diff options
Diffstat (limited to 'drivers/gpu/drm/vkms/vkms_composer.c')
| -rw-r--r-- | drivers/gpu/drm/vkms/vkms_composer.c | 476 |
1 files changed, 384 insertions, 92 deletions
diff --git a/drivers/gpu/drm/vkms/vkms_composer.c b/drivers/gpu/drm/vkms/vkms_composer.c index d5d4f642d367..3cf3f26e0d8e 100644 --- a/drivers/gpu/drm/vkms/vkms_composer.c +++ b/drivers/gpu/drm/vkms/vkms_composer.c @@ -8,10 +8,13 @@ #include <drm/drm_fourcc.h> #include <drm/drm_fixed.h> #include <drm/drm_gem_framebuffer_helper.h> +#include <drm/drm_print.h> #include <drm/drm_vblank.h> #include <linux/minmax.h> +#include <kunit/visibility.h> -#include "vkms_drv.h" +#include "vkms_composer.h" +#include "vkms_luts.h" static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) { @@ -24,64 +27,33 @@ static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) /** * pre_mul_alpha_blend - alpha blending equation - * @frame_info: Source framebuffer's metadata * @stage_buffer: The line with the pixels from src_plane * @output_buffer: A line buffer that receives all the blends output + * @x_start: The start offset + * @pixel_count: The number of pixels to blend * - * Using the information from the `frame_info`, this blends only the - * necessary pixels from the `stage_buffer` to the `output_buffer` - * using premultiplied blend formula. + * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at + * [@x_start;@x_start+@pixel_count) in output_buffer. * * The current DRM assumption is that pixel color values have been already * pre-multiplied with the alpha channel values. See more * drm_plane_create_blend_mode_property(). Also, this formula assumes a * completely opaque background. */ -static void pre_mul_alpha_blend(struct vkms_frame_info *frame_info, - struct line_buffer *stage_buffer, - struct line_buffer *output_buffer) +static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer, + struct line_buffer *output_buffer, int x_start, int pixel_count) { - int x_dst = frame_info->dst.x1; - struct pixel_argb_u16 *out = output_buffer->pixels + x_dst; - struct pixel_argb_u16 *in = stage_buffer->pixels; - int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst), - stage_buffer->n_pixels); - - for (int x = 0; x < x_limit; x++) { - out[x].a = (u16)0xffff; - out[x].r = pre_mul_blend_channel(in[x].r, out[x].r, in[x].a); - out[x].g = pre_mul_blend_channel(in[x].g, out[x].g, in[x].a); - out[x].b = pre_mul_blend_channel(in[x].b, out[x].b, in[x].a); + struct pixel_argb_u16 *out = &output_buffer->pixels[x_start]; + const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start]; + + for (int i = 0; i < pixel_count; i++) { + out[i].a = (u16)0xffff; + out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a); + out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a); + out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a); } } -static int get_y_pos(struct vkms_frame_info *frame_info, int y) -{ - if (frame_info->rotation & DRM_MODE_REFLECT_Y) - return drm_rect_height(&frame_info->rotated) - y - 1; - - switch (frame_info->rotation & DRM_MODE_ROTATE_MASK) { - case DRM_MODE_ROTATE_90: - return frame_info->rotated.x2 - y - 1; - case DRM_MODE_ROTATE_270: - return y + frame_info->rotated.x1; - default: - return y; - } -} - -static bool check_limit(struct vkms_frame_info *frame_info, int pos) -{ - if (drm_rotation_90_or_270(frame_info->rotation)) { - if (pos >= 0 && pos < drm_rect_width(&frame_info->rotated)) - return true; - } else { - if (pos >= frame_info->rotated.y1 && pos < frame_info->rotated.y2) - return true; - } - - return false; -} static void fill_background(const struct pixel_argb_u16 *background_color, struct line_buffer *output_buffer) @@ -91,38 +63,31 @@ static void fill_background(const struct pixel_argb_u16 *background_color, } // lerp(a, b, t) = a + (b - a) * t -static u16 lerp_u16(u16 a, u16 b, s64 t) +VISIBLE_IF_KUNIT u16 lerp_u16(u16 a, u16 b, s64 t) { s64 a_fp = drm_int2fixp(a); s64 b_fp = drm_int2fixp(b); - s64 delta = drm_fixp_mul(b_fp - a_fp, t); + s64 delta = drm_fixp_mul(b_fp - a_fp, t); - return drm_fixp2int(a_fp + delta); + return drm_fixp2int_round(a_fp + delta); } +EXPORT_SYMBOL_IF_KUNIT(lerp_u16); -static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) +VISIBLE_IF_KUNIT s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) { s64 color_channel_fp = drm_int2fixp(channel_value); return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio); } +EXPORT_SYMBOL_IF_KUNIT(get_lut_index); -/* - * This enum is related to the positions of the variables inside - * `struct drm_color_lut`, so the order of both needs to be the same. - */ -enum lut_channel { - LUT_RED = 0, - LUT_GREEN, - LUT_BLUE, - LUT_RESERVED -}; - -static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, - enum lut_channel channel) +VISIBLE_IF_KUNIT u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, + enum lut_channel channel) { s64 lut_index = get_lut_index(lut, channel_value); + u16 *floor_lut_value, *ceil_lut_value; + u16 floor_channel_value, ceil_channel_value; /* * This checks if `struct drm_color_lut` has any gap added by the compiler @@ -130,15 +95,21 @@ static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 chan */ static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4); - u16 *floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; - u16 *ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; + floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; + if (drm_fixp2int(lut_index) == (lut->lut_length - 1)) + /* We're at the end of the LUT array, use same value for ceil and floor */ + ceil_lut_value = floor_lut_value; + else + ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; - u16 floor_channel_value = floor_lut_value[channel]; - u16 ceil_channel_value = ceil_lut_value[channel]; + floor_channel_value = floor_lut_value[channel]; + ceil_channel_value = ceil_lut_value[channel]; return lerp_u16(floor_channel_value, ceil_channel_value, lut_index & DRM_FIXED_DECIMAL_MASK); } +EXPORT_SYMBOL_IF_KUNIT(apply_lut_to_channel_value); + static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer) { @@ -157,6 +128,332 @@ static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buff } } +VISIBLE_IF_KUNIT void apply_3x4_matrix(struct pixel_argb_s32 *pixel, + const struct drm_color_ctm_3x4 *matrix) +{ + s64 rf, gf, bf; + s64 r, g, b; + + r = drm_int2fixp(pixel->r); + g = drm_int2fixp(pixel->g); + b = drm_int2fixp(pixel->b); + + rf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[0]), r) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[1]), g) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[2]), b) + + drm_sm2fixp(matrix->matrix[3]); + + gf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[4]), r) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[5]), g) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[6]), b) + + drm_sm2fixp(matrix->matrix[7]); + + bf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[8]), r) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[9]), g) + + drm_fixp_mul(drm_sm2fixp(matrix->matrix[10]), b) + + drm_sm2fixp(matrix->matrix[11]); + + pixel->r = drm_fixp2int_round(rf); + pixel->g = drm_fixp2int_round(gf); + pixel->b = drm_fixp2int_round(bf); +} +EXPORT_SYMBOL_IF_KUNIT(apply_3x4_matrix); + +static void apply_colorop(struct pixel_argb_s32 *pixel, struct drm_colorop *colorop) +{ + struct drm_colorop_state *colorop_state = colorop->state; + struct drm_device *dev = colorop->dev; + + if (colorop->type == DRM_COLOROP_1D_CURVE) { + switch (colorop_state->curve_1d_type) { + case DRM_COLOROP_1D_CURVE_SRGB_INV_EOTF: + pixel->r = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->r, LUT_RED); + pixel->g = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->g, LUT_GREEN); + pixel->b = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->b, LUT_BLUE); + break; + case DRM_COLOROP_1D_CURVE_SRGB_EOTF: + pixel->r = apply_lut_to_channel_value(&srgb_eotf, pixel->r, LUT_RED); + pixel->g = apply_lut_to_channel_value(&srgb_eotf, pixel->g, LUT_GREEN); + pixel->b = apply_lut_to_channel_value(&srgb_eotf, pixel->b, LUT_BLUE); + break; + default: + drm_WARN_ONCE(dev, true, + "unknown colorop 1D curve type %d\n", + colorop_state->curve_1d_type); + break; + } + } else if (colorop->type == DRM_COLOROP_CTM_3X4) { + if (colorop_state->data) + apply_3x4_matrix(pixel, + (struct drm_color_ctm_3x4 *)colorop_state->data->data); + } +} + +static void pre_blend_color_transform(const struct vkms_plane_state *plane_state, + struct line_buffer *output_buffer) +{ + struct pixel_argb_s32 pixel; + + for (size_t x = 0; x < output_buffer->n_pixels; x++) { + struct drm_colorop *colorop = plane_state->base.base.color_pipeline; + + /* + * Some operations, such as applying a BT709 encoding matrix, + * followed by a decoding matrix, require that we preserve + * values above 1.0 and below 0.0 until the end of the pipeline. + * + * Pack the 16-bit UNORM values into s32 to give us head-room to + * avoid clipping until we're at the end of the pipeline. Clip + * intentionally at the end of the pipeline before packing + * UNORM values back into u16. + */ + pixel.a = output_buffer->pixels[x].a; + pixel.r = output_buffer->pixels[x].r; + pixel.g = output_buffer->pixels[x].g; + pixel.b = output_buffer->pixels[x].b; + + while (colorop) { + struct drm_colorop_state *colorop_state; + + colorop_state = colorop->state; + + if (!colorop_state) + return; + + if (!colorop_state->bypass) + apply_colorop(&pixel, colorop); + + colorop = colorop->next; + } + + /* clamp values */ + output_buffer->pixels[x].a = clamp_val(pixel.a, 0, 0xffff); + output_buffer->pixels[x].r = clamp_val(pixel.r, 0, 0xffff); + output_buffer->pixels[x].g = clamp_val(pixel.g, 0, 0xffff); + output_buffer->pixels[x].b = clamp_val(pixel.b, 0, 0xffff); + } +} + +/** + * direction_for_rotation() - Get the correct reading direction for a given rotation + * + * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation. + * + * This function will use the @rotation setting of a source plane to compute the reading + * direction in this plane which correspond to a "left to right writing" in the CRTC. + * For example, if the buffer is reflected on X axis, the pixel must be read from right to left + * to be written from left to right on the CRTC. + */ +static enum pixel_read_direction direction_for_rotation(unsigned int rotation) +{ + struct drm_rect tmp_a, tmp_b; + int x, y; + + /* + * Points A and B are depicted as zero-size rectangles on the CRTC. + * The CRTC writing direction is from A to B. The plane reading direction + * is discovered by inverse-transforming A and B. + * The reading direction is computed by rotating the vector AB (top-left to top-right) in a + * 1x1 square. + */ + + tmp_a = DRM_RECT_INIT(0, 0, 0, 0); + tmp_b = DRM_RECT_INIT(1, 0, 0, 0); + drm_rect_rotate_inv(&tmp_a, 1, 1, rotation); + drm_rect_rotate_inv(&tmp_b, 1, 1, rotation); + + x = tmp_b.x1 - tmp_a.x1; + y = tmp_b.y1 - tmp_a.y1; + + if (x == 1 && y == 0) + return READ_LEFT_TO_RIGHT; + else if (x == -1 && y == 0) + return READ_RIGHT_TO_LEFT; + else if (y == 1 && x == 0) + return READ_TOP_TO_BOTTOM; + else if (y == -1 && x == 0) + return READ_BOTTOM_TO_TOP; + + WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction."); + return READ_LEFT_TO_RIGHT; +} + +/** + * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend + * process. + * + * @direction: direction of the reading + * @current_plane: current plane blended + * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle + * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of + * pixel_count*1 if @direction is horizontal. + * @src_x_start: x start coordinate for the line reading + * @src_y_start: y start coordinate for the line reading + * @dst_x_start: x coordinate to blend the read line + * @pixel_count: number of pixels to blend + * + * This function is mainly a safety net to avoid reading outside the source buffer. As the + * userspace should never ask to read outside the source plane, all the cases covered here should + * be dead code. + */ +static void clamp_line_coordinates(enum pixel_read_direction direction, + const struct vkms_plane_state *current_plane, + const struct drm_rect *src_line, int *src_x_start, + int *src_y_start, int *dst_x_start, int *pixel_count) +{ + /* By default the start points are correct */ + *src_x_start = src_line->x1; + *src_y_start = src_line->y1; + *dst_x_start = current_plane->frame_info->dst.x1; + + /* Get the correct number of pixel to blend, it depends of the direction */ + switch (direction) { + case READ_LEFT_TO_RIGHT: + case READ_RIGHT_TO_LEFT: + *pixel_count = drm_rect_width(src_line); + break; + case READ_BOTTOM_TO_TOP: + case READ_TOP_TO_BOTTOM: + *pixel_count = drm_rect_height(src_line); + break; + } + + /* + * Clamp the coordinates to avoid reading outside the buffer + * + * This is mainly a security check to avoid reading outside the buffer, the userspace + * should never request to read outside the source buffer. + */ + switch (direction) { + case READ_LEFT_TO_RIGHT: + case READ_RIGHT_TO_LEFT: + if (*src_x_start < 0) { + *pixel_count += *src_x_start; + *dst_x_start -= *src_x_start; + *src_x_start = 0; + } + if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width) + *pixel_count = max(0, (int)current_plane->frame_info->fb->width - + *src_x_start); + break; + case READ_BOTTOM_TO_TOP: + case READ_TOP_TO_BOTTOM: + if (*src_y_start < 0) { + *pixel_count += *src_y_start; + *dst_x_start -= *src_y_start; + *src_y_start = 0; + } + if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height) + *pixel_count = max(0, (int)current_plane->frame_info->fb->height - + *src_y_start); + break; + } +} + +/** + * blend_line() - Blend a line from a plane to the output buffer + * + * @current_plane: current plane to work on + * @y: line to write in the output buffer + * @crtc_x_limit: width of the output buffer + * @stage_buffer: temporary buffer to convert the pixel line from the source buffer + * @output_buffer: buffer to blend the read line into. + */ +static void blend_line(struct vkms_plane_state *current_plane, int y, + int crtc_x_limit, struct line_buffer *stage_buffer, + struct line_buffer *output_buffer) +{ + int src_x_start, src_y_start, dst_x_start, pixel_count; + struct drm_rect dst_line, tmp_src, src_line; + + /* Avoid rendering useless lines */ + if (y < current_plane->frame_info->dst.y1 || + y >= current_plane->frame_info->dst.y2) + return; + + /* + * dst_line is the line to copy. The initial coordinates are inside the + * destination framebuffer, and then drm_rect_* helpers are used to + * compute the correct position into the source framebuffer. + */ + dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y, + drm_rect_width(¤t_plane->frame_info->dst), + 1); + + drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src); + + /* + * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of + * the destination buffer + */ + dst_line.x1 = max_t(int, dst_line.x1, 0); + dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit); + /* The destination is completely outside of the crtc. */ + if (dst_line.x2 <= dst_line.x1) + return; + + src_line = dst_line; + + /* + * Transform the coordinate x/y from the crtc to coordinates into + * coordinates for the src buffer. + * + * - Cancel the offset of the dst buffer. + * - Invert the rotation. This assumes that + * dst = drm_rect_rotate(src, rotation) (dst and src have the + * same size, but can be rotated). + * - Apply the offset of the source rectangle to the coordinate. + */ + drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1, + -current_plane->frame_info->dst.y1); + drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src), + drm_rect_height(&tmp_src), + current_plane->frame_info->rotation); + drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1); + + /* Get the correct reading direction in the source buffer. */ + + enum pixel_read_direction direction = + direction_for_rotation(current_plane->frame_info->rotation); + + /* [2]: Compute and clamp the number of pixel to read */ + clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start, + &dst_x_start, &pixel_count); + + if (pixel_count <= 0) { + /* Nothing to read, so avoid multiple function calls */ + return; + } + + /* + * Modify the starting point to take in account the rotation + * + * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or + * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left + * corner. + */ + if (direction == READ_RIGHT_TO_LEFT) { + // src_x_start is now the right point + src_x_start += pixel_count - 1; + } else if (direction == READ_BOTTOM_TO_TOP) { + // src_y_start is now the bottom point + src_y_start += pixel_count - 1; + } + + /* + * Perform the conversion and the blending + * + * Here we know that the read line (x_start, y_start, pixel_count) is + * inside the source buffer [2] and we don't write outside the stage + * buffer [1]. + */ + current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction, + pixel_count, &stage_buffer->pixels[dst_x_start]); + pre_blend_color_transform(current_plane, stage_buffer); + pre_mul_alpha_blend(stage_buffer, output_buffer, + dst_x_start, pixel_count); +} + /** * blend - blend the pixels from all planes and compute crc * @wb: The writeback frame buffer metadata @@ -177,25 +474,25 @@ static void blend(struct vkms_writeback_job *wb, { struct vkms_plane_state **plane = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; - int y_pos; const struct pixel_argb_u16 background_color = { .a = 0xffff }; - size_t crtc_y_limit = crtc_state->base.crtc->mode.vdisplay; + int crtc_y_limit = crtc_state->base.mode.vdisplay; + int crtc_x_limit = crtc_state->base.mode.hdisplay; - for (size_t y = 0; y < crtc_y_limit; y++) { + /* + * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary + * complexity to avoid poor blending performance. + * + * The function pixel_read_line callback is used to read a line, using an efficient + * algorithm for a specific format, into the staging buffer. + */ + for (int y = 0; y < crtc_y_limit; y++) { fill_background(&background_color, output_buffer); /* The active planes are composed associatively in z-order. */ for (size_t i = 0; i < n_active_planes; i++) { - y_pos = get_y_pos(plane[i]->frame_info, y); - - if (!check_limit(plane[i]->frame_info, y_pos)) - continue; - - vkms_compose_row(stage_buffer, plane[i], y_pos); - pre_mul_alpha_blend(plane[i]->frame_info, stage_buffer, - output_buffer); + blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer); } apply_lut(crtc_state, output_buffer); @@ -203,7 +500,7 @@ static void blend(struct vkms_writeback_job *wb, *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); if (wb) - vkms_writeback_row(wb, output_buffer, y_pos); + vkms_writeback_row(wb, output_buffer, y); } } @@ -214,7 +511,7 @@ static int check_format_funcs(struct vkms_crtc_state *crtc_state, u32 n_active_planes = crtc_state->num_active_planes; for (size_t i = 0; i < n_active_planes; i++) - if (!planes[i]->pixel_read) + if (!planes[i]->pixel_read_line) return -1; if (active_wb && !active_wb->pixel_write) @@ -257,7 +554,7 @@ static int compose_active_planes(struct vkms_writeback_job *active_wb, if (WARN_ON(check_format_funcs(crtc_state, active_wb))) return -EINVAL; - line_width = crtc_state->base.crtc->mode.hdisplay; + line_width = crtc_state->base.mode.hdisplay; stage_buffer.n_pixels = line_width; output_buffer.n_pixels = line_width; @@ -296,8 +593,8 @@ free_stage_buffer: void vkms_composer_worker(struct work_struct *work) { struct vkms_crtc_state *crtc_state = container_of(work, - struct vkms_crtc_state, - composer_work); + struct vkms_crtc_state, + composer_work); struct drm_crtc *crtc = crtc_state->base.crtc; struct vkms_writeback_job *active_wb = crtc_state->active_writeback; struct vkms_output *out = drm_crtc_to_vkms_output(crtc); @@ -322,7 +619,7 @@ void vkms_composer_worker(struct work_struct *work) crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data; crtc_state->gamma_lut.lut_length = crtc->state->gamma_lut->length / sizeof(struct drm_color_lut); - max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); + max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp, u16_max_fp); @@ -361,7 +658,7 @@ void vkms_composer_worker(struct work_struct *work) drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); } -static const char * const pipe_crc_sources[] = {"auto"}; +static const char *const pipe_crc_sources[] = { "auto" }; const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, size_t *count) @@ -408,15 +705,10 @@ void vkms_set_composer(struct vkms_output *out, bool enabled) if (enabled) drm_crtc_vblank_get(&out->crtc); - mutex_lock(&out->enabled_lock); + spin_lock_irq(&out->lock); old_enabled = out->composer_enabled; out->composer_enabled = enabled; - - /* the composition wasn't enabled, so unlock the lock to make sure the lock - * will be balanced even if we have a failed commit - */ - if (!out->composer_enabled) - mutex_unlock(&out->enabled_lock); + spin_unlock_irq(&out->lock); if (old_enabled) drm_crtc_vblank_put(&out->crtc); |
