diff options
Diffstat (limited to 'drivers/gpu/drm/xe/xe_bo.c')
| -rw-r--r-- | drivers/gpu/drm/xe/xe_bo.c | 3666 |
1 files changed, 3666 insertions, 0 deletions
diff --git a/drivers/gpu/drm/xe/xe_bo.c b/drivers/gpu/drm/xe/xe_bo.c new file mode 100644 index 000000000000..b0bd31d14bb9 --- /dev/null +++ b/drivers/gpu/drm/xe/xe_bo.c @@ -0,0 +1,3666 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include "xe_bo.h" + +#include <linux/dma-buf.h> +#include <linux/nospec.h> + +#include <drm/drm_drv.h> +#include <drm/drm_dumb_buffers.h> +#include <drm/drm_gem_ttm_helper.h> +#include <drm/drm_managed.h> +#include <drm/ttm/ttm_backup.h> +#include <drm/ttm/ttm_device.h> +#include <drm/ttm/ttm_placement.h> +#include <drm/ttm/ttm_tt.h> +#include <uapi/drm/xe_drm.h> + +#include <kunit/static_stub.h> + +#include <trace/events/gpu_mem.h> + +#include "xe_device.h" +#include "xe_dma_buf.h" +#include "xe_drm_client.h" +#include "xe_ggtt.h" +#include "xe_gt.h" +#include "xe_map.h" +#include "xe_migrate.h" +#include "xe_pm.h" +#include "xe_preempt_fence.h" +#include "xe_pxp.h" +#include "xe_res_cursor.h" +#include "xe_shrinker.h" +#include "xe_sriov_vf_ccs.h" +#include "xe_tile.h" +#include "xe_trace_bo.h" +#include "xe_ttm_stolen_mgr.h" +#include "xe_vm.h" +#include "xe_vram_types.h" + +const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { + [XE_PL_SYSTEM] = "system", + [XE_PL_TT] = "gtt", + [XE_PL_VRAM0] = "vram0", + [XE_PL_VRAM1] = "vram1", + [XE_PL_STOLEN] = "stolen" +}; + +static const struct ttm_place sys_placement_flags = { + .fpfn = 0, + .lpfn = 0, + .mem_type = XE_PL_SYSTEM, + .flags = 0, +}; + +static struct ttm_placement sys_placement = { + .num_placement = 1, + .placement = &sys_placement_flags, +}; + +static struct ttm_placement purge_placement; + +static const struct ttm_place tt_placement_flags[] = { + { + .fpfn = 0, + .lpfn = 0, + .mem_type = XE_PL_TT, + .flags = TTM_PL_FLAG_DESIRED, + }, + { + .fpfn = 0, + .lpfn = 0, + .mem_type = XE_PL_SYSTEM, + .flags = TTM_PL_FLAG_FALLBACK, + } +}; + +static struct ttm_placement tt_placement = { + .num_placement = 2, + .placement = tt_placement_flags, +}; + +#define for_each_set_bo_vram_flag(bit__, bo_flags__) \ + for (unsigned int __bit_tmp = BIT(0); __bit_tmp <= XE_BO_FLAG_VRAM_MASK; __bit_tmp <<= 1) \ + for_each_if(((bit__) = __bit_tmp) & (bo_flags__) & XE_BO_FLAG_VRAM_MASK) + +bool mem_type_is_vram(u32 mem_type) +{ + return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; +} + +static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) +{ + return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); +} + +static bool resource_is_vram(struct ttm_resource *res) +{ + return mem_type_is_vram(res->mem_type); +} + +bool xe_bo_is_vram(struct xe_bo *bo) +{ + return resource_is_vram(bo->ttm.resource) || + resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); +} + +bool xe_bo_is_stolen(struct xe_bo *bo) +{ + return bo->ttm.resource->mem_type == XE_PL_STOLEN; +} + +/** + * xe_bo_has_single_placement - check if BO is placed only in one memory location + * @bo: The BO + * + * This function checks whether a given BO is placed in only one memory location. + * + * Returns: true if the BO is placed in a single memory location, false otherwise. + * + */ +bool xe_bo_has_single_placement(struct xe_bo *bo) +{ + return bo->placement.num_placement == 1; +} + +/** + * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR + * @bo: The BO + * + * The stolen memory is accessed through the PCI BAR for both DGFX and some + * integrated platforms that have a dedicated bit in the PTE for devmem (DM). + * + * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. + */ +bool xe_bo_is_stolen_devmem(struct xe_bo *bo) +{ + return xe_bo_is_stolen(bo) && + GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; +} + +/** + * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND + * @bo: The BO + * + * Check if a given bo is bound through VM_BIND. This requires the + * reservation lock for the BO to be held. + * + * Returns: boolean + */ +bool xe_bo_is_vm_bound(struct xe_bo *bo) +{ + xe_bo_assert_held(bo); + + return !list_empty(&bo->ttm.base.gpuva.list); +} + +static bool xe_bo_is_user(struct xe_bo *bo) +{ + return bo->flags & XE_BO_FLAG_USER; +} + +static struct xe_migrate * +mem_type_to_migrate(struct xe_device *xe, u32 mem_type) +{ + struct xe_tile *tile; + + xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); + tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; + return tile->migrate; +} + +static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res) +{ + struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); + struct ttm_resource_manager *mgr; + struct xe_ttm_vram_mgr *vram_mgr; + + xe_assert(xe, resource_is_vram(res)); + mgr = ttm_manager_type(&xe->ttm, res->mem_type); + vram_mgr = to_xe_ttm_vram_mgr(mgr); + + return container_of(vram_mgr, struct xe_vram_region, ttm); +} + +static void try_add_system(struct xe_device *xe, struct xe_bo *bo, + u32 bo_flags, u32 *c) +{ + if (bo_flags & XE_BO_FLAG_SYSTEM) { + xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); + + bo->placements[*c] = (struct ttm_place) { + .mem_type = XE_PL_TT, + .flags = (bo_flags & XE_BO_FLAG_VRAM_MASK) ? + TTM_PL_FLAG_FALLBACK : 0, + }; + *c += 1; + } +} + +static bool force_contiguous(u32 bo_flags) +{ + if (bo_flags & XE_BO_FLAG_STOLEN) + return true; /* users expect this */ + else if (bo_flags & XE_BO_FLAG_PINNED && + !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) + return true; /* needs vmap */ + else if (bo_flags & XE_BO_FLAG_CPU_ADDR_MIRROR) + return true; + + /* + * For eviction / restore on suspend / resume objects pinned in VRAM + * must be contiguous, also only contiguous BOs support xe_bo_vmap. + */ + return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS && + bo_flags & XE_BO_FLAG_PINNED; +} + +static u8 vram_bo_flag_to_tile_id(struct xe_device *xe, u32 vram_bo_flag) +{ + xe_assert(xe, vram_bo_flag & XE_BO_FLAG_VRAM_MASK); + xe_assert(xe, (vram_bo_flag & (vram_bo_flag - 1)) == 0); + + return __ffs(vram_bo_flag >> (__ffs(XE_BO_FLAG_VRAM0) - 1)) - 1; +} + +static u32 bo_vram_flags_to_vram_placement(struct xe_device *xe, u32 bo_flags, u32 vram_flag, + enum ttm_bo_type type) +{ + u8 tile_id = vram_bo_flag_to_tile_id(xe, vram_flag); + + xe_assert(xe, tile_id < xe->info.tile_count); + + if (type == ttm_bo_type_kernel && !(bo_flags & XE_BO_FLAG_FORCE_USER_VRAM)) + return xe->tiles[tile_id].mem.kernel_vram->placement; + else + return xe->tiles[tile_id].mem.vram->placement; +} + +static void add_vram(struct xe_device *xe, struct xe_bo *bo, + struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) +{ + struct ttm_place place = { .mem_type = mem_type }; + struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type); + struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr); + + struct xe_vram_region *vram; + u64 io_size; + + xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); + + vram = container_of(vram_mgr, struct xe_vram_region, ttm); + xe_assert(xe, vram && vram->usable_size); + io_size = vram->io_size; + + if (force_contiguous(bo_flags)) + place.flags |= TTM_PL_FLAG_CONTIGUOUS; + + if (io_size < vram->usable_size) { + if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { + place.fpfn = 0; + place.lpfn = io_size >> PAGE_SHIFT; + } else { + place.flags |= TTM_PL_FLAG_TOPDOWN; + } + } + places[*c] = place; + *c += 1; +} + +static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, + u32 bo_flags, enum ttm_bo_type type, u32 *c) +{ + u32 vram_flag; + + for_each_set_bo_vram_flag(vram_flag, bo_flags) { + u32 pl = bo_vram_flags_to_vram_placement(xe, bo_flags, vram_flag, type); + + add_vram(xe, bo, bo->placements, bo_flags, pl, c); + } +} + +static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, + u32 bo_flags, u32 *c) +{ + if (bo_flags & XE_BO_FLAG_STOLEN) { + xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); + + bo->placements[*c] = (struct ttm_place) { + .mem_type = XE_PL_STOLEN, + .flags = force_contiguous(bo_flags) ? + TTM_PL_FLAG_CONTIGUOUS : 0, + }; + *c += 1; + } +} + +static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, + u32 bo_flags, enum ttm_bo_type type) +{ + u32 c = 0; + + try_add_vram(xe, bo, bo_flags, type, &c); + try_add_system(xe, bo, bo_flags, &c); + try_add_stolen(xe, bo, bo_flags, &c); + + if (!c) + return -EINVAL; + + bo->placement = (struct ttm_placement) { + .num_placement = c, + .placement = bo->placements, + }; + + return 0; +} + +int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, + u32 bo_flags, enum ttm_bo_type type) +{ + xe_bo_assert_held(bo); + return __xe_bo_placement_for_flags(xe, bo, bo_flags, type); +} + +static void xe_evict_flags(struct ttm_buffer_object *tbo, + struct ttm_placement *placement) +{ + struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm); + bool device_unplugged = drm_dev_is_unplugged(&xe->drm); + struct xe_bo *bo; + + if (!xe_bo_is_xe_bo(tbo)) { + /* Don't handle scatter gather BOs */ + if (tbo->type == ttm_bo_type_sg) { + placement->num_placement = 0; + return; + } + + *placement = device_unplugged ? purge_placement : sys_placement; + return; + } + + bo = ttm_to_xe_bo(tbo); + if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) { + *placement = sys_placement; + return; + } + + if (device_unplugged && !tbo->base.dma_buf) { + *placement = purge_placement; + return; + } + + /* + * For xe, sg bos that are evicted to system just triggers a + * rebind of the sg list upon subsequent validation to XE_PL_TT. + */ + switch (tbo->resource->mem_type) { + case XE_PL_VRAM0: + case XE_PL_VRAM1: + case XE_PL_STOLEN: + *placement = tt_placement; + break; + case XE_PL_TT: + default: + *placement = sys_placement; + break; + } +} + +/* struct xe_ttm_tt - Subclassed ttm_tt for xe */ +struct xe_ttm_tt { + struct ttm_tt ttm; + struct sg_table sgt; + struct sg_table *sg; + /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ + bool purgeable; +}; + +static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt) +{ + struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); + unsigned long num_pages = tt->num_pages; + int ret; + + XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && + !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)); + + if (xe_tt->sg) + return 0; + + ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, + num_pages, 0, + (u64)num_pages << PAGE_SHIFT, + xe_sg_segment_size(xe->drm.dev), + GFP_KERNEL); + if (ret) + return ret; + + xe_tt->sg = &xe_tt->sgt; + ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL, + DMA_ATTR_SKIP_CPU_SYNC); + if (ret) { + sg_free_table(xe_tt->sg); + xe_tt->sg = NULL; + return ret; + } + + return 0; +} + +static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt) +{ + struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); + + if (xe_tt->sg) { + dma_unmap_sgtable(xe->drm.dev, xe_tt->sg, + DMA_BIDIRECTIONAL, 0); + sg_free_table(xe_tt->sg); + xe_tt->sg = NULL; + } +} + +struct sg_table *xe_bo_sg(struct xe_bo *bo) +{ + struct ttm_tt *tt = bo->ttm.ttm; + struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); + + return xe_tt->sg; +} + +/* + * Account ttm pages against the device shrinker's shrinkable and + * purgeable counts. + */ +static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt) +{ + struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); + + if (xe_tt->purgeable) + xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages); + else + xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0); +} + +static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt) +{ + struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); + + if (xe_tt->purgeable) + xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages); + else + xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0); +} + +static void update_global_total_pages(struct ttm_device *ttm_dev, + long num_pages) +{ +#if IS_ENABLED(CONFIG_TRACE_GPU_MEM) + struct xe_device *xe = ttm_to_xe_device(ttm_dev); + u64 global_total_pages = + atomic64_add_return(num_pages, &xe->global_total_pages); + + trace_gpu_mem_total(xe->drm.primary->index, 0, + global_total_pages << PAGE_SHIFT); +#endif +} + +static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, + u32 page_flags) +{ + struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); + struct xe_device *xe = xe_bo_device(bo); + struct xe_ttm_tt *xe_tt; + struct ttm_tt *tt; + unsigned long extra_pages; + enum ttm_caching caching = ttm_cached; + int err; + + xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL); + if (!xe_tt) + return NULL; + + tt = &xe_tt->ttm; + + extra_pages = 0; + if (xe_bo_needs_ccs_pages(bo)) + extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)), + PAGE_SIZE); + + /* + * DGFX system memory is always WB / ttm_cached, since + * other caching modes are only supported on x86. DGFX + * GPU system memory accesses are always coherent with the + * CPU. + */ + if (!IS_DGFX(xe)) { + switch (bo->cpu_caching) { + case DRM_XE_GEM_CPU_CACHING_WC: + caching = ttm_write_combined; + break; + default: + caching = ttm_cached; + break; + } + + WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); + + /* + * Display scanout is always non-coherent with the CPU cache. + * + * For Xe_LPG and beyond, PPGTT PTE lookups are also + * non-coherent and require a CPU:WC mapping. + */ + if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || + (xe->info.graphics_verx100 >= 1270 && + bo->flags & XE_BO_FLAG_PAGETABLE)) + caching = ttm_write_combined; + } + + if (bo->flags & XE_BO_FLAG_NEEDS_UC) { + /* + * Valid only for internally-created buffers only, for + * which cpu_caching is never initialized. + */ + xe_assert(xe, bo->cpu_caching == 0); + caching = ttm_uncached; + } + + if (ttm_bo->type != ttm_bo_type_sg) + page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; + + err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages); + if (err) { + kfree(xe_tt); + return NULL; + } + + if (ttm_bo->type != ttm_bo_type_sg) { + err = ttm_tt_setup_backup(tt); + if (err) { + ttm_tt_fini(tt); + kfree(xe_tt); + return NULL; + } + } + + return tt; +} + +static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, + struct ttm_operation_ctx *ctx) +{ + struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); + int err; + + /* + * dma-bufs are not populated with pages, and the dma- + * addresses are set up when moved to XE_PL_TT. + */ + if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && + !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) + return 0; + + if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) { + err = ttm_tt_restore(ttm_dev, tt, ctx); + } else { + ttm_tt_clear_backed_up(tt); + err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); + } + if (err) + return err; + + xe_tt->purgeable = false; + xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt); + update_global_total_pages(ttm_dev, tt->num_pages); + + return 0; +} + +static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) +{ + struct xe_device *xe = ttm_to_xe_device(ttm_dev); + + if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && + !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) + return; + + xe_tt_unmap_sg(xe, tt); + + ttm_pool_free(&ttm_dev->pool, tt); + xe_ttm_tt_account_subtract(xe, tt); + update_global_total_pages(ttm_dev, -(long)tt->num_pages); +} + +static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) +{ + ttm_tt_fini(tt); + kfree(tt); +} + +static bool xe_ttm_resource_visible(struct ttm_resource *mem) +{ + struct xe_ttm_vram_mgr_resource *vres = + to_xe_ttm_vram_mgr_resource(mem); + + return vres->used_visible_size == mem->size; +} + +/** + * xe_bo_is_visible_vram - check if BO is placed entirely in visible VRAM. + * @bo: The BO + * + * This function checks whether a given BO resides entirely in memory visible from the CPU + * + * Returns: true if the BO is entirely visible, false otherwise. + * + */ +bool xe_bo_is_visible_vram(struct xe_bo *bo) +{ + if (drm_WARN_ON(bo->ttm.base.dev, !xe_bo_is_vram(bo))) + return false; + + return xe_ttm_resource_visible(bo->ttm.resource); +} + +static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, + struct ttm_resource *mem) +{ + struct xe_device *xe = ttm_to_xe_device(bdev); + + switch (mem->mem_type) { + case XE_PL_SYSTEM: + case XE_PL_TT: + return 0; + case XE_PL_VRAM0: + case XE_PL_VRAM1: { + struct xe_vram_region *vram = res_to_mem_region(mem); + + if (!xe_ttm_resource_visible(mem)) + return -EINVAL; + + mem->bus.offset = mem->start << PAGE_SHIFT; + + if (vram->mapping && + mem->placement & TTM_PL_FLAG_CONTIGUOUS) + mem->bus.addr = (u8 __force *)vram->mapping + + mem->bus.offset; + + mem->bus.offset += vram->io_start; + mem->bus.is_iomem = true; + +#if !IS_ENABLED(CONFIG_X86) + mem->bus.caching = ttm_write_combined; +#endif + return 0; + } case XE_PL_STOLEN: + return xe_ttm_stolen_io_mem_reserve(xe, mem); + default: + return -EINVAL; + } +} + +static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, + const struct ttm_operation_ctx *ctx) +{ + struct dma_resv_iter cursor; + struct dma_fence *fence; + struct drm_gem_object *obj = &bo->ttm.base; + struct drm_gpuvm_bo *vm_bo; + bool idle = false; + int ret = 0; + + dma_resv_assert_held(bo->ttm.base.resv); + + if (!list_empty(&bo->ttm.base.gpuva.list)) { + dma_resv_iter_begin(&cursor, bo->ttm.base.resv, + DMA_RESV_USAGE_BOOKKEEP); + dma_resv_for_each_fence_unlocked(&cursor, fence) + dma_fence_enable_sw_signaling(fence); + dma_resv_iter_end(&cursor); + } + + drm_gem_for_each_gpuvm_bo(vm_bo, obj) { + struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); + struct drm_gpuva *gpuva; + + if (!xe_vm_in_fault_mode(vm)) { + drm_gpuvm_bo_evict(vm_bo, true); + continue; + } + + if (!idle) { + long timeout; + + if (ctx->no_wait_gpu && + !dma_resv_test_signaled(bo->ttm.base.resv, + DMA_RESV_USAGE_BOOKKEEP)) + return -EBUSY; + + timeout = dma_resv_wait_timeout(bo->ttm.base.resv, + DMA_RESV_USAGE_BOOKKEEP, + ctx->interruptible, + MAX_SCHEDULE_TIMEOUT); + if (!timeout) + return -ETIME; + if (timeout < 0) + return timeout; + + idle = true; + } + + drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { + struct xe_vma *vma = gpuva_to_vma(gpuva); + + trace_xe_vma_evict(vma); + ret = xe_vm_invalidate_vma(vma); + if (XE_WARN_ON(ret)) + return ret; + } + } + + return ret; +} + +/* + * The dma-buf map_attachment() / unmap_attachment() is hooked up here. + * Note that unmapping the attachment is deferred to the next + * map_attachment time, or to bo destroy (after idling) whichever comes first. + * This is to avoid syncing before unmap_attachment(), assuming that the + * caller relies on idling the reservation object before moving the + * backing store out. Should that assumption not hold, then we will be able + * to unconditionally call unmap_attachment() when moving out to system. + */ +static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, + struct ttm_resource *new_res) +{ + struct dma_buf_attachment *attach = ttm_bo->base.import_attach; + struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, + ttm); + struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); + bool device_unplugged = drm_dev_is_unplugged(&xe->drm); + struct sg_table *sg; + + xe_assert(xe, attach); + xe_assert(xe, ttm_bo->ttm); + + if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM && + ttm_bo->sg) { + dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, + false, MAX_SCHEDULE_TIMEOUT); + dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); + ttm_bo->sg = NULL; + } + + if (new_res->mem_type == XE_PL_SYSTEM) + goto out; + + if (ttm_bo->sg) { + dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); + ttm_bo->sg = NULL; + } + + sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); + if (IS_ERR(sg)) + return PTR_ERR(sg); + + ttm_bo->sg = sg; + xe_tt->sg = sg; + +out: + ttm_bo_move_null(ttm_bo, new_res); + + return 0; +} + +/** + * xe_bo_move_notify - Notify subsystems of a pending move + * @bo: The buffer object + * @ctx: The struct ttm_operation_ctx controlling locking and waits. + * + * This function notifies subsystems of an upcoming buffer move. + * Upon receiving such a notification, subsystems should schedule + * halting access to the underlying pages and optionally add a fence + * to the buffer object's dma_resv object, that signals when access is + * stopped. The caller will wait on all dma_resv fences before + * starting the move. + * + * A subsystem may commence access to the object after obtaining + * bindings to the new backing memory under the object lock. + * + * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, + * negative error code on error. + */ +static int xe_bo_move_notify(struct xe_bo *bo, + const struct ttm_operation_ctx *ctx) +{ + struct ttm_buffer_object *ttm_bo = &bo->ttm; + struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); + struct ttm_resource *old_mem = ttm_bo->resource; + u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; + int ret; + + /* + * If this starts to call into many components, consider + * using a notification chain here. + */ + + if (xe_bo_is_pinned(bo)) + return -EINVAL; + + xe_bo_vunmap(bo); + ret = xe_bo_trigger_rebind(xe, bo, ctx); + if (ret) + return ret; + + /* Don't call move_notify() for imported dma-bufs. */ + if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) + dma_buf_move_notify(ttm_bo->base.dma_buf); + + /* + * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), + * so if we moved from VRAM make sure to unlink this from the userfault + * tracking. + */ + if (mem_type_is_vram(old_mem_type)) { + mutex_lock(&xe->mem_access.vram_userfault.lock); + if (!list_empty(&bo->vram_userfault_link)) + list_del_init(&bo->vram_userfault_link); + mutex_unlock(&xe->mem_access.vram_userfault.lock); + } + + return 0; +} + +static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, + struct ttm_operation_ctx *ctx, + struct ttm_resource *new_mem, + struct ttm_place *hop) +{ + struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); + struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); + struct ttm_resource *old_mem = ttm_bo->resource; + u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; + struct ttm_tt *ttm = ttm_bo->ttm; + struct xe_migrate *migrate = NULL; + struct dma_fence *fence; + bool move_lacks_source; + bool tt_has_data; + bool needs_clear; + bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && + ttm && ttm_tt_is_populated(ttm)) ? true : false; + int ret = 0; + + /* Bo creation path, moving to system or TT. */ + if ((!old_mem && ttm) && !handle_system_ccs) { + if (new_mem->mem_type == XE_PL_TT) + ret = xe_tt_map_sg(xe, ttm); + if (!ret) + ttm_bo_move_null(ttm_bo, new_mem); + goto out; + } + + if (ttm_bo->type == ttm_bo_type_sg) { + if (new_mem->mem_type == XE_PL_SYSTEM) + ret = xe_bo_move_notify(bo, ctx); + if (!ret) + ret = xe_bo_move_dmabuf(ttm_bo, new_mem); + return ret; + } + + tt_has_data = ttm && (ttm_tt_is_populated(ttm) || ttm_tt_is_swapped(ttm)); + + move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : + (!mem_type_is_vram(old_mem_type) && !tt_has_data)); + + needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || + (!ttm && ttm_bo->type == ttm_bo_type_device); + + if (new_mem->mem_type == XE_PL_TT) { + ret = xe_tt_map_sg(xe, ttm); + if (ret) + goto out; + } + + if ((move_lacks_source && !needs_clear)) { + ttm_bo_move_null(ttm_bo, new_mem); + goto out; + } + + if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) && + new_mem->mem_type == XE_PL_SYSTEM) { + ret = xe_svm_bo_evict(bo); + if (!ret) { + drm_dbg(&xe->drm, "Evict system allocator BO success\n"); + ttm_bo_move_null(ttm_bo, new_mem); + } else { + drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n", + ERR_PTR(ret)); + } + + goto out; + } + + if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { + ttm_bo_move_null(ttm_bo, new_mem); + goto out; + } + + /* + * Failed multi-hop where the old_mem is still marked as + * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. + */ + if (old_mem_type == XE_PL_TT && + new_mem->mem_type == XE_PL_TT) { + ttm_bo_move_null(ttm_bo, new_mem); + goto out; + } + + if (!move_lacks_source && !xe_bo_is_pinned(bo)) { + ret = xe_bo_move_notify(bo, ctx); + if (ret) + goto out; + } + + if (old_mem_type == XE_PL_TT && + new_mem->mem_type == XE_PL_SYSTEM) { + long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, + DMA_RESV_USAGE_BOOKKEEP, + false, + MAX_SCHEDULE_TIMEOUT); + if (timeout < 0) { + ret = timeout; + goto out; + } + + if (!handle_system_ccs) { + ttm_bo_move_null(ttm_bo, new_mem); + goto out; + } + } + + if (!move_lacks_source && + ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || + (mem_type_is_vram(old_mem_type) && + new_mem->mem_type == XE_PL_SYSTEM))) { + hop->fpfn = 0; + hop->lpfn = 0; + hop->mem_type = XE_PL_TT; + hop->flags = TTM_PL_FLAG_TEMPORARY; + ret = -EMULTIHOP; + goto out; + } + + if (bo->tile) + migrate = bo->tile->migrate; + else if (resource_is_vram(new_mem)) + migrate = mem_type_to_migrate(xe, new_mem->mem_type); + else if (mem_type_is_vram(old_mem_type)) + migrate = mem_type_to_migrate(xe, old_mem_type); + else + migrate = xe->tiles[0].migrate; + + xe_assert(xe, migrate); + trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); + if (xe_rpm_reclaim_safe(xe)) { + /* + * We might be called through swapout in the validation path of + * another TTM device, so acquire rpm here. + */ + xe_pm_runtime_get(xe); + } else { + drm_WARN_ON(&xe->drm, handle_system_ccs); + xe_pm_runtime_get_noresume(xe); + } + + if (move_lacks_source) { + u32 flags = 0; + + if (mem_type_is_vram(new_mem->mem_type)) + flags |= XE_MIGRATE_CLEAR_FLAG_FULL; + else if (handle_system_ccs) + flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; + + fence = xe_migrate_clear(migrate, bo, new_mem, flags); + } else { + fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem, + handle_system_ccs); + } + if (IS_ERR(fence)) { + ret = PTR_ERR(fence); + xe_pm_runtime_put(xe); + goto out; + } + if (!move_lacks_source) { + ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true, + new_mem); + if (ret) { + dma_fence_wait(fence, false); + ttm_bo_move_null(ttm_bo, new_mem); + ret = 0; + } + } else { + /* + * ttm_bo_move_accel_cleanup() may blow up if + * bo->resource == NULL, so just attach the + * fence and set the new resource. + */ + dma_resv_add_fence(ttm_bo->base.resv, fence, + DMA_RESV_USAGE_KERNEL); + ttm_bo_move_null(ttm_bo, new_mem); + } + + dma_fence_put(fence); + xe_pm_runtime_put(xe); + + /* + * CCS meta data is migrated from TT -> SMEM. So, let us detach the + * BBs from BO as it is no longer needed. + */ + if (IS_VF_CCS_READY(xe) && old_mem_type == XE_PL_TT && + new_mem->mem_type == XE_PL_SYSTEM) + xe_sriov_vf_ccs_detach_bo(bo); + + if (IS_VF_CCS_READY(xe) && + ((move_lacks_source && new_mem->mem_type == XE_PL_TT) || + (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT)) && + handle_system_ccs) + ret = xe_sriov_vf_ccs_attach_bo(bo); + +out: + if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && + ttm_bo->ttm) { + long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, + DMA_RESV_USAGE_KERNEL, + false, + MAX_SCHEDULE_TIMEOUT); + if (timeout < 0) + ret = timeout; + + if (IS_VF_CCS_READY(xe)) + xe_sriov_vf_ccs_detach_bo(bo); + + xe_tt_unmap_sg(xe, ttm_bo->ttm); + } + + return ret; +} + +static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx, + struct ttm_buffer_object *bo, + unsigned long *scanned) +{ + struct xe_device *xe = ttm_to_xe_device(bo->bdev); + long lret; + + /* Fake move to system, without copying data. */ + if (bo->resource->mem_type != XE_PL_SYSTEM) { + struct ttm_resource *new_resource; + + lret = ttm_bo_wait_ctx(bo, ctx); + if (lret) + return lret; + + lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx); + if (lret) + return lret; + + xe_tt_unmap_sg(xe, bo->ttm); + ttm_bo_move_null(bo, new_resource); + } + + *scanned += bo->ttm->num_pages; + lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) + {.purge = true, + .writeback = false, + .allow_move = false}); + + if (lret > 0) + xe_ttm_tt_account_subtract(xe, bo->ttm); + + return lret; +} + +static bool +xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) +{ + struct drm_gpuvm_bo *vm_bo; + + if (!ttm_bo_eviction_valuable(bo, place)) + return false; + + if (!xe_bo_is_xe_bo(bo)) + return true; + + drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) { + if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm))) + return false; + } + + return true; +} + +/** + * xe_bo_shrink() - Try to shrink an xe bo. + * @ctx: The struct ttm_operation_ctx used for shrinking. + * @bo: The TTM buffer object whose pages to shrink. + * @flags: Flags governing the shrink behaviour. + * @scanned: Pointer to a counter of the number of pages + * attempted to shrink. + * + * Try to shrink- or purge a bo, and if it succeeds, unmap dma. + * Note that we need to be able to handle also non xe bos + * (ghost bos), but only if the struct ttm_tt is embedded in + * a struct xe_ttm_tt. When the function attempts to shrink + * the pages of a buffer object, The value pointed to by @scanned + * is updated. + * + * Return: The number of pages shrunken or purged, or negative error + * code on failure. + */ +long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, + const struct xe_bo_shrink_flags flags, + unsigned long *scanned) +{ + struct ttm_tt *tt = bo->ttm; + struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); + struct ttm_place place = {.mem_type = bo->resource->mem_type}; + struct xe_bo *xe_bo = ttm_to_xe_bo(bo); + struct xe_device *xe = ttm_to_xe_device(bo->bdev); + bool needs_rpm; + long lret = 0L; + + if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) || + (flags.purge && !xe_tt->purgeable)) + return -EBUSY; + + if (!xe_bo_eviction_valuable(bo, &place)) + return -EBUSY; + + if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo)) + return xe_bo_shrink_purge(ctx, bo, scanned); + + if (xe_tt->purgeable) { + if (bo->resource->mem_type != XE_PL_SYSTEM) + lret = xe_bo_move_notify(xe_bo, ctx); + if (!lret) + lret = xe_bo_shrink_purge(ctx, bo, scanned); + goto out_unref; + } + + /* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */ + needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM && + xe_bo_needs_ccs_pages(xe_bo)); + if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) + goto out_unref; + + *scanned += tt->num_pages; + lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) + {.purge = false, + .writeback = flags.writeback, + .allow_move = true}); + if (needs_rpm) + xe_pm_runtime_put(xe); + + if (lret > 0) + xe_ttm_tt_account_subtract(xe, tt); + +out_unref: + xe_bo_put(xe_bo); + + return lret; +} + +/** + * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed + * up in system memory. + * @bo: The buffer object to prepare. + * + * On successful completion, the object backup pages are allocated. Expectation + * is that this is called from the PM notifier, prior to suspend/hibernation. + * + * Return: 0 on success. Negative error code on failure. + */ +int xe_bo_notifier_prepare_pinned(struct xe_bo *bo) +{ + struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); + struct xe_validation_ctx ctx; + struct drm_exec exec; + struct xe_bo *backup; + int ret = 0; + + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.exclusive = true}, ret) { + ret = drm_exec_lock_obj(&exec, &bo->ttm.base); + drm_exec_retry_on_contention(&exec); + xe_assert(xe, !ret); + xe_assert(xe, !bo->backup_obj); + + /* + * Since this is called from the PM notifier we might have raced with + * someone unpinning this after we dropped the pinned list lock and + * grabbing the above bo lock. + */ + if (!xe_bo_is_pinned(bo)) + break; + + if (!xe_bo_is_vram(bo)) + break; + + if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) + break; + + backup = xe_bo_init_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo), + DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, + XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | + XE_BO_FLAG_PINNED, &exec); + if (IS_ERR(backup)) { + drm_exec_retry_on_contention(&exec); + ret = PTR_ERR(backup); + xe_validation_retry_on_oom(&ctx, &ret); + break; + } + + backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ + ttm_bo_pin(&backup->ttm); + bo->backup_obj = backup; + } + + return ret; +} + +/** + * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation. + * @bo: The buffer object to undo the prepare for. + * + * Always returns 0. The backup object is removed, if still present. Expectation + * it that this called from the PM notifier when undoing the prepare step. + * + * Return: Always returns 0. + */ +int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo) +{ + xe_bo_lock(bo, false); + if (bo->backup_obj) { + ttm_bo_unpin(&bo->backup_obj->ttm); + xe_bo_put(bo->backup_obj); + bo->backup_obj = NULL; + } + xe_bo_unlock(bo); + + return 0; +} + +static int xe_bo_evict_pinned_copy(struct xe_bo *bo, struct xe_bo *backup) +{ + struct xe_device *xe = xe_bo_device(bo); + bool unmap = false; + int ret = 0; + + if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { + struct xe_migrate *migrate; + struct dma_fence *fence; + + if (bo->tile) + migrate = bo->tile->migrate; + else + migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); + + xe_assert(xe, bo->ttm.base.resv == backup->ttm.base.resv); + ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); + if (ret) + goto out_backup; + + fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource, + backup->ttm.resource, false); + if (IS_ERR(fence)) { + ret = PTR_ERR(fence); + goto out_backup; + } + + dma_resv_add_fence(bo->ttm.base.resv, fence, + DMA_RESV_USAGE_KERNEL); + dma_fence_put(fence); + } else { + ret = xe_bo_vmap(backup); + if (ret) + goto out_backup; + + if (iosys_map_is_null(&bo->vmap)) { + ret = xe_bo_vmap(bo); + if (ret) + goto out_vunmap; + unmap = true; + } + + xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0, + xe_bo_size(bo)); + } + + if (!bo->backup_obj) + bo->backup_obj = backup; +out_vunmap: + xe_bo_vunmap(backup); +out_backup: + if (unmap) + xe_bo_vunmap(bo); + + return ret; +} + +/** + * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory + * @bo: The buffer object to move. + * + * On successful completion, the object memory will be moved to system memory. + * + * This is needed to for special handling of pinned VRAM object during + * suspend-resume. + * + * Return: 0 on success. Negative error code on failure. + */ +int xe_bo_evict_pinned(struct xe_bo *bo) +{ + struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); + struct xe_validation_ctx ctx; + struct drm_exec exec; + struct xe_bo *backup = bo->backup_obj; + bool backup_created = false; + int ret = 0; + + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.exclusive = true}, ret) { + ret = drm_exec_lock_obj(&exec, &bo->ttm.base); + drm_exec_retry_on_contention(&exec); + xe_assert(xe, !ret); + + if (WARN_ON(!bo->ttm.resource)) { + ret = -EINVAL; + break; + } + + if (WARN_ON(!xe_bo_is_pinned(bo))) { + ret = -EINVAL; + break; + } + + if (!xe_bo_is_vram(bo)) + break; + + if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) + break; + + if (!backup) { + backup = xe_bo_init_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, + xe_bo_size(bo), + DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, + XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | + XE_BO_FLAG_PINNED, &exec); + if (IS_ERR(backup)) { + drm_exec_retry_on_contention(&exec); + ret = PTR_ERR(backup); + xe_validation_retry_on_oom(&ctx, &ret); + break; + } + backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ + backup_created = true; + } + + ret = xe_bo_evict_pinned_copy(bo, backup); + } + + if (ret && backup_created) + xe_bo_put(backup); + + return ret; +} + +/** + * xe_bo_restore_pinned() - Restore a pinned VRAM object + * @bo: The buffer object to move. + * + * On successful completion, the object memory will be moved back to VRAM. + * + * This is needed to for special handling of pinned VRAM object during + * suspend-resume. + * + * Return: 0 on success. Negative error code on failure. + */ +int xe_bo_restore_pinned(struct xe_bo *bo) +{ + struct ttm_operation_ctx ctx = { + .interruptible = false, + .gfp_retry_mayfail = false, + }; + struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); + struct xe_bo *backup = bo->backup_obj; + bool unmap = false; + int ret; + + if (!backup) + return 0; + + xe_bo_lock(bo, false); + + if (!xe_bo_is_pinned(backup)) { + ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx); + if (ret) + goto out_unlock_bo; + } + + if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { + struct xe_migrate *migrate; + struct dma_fence *fence; + + if (bo->tile) + migrate = bo->tile->migrate; + else + migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); + + ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); + if (ret) + goto out_unlock_bo; + + fence = xe_migrate_copy(migrate, backup, bo, + backup->ttm.resource, bo->ttm.resource, + false); + if (IS_ERR(fence)) { + ret = PTR_ERR(fence); + goto out_unlock_bo; + } + + dma_resv_add_fence(bo->ttm.base.resv, fence, + DMA_RESV_USAGE_KERNEL); + dma_fence_put(fence); + } else { + ret = xe_bo_vmap(backup); + if (ret) + goto out_unlock_bo; + + if (iosys_map_is_null(&bo->vmap)) { + ret = xe_bo_vmap(bo); + if (ret) + goto out_backup; + unmap = true; + } + + xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr, + xe_bo_size(bo)); + } + + bo->backup_obj = NULL; + +out_backup: + xe_bo_vunmap(backup); + if (!bo->backup_obj) { + if (xe_bo_is_pinned(backup)) + ttm_bo_unpin(&backup->ttm); + xe_bo_put(backup); + } +out_unlock_bo: + if (unmap) + xe_bo_vunmap(bo); + xe_bo_unlock(bo); + return ret; +} + +int xe_bo_dma_unmap_pinned(struct xe_bo *bo) +{ + struct ttm_buffer_object *ttm_bo = &bo->ttm; + struct ttm_tt *tt = ttm_bo->ttm; + + if (tt) { + struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm); + + if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { + dma_buf_unmap_attachment(ttm_bo->base.import_attach, + ttm_bo->sg, + DMA_BIDIRECTIONAL); + ttm_bo->sg = NULL; + xe_tt->sg = NULL; + } else if (xe_tt->sg) { + dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev, + xe_tt->sg, + DMA_BIDIRECTIONAL, 0); + sg_free_table(xe_tt->sg); + xe_tt->sg = NULL; + } + } + + return 0; +} + +static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, + unsigned long page_offset) +{ + struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); + struct xe_res_cursor cursor; + struct xe_vram_region *vram; + + if (ttm_bo->resource->mem_type == XE_PL_STOLEN) + return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; + + vram = res_to_mem_region(ttm_bo->resource); + xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); + return (vram->io_start + cursor.start) >> PAGE_SHIFT; +} + +static void __xe_bo_vunmap(struct xe_bo *bo); + +/* + * TODO: Move this function to TTM so we don't rely on how TTM does its + * locking, thereby abusing TTM internals. + */ +static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) +{ + struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); + bool locked; + + xe_assert(xe, !kref_read(&ttm_bo->kref)); + + /* + * We can typically only race with TTM trylocking under the + * lru_lock, which will immediately be unlocked again since + * the ttm_bo refcount is zero at this point. So trylocking *should* + * always succeed here, as long as we hold the lru lock. + */ + spin_lock(&ttm_bo->bdev->lru_lock); + locked = dma_resv_trylock(ttm_bo->base.resv); + spin_unlock(&ttm_bo->bdev->lru_lock); + xe_assert(xe, locked); + + return locked; +} + +static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) +{ + struct dma_resv_iter cursor; + struct dma_fence *fence; + struct dma_fence *replacement = NULL; + struct xe_bo *bo; + + if (!xe_bo_is_xe_bo(ttm_bo)) + return; + + bo = ttm_to_xe_bo(ttm_bo); + xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); + + /* + * Corner case where TTM fails to allocate memory and this BOs resv + * still points the VMs resv + */ + if (ttm_bo->base.resv != &ttm_bo->base._resv) + return; + + if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) + return; + + /* + * Scrub the preempt fences if any. The unbind fence is already + * attached to the resv. + * TODO: Don't do this for external bos once we scrub them after + * unbind. + */ + dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, + DMA_RESV_USAGE_BOOKKEEP, fence) { + if (xe_fence_is_xe_preempt(fence) && + !dma_fence_is_signaled(fence)) { + if (!replacement) + replacement = dma_fence_get_stub(); + + dma_resv_replace_fences(ttm_bo->base.resv, + fence->context, + replacement, + DMA_RESV_USAGE_BOOKKEEP); + } + } + dma_fence_put(replacement); + + dma_resv_unlock(ttm_bo->base.resv); +} + +static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) +{ + struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); + + if (!xe_bo_is_xe_bo(ttm_bo)) + return; + + if (IS_VF_CCS_READY(ttm_to_xe_device(ttm_bo->bdev))) + xe_sriov_vf_ccs_detach_bo(bo); + + /* + * Object is idle and about to be destroyed. Release the + * dma-buf attachment. + */ + if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { + struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, + struct xe_ttm_tt, ttm); + + dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, + DMA_BIDIRECTIONAL); + ttm_bo->sg = NULL; + xe_tt->sg = NULL; + } +} + +static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) +{ + struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); + + if (ttm_bo->ttm) { + struct ttm_placement place = {}; + int ret = ttm_bo_validate(ttm_bo, &place, ctx); + + drm_WARN_ON(&xe->drm, ret); + } +} + +static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) +{ + struct ttm_operation_ctx ctx = { + .interruptible = false, + .gfp_retry_mayfail = false, + }; + + if (ttm_bo->ttm) { + struct xe_ttm_tt *xe_tt = + container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); + + if (xe_tt->purgeable) + xe_ttm_bo_purge(ttm_bo, &ctx); + } +} + +static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, + unsigned long offset, void *buf, int len, + int write) +{ + struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); + struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); + struct iosys_map vmap; + struct xe_res_cursor cursor; + struct xe_vram_region *vram; + int bytes_left = len; + int err = 0; + + xe_bo_assert_held(bo); + xe_device_assert_mem_access(xe); + + if (!mem_type_is_vram(ttm_bo->resource->mem_type)) + return -EIO; + + if (!xe_bo_is_visible_vram(bo) || len >= SZ_16K) { + struct xe_migrate *migrate = + mem_type_to_migrate(xe, ttm_bo->resource->mem_type); + + err = xe_migrate_access_memory(migrate, bo, offset, buf, len, + write); + goto out; + } + + vram = res_to_mem_region(ttm_bo->resource); + xe_res_first(ttm_bo->resource, offset & PAGE_MASK, + xe_bo_size(bo) - (offset & PAGE_MASK), &cursor); + + do { + unsigned long page_offset = (offset & ~PAGE_MASK); + int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); + + iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + + cursor.start); + if (write) + xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); + else + xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); + + buf += byte_count; + offset += byte_count; + bytes_left -= byte_count; + if (bytes_left) + xe_res_next(&cursor, PAGE_SIZE); + } while (bytes_left); + +out: + return err ?: len; +} + +const struct ttm_device_funcs xe_ttm_funcs = { + .ttm_tt_create = xe_ttm_tt_create, + .ttm_tt_populate = xe_ttm_tt_populate, + .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, + .ttm_tt_destroy = xe_ttm_tt_destroy, + .evict_flags = xe_evict_flags, + .move = xe_bo_move, + .io_mem_reserve = xe_ttm_io_mem_reserve, + .io_mem_pfn = xe_ttm_io_mem_pfn, + .access_memory = xe_ttm_access_memory, + .release_notify = xe_ttm_bo_release_notify, + .eviction_valuable = xe_bo_eviction_valuable, + .delete_mem_notify = xe_ttm_bo_delete_mem_notify, + .swap_notify = xe_ttm_bo_swap_notify, +}; + +static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) +{ + struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); + struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); + struct xe_tile *tile; + u8 id; + + if (bo->ttm.base.import_attach) + drm_prime_gem_destroy(&bo->ttm.base, NULL); + drm_gem_object_release(&bo->ttm.base); + + xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); + + for_each_tile(tile, xe, id) + if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) + xe_ggtt_remove_bo(tile->mem.ggtt, bo); + +#ifdef CONFIG_PROC_FS + if (bo->client) + xe_drm_client_remove_bo(bo); +#endif + + if (bo->vm && xe_bo_is_user(bo)) + xe_vm_put(bo->vm); + + if (bo->parent_obj) + xe_bo_put(bo->parent_obj); + + mutex_lock(&xe->mem_access.vram_userfault.lock); + if (!list_empty(&bo->vram_userfault_link)) + list_del(&bo->vram_userfault_link); + mutex_unlock(&xe->mem_access.vram_userfault.lock); + + kfree(bo); +} + +static void xe_gem_object_free(struct drm_gem_object *obj) +{ + /* Our BO reference counting scheme works as follows: + * + * The gem object kref is typically used throughout the driver, + * and the gem object holds a ttm_buffer_object refcount, so + * that when the last gem object reference is put, which is when + * we end up in this function, we put also that ttm_buffer_object + * refcount. Anything using gem interfaces is then no longer + * allowed to access the object in a way that requires a gem + * refcount, including locking the object. + * + * driver ttm callbacks is allowed to use the ttm_buffer_object + * refcount directly if needed. + */ + __xe_bo_vunmap(gem_to_xe_bo(obj)); + ttm_bo_fini(container_of(obj, struct ttm_buffer_object, base)); +} + +static void xe_gem_object_close(struct drm_gem_object *obj, + struct drm_file *file_priv) +{ + struct xe_bo *bo = gem_to_xe_bo(obj); + + if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { + xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); + + xe_bo_lock(bo, false); + ttm_bo_set_bulk_move(&bo->ttm, NULL); + xe_bo_unlock(bo); + } +} + +static bool should_migrate_to_smem(struct xe_bo *bo) +{ + /* + * NOTE: The following atomic checks are platform-specific. For example, + * if a device supports CXL atomics, these may not be necessary or + * may behave differently. + */ + + return bo->attr.atomic_access == DRM_XE_ATOMIC_GLOBAL || + bo->attr.atomic_access == DRM_XE_ATOMIC_CPU; +} + +static int xe_bo_wait_usage_kernel(struct xe_bo *bo, struct ttm_operation_ctx *ctx) +{ + long lerr; + + if (ctx->no_wait_gpu) + return dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL) ? + 0 : -EBUSY; + + lerr = dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, + ctx->interruptible, MAX_SCHEDULE_TIMEOUT); + if (lerr < 0) + return lerr; + if (lerr == 0) + return -EBUSY; + + return 0; +} + +/* Populate the bo if swapped out, or migrate if the access mode requires that. */ +static int xe_bo_fault_migrate(struct xe_bo *bo, struct ttm_operation_ctx *ctx, + struct drm_exec *exec) +{ + struct ttm_buffer_object *tbo = &bo->ttm; + int err = 0; + + if (ttm_manager_type(tbo->bdev, tbo->resource->mem_type)->use_tt) { + err = xe_bo_wait_usage_kernel(bo, ctx); + if (!err) + err = ttm_bo_populate(&bo->ttm, ctx); + } else if (should_migrate_to_smem(bo)) { + xe_assert(xe_bo_device(bo), bo->flags & XE_BO_FLAG_SYSTEM); + err = xe_bo_migrate(bo, XE_PL_TT, ctx, exec); + } + + return err; +} + +/* Call into TTM to populate PTEs, and register bo for PTE removal on runtime suspend. */ +static vm_fault_t __xe_bo_cpu_fault(struct vm_fault *vmf, struct xe_device *xe, struct xe_bo *bo) +{ + vm_fault_t ret; + + trace_xe_bo_cpu_fault(bo); + + ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, + TTM_BO_VM_NUM_PREFAULT); + /* + * When TTM is actually called to insert PTEs, ensure no blocking conditions + * remain, in which case TTM may drop locks and return VM_FAULT_RETRY. + */ + xe_assert(xe, ret != VM_FAULT_RETRY); + + if (ret == VM_FAULT_NOPAGE && + mem_type_is_vram(bo->ttm.resource->mem_type)) { + mutex_lock(&xe->mem_access.vram_userfault.lock); + if (list_empty(&bo->vram_userfault_link)) + list_add(&bo->vram_userfault_link, + &xe->mem_access.vram_userfault.list); + mutex_unlock(&xe->mem_access.vram_userfault.lock); + } + + return ret; +} + +static vm_fault_t xe_err_to_fault_t(int err) +{ + switch (err) { + case 0: + case -EINTR: + case -ERESTARTSYS: + case -EAGAIN: + return VM_FAULT_NOPAGE; + case -ENOMEM: + case -ENOSPC: + return VM_FAULT_OOM; + default: + break; + } + return VM_FAULT_SIGBUS; +} + +static bool xe_ttm_bo_is_imported(struct ttm_buffer_object *tbo) +{ + dma_resv_assert_held(tbo->base.resv); + + return tbo->ttm && + (tbo->ttm->page_flags & (TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE)) == + TTM_TT_FLAG_EXTERNAL; +} + +static vm_fault_t xe_bo_cpu_fault_fastpath(struct vm_fault *vmf, struct xe_device *xe, + struct xe_bo *bo, bool needs_rpm) +{ + struct ttm_buffer_object *tbo = &bo->ttm; + vm_fault_t ret = VM_FAULT_RETRY; + struct xe_validation_ctx ctx; + struct ttm_operation_ctx tctx = { + .interruptible = true, + .no_wait_gpu = true, + .gfp_retry_mayfail = true, + + }; + int err; + + if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) + return VM_FAULT_RETRY; + + err = xe_validation_ctx_init(&ctx, &xe->val, NULL, + (struct xe_val_flags) { + .interruptible = true, + .no_block = true + }); + if (err) + goto out_pm; + + if (!dma_resv_trylock(tbo->base.resv)) + goto out_validation; + + if (xe_ttm_bo_is_imported(tbo)) { + ret = VM_FAULT_SIGBUS; + drm_dbg(&xe->drm, "CPU trying to access an imported buffer object.\n"); + goto out_unlock; + } + + err = xe_bo_fault_migrate(bo, &tctx, NULL); + if (err) { + /* Return VM_FAULT_RETRY on these errors. */ + if (err != -ENOMEM && err != -ENOSPC && err != -EBUSY) + ret = xe_err_to_fault_t(err); + goto out_unlock; + } + + if (dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL)) + ret = __xe_bo_cpu_fault(vmf, xe, bo); + +out_unlock: + dma_resv_unlock(tbo->base.resv); +out_validation: + xe_validation_ctx_fini(&ctx); +out_pm: + if (needs_rpm) + xe_pm_runtime_put(xe); + + return ret; +} + +static vm_fault_t xe_bo_cpu_fault(struct vm_fault *vmf) +{ + struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; + struct drm_device *ddev = tbo->base.dev; + struct xe_device *xe = to_xe_device(ddev); + struct xe_bo *bo = ttm_to_xe_bo(tbo); + bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; + bool retry_after_wait = false; + struct xe_validation_ctx ctx; + struct drm_exec exec; + vm_fault_t ret; + int err = 0; + int idx; + + if (!drm_dev_enter(&xe->drm, &idx)) + return ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); + + ret = xe_bo_cpu_fault_fastpath(vmf, xe, bo, needs_rpm); + if (ret != VM_FAULT_RETRY) + goto out; + + if (fault_flag_allow_retry_first(vmf->flags)) { + if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) + goto out; + retry_after_wait = true; + xe_bo_get(bo); + mmap_read_unlock(vmf->vma->vm_mm); + } else { + ret = VM_FAULT_NOPAGE; + } + + /* + * The fastpath failed and we were not required to return and retry immediately. + * We're now running in one of two modes: + * + * 1) retry_after_wait == true: The mmap_read_lock() is dropped, and we're trying + * to resolve blocking waits. But we can't resolve the fault since the + * mmap_read_lock() is dropped. After retrying the fault, the aim is that the fastpath + * should succeed. But it may fail since we drop the bo lock. + * + * 2) retry_after_wait == false: The fastpath failed, typically even after + * a retry. Do whatever's necessary to resolve the fault. + * + * This construct is recommended to avoid excessive waits under the mmap_lock. + */ + + if (needs_rpm) + xe_pm_runtime_get(xe); + + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = true}, + err) { + struct ttm_operation_ctx tctx = { + .interruptible = true, + .no_wait_gpu = false, + .gfp_retry_mayfail = retry_after_wait, + }; + + err = drm_exec_lock_obj(&exec, &tbo->base); + drm_exec_retry_on_contention(&exec); + if (err) + break; + + if (xe_ttm_bo_is_imported(tbo)) { + err = -EFAULT; + drm_dbg(&xe->drm, "CPU trying to access an imported buffer object.\n"); + break; + } + + err = xe_bo_fault_migrate(bo, &tctx, &exec); + if (err) { + drm_exec_retry_on_contention(&exec); + xe_validation_retry_on_oom(&ctx, &err); + break; + } + + err = xe_bo_wait_usage_kernel(bo, &tctx); + if (err) + break; + + if (!retry_after_wait) + ret = __xe_bo_cpu_fault(vmf, xe, bo); + } + /* if retry_after_wait == true, we *must* return VM_FAULT_RETRY. */ + if (err && !retry_after_wait) + ret = xe_err_to_fault_t(err); + + if (needs_rpm) + xe_pm_runtime_put(xe); + + if (retry_after_wait) + xe_bo_put(bo); +out: + drm_dev_exit(idx); + + return ret; +} + +static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, + void *buf, int len, int write) +{ + struct ttm_buffer_object *ttm_bo = vma->vm_private_data; + struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); + struct xe_device *xe = xe_bo_device(bo); + int ret; + + xe_pm_runtime_get(xe); + ret = ttm_bo_vm_access(vma, addr, buf, len, write); + xe_pm_runtime_put(xe); + + return ret; +} + +/** + * xe_bo_read() - Read from an xe_bo + * @bo: The buffer object to read from. + * @offset: The byte offset to start reading from. + * @dst: Location to store the read. + * @size: Size in bytes for the read. + * + * Read @size bytes from the @bo, starting from @offset, storing into @dst. + * + * Return: Zero on success, or negative error. + */ +int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) +{ + int ret; + + ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); + if (ret >= 0 && ret != size) + ret = -EIO; + else if (ret == size) + ret = 0; + + return ret; +} + +static const struct vm_operations_struct xe_gem_vm_ops = { + .fault = xe_bo_cpu_fault, + .open = ttm_bo_vm_open, + .close = ttm_bo_vm_close, + .access = xe_bo_vm_access, +}; + +static const struct drm_gem_object_funcs xe_gem_object_funcs = { + .free = xe_gem_object_free, + .close = xe_gem_object_close, + .mmap = drm_gem_ttm_mmap, + .export = xe_gem_prime_export, + .vm_ops = &xe_gem_vm_ops, +}; + +/** + * xe_bo_alloc - Allocate storage for a struct xe_bo + * + * This function is intended to allocate storage to be used for input + * to __xe_bo_create_locked(), in the case a pointer to the bo to be + * created is needed before the call to __xe_bo_create_locked(). + * If __xe_bo_create_locked ends up never to be called, then the + * storage allocated with this function needs to be freed using + * xe_bo_free(). + * + * Return: A pointer to an uninitialized struct xe_bo on success, + * ERR_PTR(-ENOMEM) on error. + */ +struct xe_bo *xe_bo_alloc(void) +{ + struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); + + if (!bo) + return ERR_PTR(-ENOMEM); + + return bo; +} + +/** + * xe_bo_free - Free storage allocated using xe_bo_alloc() + * @bo: The buffer object storage. + * + * Refer to xe_bo_alloc() documentation for valid use-cases. + */ +void xe_bo_free(struct xe_bo *bo) +{ + kfree(bo); +} + +/** + * xe_bo_init_locked() - Initialize or create an xe_bo. + * @xe: The xe device. + * @bo: An already allocated buffer object or NULL + * if the function should allocate a new one. + * @tile: The tile to select for migration of this bo, and the tile used for + * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos. + * @resv: Pointer to a locked shared reservation object to use for this bo, + * or NULL for the xe_bo to use its own. + * @bulk: The bulk move to use for LRU bumping, or NULL for external bos. + * @size: The storage size to use for the bo. + * @cpu_caching: The cpu caching used for system memory backing store. + * @type: The TTM buffer object type. + * @flags: XE_BO_FLAG_ flags. + * @exec: The drm_exec transaction to use for exhaustive eviction. + * + * Initialize or create an xe buffer object. On failure, any allocated buffer + * object passed in @bo will have been unreferenced. + * + * Return: The buffer object on success. Negative error pointer on failure. + */ +struct xe_bo *xe_bo_init_locked(struct xe_device *xe, struct xe_bo *bo, + struct xe_tile *tile, struct dma_resv *resv, + struct ttm_lru_bulk_move *bulk, size_t size, + u16 cpu_caching, enum ttm_bo_type type, + u32 flags, struct drm_exec *exec) +{ + struct ttm_operation_ctx ctx = { + .interruptible = true, + .no_wait_gpu = false, + .gfp_retry_mayfail = true, + }; + struct ttm_placement *placement; + uint32_t alignment; + size_t aligned_size; + int err; + + /* Only kernel objects should set GT */ + xe_assert(xe, !tile || type == ttm_bo_type_kernel); + + if (XE_WARN_ON(!size)) { + xe_bo_free(bo); + return ERR_PTR(-EINVAL); + } + + /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ + if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) + return ERR_PTR(-EINVAL); + + if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && + !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && + ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || + (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { + size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; + + aligned_size = ALIGN(size, align); + if (type != ttm_bo_type_device) + size = ALIGN(size, align); + flags |= XE_BO_FLAG_INTERNAL_64K; + alignment = align >> PAGE_SHIFT; + } else { + aligned_size = ALIGN(size, SZ_4K); + flags &= ~XE_BO_FLAG_INTERNAL_64K; + alignment = SZ_4K >> PAGE_SHIFT; + } + + if (type == ttm_bo_type_device && aligned_size != size) + return ERR_PTR(-EINVAL); + + if (!bo) { + bo = xe_bo_alloc(); + if (IS_ERR(bo)) + return bo; + } + + bo->ccs_cleared = false; + bo->tile = tile; + bo->flags = flags; + bo->cpu_caching = cpu_caching; + bo->ttm.base.funcs = &xe_gem_object_funcs; + bo->ttm.priority = XE_BO_PRIORITY_NORMAL; + INIT_LIST_HEAD(&bo->pinned_link); +#ifdef CONFIG_PROC_FS + INIT_LIST_HEAD(&bo->client_link); +#endif + INIT_LIST_HEAD(&bo->vram_userfault_link); + + drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); + + if (resv) { + ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); + ctx.resv = resv; + } + + xe_validation_assert_exec(xe, exec, &bo->ttm.base); + if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { + err = __xe_bo_placement_for_flags(xe, bo, bo->flags, type); + if (WARN_ON(err)) { + xe_ttm_bo_destroy(&bo->ttm); + return ERR_PTR(err); + } + } + + /* Defer populating type_sg bos */ + placement = (type == ttm_bo_type_sg || + bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : + &bo->placement; + err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, + placement, alignment, + &ctx, NULL, resv, xe_ttm_bo_destroy); + if (err) + return ERR_PTR(err); + + /* + * The VRAM pages underneath are potentially still being accessed by the + * GPU, as per async GPU clearing and async evictions. However TTM makes + * sure to add any corresponding move/clear fences into the objects + * dma-resv using the DMA_RESV_USAGE_KERNEL slot. + * + * For KMD internal buffers we don't care about GPU clearing, however we + * still need to handle async evictions, where the VRAM is still being + * accessed by the GPU. Most internal callers are not expecting this, + * since they are missing the required synchronisation before accessing + * the memory. To keep things simple just sync wait any kernel fences + * here, if the buffer is designated KMD internal. + * + * For normal userspace objects we should already have the required + * pipelining or sync waiting elsewhere, since we already have to deal + * with things like async GPU clearing. + */ + if (type == ttm_bo_type_kernel) { + long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, + DMA_RESV_USAGE_KERNEL, + ctx.interruptible, + MAX_SCHEDULE_TIMEOUT); + + if (timeout < 0) { + if (!resv) + dma_resv_unlock(bo->ttm.base.resv); + xe_bo_put(bo); + return ERR_PTR(timeout); + } + } + + bo->created = true; + if (bulk) + ttm_bo_set_bulk_move(&bo->ttm, bulk); + else + ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); + + return bo; +} + +static int __xe_bo_fixed_placement(struct xe_device *xe, + struct xe_bo *bo, enum ttm_bo_type type, + u32 flags, + u64 start, u64 end, u64 size) +{ + struct ttm_place *place = bo->placements; + u32 vram_flag, vram_stolen_flags; + + /* + * to allow fixed placement in GGTT of a VF, post-migration fixups would have to + * include selecting a new fixed offset and shifting the page ranges for it + */ + xe_assert(xe, !IS_SRIOV_VF(xe) || !(bo->flags & XE_BO_FLAG_GGTT)); + + if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) + return -EINVAL; + + vram_flag = flags & XE_BO_FLAG_VRAM_MASK; + vram_stolen_flags = (flags & (XE_BO_FLAG_STOLEN)) | vram_flag; + + /* check if more than one VRAM/STOLEN flag is set */ + if (hweight32(vram_stolen_flags) > 1) + return -EINVAL; + + place->flags = TTM_PL_FLAG_CONTIGUOUS; + place->fpfn = start >> PAGE_SHIFT; + place->lpfn = end >> PAGE_SHIFT; + + if (flags & XE_BO_FLAG_STOLEN) + place->mem_type = XE_PL_STOLEN; + else + place->mem_type = bo_vram_flags_to_vram_placement(xe, flags, vram_flag, type); + + bo->placement = (struct ttm_placement) { + .num_placement = 1, + .placement = place, + }; + + return 0; +} + +static struct xe_bo * +__xe_bo_create_locked(struct xe_device *xe, + struct xe_tile *tile, struct xe_vm *vm, + size_t size, u64 start, u64 end, + u16 cpu_caching, enum ttm_bo_type type, u32 flags, + u64 alignment, struct drm_exec *exec) +{ + struct xe_bo *bo = NULL; + int err; + + if (vm) + xe_vm_assert_held(vm); + + if (start || end != ~0ULL) { + bo = xe_bo_alloc(); + if (IS_ERR(bo)) + return bo; + + flags |= XE_BO_FLAG_FIXED_PLACEMENT; + err = __xe_bo_fixed_placement(xe, bo, type, flags, start, end, size); + if (err) { + xe_bo_free(bo); + return ERR_PTR(err); + } + } + + bo = xe_bo_init_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, + vm && !xe_vm_in_fault_mode(vm) && + flags & XE_BO_FLAG_USER ? + &vm->lru_bulk_move : NULL, size, + cpu_caching, type, flags, exec); + if (IS_ERR(bo)) + return bo; + + bo->min_align = alignment; + + /* + * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), + * to ensure the shared resv doesn't disappear under the bo, the bo + * will keep a reference to the vm, and avoid circular references + * by having all the vm's bo refereferences released at vm close + * time. + */ + if (vm && xe_bo_is_user(bo)) + xe_vm_get(vm); + bo->vm = vm; + + if (bo->flags & XE_BO_FLAG_GGTT) { + struct xe_tile *t; + u8 id; + + if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { + if (!tile && flags & XE_BO_FLAG_STOLEN) + tile = xe_device_get_root_tile(xe); + + xe_assert(xe, tile); + } + + for_each_tile(t, xe, id) { + if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) + continue; + + if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { + err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, + start + xe_bo_size(bo), U64_MAX, + exec); + } else { + err = xe_ggtt_insert_bo(t->mem.ggtt, bo, exec); + } + if (err) + goto err_unlock_put_bo; + } + } + + trace_xe_bo_create(bo); + return bo; + +err_unlock_put_bo: + __xe_bo_unset_bulk_move(bo); + xe_bo_unlock_vm_held(bo); + xe_bo_put(bo); + return ERR_PTR(err); +} + +/** + * xe_bo_create_locked() - Create a BO + * @xe: The xe device. + * @tile: The tile to select for migration of this bo, and the tile used for + * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos. + * @vm: The local vm or NULL for external objects. + * @size: The storage size to use for the bo. + * @type: The TTM buffer object type. + * @flags: XE_BO_FLAG_ flags. + * @exec: The drm_exec transaction to use for exhaustive eviction. + * + * Create a locked xe BO with no range- nor alignment restrictions. + * + * Return: The buffer object on success. Negative error pointer on failure. + */ +struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, + struct xe_vm *vm, size_t size, + enum ttm_bo_type type, u32 flags, + struct drm_exec *exec) +{ + return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, + flags, 0, exec); +} + +static struct xe_bo *xe_bo_create_novm(struct xe_device *xe, struct xe_tile *tile, + size_t size, u16 cpu_caching, + enum ttm_bo_type type, u32 flags, + u64 alignment, bool intr) +{ + struct xe_validation_ctx ctx; + struct drm_exec exec; + struct xe_bo *bo; + int ret = 0; + + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = intr}, + ret) { + bo = __xe_bo_create_locked(xe, tile, NULL, size, 0, ~0ULL, + cpu_caching, type, flags, alignment, &exec); + drm_exec_retry_on_contention(&exec); + if (IS_ERR(bo)) { + ret = PTR_ERR(bo); + xe_validation_retry_on_oom(&ctx, &ret); + } else { + xe_bo_unlock(bo); + } + } + + return ret ? ERR_PTR(ret) : bo; +} + +/** + * xe_bo_create_user() - Create a user BO + * @xe: The xe device. + * @vm: The local vm or NULL for external objects. + * @size: The storage size to use for the bo. + * @cpu_caching: The caching mode to be used for system backing store. + * @flags: XE_BO_FLAG_ flags. + * @exec: The drm_exec transaction to use for exhaustive eviction, or NULL + * if such a transaction should be initiated by the call. + * + * Create a bo on behalf of user-space. + * + * Return: The buffer object on success. Negative error pointer on failure. + */ +struct xe_bo *xe_bo_create_user(struct xe_device *xe, + struct xe_vm *vm, size_t size, + u16 cpu_caching, + u32 flags, struct drm_exec *exec) +{ + struct xe_bo *bo; + + flags |= XE_BO_FLAG_USER; + + if (vm || exec) { + xe_assert(xe, exec); + bo = __xe_bo_create_locked(xe, NULL, vm, size, 0, ~0ULL, + cpu_caching, ttm_bo_type_device, + flags, 0, exec); + if (!IS_ERR(bo)) + xe_bo_unlock_vm_held(bo); + } else { + bo = xe_bo_create_novm(xe, NULL, size, cpu_caching, + ttm_bo_type_device, flags, 0, true); + } + + return bo; +} + +/** + * xe_bo_create_pin_range_novm() - Create and pin a BO with range options. + * @xe: The xe device. + * @tile: The tile to select for migration of this bo, and the tile used for + * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos. + * @size: The storage size to use for the bo. + * @start: Start of fixed VRAM range or 0. + * @end: End of fixed VRAM range or ~0ULL. + * @type: The TTM buffer object type. + * @flags: XE_BO_FLAG_ flags. + * + * Create an Xe BO with range- and options. If @start and @end indicate + * a fixed VRAM range, this must be a ttm_bo_type_kernel bo with VRAM placement + * only. + * + * Return: The buffer object on success. Negative error pointer on failure. + */ +struct xe_bo *xe_bo_create_pin_range_novm(struct xe_device *xe, struct xe_tile *tile, + size_t size, u64 start, u64 end, + enum ttm_bo_type type, u32 flags) +{ + struct xe_validation_ctx ctx; + struct drm_exec exec; + struct xe_bo *bo; + int err = 0; + + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {}, err) { + bo = __xe_bo_create_locked(xe, tile, NULL, size, start, end, + 0, type, flags, 0, &exec); + if (IS_ERR(bo)) { + drm_exec_retry_on_contention(&exec); + err = PTR_ERR(bo); + xe_validation_retry_on_oom(&ctx, &err); + break; + } + + err = xe_bo_pin(bo, &exec); + xe_bo_unlock(bo); + if (err) { + xe_bo_put(bo); + drm_exec_retry_on_contention(&exec); + xe_validation_retry_on_oom(&ctx, &err); + break; + } + } + + return err ? ERR_PTR(err) : bo; +} + +static struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, + struct xe_tile *tile, + struct xe_vm *vm, + size_t size, u64 offset, + enum ttm_bo_type type, u32 flags, + u64 alignment, struct drm_exec *exec) +{ + struct xe_bo *bo; + int err; + u64 start = offset == ~0ull ? 0 : offset; + u64 end = offset == ~0ull ? ~0ull : start + size; + + if (flags & XE_BO_FLAG_STOLEN && + xe_ttm_stolen_cpu_access_needs_ggtt(xe)) + flags |= XE_BO_FLAG_GGTT; + + bo = __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, + flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED, + alignment, exec); + if (IS_ERR(bo)) + return bo; + + err = xe_bo_pin(bo, exec); + if (err) + goto err_put; + + err = xe_bo_vmap(bo); + if (err) + goto err_unpin; + + xe_bo_unlock_vm_held(bo); + + return bo; + +err_unpin: + xe_bo_unpin(bo); +err_put: + xe_bo_unlock_vm_held(bo); + xe_bo_put(bo); + return ERR_PTR(err); +} + +/** + * xe_bo_create_pin_map_at_novm() - Create pinned and mapped bo at optional VRAM offset + * @xe: The xe device. + * @tile: The tile to select for migration of this bo, and the tile used for + * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos. + * @size: The storage size to use for the bo. + * @offset: Optional VRAM offset or %~0ull for don't care. + * @type: The TTM buffer object type. + * @flags: XE_BO_FLAG_ flags. + * @alignment: GGTT alignment. + * @intr: Whether to execute any waits for backing store interruptible. + * + * Create a pinned and optionally mapped bo with VRAM offset and GGTT alignment + * options. The bo will be external and not associated with a VM. + * + * Return: The buffer object on success. Negative error pointer on failure. + * In particular, the function may return ERR_PTR(%-EINTR) if @intr was set + * to true on entry. + */ +struct xe_bo * +xe_bo_create_pin_map_at_novm(struct xe_device *xe, struct xe_tile *tile, + size_t size, u64 offset, enum ttm_bo_type type, u32 flags, + u64 alignment, bool intr) +{ + struct xe_validation_ctx ctx; + struct drm_exec exec; + struct xe_bo *bo; + int ret = 0; + + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = intr}, + ret) { + bo = xe_bo_create_pin_map_at_aligned(xe, tile, NULL, size, offset, + type, flags, alignment, &exec); + if (IS_ERR(bo)) { + drm_exec_retry_on_contention(&exec); + ret = PTR_ERR(bo); + xe_validation_retry_on_oom(&ctx, &ret); + } + } + + return ret ? ERR_PTR(ret) : bo; +} + +/** + * xe_bo_create_pin_map() - Create pinned and mapped bo + * @xe: The xe device. + * @tile: The tile to select for migration of this bo, and the tile used for + * @vm: The vm to associate the buffer object with. The vm's resv must be locked + * with the transaction represented by @exec. + * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos. + * @size: The storage size to use for the bo. + * @type: The TTM buffer object type. + * @flags: XE_BO_FLAG_ flags. + * @exec: The drm_exec transaction to use for exhaustive eviction, and + * previously used for locking @vm's resv. + * + * Create a pinned and mapped bo. The bo will be external and not associated + * with a VM. + * + * Return: The buffer object on success. Negative error pointer on failure. + * In particular, the function may return ERR_PTR(%-EINTR) if @exec was + * configured for interruptible locking. + */ +struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, + struct xe_vm *vm, size_t size, + enum ttm_bo_type type, u32 flags, + struct drm_exec *exec) +{ + return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, ~0ull, type, flags, + 0, exec); +} + +/** + * xe_bo_create_pin_map_novm() - Create pinned and mapped bo + * @xe: The xe device. + * @tile: The tile to select for migration of this bo, and the tile used for + * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos. + * @size: The storage size to use for the bo. + * @type: The TTM buffer object type. + * @flags: XE_BO_FLAG_ flags. + * @intr: Whether to execute any waits for backing store interruptible. + * + * Create a pinned and mapped bo. The bo will be external and not associated + * with a VM. + * + * Return: The buffer object on success. Negative error pointer on failure. + * In particular, the function may return ERR_PTR(%-EINTR) if @intr was set + * to true on entry. + */ +struct xe_bo *xe_bo_create_pin_map_novm(struct xe_device *xe, struct xe_tile *tile, + size_t size, enum ttm_bo_type type, u32 flags, + bool intr) +{ + return xe_bo_create_pin_map_at_novm(xe, tile, size, ~0ull, type, flags, 0, intr); +} + +static void __xe_bo_unpin_map_no_vm(void *arg) +{ + xe_bo_unpin_map_no_vm(arg); +} + +struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, + size_t size, u32 flags) +{ + struct xe_bo *bo; + int ret; + + KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags); + bo = xe_bo_create_pin_map_novm(xe, tile, size, ttm_bo_type_kernel, flags, true); + if (IS_ERR(bo)) + return bo; + + ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); + if (ret) + return ERR_PTR(ret); + + return bo; +} + +void xe_managed_bo_unpin_map_no_vm(struct xe_bo *bo) +{ + devm_release_action(xe_bo_device(bo)->drm.dev, __xe_bo_unpin_map_no_vm, bo); +} + +struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, + const void *data, size_t size, u32 flags) +{ + struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); + + if (IS_ERR(bo)) + return bo; + + xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); + + return bo; +} + +/** + * xe_managed_bo_reinit_in_vram + * @xe: xe device + * @tile: Tile where the new buffer will be created + * @src: Managed buffer object allocated in system memory + * + * Replace a managed src buffer object allocated in system memory with a new + * one allocated in vram, copying the data between them. + * Buffer object in VRAM is not going to have the same GGTT address, the caller + * is responsible for making sure that any old references to it are updated. + * + * Returns 0 for success, negative error code otherwise. + */ +int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) +{ + struct xe_bo *bo; + u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; + + dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE | + XE_BO_FLAG_PINNED_NORESTORE); + + xe_assert(xe, IS_DGFX(xe)); + xe_assert(xe, !(*src)->vmap.is_iomem); + + bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, + xe_bo_size(*src), dst_flags); + if (IS_ERR(bo)) + return PTR_ERR(bo); + + devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); + *src = bo; + + return 0; +} + +/* + * XXX: This is in the VM bind data path, likely should calculate this once and + * store, with a recalculation if the BO is moved. + */ +uint64_t vram_region_gpu_offset(struct ttm_resource *res) +{ + struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); + + switch (res->mem_type) { + case XE_PL_STOLEN: + return xe_ttm_stolen_gpu_offset(xe); + case XE_PL_TT: + case XE_PL_SYSTEM: + return 0; + default: + return res_to_mem_region(res)->dpa_base; + } + return 0; +} + +/** + * xe_bo_pin_external - pin an external BO + * @bo: buffer object to be pinned + * @in_place: Pin in current placement, don't attempt to migrate. + * @exec: The drm_exec transaction to use for exhaustive eviction. + * + * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) + * BO. Unique call compared to xe_bo_pin as this function has it own set of + * asserts and code to ensure evict / restore on suspend / resume. + * + * Returns 0 for success, negative error code otherwise. + */ +int xe_bo_pin_external(struct xe_bo *bo, bool in_place, struct drm_exec *exec) +{ + struct xe_device *xe = xe_bo_device(bo); + int err; + + xe_assert(xe, !bo->vm); + xe_assert(xe, xe_bo_is_user(bo)); + + if (!xe_bo_is_pinned(bo)) { + if (!in_place) { + err = xe_bo_validate(bo, NULL, false, exec); + if (err) + return err; + } + + spin_lock(&xe->pinned.lock); + list_add_tail(&bo->pinned_link, &xe->pinned.late.external); + spin_unlock(&xe->pinned.lock); + } + + ttm_bo_pin(&bo->ttm); + if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) + xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); + + /* + * FIXME: If we always use the reserve / unreserve functions for locking + * we do not need this. + */ + ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); + + return 0; +} + +/** + * xe_bo_pin() - Pin a kernel bo after potentially migrating it + * @bo: The kernel bo to pin. + * @exec: The drm_exec transaction to use for exhaustive eviction. + * + * Attempts to migrate a bo to @bo->placement. If that succeeds, + * pins the bo. + * + * Return: %0 on success, negative error code on migration failure. + */ +int xe_bo_pin(struct xe_bo *bo, struct drm_exec *exec) +{ + struct ttm_place *place = &bo->placements[0]; + struct xe_device *xe = xe_bo_device(bo); + int err; + + /* We currently don't expect user BO to be pinned */ + xe_assert(xe, !xe_bo_is_user(bo)); + + /* Pinned object must be in GGTT or have pinned flag */ + xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | + XE_BO_FLAG_GGTT)); + + /* + * No reason we can't support pinning imported dma-bufs we just don't + * expect to pin an imported dma-buf. + */ + xe_assert(xe, !bo->ttm.base.import_attach); + + /* We only expect at most 1 pin */ + xe_assert(xe, !xe_bo_is_pinned(bo)); + + err = xe_bo_validate(bo, NULL, false, exec); + if (err) + return err; + + if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { + spin_lock(&xe->pinned.lock); + if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE) + list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present); + else + list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present); + spin_unlock(&xe->pinned.lock); + } + + ttm_bo_pin(&bo->ttm); + if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) + xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); + + /* + * FIXME: If we always use the reserve / unreserve functions for locking + * we do not need this. + */ + ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); + + return 0; +} + +/** + * xe_bo_unpin_external - unpin an external BO + * @bo: buffer object to be unpinned + * + * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) + * BO. Unique call compared to xe_bo_unpin as this function has it own set of + * asserts and code to ensure evict / restore on suspend / resume. + * + * Returns 0 for success, negative error code otherwise. + */ +void xe_bo_unpin_external(struct xe_bo *bo) +{ + struct xe_device *xe = xe_bo_device(bo); + + xe_assert(xe, !bo->vm); + xe_assert(xe, xe_bo_is_pinned(bo)); + xe_assert(xe, xe_bo_is_user(bo)); + + spin_lock(&xe->pinned.lock); + if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) + list_del_init(&bo->pinned_link); + spin_unlock(&xe->pinned.lock); + + ttm_bo_unpin(&bo->ttm); + if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) + xe_ttm_tt_account_add(xe, bo->ttm.ttm); + + /* + * FIXME: If we always use the reserve / unreserve functions for locking + * we do not need this. + */ + ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); +} + +void xe_bo_unpin(struct xe_bo *bo) +{ + struct ttm_place *place = &bo->placements[0]; + struct xe_device *xe = xe_bo_device(bo); + + xe_assert(xe, !bo->ttm.base.import_attach); + xe_assert(xe, xe_bo_is_pinned(bo)); + + if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { + spin_lock(&xe->pinned.lock); + xe_assert(xe, !list_empty(&bo->pinned_link)); + list_del_init(&bo->pinned_link); + spin_unlock(&xe->pinned.lock); + + if (bo->backup_obj) { + if (xe_bo_is_pinned(bo->backup_obj)) + ttm_bo_unpin(&bo->backup_obj->ttm); + xe_bo_put(bo->backup_obj); + bo->backup_obj = NULL; + } + } + ttm_bo_unpin(&bo->ttm); + if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) + xe_ttm_tt_account_add(xe, bo->ttm.ttm); +} + +/** + * xe_bo_validate() - Make sure the bo is in an allowed placement + * @bo: The bo, + * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or + * NULL. Used together with @allow_res_evict. + * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's + * reservation object. + * @exec: The drm_exec transaction to use for exhaustive eviction. + * + * Make sure the bo is in allowed placement, migrating it if necessary. If + * needed, other bos will be evicted. If bos selected for eviction shares + * the @vm's reservation object, they can be evicted iff @allow_res_evict is + * set to true, otherwise they will be bypassed. + * + * Return: 0 on success, negative error code on failure. May return + * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. + */ +int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict, + struct drm_exec *exec) +{ + struct ttm_operation_ctx ctx = { + .interruptible = true, + .no_wait_gpu = false, + .gfp_retry_mayfail = true, + }; + int ret; + + if (xe_bo_is_pinned(bo)) + return 0; + + if (vm) { + lockdep_assert_held(&vm->lock); + xe_vm_assert_held(vm); + + ctx.allow_res_evict = allow_res_evict; + ctx.resv = xe_vm_resv(vm); + } + + xe_vm_set_validating(vm, allow_res_evict); + trace_xe_bo_validate(bo); + xe_validation_assert_exec(xe_bo_device(bo), exec, &bo->ttm.base); + ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); + xe_vm_clear_validating(vm, allow_res_evict); + + return ret; +} + +bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) +{ + if (bo->destroy == &xe_ttm_bo_destroy) + return true; + + return false; +} + +/* + * Resolve a BO address. There is no assert to check if the proper lock is held + * so it should only be used in cases where it is not fatal to get the wrong + * address, such as printing debug information, but not in cases where memory is + * written based on this result. + */ +dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) +{ + struct xe_device *xe = xe_bo_device(bo); + struct xe_res_cursor cur; + u64 page; + + xe_assert(xe, page_size <= PAGE_SIZE); + page = offset >> PAGE_SHIFT; + offset &= (PAGE_SIZE - 1); + + if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { + xe_assert(xe, bo->ttm.ttm); + + xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, + page_size, &cur); + return xe_res_dma(&cur) + offset; + } else { + struct xe_res_cursor cur; + + xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, + page_size, &cur); + return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); + } +} + +dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) +{ + if (!READ_ONCE(bo->ttm.pin_count)) + xe_bo_assert_held(bo); + return __xe_bo_addr(bo, offset, page_size); +} + +int xe_bo_vmap(struct xe_bo *bo) +{ + struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); + void *virtual; + bool is_iomem; + int ret; + + xe_bo_assert_held(bo); + + if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || + !force_contiguous(bo->flags))) + return -EINVAL; + + if (!iosys_map_is_null(&bo->vmap)) + return 0; + + /* + * We use this more or less deprecated interface for now since + * ttm_bo_vmap() doesn't offer the optimization of kmapping + * single page bos, which is done here. + * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap + * to use struct iosys_map. + */ + ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap); + if (ret) + return ret; + + virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); + if (is_iomem) + iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); + else + iosys_map_set_vaddr(&bo->vmap, virtual); + + return 0; +} + +static void __xe_bo_vunmap(struct xe_bo *bo) +{ + if (!iosys_map_is_null(&bo->vmap)) { + iosys_map_clear(&bo->vmap); + ttm_bo_kunmap(&bo->kmap); + } +} + +void xe_bo_vunmap(struct xe_bo *bo) +{ + xe_bo_assert_held(bo); + __xe_bo_vunmap(bo); +} + +static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value) +{ + if (value == DRM_XE_PXP_TYPE_NONE) + return 0; + + /* we only support DRM_XE_PXP_TYPE_HWDRM for now */ + if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM)) + return -EINVAL; + + return xe_pxp_key_assign(xe->pxp, bo); +} + +typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe, + struct xe_bo *bo, + u64 value); + +static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = { + [DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type, +}; + +static int gem_create_user_ext_set_property(struct xe_device *xe, + struct xe_bo *bo, + u64 extension) +{ + u64 __user *address = u64_to_user_ptr(extension); + struct drm_xe_ext_set_property ext; + int err; + u32 idx; + + err = copy_from_user(&ext, address, sizeof(ext)); + if (XE_IOCTL_DBG(xe, err)) + return -EFAULT; + + if (XE_IOCTL_DBG(xe, ext.property >= + ARRAY_SIZE(gem_create_set_property_funcs)) || + XE_IOCTL_DBG(xe, ext.pad) || + XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY)) + return -EINVAL; + + idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs)); + if (!gem_create_set_property_funcs[idx]) + return -EINVAL; + + return gem_create_set_property_funcs[idx](xe, bo, ext.value); +} + +typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe, + struct xe_bo *bo, + u64 extension); + +static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = { + [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property, +}; + +#define MAX_USER_EXTENSIONS 16 +static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo, + u64 extensions, int ext_number) +{ + u64 __user *address = u64_to_user_ptr(extensions); + struct drm_xe_user_extension ext; + int err; + u32 idx; + + if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) + return -E2BIG; + + err = copy_from_user(&ext, address, sizeof(ext)); + if (XE_IOCTL_DBG(xe, err)) + return -EFAULT; + + if (XE_IOCTL_DBG(xe, ext.pad) || + XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs))) + return -EINVAL; + + idx = array_index_nospec(ext.name, + ARRAY_SIZE(gem_create_user_extension_funcs)); + err = gem_create_user_extension_funcs[idx](xe, bo, extensions); + if (XE_IOCTL_DBG(xe, err)) + return err; + + if (ext.next_extension) + return gem_create_user_extensions(xe, bo, ext.next_extension, + ++ext_number); + + return 0; +} + +int xe_gem_create_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_file *xef = to_xe_file(file); + struct drm_xe_gem_create *args = data; + struct xe_validation_ctx ctx; + struct drm_exec exec; + struct xe_vm *vm = NULL; + struct xe_bo *bo; + unsigned int bo_flags; + u32 handle; + int err; + + if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || + XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) + return -EINVAL; + + /* at least one valid memory placement must be specified */ + if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || + !args->placement)) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, args->flags & + ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | + DRM_XE_GEM_CREATE_FLAG_SCANOUT | + DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, args->handle)) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, !args->size)) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) + return -EINVAL; + + bo_flags = 0; + if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) + bo_flags |= XE_BO_FLAG_DEFER_BACKING; + + if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) + bo_flags |= XE_BO_FLAG_SCANOUT; + + bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); + + /* CCS formats need physical placement at a 64K alignment in VRAM. */ + if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && + (bo_flags & XE_BO_FLAG_SCANOUT) && + !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && + IS_ALIGNED(args->size, SZ_64K)) + bo_flags |= XE_BO_FLAG_NEEDS_64K; + + if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { + if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) + return -EINVAL; + + bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; + } + + if (XE_IOCTL_DBG(xe, !args->cpu_caching || + args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && + args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && + args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) + return -EINVAL; + + if (args->vm_id) { + vm = xe_vm_lookup(xef, args->vm_id); + if (XE_IOCTL_DBG(xe, !vm)) + return -ENOENT; + } + + err = 0; + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = true}, + err) { + if (vm) { + err = xe_vm_drm_exec_lock(vm, &exec); + drm_exec_retry_on_contention(&exec); + if (err) + break; + } + bo = xe_bo_create_user(xe, vm, args->size, args->cpu_caching, + bo_flags, &exec); + drm_exec_retry_on_contention(&exec); + if (IS_ERR(bo)) { + err = PTR_ERR(bo); + xe_validation_retry_on_oom(&ctx, &err); + break; + } + } + if (err) + goto out_vm; + + if (args->extensions) { + err = gem_create_user_extensions(xe, bo, args->extensions, 0); + if (err) + goto out_bulk; + } + + err = drm_gem_handle_create(file, &bo->ttm.base, &handle); + if (err) + goto out_bulk; + + args->handle = handle; + goto out_put; + +out_bulk: + if (vm && !xe_vm_in_fault_mode(vm)) { + xe_vm_lock(vm, false); + __xe_bo_unset_bulk_move(bo); + xe_vm_unlock(vm); + } +out_put: + xe_bo_put(bo); +out_vm: + if (vm) + xe_vm_put(vm); + + return err; +} + +int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct drm_xe_gem_mmap_offset *args = data; + struct drm_gem_object *gem_obj; + + if (XE_IOCTL_DBG(xe, args->extensions) || + XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, args->flags & + ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER)) + return -EINVAL; + + if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) { + if (XE_IOCTL_DBG(xe, !IS_DGFX(xe))) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, args->handle)) + return -EINVAL; + + if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K)) + return -EINVAL; + + BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) + + SZ_4K) >= DRM_FILE_PAGE_OFFSET_START); + args->offset = XE_PCI_BARRIER_MMAP_OFFSET; + return 0; + } + + gem_obj = drm_gem_object_lookup(file, args->handle); + if (XE_IOCTL_DBG(xe, !gem_obj)) + return -ENOENT; + + /* The mmap offset was set up at BO allocation time. */ + args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); + + xe_bo_put(gem_to_xe_bo(gem_obj)); + return 0; +} + +/** + * xe_bo_lock() - Lock the buffer object's dma_resv object + * @bo: The struct xe_bo whose lock is to be taken + * @intr: Whether to perform any wait interruptible + * + * Locks the buffer object's dma_resv object. If the buffer object is + * pointing to a shared dma_resv object, that shared lock is locked. + * + * Return: 0 on success, -EINTR if @intr is true and the wait for a + * contended lock was interrupted. If @intr is set to false, the + * function always returns 0. + */ +int xe_bo_lock(struct xe_bo *bo, bool intr) +{ + if (intr) + return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); + + dma_resv_lock(bo->ttm.base.resv, NULL); + + return 0; +} + +/** + * xe_bo_unlock() - Unlock the buffer object's dma_resv object + * @bo: The struct xe_bo whose lock is to be released. + * + * Unlock a buffer object lock that was locked by xe_bo_lock(). + */ +void xe_bo_unlock(struct xe_bo *bo) +{ + dma_resv_unlock(bo->ttm.base.resv); +} + +/** + * xe_bo_can_migrate - Whether a buffer object likely can be migrated + * @bo: The buffer object to migrate + * @mem_type: The TTM memory type intended to migrate to + * + * Check whether the buffer object supports migration to the + * given memory type. Note that pinning may affect the ability to migrate as + * returned by this function. + * + * This function is primarily intended as a helper for checking the + * possibility to migrate buffer objects and can be called without + * the object lock held. + * + * Return: true if migration is possible, false otherwise. + */ +bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) +{ + unsigned int cur_place; + + if (bo->ttm.type == ttm_bo_type_kernel) + return true; + + if (bo->ttm.type == ttm_bo_type_sg) + return false; + + for (cur_place = 0; cur_place < bo->placement.num_placement; + cur_place++) { + if (bo->placements[cur_place].mem_type == mem_type) + return true; + } + + return false; +} + +static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) +{ + memset(place, 0, sizeof(*place)); + place->mem_type = mem_type; +} + +/** + * xe_bo_migrate - Migrate an object to the desired region id + * @bo: The buffer object to migrate. + * @mem_type: The TTM region type to migrate to. + * @tctx: A pointer to a struct ttm_operation_ctx or NULL if + * a default interruptibe ctx is to be used. + * @exec: The drm_exec transaction to use for exhaustive eviction. + * + * Attempt to migrate the buffer object to the desired memory region. The + * buffer object may not be pinned, and must be locked. + * On successful completion, the object memory type will be updated, + * but an async migration task may not have completed yet, and to + * accomplish that, the object's kernel fences must be signaled with + * the object lock held. + * + * Return: 0 on success. Negative error code on failure. In particular may + * return -EINTR or -ERESTARTSYS if signal pending. + */ +int xe_bo_migrate(struct xe_bo *bo, u32 mem_type, struct ttm_operation_ctx *tctx, + struct drm_exec *exec) +{ + struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); + struct ttm_operation_ctx ctx = { + .interruptible = true, + .no_wait_gpu = false, + .gfp_retry_mayfail = true, + }; + struct ttm_placement placement; + struct ttm_place requested; + + xe_bo_assert_held(bo); + tctx = tctx ? tctx : &ctx; + + if (bo->ttm.resource->mem_type == mem_type) + return 0; + + if (xe_bo_is_pinned(bo)) + return -EBUSY; + + if (!xe_bo_can_migrate(bo, mem_type)) + return -EINVAL; + + xe_place_from_ttm_type(mem_type, &requested); + placement.num_placement = 1; + placement.placement = &requested; + + /* + * Stolen needs to be handled like below VRAM handling if we ever need + * to support it. + */ + drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); + + if (mem_type_is_vram(mem_type)) { + u32 c = 0; + + add_vram(xe, bo, &requested, bo->flags, mem_type, &c); + } + + if (!tctx->no_wait_gpu) + xe_validation_assert_exec(xe_bo_device(bo), exec, &bo->ttm.base); + return ttm_bo_validate(&bo->ttm, &placement, tctx); +} + +/** + * xe_bo_evict - Evict an object to evict placement + * @bo: The buffer object to migrate. + * @exec: The drm_exec transaction to use for exhaustive eviction. + * + * On successful completion, the object memory will be moved to evict + * placement. This function blocks until the object has been fully moved. + * + * Return: 0 on success. Negative error code on failure. + */ +int xe_bo_evict(struct xe_bo *bo, struct drm_exec *exec) +{ + struct ttm_operation_ctx ctx = { + .interruptible = false, + .no_wait_gpu = false, + .gfp_retry_mayfail = true, + }; + struct ttm_placement placement; + int ret; + + xe_evict_flags(&bo->ttm, &placement); + ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); + if (ret) + return ret; + + dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, + false, MAX_SCHEDULE_TIMEOUT); + + return 0; +} + +/** + * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when + * placed in system memory. + * @bo: The xe_bo + * + * Return: true if extra pages need to be allocated, false otherwise. + */ +bool xe_bo_needs_ccs_pages(struct xe_bo *bo) +{ + struct xe_device *xe = xe_bo_device(bo); + + if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) + return false; + + if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) + return false; + + /* On discrete GPUs, if the GPU can access this buffer from + * system memory (i.e., it allows XE_PL_TT placement), FlatCCS + * can't be used since there's no CCS storage associated with + * non-VRAM addresses. + */ + if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) + return false; + + /* + * Compression implies coh_none, therefore we know for sure that WB + * memory can't currently use compression, which is likely one of the + * common cases. + */ + if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB) + return false; + + return true; +} + +/** + * __xe_bo_release_dummy() - Dummy kref release function + * @kref: The embedded struct kref. + * + * Dummy release function for xe_bo_put_deferred(). Keep off. + */ +void __xe_bo_release_dummy(struct kref *kref) +{ +} + +/** + * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). + * @deferred: The lockless list used for the call to xe_bo_put_deferred(). + * + * Puts all bos whose put was deferred by xe_bo_put_deferred(). + * The @deferred list can be either an onstack local list or a global + * shared list used by a workqueue. + */ +void xe_bo_put_commit(struct llist_head *deferred) +{ + struct llist_node *freed; + struct xe_bo *bo, *next; + + if (!deferred) + return; + + freed = llist_del_all(deferred); + if (!freed) + return; + + llist_for_each_entry_safe(bo, next, freed, freed) + drm_gem_object_free(&bo->ttm.base.refcount); +} + +static void xe_bo_dev_work_func(struct work_struct *work) +{ + struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free); + + xe_bo_put_commit(&bo_dev->async_list); +} + +/** + * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing + * @bo_dev: The BO dev structure + */ +void xe_bo_dev_init(struct xe_bo_dev *bo_dev) +{ + INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func); +} + +/** + * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing + * @bo_dev: The BO dev structure + */ +void xe_bo_dev_fini(struct xe_bo_dev *bo_dev) +{ + flush_work(&bo_dev->async_free); +} + +void xe_bo_put(struct xe_bo *bo) +{ + struct xe_tile *tile; + u8 id; + + might_sleep(); + if (bo) { +#ifdef CONFIG_PROC_FS + if (bo->client) + might_lock(&bo->client->bos_lock); +#endif + for_each_tile(tile, xe_bo_device(bo), id) + if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) + xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt); + drm_gem_object_put(&bo->ttm.base); + } +} + +/** + * xe_bo_dumb_create - Create a dumb bo as backing for a fb + * @file_priv: ... + * @dev: ... + * @args: ... + * + * See dumb_create() hook in include/drm/drm_drv.h + * + * Return: ... + */ +int xe_bo_dumb_create(struct drm_file *file_priv, + struct drm_device *dev, + struct drm_mode_create_dumb *args) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_bo *bo; + uint32_t handle; + int err; + u32 page_size = max_t(u32, PAGE_SIZE, + xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); + + err = drm_mode_size_dumb(dev, args, SZ_64, page_size); + if (err) + return err; + + bo = xe_bo_create_user(xe, NULL, args->size, + DRM_XE_GEM_CPU_CACHING_WC, + XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | + XE_BO_FLAG_SCANOUT | + XE_BO_FLAG_NEEDS_CPU_ACCESS, NULL); + if (IS_ERR(bo)) + return PTR_ERR(bo); + + err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); + /* drop reference from allocate - handle holds it now */ + drm_gem_object_put(&bo->ttm.base); + if (!err) + args->handle = handle; + return err; +} + +void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) +{ + struct ttm_buffer_object *tbo = &bo->ttm; + struct ttm_device *bdev = tbo->bdev; + + drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); + + list_del_init(&bo->vram_userfault_link); +} + +#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) +#include "tests/xe_bo.c" +#endif |
