + + if (colorop->type == DRM_COLOROP_1D_CURVE) { + switch (colorop_state->curve_1d_type) { + case DRM_COLOROP_1D_CURVE_SRGB_INV_EOTF: + pixel->r = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->r, LUT_RED); + pixel->g = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->g, LUT_GREEN); + pixel->b = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->b, LUT_BLUE); + break; + case DRM_COLOROP_1D_CURVE_SRGB_EOTF: + pixel->r = apply_lut_to_channel_value(&srgb_eotf, pixel->r, LUT_RED); + pixel->g = apply_lut_to_channel_value(&srgb_eotf, pixel->g, LUT_GREEN); + pixel->b = apply_lut_to_channel_value(&srgb_eotf, pixel->b, LUT_BLUE); + break; + default: + drm_WARN_ONCE(dev, true, + "unknown colorop 1D curve type %d\n", + colorop_state->curve_1d_type); + break; + } + } else if (colorop->type == DRM_COLOROP_CTM_3X4) { + if (colorop_state->data) + apply_3x4_matrix(pixel, + (struct drm_color_ctm_3x4 *)colorop_state->data->data); + } +} - alpha = argb_src[3]; - argb_dst[0] = blend_channel(argb_src[0], argb_dst[0], alpha); - argb_dst[1] = blend_channel(argb_src[1], argb_dst[1], alpha); - argb_dst[2] = blend_channel(argb_src[2], argb_dst[2], alpha); +static void pre_blend_color_transform(const struct vkms_plane_state *plane_state, + struct line_buffer *output_buffer) +{ + struct pixel_argb_s32 pixel; + + for (size_t x = 0; x < output_buffer->n_pixels; x++) { + struct drm_colorop *colorop = plane_state->base.base.color_pipeline; + + /* + * Some operations, such as applying a BT709 encoding matrix, + * followed by a decoding matrix, require that we preserve + * values above 1.0 and below 0.0 until the end of the pipeline. + * + * Pack the 16-bit UNORM values into s32 to give us head-room to + * avoid clipping until we're at the end of the pipeline. Clip + * intentionally at the end of the pipeline before packing + * UNORM values back into u16. + */ + pixel.a = output_buffer->pixels[x].a; + pixel.r = output_buffer->pixels[x].r; + pixel.g = output_buffer->pixels[x].g; + pixel.b = output_buffer->pixels[x].b; + + while (colorop) { + struct drm_colorop_state *colorop_state; + + colorop_state = colorop->state; + + if (!colorop_state) + return; + + if (!colorop_state->bypass) + apply_colorop(&pixel, colorop); + + colorop = colorop->next; + } + + /* clamp values */ + output_buffer->pixels[x].a = clamp_val(pixel.a, 0, 0xffff); + output_buffer->pixels[x].r = clamp_val(pixel.r, 0, 0xffff); + output_buffer->pixels[x].g = clamp_val(pixel.g, 0, 0xffff); + output_buffer->pixels[x].b = clamp_val(pixel.b, 0, 0xffff); + } } /** - * x_blend - blending equation that ignores the pixel alpha + * direction_for_rotation() - Get the correct reading direction for a given rotation * - * overwrites RGB color value from src pixel to dst pixel. + * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation. + * + * This function will use the @rotation setting of a source plane to compute the reading + * direction in this plane which correspond to a "left to right writing" in the CRTC. + * For example, if the buffer is reflected on X axis, the pixel must be read from right to left + * to be written from left to right on the CRTC. */ -static void x_blend(const u8 *xrgb_src, u8 *xrgb_dst) +static enum pixel_read_direction direction_for_rotation(unsigned int rotation) { - memcpy(xrgb_dst, xrgb_src, sizeof(u8) * 3); + struct drm_rect tmp_a, tmp_b; + int x, y; + + /* + * Points A and B are depicted as zero-size rectangles on the CRTC. + * The CRTC writing direction is from A to B. The plane reading direction + * is discovered by inverse-transforming A and B. + * The reading direction is computed by rotating the vector AB (top-left to top-right) in a + * 1x1 square. + */ + + tmp_a = DRM_RECT_INIT(0, 0, 0, 0); + tmp_b = DRM_RECT_INIT(1, 0, 0, 0); + drm_rect_rotate_inv(&tmp_a, 1, 1, rotation); + drm_rect_rotate_inv(&tmp_b, 1, 1, rotation); + + x = tmp_b.x1 - tmp_a.x1; + y = tmp_b.y1 - tmp_a.y1; + + if (x == 1 && y == 0) + return READ_LEFT_TO_RIGHT; + else if (x == -1 && y == 0) + return READ_RIGHT_TO_LEFT; + else if (y == 1 && x == 0) + return READ_TOP_TO_BOTTOM; + else if (y == -1 && x == 0) + return READ_BOTTOM_TO_TOP; + + WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction."); + return READ_LEFT_TO_RIGHT; } /** - * blend - blend value at vaddr_src with value at vaddr_dst - * @vaddr_dst: destination address - * @vaddr_src: source address - * @dst_composer: destination framebuffer's metadata - * @src_composer: source framebuffer's metadata - * @pixel_blend: blending equation based on plane format + * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend + * process. * - * Blend the vaddr_src value with the vaddr_dst value using a pixel blend - * equation according to the supported plane formats DRM_FORMAT_(A/XRGB8888) - * and clearing alpha channel to an completely opaque background. This function - * uses buffer's metadata to locate the new composite values at vaddr_dst. + * @direction: direction of the reading + * @current_plane: current plane blended + * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle + * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of + * pixel_count*1 if @direction is horizontal. + * @src_x_start: x start coordinate for the line reading + * @src_y_start: y start coordinate for the line reading + * @dst_x_start: x coordinate to blend the read line + * @pixel_count: number of pixels to blend * - * TODO: completely clear the primary plane (a = 0xff) before starting to blend - * pixel color values + * This function is mainly a safety net to avoid reading outside the source buffer. As the + * userspace should never ask to read outside the source plane, all the cases covered here should + * be dead code. */ -static void blend(void *vaddr_dst, void *vaddr_src, - struct vkms_composer *dst_composer, - struct vkms_composer *src_composer, - void (*pixel_blend)(const u8 *, u8 *)) +static void clamp_line_coordinates(enum pixel_read_direction direction, + const struct vkms_plane_state *current_plane, + const struct drm_rect *src_line, int *src_x_start, + int *src_y_start, int *dst_x_start, int *pixel_count) { - int i, j, j_dst, i_dst; - int offset_src, offset_dst; - u8 *pixel_dst, *pixel_src; - - int x_src = src_composer->src.x1 >> 16; - int y_src = src_composer->src.y1 >> 16; - - int x_dst = src_composer->dst.x1; - int y_dst = src_composer->dst.y1; - int h_dst = drm_rect_height(&src_composer->dst); - int w_dst = drm_rect_width(&src_composer->dst); - - int y_limit = y_src + h_dst; - int x_limit = x_src + w_dst; - - for (i = y_src, i_dst = y_dst; i < y_limit; ++i) { - for (j = x_src, j_dst = x_dst; j < x_limit; ++j) { - offset_dst = dst_composer->offset - + (i_dst * dst_composer->pitch) - + (j_dst++ * dst_composer->cpp); - offset_src = src_composer->offset - + (i * src_composer->pitch) - + (j * src_composer->cpp); - - pixel_src = (u8 *)(vaddr_src + offset_src); - pixel_dst = (u8 *)(vaddr_dst + offset_dst); - pixel_blend(pixel_src, pixel_dst); - /* clearing alpha channel (0xff)*/ - pixel_dst[3] = 0xff; + /* By default the start points are correct */ + *src_x_start = src_line->x1; + *src_y_start = src_line->y1; + *dst_x_start = current_plane->frame_info->dst.x1; + + /* Get the correct number of pixel to blend, it depends of the direction */ + switch (direction) { + case READ_LEFT_TO_RIGHT: + case READ_RIGHT_TO_LEFT: + *pixel_count = drm_rect_width(src_line); + break; + case READ_BOTTOM_TO_TOP: + case READ_TOP_TO_BOTTOM: + *pixel_count = drm_rect_height(src_line); + break; + } + + /* + * Clamp the coordinates to avoid reading outside the buffer + * + * This is mainly a security check to avoid reading outside the buffer, the userspace + * should never request to read outside the source buffer. + */ + switch (direction) { + case READ_LEFT_TO_RIGHT: + case READ_RIGHT_TO_LEFT: + if (*src_x_start < 0) { + *pixel_count += *src_x_start; + *dst_x_start -= *src_x_start; + *src_x_start = 0; } - i_dst++; + if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width) + *pixel_count = max(0, (int)current_plane->frame_info->fb->width - + *src_x_start); + break; + case READ_BOTTOM_TO_TOP: + case READ_TOP_TO_BOTTOM: + if (*src_y_start < 0) { + *pixel_count += *src_y_start; + *dst_x_start -= *src_y_start; + *src_y_start = 0; + } + if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height) + *pixel_count = max(0, (int)current_plane->frame_info->fb->height - + *src_y_start); + break; } } -static void compose_plane(struct vkms_composer *primary_composer, - struct vkms_composer *plane_composer, - void *vaddr_out) +/** + * blend_line() - Blend a line from a plane to the output buffer + * + * @current_plane: current plane to work on + * @y: line to write in the output buffer + * @crtc_x_limit: width of the output buffer + * @stage_buffer: temporary buffer to convert the pixel line from the source buffer + * @output_buffer: buffer to blend the read line into. + */ +static void blend_line(struct vkms_plane_state *current_plane, int y, + int crtc_x_limit, struct line_buffer *stage_buffer, + struct line_buffer *output_buffer) { - struct drm_gem_object *plane_obj; - struct drm_gem_shmem_object *plane_shmem_obj; - struct drm_framebuffer *fb = &plane_composer->fb; - void (*pixel_blend)(const u8 *p_src, u8 *p_dst); + int src_x_start, src_y_start, dst_x_start, pixel_count; + struct drm_rect dst_line, tmp_src, src_line; + + /* Avoid rendering useless lines */ + if (y < current_plane->frame_info->dst.y1 || + y >= current_plane->frame_info->dst.y2) + return; + + /* + * dst_line is the line to copy. The initial coordinates are inside the + * destination framebuffer, and then drm_rect_* helpers are used to + * compute the correct position into the source framebuffer. + */ + dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y, + drm_rect_width(¤t_plane->frame_info->dst), + 1); - plane_obj = drm_gem_fb_get_obj(&plane_composer->fb, 0); - plane_shmem_obj = to_drm_gem_shmem_obj(plane_obj); + drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src); - if (WARN_ON(!plane_shmem_obj->vaddr)) + /* + * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of + * the destination buffer + */ + dst_line.x1 = max_t(int, dst_line.x1, 0); + dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit); + /* The destination is completely outside of the crtc. */ + if (dst_line.x2 <= dst_line.x1) return; - if (fb->format->format == DRM_FORMAT_ARGB8888) - pixel_blend = &alpha_blend; - else - pixel_blend = &x_blend; + src_line = dst_line; + + /* + * Transform the coordinate x/y from the crtc to coordinates into + * coordinates for the src buffer. + * + * - Cancel the offset of the dst buffer. + * - Invert the rotation. This assumes that + * dst = drm_rect_rotate(src, rotation) (dst and src have the + * same size, but can be rotated). + * - Apply the offset of the source rectangle to the coordinate. + */ + drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1, + -current_plane->frame_info->dst.y1); + drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src), + drm_rect_height(&tmp_src), + current_plane->frame_info->rotation); + drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1); + + /* Get the correct reading direction in the source buffer. */ + + enum pixel_read_direction direction = + direction_for_rotation(current_plane->frame_info->rotation); - blend(vaddr_out, plane_shmem_obj->vaddr, primary_composer, - plane_composer, pixel_blend); + /* [2]: Compute and clamp the number of pixel to read */ + clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start, + &dst_x_start, &pixel_count); + + if (pixel_count <= 0) { + /* Nothing to read, so avoid multiple function calls */ + return; + } + + /* + * Modify the starting point to take in account the rotation + * + * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or + * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left + * corner. + */ + if (direction == READ_RIGHT_TO_LEFT) { + // src_x_start is now the right point + src_x_start += pixel_count - 1; + } else if (direction == READ_BOTTOM_TO_TOP) { + // src_y_start is now the bottom point + src_y_start += pixel_count - 1; + } + + /* + * Perform the conversion and the blending + * + * Here we know that the read line (x_start, y_start, pixel_count) is + * inside the source buffer [2] and we don't write outside the stage + * buffer [1]. + */ + current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction, + pixel_count, &stage_buffer->pixels[dst_x_start]); + pre_blend_color_transform(current_plane, stage_buffer); + pre_mul_alpha_blend(stage_buffer, output_buffer, + dst_x_start, pixel_count); } -static int compose_active_planes(void **vaddr_out, - struct vkms_composer *primary_composer, - struct vkms_crtc_state *crtc_state) +/** + * blend - blend the pixels from all planes and compute crc + * @wb: The writeback frame buffer metadata + * @crtc_state: The crtc state + * @crc32: The crc output of the final frame + * @output_buffer: A buffer of a row that will receive the result of the blend(s) + * @stage_buffer: The line with the pixels from plane being blend to the output + * @row_size: The size, in bytes, of a single row + * + * This function blends the pixels (Using the `pre_mul_alpha_blend`) + * from all planes, calculates the crc32 of the output from the former step, + * and, if necessary, convert and store the output to the writeback buffer. + */ +static void blend(struct vkms_writeback_job *wb, + struct vkms_crtc_state *crtc_state, + u32 *crc32, struct line_buffer *stage_buffer, + struct line_buffer *output_buffer, size_t row_size) { - struct drm_framebuffer *fb = &primary_composer->fb; - struct drm_gem_object *gem_obj = drm_gem_fb_get_obj(fb, 0); - struct drm_gem_shmem_object *shmem_obj = to_drm_gem_shmem_obj(gem_obj); - int i; - - if (!*vaddr_out) { - *vaddr_out = kzalloc(shmem_obj->base.size, GFP_KERNEL); - if (!*vaddr_out) { - DRM_ERROR("Cannot allocate memory for output frame."); - return -ENOMEM; + struct vkms_plane_state **plane = crtc_state->active_planes; + u32 n_active_planes = crtc_state->num_active_planes; + + const struct pixel_argb_u16 background_color = { .a = 0xffff }; + + int crtc_y_limit = crtc_state->base.mode.vdisplay; + int crtc_x_limit = crtc_state->base.mode.hdisplay; + + /* + * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary + * complexity to avoid poor blending performance. + * + * The function pixel_read_line callback is used to read a line, using an efficient + * algorithm for a specific format, into the staging buffer. + */ + for (int y = 0; y < crtc_y_limit; y++) { + fill_background(&background_color, output_buffer); + + /* The active planes are composed associatively in z-order. */ + for (size_t i = 0; i < n_active_planes; i++) { + blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer); } + + apply_lut(crtc_state, output_buffer); + + *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); + + if (wb) + vkms_writeback_row(wb, output_buffer, y); } +} - if (WARN_ON(!shmem_obj->vaddr)) - return -EINVAL; +static int check_format_funcs(struct vkms_crtc_state *crtc_state, + struct vkms_writeback_job *active_wb) +{ + struct vkms_plane_state **planes = crtc_state->active_planes; + u32 n_active_planes = crtc_state->num_active_planes; - memcpy(*vaddr_out, shmem_obj->vaddr, shmem_obj->base.size); + for (size_t i = 0; i < n_active_planes; i++) + if (!planes[i]->pixel_read_line) + return -1; - /* If there are other planes besides primary, we consider the active - * planes should be in z-order and compose them associatively: - * ((primary <- overlay) <- cursor) - */ - for (i = 1; i < crtc_state->num_active_planes; i++) - compose_plane(primary_composer, - crtc_state->active_planes[i]->composer, - *vaddr_out); + if (active_wb && !active_wb->pixel_write) + return -1; return 0; } +static int check_iosys_map(struct vkms_crtc_state *crtc_state) +{ + struct vkms_plane_state **plane_state = crtc_state->active_planes; + u32 n_active_planes = crtc_state->num_active_planes; + + for (size_t i = 0; i < n_active_planes; i++) + if (iosys_map_is_null(&plane_state[i]->frame_info->map[0])) + return -1; + + return 0; +} + +static int compose_active_planes(struct vkms_writeback_job *active_wb, + struct vkms_crtc_state *crtc_state, + u32 *crc32) +{ + size_t line_width, pixel_size = sizeof(struct pixel_argb_u16); + struct line_buffer output_buffer, stage_buffer; + int ret = 0; + + /* + * This check exists so we can call `crc32_le` for the entire line + * instead doing it for each channel of each pixel in case + * `struct `pixel_argb_u16` had any gap added by the compiler + * between the struct fields. + */ + static_assert(sizeof(struct pixel_argb_u16) == 8); + + if (WARN_ON(check_iosys_map(crtc_state))) + return -EINVAL; + + if (WARN_ON(check_format_funcs(crtc_state, active_wb))) + return -EINVAL; + + line_width = crtc_state->base.mode.hdisplay; + stage_buffer.n_pixels = line_width; + output_buffer.n_pixels = line_width; + + stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); + if (!stage_buffer.pixels) { + DRM_ERROR("Cannot allocate memory for the output line buffer"); + return -ENOMEM; + } + + output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); + if (!output_buffer.pixels) { + DRM_ERROR("Cannot allocate memory for intermediate line buffer"); + ret = -ENOMEM; + goto free_stage_buffer; + } + + blend(active_wb, crtc_state, crc32, &stage_buffer, + &output_buffer, line_width * pixel_size); + + kvfree(output_buffer.pixels); +free_stage_buffer: + kvfree(stage_buffer.pixels); + + return ret; +} + /** * vkms_composer_worker - ordered work_struct to compute CRC * @@ -215,21 +588,19 @@ static int compose_active_planes(void **vaddr_out, * * Work handler for composing and computing CRCs. work_struct scheduled in * an ordered workqueue that's periodically scheduled to run by - * _vblank_handle() and flushed at vkms_atomic_crtc_destroy_state(). + * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail(). */ void vkms_composer_worker(struct work_struct *work) { struct vkms_crtc_state *crtc_state = container_of(work, - struct vkms_crtc_state, - composer_work); + struct vkms_crtc_state, + composer_work); struct drm_crtc *crtc = crtc_state->base.crtc; + struct vkms_writeback_job *active_wb = crtc_state->active_writeback; struct vkms_output *out = drm_crtc_to_vkms_output(crtc); - struct vkms_composer *primary_composer = NULL; - struct vkms_plane_state *act_plane = NULL; bool crc_pending, wb_pending; - void *vaddr_out = NULL; - u32 crc32 = 0; u64 frame_start, frame_end; + u32 crc32 = 0; int ret; spin_lock_irq(&out->composer_lock); @@ -240,6 +611,22 @@ void vkms_composer_worker(struct work_struct *work) crtc_state->frame_start = 0; crtc_state->frame_end = 0; crtc_state->crc_pending = false; + + if (crtc->state->gamma_lut) { + s64 max_lut_index_fp; + s64 u16_max_fp = drm_int2fixp(0xffff); + + crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data; + crtc_state->gamma_lut.lut_length = + crtc->state->gamma_lut->length / sizeof(struct drm_color_lut); + max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); + crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp, + u16_max_fp); + + } else { + crtc_state->gamma_lut.base = NULL; + } + spin_unlock_irq(&out->composer_lock); /* @@ -249,35 +636,19 @@ void vkms_composer_worker(struct work_struct *work) if (!crc_pending) return; - if (crtc_state->num_active_planes >= 1) { - act_plane = crtc_state->active_planes[0]; - if (act_plane->base.plane->type == DRM_PLANE_TYPE_PRIMARY) - primary_composer = act_plane->composer; - } - - if (!primary_composer) - return; - if (wb_pending) - vaddr_out = crtc_state->active_writeback; + ret = compose_active_planes(active_wb, crtc_state, &crc32); + else + ret = compose_active_planes(NULL, crtc_state, &crc32); - ret = compose_active_planes(&vaddr_out, primary_composer, - crtc_state); - if (ret) { - if (ret == -EINVAL && !wb_pending) - kfree(vaddr_out); + if (ret) return; - } - - crc32 = compute_crc(vaddr_out, primary_composer); if (wb_pending) { drm_writeback_signal_completion(&out->wb_connector, 0); spin_lock_irq(&out->composer_lock); crtc_state->wb_pending = false; spin_unlock_irq(&out->composer_lock); - } else { - kfree(vaddr_out); } /* @@ -287,7 +658,7 @@ void vkms_composer_worker(struct work_struct *work) drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); } -static const char * const pipe_crc_sources[] = {"auto"}; +static const char *const pipe_crc_sources[] = { "auto" }; const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, size_t *count) |
