diff options
Diffstat (limited to 'drivers/gpu/drm/xe/xe_migrate.c')
| -rw-r--r-- | drivers/gpu/drm/xe/xe_migrate.c | 2470 |
1 files changed, 2470 insertions, 0 deletions
diff --git a/drivers/gpu/drm/xe/xe_migrate.c b/drivers/gpu/drm/xe/xe_migrate.c new file mode 100644 index 000000000000..2184af413b91 --- /dev/null +++ b/drivers/gpu/drm/xe/xe_migrate.c @@ -0,0 +1,2470 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2020 Intel Corporation + */ + +#include "xe_migrate.h" + +#include <linux/bitfield.h> +#include <linux/sizes.h> + +#include <drm/drm_managed.h> +#include <drm/drm_pagemap.h> +#include <drm/ttm/ttm_tt.h> +#include <uapi/drm/xe_drm.h> + +#include <generated/xe_wa_oob.h> + +#include "instructions/xe_gpu_commands.h" +#include "instructions/xe_mi_commands.h" +#include "regs/xe_gtt_defs.h" +#include "tests/xe_test.h" +#include "xe_assert.h" +#include "xe_bb.h" +#include "xe_bo.h" +#include "xe_exec_queue.h" +#include "xe_ggtt.h" +#include "xe_gt.h" +#include "xe_hw_engine.h" +#include "xe_lrc.h" +#include "xe_map.h" +#include "xe_mocs.h" +#include "xe_printk.h" +#include "xe_pt.h" +#include "xe_res_cursor.h" +#include "xe_sa.h" +#include "xe_sched_job.h" +#include "xe_sync.h" +#include "xe_trace_bo.h" +#include "xe_validation.h" +#include "xe_vm.h" +#include "xe_vram.h" + +/** + * struct xe_migrate - migrate context. + */ +struct xe_migrate { + /** @q: Default exec queue used for migration */ + struct xe_exec_queue *q; + /** @tile: Backpointer to the tile this struct xe_migrate belongs to. */ + struct xe_tile *tile; + /** @job_mutex: Timeline mutex for @eng. */ + struct mutex job_mutex; + /** @pt_bo: Page-table buffer object. */ + struct xe_bo *pt_bo; + /** @batch_base_ofs: VM offset of the migration batch buffer */ + u64 batch_base_ofs; + /** @usm_batch_base_ofs: VM offset of the usm batch buffer */ + u64 usm_batch_base_ofs; + /** @cleared_mem_ofs: VM offset of @cleared_bo. */ + u64 cleared_mem_ofs; + /** @large_page_copy_ofs: VM offset of 2M pages used for large copies */ + u64 large_page_copy_ofs; + /** + * @large_page_copy_pdes: BO offset to writeout 2M pages (PDEs) used for + * large copies + */ + u64 large_page_copy_pdes; + /** + * @fence: dma-fence representing the last migration job batch. + * Protected by @job_mutex. + */ + struct dma_fence *fence; + /** + * @vm_update_sa: For integrated, used to suballocate page-tables + * out of the pt_bo. + */ + struct drm_suballoc_manager vm_update_sa; + /** @min_chunk_size: For dgfx, Minimum chunk size */ + u64 min_chunk_size; +}; + +#define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */ +#define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */ +#define NUM_KERNEL_PDE 15 +#define NUM_PT_SLOTS 32 +#define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M +#define MAX_NUM_PTE 512 +#define IDENTITY_OFFSET 256ULL + +/* + * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest + * legal value accepted. Since that instruction field is always stored in + * (val-2) format, this translates to 0x400 dwords for the true maximum length + * of the instruction. Subtracting the instruction header (1 dword) and + * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values. + */ +#define MAX_PTE_PER_SDI 0x1FEU + +static void xe_migrate_fini(void *arg) +{ + struct xe_migrate *m = arg; + + xe_vm_lock(m->q->vm, false); + xe_bo_unpin(m->pt_bo); + xe_vm_unlock(m->q->vm); + + dma_fence_put(m->fence); + xe_bo_put(m->pt_bo); + drm_suballoc_manager_fini(&m->vm_update_sa); + mutex_destroy(&m->job_mutex); + xe_vm_close_and_put(m->q->vm); + xe_exec_queue_put(m->q); +} + +static u64 xe_migrate_vm_addr(u64 slot, u32 level) +{ + XE_WARN_ON(slot >= NUM_PT_SLOTS); + + /* First slot is reserved for mapping of PT bo and bb, start from 1 */ + return (slot + 1ULL) << xe_pt_shift(level + 1); +} + +static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte) +{ + /* + * Remove the DPA to get a correct offset into identity table for the + * migrate offset + */ + u64 identity_offset = IDENTITY_OFFSET; + + if (GRAPHICS_VER(xe) >= 20 && is_comp_pte) + identity_offset += DIV_ROUND_UP_ULL(xe_vram_region_actual_physical_size + (xe->mem.vram), SZ_1G); + + addr -= xe_vram_region_dpa_base(xe->mem.vram); + return addr + (identity_offset << xe_pt_shift(2)); +} + +static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo, + u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs) +{ + struct xe_vram_region *vram = xe->mem.vram; + resource_size_t dpa_base = xe_vram_region_dpa_base(vram); + u64 pos, ofs, flags; + u64 entry; + /* XXX: Unclear if this should be usable_size? */ + u64 vram_limit = xe_vram_region_actual_physical_size(vram) + dpa_base; + u32 level = 2; + + ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8; + flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, + true, 0); + + xe_assert(xe, IS_ALIGNED(xe_vram_region_usable_size(vram), SZ_2M)); + + /* + * Use 1GB pages when possible, last chunk always use 2M + * pages as mixing reserved memory (stolen, WOCPM) with a single + * mapping is not allowed on certain platforms. + */ + for (pos = dpa_base; pos < vram_limit; + pos += SZ_1G, ofs += 8) { + if (pos + SZ_1G >= vram_limit) { + entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs); + xe_map_wr(xe, &bo->vmap, ofs, u64, entry); + + flags = vm->pt_ops->pte_encode_addr(xe, 0, + pat_index, + level - 1, + true, 0); + + for (ofs = pt_2m_ofs; pos < vram_limit; + pos += SZ_2M, ofs += 8) + xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); + break; /* Ensure pos == vram_limit assert correct */ + } + + xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); + } + + xe_assert(xe, pos == vram_limit); +} + +static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, + struct xe_vm *vm, struct drm_exec *exec) +{ + struct xe_device *xe = tile_to_xe(tile); + u16 pat_index = xe->pat.idx[XE_CACHE_WB]; + u8 id = tile->id; + u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level; +#define VRAM_IDENTITY_MAP_COUNT 2 + u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT; +#undef VRAM_IDENTITY_MAP_COUNT + u32 map_ofs, level, i; + struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo; + u64 entry, pt29_ofs; + + /* Can't bump NUM_PT_SLOTS too high */ + BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE); + /* Must be a multiple of 64K to support all platforms */ + BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K); + /* And one slot reserved for the 4KiB page table updates */ + BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1)); + + /* Need to be sure everything fits in the first PT, or create more */ + xe_tile_assert(tile, m->batch_base_ofs + xe_bo_size(batch) < SZ_2M); + + bo = xe_bo_create_pin_map(vm->xe, tile, vm, + num_entries * XE_PAGE_SIZE, + ttm_bo_type_kernel, + XE_BO_FLAG_VRAM_IF_DGFX(tile) | + XE_BO_FLAG_PAGETABLE, exec); + if (IS_ERR(bo)) + return PTR_ERR(bo); + + /* PT30 & PT31 reserved for 2M identity map */ + pt29_ofs = xe_bo_size(bo) - 3 * XE_PAGE_SIZE; + entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs); + xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry); + + map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE; + + /* Map the entire BO in our level 0 pt */ + for (i = 0, level = 0; i < num_entries; level++) { + entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE, + pat_index, 0); + + xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry); + + if (vm->flags & XE_VM_FLAG_64K) + i += 16; + else + i += 1; + } + + if (!IS_DGFX(xe)) { + /* Write out batch too */ + m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE; + for (i = 0; i < xe_bo_size(batch); + i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : + XE_PAGE_SIZE) { + entry = vm->pt_ops->pte_encode_bo(batch, i, + pat_index, 0); + + xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, + entry); + level++; + } + if (xe->info.has_usm) { + xe_tile_assert(tile, xe_bo_size(batch) == SZ_1M); + + batch = tile->primary_gt->usm.bb_pool->bo; + m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M; + xe_tile_assert(tile, xe_bo_size(batch) == SZ_512K); + + for (i = 0; i < xe_bo_size(batch); + i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : + XE_PAGE_SIZE) { + entry = vm->pt_ops->pte_encode_bo(batch, i, + pat_index, 0); + + xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, + entry); + level++; + } + } + } else { + u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); + + m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false); + + if (xe->info.has_usm) { + batch = tile->primary_gt->usm.bb_pool->bo; + batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); + m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false); + } + } + + for (level = 1; level < num_level; level++) { + u32 flags = 0; + + if (vm->flags & XE_VM_FLAG_64K && level == 1) + flags = XE_PDE_64K; + + entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) * + XE_PAGE_SIZE); + xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64, + entry | flags); + } + + /* Write PDE's that point to our BO. */ + for (i = 0; i < map_ofs / XE_PAGE_SIZE; i++) { + entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE); + + xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE + + (i + 1) * 8, u64, entry); + } + + /* Reserve 2M PDEs */ + level = 1; + m->large_page_copy_ofs = NUM_PT_SLOTS << xe_pt_shift(level); + m->large_page_copy_pdes = map_ofs + XE_PAGE_SIZE * level + + NUM_PT_SLOTS * 8; + + /* Set up a 1GiB NULL mapping at 255GiB offset. */ + level = 2; + xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64, + vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) + | XE_PTE_NULL); + m->cleared_mem_ofs = (255ULL << xe_pt_shift(level)); + + /* Identity map the entire vram at 256GiB offset */ + if (IS_DGFX(xe)) { + u64 pt30_ofs = xe_bo_size(bo) - 2 * XE_PAGE_SIZE; + resource_size_t actual_phy_size = xe_vram_region_actual_physical_size(xe->mem.vram); + + xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET, + pat_index, pt30_ofs); + xe_assert(xe, actual_phy_size <= (MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G); + + /* + * Identity map the entire vram for compressed pat_index for xe2+ + * if flat ccs is enabled. + */ + if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) { + u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION]; + u64 vram_offset = IDENTITY_OFFSET + + DIV_ROUND_UP_ULL(actual_phy_size, SZ_1G); + u64 pt31_ofs = xe_bo_size(bo) - XE_PAGE_SIZE; + + xe_assert(xe, actual_phy_size <= (MAX_NUM_PTE - IDENTITY_OFFSET - + IDENTITY_OFFSET / 2) * SZ_1G); + xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset, + comp_pat_index, pt31_ofs); + } + } + + /* + * Example layout created above, with root level = 3: + * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's + * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's + * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's + * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map] + * + * This makes the lowest part of the VM point to the pagetables. + * Hence the lowest 2M in the vm should point to itself, with a few writes + * and flushes, other parts of the VM can be used either for copying and + * clearing. + * + * For performance, the kernel reserves PDE's, so about 20 are left + * for async VM updates. + * + * To make it easier to work, each scratch PT is put in slot (1 + PT #) + * everywhere, this allows lockless updates to scratch pages by using + * the different addresses in VM. + */ +#define NUM_VMUSA_UNIT_PER_PAGE 32 +#define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE) +#define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64)) + drm_suballoc_manager_init(&m->vm_update_sa, + (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) * + NUM_VMUSA_UNIT_PER_PAGE, 0); + + m->pt_bo = bo; + return 0; +} + +/* + * Including the reserved copy engine is required to avoid deadlocks due to + * migrate jobs servicing the faults gets stuck behind the job that faulted. + */ +static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt) +{ + u32 logical_mask = 0; + struct xe_hw_engine *hwe; + enum xe_hw_engine_id id; + + for_each_hw_engine(hwe, gt, id) { + if (hwe->class != XE_ENGINE_CLASS_COPY) + continue; + + if (xe_gt_is_usm_hwe(gt, hwe)) + logical_mask |= BIT(hwe->logical_instance); + } + + return logical_mask; +} + +static bool xe_migrate_needs_ccs_emit(struct xe_device *xe) +{ + return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)); +} + +/** + * xe_migrate_alloc - Allocate a migrate struct for a given &xe_tile + * @tile: &xe_tile + * + * Allocates a &xe_migrate for a given tile. + * + * Return: &xe_migrate on success, or NULL when out of memory. + */ +struct xe_migrate *xe_migrate_alloc(struct xe_tile *tile) +{ + struct xe_migrate *m = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*m), GFP_KERNEL); + + if (m) + m->tile = tile; + return m; +} + +static int xe_migrate_lock_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, struct xe_vm *vm) +{ + struct xe_device *xe = tile_to_xe(tile); + struct xe_validation_ctx ctx; + struct drm_exec exec; + int err = 0; + + xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {}, err) { + err = xe_vm_drm_exec_lock(vm, &exec); + drm_exec_retry_on_contention(&exec); + err = xe_migrate_prepare_vm(tile, m, vm, &exec); + drm_exec_retry_on_contention(&exec); + xe_validation_retry_on_oom(&ctx, &err); + } + + return err; +} + +/** + * xe_migrate_init() - Initialize a migrate context + * @m: The migration context + * + * Return: 0 if successful, negative error code on failure + */ +int xe_migrate_init(struct xe_migrate *m) +{ + struct xe_tile *tile = m->tile; + struct xe_gt *primary_gt = tile->primary_gt; + struct xe_device *xe = tile_to_xe(tile); + struct xe_vm *vm; + int err; + + /* Special layout, prepared below.. */ + vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION | + XE_VM_FLAG_SET_TILE_ID(tile), NULL); + if (IS_ERR(vm)) + return PTR_ERR(vm); + + err = xe_migrate_lock_prepare_vm(tile, m, vm); + if (err) + goto err_out; + + if (xe->info.has_usm) { + struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt, + XE_ENGINE_CLASS_COPY, + primary_gt->usm.reserved_bcs_instance, + false); + u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt); + + if (!hwe || !logical_mask) { + err = -EINVAL; + goto err_out; + } + + /* + * XXX: Currently only reserving 1 (likely slow) BCS instance on + * PVC, may want to revisit if performance is needed. + */ + m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe, + EXEC_QUEUE_FLAG_KERNEL | + EXEC_QUEUE_FLAG_PERMANENT | + EXEC_QUEUE_FLAG_HIGH_PRIORITY | + EXEC_QUEUE_FLAG_MIGRATE, 0); + } else { + m->q = xe_exec_queue_create_class(xe, primary_gt, vm, + XE_ENGINE_CLASS_COPY, + EXEC_QUEUE_FLAG_KERNEL | + EXEC_QUEUE_FLAG_PERMANENT | + EXEC_QUEUE_FLAG_MIGRATE, 0); + } + if (IS_ERR(m->q)) { + err = PTR_ERR(m->q); + goto err_out; + } + + mutex_init(&m->job_mutex); + fs_reclaim_acquire(GFP_KERNEL); + might_lock(&m->job_mutex); + fs_reclaim_release(GFP_KERNEL); + + err = devm_add_action_or_reset(xe->drm.dev, xe_migrate_fini, m); + if (err) + return err; + + if (IS_DGFX(xe)) { + if (xe_migrate_needs_ccs_emit(xe)) + /* min chunk size corresponds to 4K of CCS Metadata */ + m->min_chunk_size = SZ_4K * SZ_64K / + xe_device_ccs_bytes(xe, SZ_64K); + else + /* Somewhat arbitrary to avoid a huge amount of blits */ + m->min_chunk_size = SZ_64K; + m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size); + drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n", + (unsigned long long)m->min_chunk_size); + } + + return err; + +err_out: + xe_vm_close_and_put(vm); + return err; + +} + +static u64 max_mem_transfer_per_pass(struct xe_device *xe) +{ + if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe)) + return MAX_CCS_LIMITED_TRANSFER; + + return MAX_PREEMPTDISABLE_TRANSFER; +} + +static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur) +{ + struct xe_device *xe = tile_to_xe(m->tile); + u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining); + + if (mem_type_is_vram(cur->mem_type)) { + /* + * VRAM we want to blit in chunks with sizes aligned to + * min_chunk_size in order for the offset to CCS metadata to be + * page-aligned. If it's the last chunk it may be smaller. + * + * Another constraint is that we need to limit the blit to + * the VRAM block size, unless size is smaller than + * min_chunk_size. + */ + u64 chunk = max_t(u64, cur->size, m->min_chunk_size); + + size = min_t(u64, size, chunk); + if (size > m->min_chunk_size) + size = round_down(size, m->min_chunk_size); + } + + return size; +} + +static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur) +{ + /* If the chunk is not fragmented, allow identity map. */ + return cur->size >= size; +} + +#define PTE_UPDATE_FLAG_IS_VRAM BIT(0) +#define PTE_UPDATE_FLAG_IS_COMP_PTE BIT(1) + +static u32 pte_update_size(struct xe_migrate *m, + u32 flags, + struct ttm_resource *res, + struct xe_res_cursor *cur, + u64 *L0, u64 *L0_ofs, u32 *L0_pt, + u32 cmd_size, u32 pt_ofs, u32 avail_pts) +{ + u32 cmds = 0; + bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags; + bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags; + + *L0_pt = pt_ofs; + if (is_vram && xe_migrate_allow_identity(*L0, cur)) { + /* Offset into identity map. */ + *L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile), + cur->start + vram_region_gpu_offset(res), + is_comp_pte); + cmds += cmd_size; + } else { + /* Clip L0 to available size */ + u64 size = min(*L0, (u64)avail_pts * SZ_2M); + u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT; + + *L0 = size; + *L0_ofs = xe_migrate_vm_addr(pt_ofs, 0); + + /* MI_STORE_DATA_IMM */ + cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI); + + /* PDE qwords */ + cmds += num_4k_pages * 2; + + /* Each chunk has a single blit command */ + cmds += cmd_size; + } + + return cmds; +} + +static void emit_pte(struct xe_migrate *m, + struct xe_bb *bb, u32 at_pt, + bool is_vram, bool is_comp_pte, + struct xe_res_cursor *cur, + u32 size, struct ttm_resource *res) +{ + struct xe_device *xe = tile_to_xe(m->tile); + struct xe_vm *vm = m->q->vm; + u16 pat_index; + u32 ptes; + u64 ofs = (u64)at_pt * XE_PAGE_SIZE; + u64 cur_ofs; + + /* Indirect access needs compression enabled uncached PAT index */ + if (GRAPHICS_VERx100(xe) >= 2000) + pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] : + xe->pat.idx[XE_CACHE_WB]; + else + pat_index = xe->pat.idx[XE_CACHE_WB]; + + ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE); + + while (ptes) { + u32 chunk = min(MAX_PTE_PER_SDI, ptes); + + bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); + bb->cs[bb->len++] = ofs; + bb->cs[bb->len++] = 0; + + cur_ofs = ofs; + ofs += chunk * 8; + ptes -= chunk; + + while (chunk--) { + u64 addr, flags = 0; + bool devmem = false; + + addr = xe_res_dma(cur) & PAGE_MASK; + if (is_vram) { + if (vm->flags & XE_VM_FLAG_64K) { + u64 va = cur_ofs * XE_PAGE_SIZE / 8; + + xe_assert(xe, (va & (SZ_64K - 1)) == + (addr & (SZ_64K - 1))); + + flags |= XE_PTE_PS64; + } + + addr += vram_region_gpu_offset(res); + devmem = true; + } + + addr = vm->pt_ops->pte_encode_addr(m->tile->xe, + addr, pat_index, + 0, devmem, flags); + bb->cs[bb->len++] = lower_32_bits(addr); + bb->cs[bb->len++] = upper_32_bits(addr); + + xe_res_next(cur, min_t(u32, size, PAGE_SIZE)); + cur_ofs += 8; + } + } +} + +#define EMIT_COPY_CCS_DW 5 +static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb, + u64 dst_ofs, bool dst_is_indirect, + u64 src_ofs, bool src_is_indirect, + u32 size) +{ + struct xe_device *xe = gt_to_xe(gt); + u32 *cs = bb->cs + bb->len; + u32 num_ccs_blks; + u32 num_pages; + u32 ccs_copy_size; + u32 mocs; + + if (GRAPHICS_VERx100(xe) >= 2000) { + num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE); + xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1)); + + ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1); + mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index); + + } else { + num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size), + NUM_CCS_BYTES_PER_BLOCK); + xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1)); + + ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1); + mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index); + } + + *cs++ = XY_CTRL_SURF_COPY_BLT | + (src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT | + (dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT | + ccs_copy_size; + *cs++ = lower_32_bits(src_ofs); + *cs++ = upper_32_bits(src_ofs) | mocs; + *cs++ = lower_32_bits(dst_ofs); + *cs++ = upper_32_bits(dst_ofs) | mocs; + + bb->len = cs - bb->cs; +} + +#define EMIT_COPY_DW 10 +static void emit_xy_fast_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, + u64 dst_ofs, unsigned int size, + unsigned int pitch) +{ + struct xe_device *xe = gt_to_xe(gt); + u32 mocs = 0; + u32 tile_y = 0; + + xe_gt_assert(gt, !(pitch & 3)); + xe_gt_assert(gt, size / pitch <= S16_MAX); + xe_gt_assert(gt, pitch / 4 <= S16_MAX); + xe_gt_assert(gt, pitch <= U16_MAX); + + if (GRAPHICS_VER(xe) >= 20) + mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index); + + if (GRAPHICS_VERx100(xe) >= 1250) + tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4; + + bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2); + bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs; + bb->cs[bb->len++] = 0; + bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4; + bb->cs[bb->len++] = lower_32_bits(dst_ofs); + bb->cs[bb->len++] = upper_32_bits(dst_ofs); + bb->cs[bb->len++] = 0; + bb->cs[bb->len++] = pitch | mocs; + bb->cs[bb->len++] = lower_32_bits(src_ofs); + bb->cs[bb->len++] = upper_32_bits(src_ofs); +} + +#define PAGE_COPY_MODE_PS SZ_256 /* hw uses 256 bytes as the page-size */ +static void emit_mem_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, + u64 dst_ofs, unsigned int size, unsigned int pitch) +{ + u32 mode, copy_type, width; + + xe_gt_assert(gt, IS_ALIGNED(size, pitch)); + xe_gt_assert(gt, pitch <= U16_MAX); + xe_gt_assert(gt, pitch); + xe_gt_assert(gt, size); + + if (IS_ALIGNED(size, PAGE_COPY_MODE_PS) && + IS_ALIGNED(lower_32_bits(src_ofs), PAGE_COPY_MODE_PS) && + IS_ALIGNED(lower_32_bits(dst_ofs), PAGE_COPY_MODE_PS)) { + mode = MEM_COPY_PAGE_COPY_MODE; + copy_type = 0; /* linear copy */ + width = size / PAGE_COPY_MODE_PS; + } else if (pitch > 1) { + xe_gt_assert(gt, size / pitch <= U16_MAX); + mode = 0; /* BYTE_COPY */ + copy_type = MEM_COPY_MATRIX_COPY; + width = pitch; + } else { + mode = 0; /* BYTE_COPY */ + copy_type = 0; /* linear copy */ + width = size; + } + + xe_gt_assert(gt, width <= U16_MAX); + + bb->cs[bb->len++] = MEM_COPY_CMD | mode | copy_type; + bb->cs[bb->len++] = width - 1; + bb->cs[bb->len++] = size / pitch - 1; /* ignored by hw for page-copy/linear above */ + bb->cs[bb->len++] = pitch - 1; + bb->cs[bb->len++] = pitch - 1; + bb->cs[bb->len++] = lower_32_bits(src_ofs); + bb->cs[bb->len++] = upper_32_bits(src_ofs); + bb->cs[bb->len++] = lower_32_bits(dst_ofs); + bb->cs[bb->len++] = upper_32_bits(dst_ofs); + bb->cs[bb->len++] = FIELD_PREP(MEM_COPY_SRC_MOCS_INDEX_MASK, gt->mocs.uc_index) | + FIELD_PREP(MEM_COPY_DST_MOCS_INDEX_MASK, gt->mocs.uc_index); +} + +static void emit_copy(struct xe_gt *gt, struct xe_bb *bb, + u64 src_ofs, u64 dst_ofs, unsigned int size, + unsigned int pitch) +{ + struct xe_device *xe = gt_to_xe(gt); + + if (xe->info.has_mem_copy_instr) + emit_mem_copy(gt, bb, src_ofs, dst_ofs, size, pitch); + else + emit_xy_fast_copy(gt, bb, src_ofs, dst_ofs, size, pitch); +} + +static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm) +{ + return usm ? m->usm_batch_base_ofs : m->batch_base_ofs; +} + +static u32 xe_migrate_ccs_copy(struct xe_migrate *m, + struct xe_bb *bb, + u64 src_ofs, bool src_is_indirect, + u64 dst_ofs, bool dst_is_indirect, u32 dst_size, + u64 ccs_ofs, bool copy_ccs) +{ + struct xe_gt *gt = m->tile->primary_gt; + u32 flush_flags = 0; + + if (!copy_ccs && dst_is_indirect) { + /* + * If the src is already in vram, then it should already + * have been cleared by us, or has been populated by the + * user. Make sure we copy the CCS aux state as-is. + * + * Otherwise if the bo doesn't have any CCS metadata attached, + * we still need to clear it for security reasons. + */ + u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs; + + emit_copy_ccs(gt, bb, + dst_ofs, true, + ccs_src_ofs, src_is_indirect, dst_size); + + flush_flags = MI_FLUSH_DW_CCS; + } else if (copy_ccs) { + if (!src_is_indirect) + src_ofs = ccs_ofs; + else if (!dst_is_indirect) + dst_ofs = ccs_ofs; + + xe_gt_assert(gt, src_is_indirect || dst_is_indirect); + + emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs, + src_is_indirect, dst_size); + if (dst_is_indirect) + flush_flags = MI_FLUSH_DW_CCS; + } + + return flush_flags; +} + +/** + * xe_migrate_copy() - Copy content of TTM resources. + * @m: The migration context. + * @src_bo: The buffer object @src is currently bound to. + * @dst_bo: If copying between resources created for the same bo, set this to + * the same value as @src_bo. If copying between buffer objects, set it to + * the buffer object @dst is currently bound to. + * @src: The source TTM resource. + * @dst: The dst TTM resource. + * @copy_only_ccs: If true copy only CCS metadata + * + * Copies the contents of @src to @dst: On flat CCS devices, + * the CCS metadata is copied as well if needed, or if not present, + * the CCS metadata of @dst is cleared for security reasons. + * + * Return: Pointer to a dma_fence representing the last copy batch, or + * an error pointer on failure. If there is a failure, any copy operation + * started by the function call has been synced. + */ +struct dma_fence *xe_migrate_copy(struct xe_migrate *m, + struct xe_bo *src_bo, + struct xe_bo *dst_bo, + struct ttm_resource *src, + struct ttm_resource *dst, + bool copy_only_ccs) +{ + struct xe_gt *gt = m->tile->primary_gt; + struct xe_device *xe = gt_to_xe(gt); + struct dma_fence *fence = NULL; + u64 size = xe_bo_size(src_bo); + struct xe_res_cursor src_it, dst_it, ccs_it; + u64 src_L0_ofs, dst_L0_ofs; + u32 src_L0_pt, dst_L0_pt; + u64 src_L0, dst_L0; + int pass = 0; + int err; + bool src_is_pltt = src->mem_type == XE_PL_TT; + bool dst_is_pltt = dst->mem_type == XE_PL_TT; + bool src_is_vram = mem_type_is_vram(src->mem_type); + bool dst_is_vram = mem_type_is_vram(dst->mem_type); + bool type_device = src_bo->ttm.type == ttm_bo_type_device; + bool needs_ccs_emit = type_device && xe_migrate_needs_ccs_emit(xe); + bool copy_ccs = xe_device_has_flat_ccs(xe) && + xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo); + bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram); + bool use_comp_pat = type_device && xe_device_has_flat_ccs(xe) && + GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram; + + /* Copying CCS between two different BOs is not supported yet. */ + if (XE_WARN_ON(copy_ccs && src_bo != dst_bo)) + return ERR_PTR(-EINVAL); + + if (src_bo != dst_bo && XE_WARN_ON(xe_bo_size(src_bo) != xe_bo_size(dst_bo))) + return ERR_PTR(-EINVAL); + + if (!src_is_vram) + xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it); + else + xe_res_first(src, 0, size, &src_it); + if (!dst_is_vram) + xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it); + else + xe_res_first(dst, 0, size, &dst_it); + + if (copy_system_ccs) + xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo), + PAGE_ALIGN(xe_device_ccs_bytes(xe, size)), + &ccs_it); + + while (size) { + u32 batch_size = 1; /* MI_BATCH_BUFFER_END */ + struct xe_sched_job *job; + struct xe_bb *bb; + u32 flush_flags = 0; + u32 update_idx; + u64 ccs_ofs, ccs_size; + u32 ccs_pt; + u32 pte_flags; + + bool usm = xe->info.has_usm; + u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; + + src_L0 = xe_migrate_res_sizes(m, &src_it); + dst_L0 = xe_migrate_res_sizes(m, &dst_it); + + drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n", + pass++, src_L0, dst_L0); + + src_L0 = min(src_L0, dst_L0); + + pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; + pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0; + batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0, + &src_L0_ofs, &src_L0_pt, 0, 0, + avail_pts); + if (copy_only_ccs) { + dst_L0_ofs = src_L0_ofs; + } else { + pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; + batch_size += pte_update_size(m, pte_flags, dst, + &dst_it, &src_L0, + &dst_L0_ofs, &dst_L0_pt, + 0, avail_pts, avail_pts); + } + + if (copy_system_ccs) { + xe_assert(xe, type_device); + ccs_size = xe_device_ccs_bytes(xe, src_L0); + batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, + &ccs_ofs, &ccs_pt, 0, + 2 * avail_pts, + avail_pts); + xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); + } + + /* Add copy commands size here */ + batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) + + ((needs_ccs_emit ? EMIT_COPY_CCS_DW : 0)); + + bb = xe_bb_new(gt, batch_size, usm); + if (IS_ERR(bb)) { + err = PTR_ERR(bb); + goto err_sync; + } + + if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it)) + xe_res_next(&src_it, src_L0); + else + emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs || use_comp_pat, + &src_it, src_L0, src); + + if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it)) + xe_res_next(&dst_it, src_L0); + else if (!copy_only_ccs) + emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs, + &dst_it, src_L0, dst); + + if (copy_system_ccs) + emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src); + + bb->cs[bb->len++] = MI_BATCH_BUFFER_END; + update_idx = bb->len; + + if (!copy_only_ccs) + emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE); + + if (needs_ccs_emit) + flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, + IS_DGFX(xe) ? src_is_vram : src_is_pltt, + dst_L0_ofs, + IS_DGFX(xe) ? dst_is_vram : dst_is_pltt, + src_L0, ccs_ofs, copy_ccs); + + job = xe_bb_create_migration_job(m->q, bb, + xe_migrate_batch_base(m, usm), + update_idx); + if (IS_ERR(job)) { + err = PTR_ERR(job); + goto err; + } + + xe_sched_job_add_migrate_flush(job, flush_flags | MI_INVALIDATE_TLB); + if (!fence) { + err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv, + DMA_RESV_USAGE_BOOKKEEP); + if (!err && src_bo->ttm.base.resv != dst_bo->ttm.base.resv) + err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv, + DMA_RESV_USAGE_BOOKKEEP); + if (err) + goto err_job; + } + + mutex_lock(&m->job_mutex); + xe_sched_job_arm(job); + dma_fence_put(fence); + fence = dma_fence_get(&job->drm.s_fence->finished); + xe_sched_job_push(job); + + dma_fence_put(m->fence); + m->fence = dma_fence_get(fence); + + mutex_unlock(&m->job_mutex); + + xe_bb_free(bb, fence); + size -= src_L0; + continue; + +err_job: + xe_sched_job_put(job); +err: + xe_bb_free(bb, NULL); + +err_sync: + /* Sync partial copy if any. FIXME: under job_mutex? */ + if (fence) { + dma_fence_wait(fence, false); + dma_fence_put(fence); + } + + return ERR_PTR(err); + } + + return fence; +} + +/** + * xe_migrate_lrc() - Get the LRC from migrate context. + * @migrate: Migrate context. + * + * Return: Pointer to LRC on success, error on failure + */ +struct xe_lrc *xe_migrate_lrc(struct xe_migrate *migrate) +{ + return migrate->q->lrc[0]; +} + +static u64 migrate_vm_ppgtt_addr_tlb_inval(void) +{ + /* + * The migrate VM is self-referential so it can modify its own PTEs (see + * pte_update_size() or emit_pte() functions). We reserve NUM_KERNEL_PDE + * entries for kernel operations (copies, clears, CCS migrate), and + * suballocate the rest to user operations (binds/unbinds). With + * NUM_KERNEL_PDE = 15, NUM_KERNEL_PDE - 1 is already used for PTE updates, + * so assign NUM_KERNEL_PDE - 2 for TLB invalidation. + */ + return (NUM_KERNEL_PDE - 2) * XE_PAGE_SIZE; +} + +static int emit_flush_invalidate(u32 *dw, int i, u32 flags) +{ + u64 addr = migrate_vm_ppgtt_addr_tlb_inval(); + + dw[i++] = MI_FLUSH_DW | MI_INVALIDATE_TLB | MI_FLUSH_DW_OP_STOREDW | + MI_FLUSH_IMM_DW | flags; + dw[i++] = lower_32_bits(addr); + dw[i++] = upper_32_bits(addr); + dw[i++] = MI_NOOP; + dw[i++] = MI_NOOP; + + return i; +} + +/** + * xe_migrate_ccs_rw_copy() - Copy content of TTM resources. + * @tile: Tile whose migration context to be used. + * @q : Execution to be used along with migration context. + * @src_bo: The buffer object @src is currently bound to. + * @read_write : Creates BB commands for CCS read/write. + * + * Creates batch buffer instructions to copy CCS metadata from CCS pool to + * memory and vice versa. + * + * This function should only be called for IGPU. + * + * Return: 0 if successful, negative error code on failure. + */ +int xe_migrate_ccs_rw_copy(struct xe_tile *tile, struct xe_exec_queue *q, + struct xe_bo *src_bo, + enum xe_sriov_vf_ccs_rw_ctxs read_write) + +{ + bool src_is_pltt = read_write == XE_SRIOV_VF_CCS_READ_CTX; + bool dst_is_pltt = read_write == XE_SRIOV_VF_CCS_WRITE_CTX; + struct ttm_resource *src = src_bo->ttm.resource; + struct xe_migrate *m = tile->migrate; + struct xe_gt *gt = tile->primary_gt; + u32 batch_size, batch_size_allocated; + struct xe_device *xe = gt_to_xe(gt); + struct xe_res_cursor src_it, ccs_it; + u64 size = xe_bo_size(src_bo); + struct xe_bb *bb = NULL; + u64 src_L0, src_L0_ofs; + u32 src_L0_pt; + int err; + + xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it); + + xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo), + PAGE_ALIGN(xe_device_ccs_bytes(xe, size)), + &ccs_it); + + /* Calculate Batch buffer size */ + batch_size = 0; + while (size) { + batch_size += 10; /* Flush + ggtt addr + 2 NOP */ + u64 ccs_ofs, ccs_size; + u32 ccs_pt; + + u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; + + src_L0 = min_t(u64, max_mem_transfer_per_pass(xe), size); + + batch_size += pte_update_size(m, false, src, &src_it, &src_L0, + &src_L0_ofs, &src_L0_pt, 0, 0, + avail_pts); + + ccs_size = xe_device_ccs_bytes(xe, src_L0); + batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, &ccs_ofs, + &ccs_pt, 0, avail_pts, avail_pts); + xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); + + /* Add copy commands size here */ + batch_size += EMIT_COPY_CCS_DW; + + size -= src_L0; + } + + bb = xe_bb_ccs_new(gt, batch_size, read_write); + if (IS_ERR(bb)) { + drm_err(&xe->drm, "BB allocation failed.\n"); + err = PTR_ERR(bb); + goto err_ret; + } + + batch_size_allocated = batch_size; + size = xe_bo_size(src_bo); + batch_size = 0; + + /* + * Emit PTE and copy commands here. + * The CCS copy command can only support limited size. If the size to be + * copied is more than the limit, divide copy into chunks. So, calculate + * sizes here again before copy command is emitted. + */ + while (size) { + batch_size += 10; /* Flush + ggtt addr + 2 NOP */ + u32 flush_flags = 0; + u64 ccs_ofs, ccs_size; + u32 ccs_pt; + + u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; + + src_L0 = xe_migrate_res_sizes(m, &src_it); + + batch_size += pte_update_size(m, false, src, &src_it, &src_L0, + &src_L0_ofs, &src_L0_pt, 0, 0, + avail_pts); + + ccs_size = xe_device_ccs_bytes(xe, src_L0); + batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, &ccs_ofs, + &ccs_pt, 0, avail_pts, avail_pts); + xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); + batch_size += EMIT_COPY_CCS_DW; + + emit_pte(m, bb, src_L0_pt, false, true, &src_it, src_L0, src); + + emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src); + + bb->len = emit_flush_invalidate(bb->cs, bb->len, flush_flags); + flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, src_is_pltt, + src_L0_ofs, dst_is_pltt, + src_L0, ccs_ofs, true); + bb->len = emit_flush_invalidate(bb->cs, bb->len, flush_flags); + + size -= src_L0; + } + + xe_assert(xe, (batch_size_allocated == bb->len)); + src_bo->bb_ccs[read_write] = bb; + + return 0; + +err_ret: + return err; +} + +/** + * xe_get_migrate_exec_queue() - Get the execution queue from migrate context. + * @migrate: Migrate context. + * + * Return: Pointer to execution queue on success, error on failure + */ +struct xe_exec_queue *xe_migrate_exec_queue(struct xe_migrate *migrate) +{ + return migrate->q; +} + +/** + * xe_migrate_vram_copy_chunk() - Copy a chunk of a VRAM buffer object. + * @vram_bo: The VRAM buffer object. + * @vram_offset: The VRAM offset. + * @sysmem_bo: The sysmem buffer object. + * @sysmem_offset: The sysmem offset. + * @size: The size of VRAM chunk to copy. + * @dir: The direction of the copy operation. + * + * Copies a portion of a buffer object between VRAM and system memory. + * On Xe2 platforms that support flat CCS, VRAM data is decompressed when + * copying to system memory. + * + * Return: Pointer to a dma_fence representing the last copy batch, or + * an error pointer on failure. If there is a failure, any copy operation + * started by the function call has been synced. + */ +struct dma_fence *xe_migrate_vram_copy_chunk(struct xe_bo *vram_bo, u64 vram_offset, + struct xe_bo *sysmem_bo, u64 sysmem_offset, + u64 size, enum xe_migrate_copy_dir dir) +{ + struct xe_device *xe = xe_bo_device(vram_bo); + struct xe_tile *tile = vram_bo->tile; + struct xe_gt *gt = tile->primary_gt; + struct xe_migrate *m = tile->migrate; + struct dma_fence *fence = NULL; + struct ttm_resource *vram = vram_bo->ttm.resource; + struct ttm_resource *sysmem = sysmem_bo->ttm.resource; + struct xe_res_cursor vram_it, sysmem_it; + u64 vram_L0_ofs, sysmem_L0_ofs; + u32 vram_L0_pt, sysmem_L0_pt; + u64 vram_L0, sysmem_L0; + bool to_sysmem = (dir == XE_MIGRATE_COPY_TO_SRAM); + bool use_comp_pat = to_sysmem && + GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe); + int pass = 0; + int err; + + xe_assert(xe, IS_ALIGNED(vram_offset | sysmem_offset | size, PAGE_SIZE)); + xe_assert(xe, xe_bo_is_vram(vram_bo)); + xe_assert(xe, !xe_bo_is_vram(sysmem_bo)); + xe_assert(xe, !range_overflows(vram_offset, size, (u64)vram_bo->ttm.base.size)); + xe_assert(xe, !range_overflows(sysmem_offset, size, (u64)sysmem_bo->ttm.base.size)); + + xe_res_first(vram, vram_offset, size, &vram_it); + xe_res_first_sg(xe_bo_sg(sysmem_bo), sysmem_offset, size, &sysmem_it); + + while (size) { + u32 pte_flags = PTE_UPDATE_FLAG_IS_VRAM; + u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */ + struct xe_sched_job *job; + struct xe_bb *bb; + u32 update_idx; + bool usm = xe->info.has_usm; + u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; + + sysmem_L0 = xe_migrate_res_sizes(m, &sysmem_it); + vram_L0 = min(xe_migrate_res_sizes(m, &vram_it), sysmem_L0); + + xe_dbg(xe, "Pass %u, size: %llu\n", pass++, vram_L0); + + pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0; + batch_size += pte_update_size(m, pte_flags, vram, &vram_it, &vram_L0, + &vram_L0_ofs, &vram_L0_pt, 0, 0, avail_pts); + + batch_size += pte_update_size(m, 0, sysmem, &sysmem_it, &vram_L0, &sysmem_L0_ofs, + &sysmem_L0_pt, 0, avail_pts, avail_pts); + batch_size += EMIT_COPY_DW; + + bb = xe_bb_new(gt, batch_size, usm); + if (IS_ERR(bb)) { + err = PTR_ERR(bb); + return ERR_PTR(err); + } + + if (xe_migrate_allow_identity(vram_L0, &vram_it)) + xe_res_next(&vram_it, vram_L0); + else + emit_pte(m, bb, vram_L0_pt, true, use_comp_pat, &vram_it, vram_L0, vram); + + emit_pte(m, bb, sysmem_L0_pt, false, false, &sysmem_it, vram_L0, sysmem); + + bb->cs[bb->len++] = MI_BATCH_BUFFER_END; + update_idx = bb->len; + + if (to_sysmem) + emit_copy(gt, bb, vram_L0_ofs, sysmem_L0_ofs, vram_L0, XE_PAGE_SIZE); + else + emit_copy(gt, bb, sysmem_L0_ofs, vram_L0_ofs, vram_L0, XE_PAGE_SIZE); + + job = xe_bb_create_migration_job(m->q, bb, xe_migrate_batch_base(m, usm), + update_idx); + if (IS_ERR(job)) { + xe_bb_free(bb, NULL); + err = PTR_ERR(job); + return ERR_PTR(err); + } + + xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB); + + xe_assert(xe, dma_resv_test_signaled(vram_bo->ttm.base.resv, + DMA_RESV_USAGE_BOOKKEEP)); + xe_assert(xe, dma_resv_test_signaled(sysmem_bo->ttm.base.resv, + DMA_RESV_USAGE_BOOKKEEP)); + + scoped_guard(mutex, &m->job_mutex) { + xe_sched_job_arm(job); + dma_fence_put(fence); + fence = dma_fence_get(&job->drm.s_fence->finished); + xe_sched_job_push(job); + + dma_fence_put(m->fence); + m->fence = dma_fence_get(fence); + } + + xe_bb_free(bb, fence); + size -= vram_L0; + } + + return fence; +} + +static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, + u32 size, u32 pitch) +{ + struct xe_device *xe = gt_to_xe(gt); + u32 *cs = bb->cs + bb->len; + u32 len = PVC_MEM_SET_CMD_LEN_DW; + + *cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2); + *cs++ = pitch - 1; + *cs++ = (size / pitch) - 1; + *cs++ = pitch - 1; + *cs++ = lower_32_bits(src_ofs); + *cs++ = upper_32_bits(src_ofs); + if (GRAPHICS_VERx100(xe) >= 2000) + *cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); + else + *cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); + + xe_gt_assert(gt, cs - bb->cs == len + bb->len); + + bb->len += len; +} + +static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb, + u64 src_ofs, u32 size, u32 pitch, bool is_vram) +{ + struct xe_device *xe = gt_to_xe(gt); + u32 *cs = bb->cs + bb->len; + u32 len = XY_FAST_COLOR_BLT_DW; + + if (GRAPHICS_VERx100(xe) < 1250) + len = 11; + + *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | + (len - 2); + if (GRAPHICS_VERx100(xe) >= 2000) + *cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) | + (pitch - 1); + else + *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) | + (pitch - 1); + *cs++ = 0; + *cs++ = (size / pitch) << 16 | pitch / 4; + *cs++ = lower_32_bits(src_ofs); + *cs++ = upper_32_bits(src_ofs); + *cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; + *cs++ = 0; + *cs++ = 0; + *cs++ = 0; + *cs++ = 0; + + if (len > 11) { + *cs++ = 0; + *cs++ = 0; + *cs++ = 0; + *cs++ = 0; + *cs++ = 0; + } + + xe_gt_assert(gt, cs - bb->cs == len + bb->len); + + bb->len += len; +} + +static bool has_service_copy_support(struct xe_gt *gt) +{ + /* + * What we care about is whether the architecture was designed with + * service copy functionality (specifically the new MEM_SET / MEM_COPY + * instructions) so check the architectural engine list rather than the + * actual list since these instructions are usable on BCS0 even if + * all of the actual service copy engines (BCS1-BCS8) have been fused + * off. + */ + return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8, + XE_HW_ENGINE_BCS1); +} + +static u32 emit_clear_cmd_len(struct xe_gt *gt) +{ + if (has_service_copy_support(gt)) + return PVC_MEM_SET_CMD_LEN_DW; + else + return XY_FAST_COLOR_BLT_DW; +} + +static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, + u32 size, u32 pitch, bool is_vram) +{ + if (has_service_copy_support(gt)) + emit_clear_link_copy(gt, bb, src_ofs, size, pitch); + else + emit_clear_main_copy(gt, bb, src_ofs, size, pitch, + is_vram); +} + +/** + * xe_migrate_clear() - Copy content of TTM resources. + * @m: The migration context. + * @bo: The buffer object @dst is currently bound to. + * @dst: The dst TTM resource to be cleared. + * @clear_flags: flags to specify which data to clear: CCS, BO, or both. + * + * Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set. + * On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA. + * Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata. + * TODO: Eliminate the @bo argument. + * + * Return: Pointer to a dma_fence representing the last clear batch, or + * an error pointer on failure. If there is a failure, any clear operation + * started by the function call has been synced. + */ +struct dma_fence *xe_migrate_clear(struct xe_migrate *m, + struct xe_bo *bo, + struct ttm_resource *dst, + u32 clear_flags) +{ + bool clear_vram = mem_type_is_vram(dst->mem_type); + bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags; + bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags; + struct xe_gt *gt = m->tile->primary_gt; + struct xe_device *xe = gt_to_xe(gt); + bool clear_only_system_ccs = false; + struct dma_fence *fence = NULL; + u64 size = xe_bo_size(bo); + struct xe_res_cursor src_it; + struct ttm_resource *src = dst; + int err; + + if (WARN_ON(!clear_bo_data && !clear_ccs)) + return NULL; + + if (!clear_bo_data && clear_ccs && !IS_DGFX(xe)) + clear_only_system_ccs = true; + + if (!clear_vram) + xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &src_it); + else + xe_res_first(src, 0, xe_bo_size(bo), &src_it); + + while (size) { + u64 clear_L0_ofs; + u32 clear_L0_pt; + u32 flush_flags = 0; + u64 clear_L0; + struct xe_sched_job *job; + struct xe_bb *bb; + u32 batch_size, update_idx; + u32 pte_flags; + + bool usm = xe->info.has_usm; + u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; + + clear_L0 = xe_migrate_res_sizes(m, &src_it); + + /* Calculate final sizes and batch size.. */ + pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; + batch_size = 1 + + pte_update_size(m, pte_flags, src, &src_it, + &clear_L0, &clear_L0_ofs, &clear_L0_pt, + clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0, + avail_pts); + + if (xe_migrate_needs_ccs_emit(xe)) + batch_size += EMIT_COPY_CCS_DW; + + /* Clear commands */ + + if (WARN_ON_ONCE(!clear_L0)) + break; + + bb = xe_bb_new(gt, batch_size, usm); + if (IS_ERR(bb)) { + err = PTR_ERR(bb); + goto err_sync; + } + + size -= clear_L0; + /* Preemption is enabled again by the ring ops. */ + if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it)) { + xe_res_next(&src_it, clear_L0); + } else { + emit_pte(m, bb, clear_L0_pt, clear_vram, + clear_only_system_ccs, &src_it, clear_L0, dst); + flush_flags |= MI_INVALIDATE_TLB; + } + + bb->cs[bb->len++] = MI_BATCH_BUFFER_END; + update_idx = bb->len; + + if (clear_bo_data) + emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram); + + if (xe_migrate_needs_ccs_emit(xe)) { + emit_copy_ccs(gt, bb, clear_L0_ofs, true, + m->cleared_mem_ofs, false, clear_L0); + flush_flags |= MI_FLUSH_DW_CCS; + } + + job = xe_bb_create_migration_job(m->q, bb, + xe_migrate_batch_base(m, usm), + update_idx); + if (IS_ERR(job)) { + err = PTR_ERR(job); + goto err; + } + + xe_sched_job_add_migrate_flush(job, flush_flags); + if (!fence) { + /* + * There can't be anything userspace related at this + * point, so we just need to respect any potential move + * fences, which are always tracked as + * DMA_RESV_USAGE_KERNEL. + */ + err = xe_sched_job_add_deps(job, bo->ttm.base.resv, + DMA_RESV_USAGE_KERNEL); + if (err) + goto err_job; + } + + mutex_lock(&m->job_mutex); + xe_sched_job_arm(job); + dma_fence_put(fence); + fence = dma_fence_get(&job->drm.s_fence->finished); + xe_sched_job_push(job); + + dma_fence_put(m->fence); + m->fence = dma_fence_get(fence); + + mutex_unlock(&m->job_mutex); + + xe_bb_free(bb, fence); + continue; + +err_job: + xe_sched_job_put(job); +err: + xe_bb_free(bb, NULL); +err_sync: + /* Sync partial copies if any. FIXME: job_mutex? */ + if (fence) { + dma_fence_wait(fence, false); + dma_fence_put(fence); + } + + return ERR_PTR(err); + } + + if (clear_ccs) + bo->ccs_cleared = true; + + return fence; +} + +static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs, + const struct xe_vm_pgtable_update_op *pt_op, + const struct xe_vm_pgtable_update *update, + struct xe_migrate_pt_update *pt_update) +{ + const struct xe_migrate_pt_update_ops *ops = pt_update->ops; + u32 chunk; + u32 ofs = update->ofs, size = update->qwords; + + /* + * If we have 512 entries (max), we would populate it ourselves, + * and update the PDE above it to the new pointer. + * The only time this can only happen if we have to update the top + * PDE. This requires a BO that is almost vm->size big. + * + * This shouldn't be possible in practice.. might change when 16K + * pages are used. Hence the assert. + */ + xe_tile_assert(tile, update->qwords < MAX_NUM_PTE); + if (!ppgtt_ofs) + ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile), + xe_bo_addr(update->pt_bo, 0, + XE_PAGE_SIZE), false); + + do { + u64 addr = ppgtt_ofs + ofs * 8; + + chunk = min(size, MAX_PTE_PER_SDI); + + /* Ensure populatefn can do memset64 by aligning bb->cs */ + if (!(bb->len & 1)) + bb->cs[bb->len++] = MI_NOOP; + + bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); + bb->cs[bb->len++] = lower_32_bits(addr); + bb->cs[bb->len++] = upper_32_bits(addr); + if (pt_op->bind) + ops->populate(pt_update, tile, NULL, bb->cs + bb->len, + ofs, chunk, update); + else + ops->clear(pt_update, tile, NULL, bb->cs + bb->len, + ofs, chunk, update); + + bb->len += chunk * 2; + ofs += chunk; + size -= chunk; + } while (size); +} + +struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m) +{ + return xe_vm_get(m->q->vm); +} + +#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) +struct migrate_test_params { + struct xe_test_priv base; + bool force_gpu; +}; + +#define to_migrate_test_params(_priv) \ + container_of(_priv, struct migrate_test_params, base) +#endif + +static struct dma_fence * +xe_migrate_update_pgtables_cpu(struct xe_migrate *m, + struct xe_migrate_pt_update *pt_update) +{ + XE_TEST_DECLARE(struct migrate_test_params *test = + to_migrate_test_params + (xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));) + const struct xe_migrate_pt_update_ops *ops = pt_update->ops; + struct xe_vm *vm = pt_update->vops->vm; + struct xe_vm_pgtable_update_ops *pt_update_ops = + &pt_update->vops->pt_update_ops[pt_update->tile_id]; + int err; + u32 i, j; + + if (XE_TEST_ONLY(test && test->force_gpu)) + return ERR_PTR(-ETIME); + + if (ops->pre_commit) { + pt_update->job = NULL; + err = ops->pre_commit(pt_update); + if (err) + return ERR_PTR(err); + } + + for (i = 0; i < pt_update_ops->num_ops; ++i) { + const struct xe_vm_pgtable_update_op *pt_op = + &pt_update_ops->ops[i]; + + for (j = 0; j < pt_op->num_entries; j++) { + const struct xe_vm_pgtable_update *update = + &pt_op->entries[j]; + + if (pt_op->bind) + ops->populate(pt_update, m->tile, + &update->pt_bo->vmap, NULL, + update->ofs, update->qwords, + update); + else + ops->clear(pt_update, m->tile, + &update->pt_bo->vmap, NULL, + update->ofs, update->qwords, update); + } + } + + trace_xe_vm_cpu_bind(vm); + xe_device_wmb(vm->xe); + + return dma_fence_get_stub(); +} + +static struct dma_fence * +__xe_migrate_update_pgtables(struct xe_migrate *m, + struct xe_migrate_pt_update *pt_update, + struct xe_vm_pgtable_update_ops *pt_update_ops) +{ + const struct xe_migrate_pt_update_ops *ops = pt_update->ops; + struct xe_tile *tile = m->tile; + struct xe_gt *gt = tile->primary_gt; + struct xe_device *xe = tile_to_xe(tile); + struct xe_sched_job *job; + struct dma_fence *fence; + struct drm_suballoc *sa_bo = NULL; + struct xe_bb *bb; + u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0; + u32 num_updates = 0, current_update = 0; + u64 addr; + int err = 0; + bool is_migrate = pt_update_ops->q == m->q; + bool usm = is_migrate && xe->info.has_usm; + + for (i = 0; i < pt_update_ops->num_ops; ++i) { + struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; + struct xe_vm_pgtable_update *updates = pt_op->entries; + + num_updates += pt_op->num_entries; + for (j = 0; j < pt_op->num_entries; ++j) { + u32 num_cmds = DIV_ROUND_UP(updates[j].qwords, + MAX_PTE_PER_SDI); + + /* align noop + MI_STORE_DATA_IMM cmd prefix */ + batch_size += 4 * num_cmds + updates[j].qwords * 2; + } + } + + /* fixed + PTE entries */ + if (IS_DGFX(xe)) + batch_size += 2; + else + batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) + + num_updates * 2; + + bb = xe_bb_new(gt, batch_size, usm); + if (IS_ERR(bb)) + return ERR_CAST(bb); + + /* For sysmem PTE's, need to map them in our hole.. */ + if (!IS_DGFX(xe)) { + u16 pat_index = xe->pat.idx[XE_CACHE_WB]; + u32 ptes, ofs; + + ppgtt_ofs = NUM_KERNEL_PDE - 1; + if (!is_migrate) { + u32 num_units = DIV_ROUND_UP(num_updates, + NUM_VMUSA_WRITES_PER_UNIT); + + if (num_units > m->vm_update_sa.size) { + err = -ENOBUFS; + goto err_bb; + } + sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units, + GFP_KERNEL, true, 0); + if (IS_ERR(sa_bo)) { + err = PTR_ERR(sa_bo); + goto err_bb; + } + + ppgtt_ofs = NUM_KERNEL_PDE + + (drm_suballoc_soffset(sa_bo) / + NUM_VMUSA_UNIT_PER_PAGE); + page_ofs = (drm_suballoc_soffset(sa_bo) % + NUM_VMUSA_UNIT_PER_PAGE) * + VM_SA_UPDATE_UNIT_SIZE; + } + + /* Map our PT's to gtt */ + i = 0; + j = 0; + ptes = num_updates; + ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs; + while (ptes) { + u32 chunk = min(MAX_PTE_PER_SDI, ptes); + u32 idx = 0; + + bb->cs[bb->len++] = MI_STORE_DATA_IMM | + MI_SDI_NUM_QW(chunk); + bb->cs[bb->len++] = ofs; + bb->cs[bb->len++] = 0; /* upper_32_bits */ + + for (; i < pt_update_ops->num_ops; ++i) { + struct xe_vm_pgtable_update_op *pt_op = + &pt_update_ops->ops[i]; + struct xe_vm_pgtable_update *updates = pt_op->entries; + + for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) { + struct xe_vm *vm = pt_update->vops->vm; + struct xe_bo *pt_bo = updates[j].pt_bo; + + if (idx == chunk) + goto next_cmd; + + xe_tile_assert(tile, xe_bo_size(pt_bo) == SZ_4K); + + /* Map a PT at most once */ + if (pt_bo->update_index < 0) + pt_bo->update_index = current_update; + + addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, + pat_index, 0); + bb->cs[bb->len++] = lower_32_bits(addr); + bb->cs[bb->len++] = upper_32_bits(addr); + } + + j = 0; + } + +next_cmd: + ptes -= chunk; + ofs += chunk * sizeof(u64); + } + + bb->cs[bb->len++] = MI_BATCH_BUFFER_END; + update_idx = bb->len; + + addr = xe_migrate_vm_addr(ppgtt_ofs, 0) + + (page_ofs / sizeof(u64)) * XE_PAGE_SIZE; + for (i = 0; i < pt_update_ops->num_ops; ++i) { + struct xe_vm_pgtable_update_op *pt_op = + &pt_update_ops->ops[i]; + struct xe_vm_pgtable_update *updates = pt_op->entries; + + for (j = 0; j < pt_op->num_entries; ++j) { + struct xe_bo *pt_bo = updates[j].pt_bo; + + write_pgtable(tile, bb, addr + + pt_bo->update_index * XE_PAGE_SIZE, + pt_op, &updates[j], pt_update); + } + } + } else { + /* phys pages, no preamble required */ + bb->cs[bb->len++] = MI_BATCH_BUFFER_END; + update_idx = bb->len; + + for (i = 0; i < pt_update_ops->num_ops; ++i) { + struct xe_vm_pgtable_update_op *pt_op = + &pt_update_ops->ops[i]; + struct xe_vm_pgtable_update *updates = pt_op->entries; + + for (j = 0; j < pt_op->num_entries; ++j) + write_pgtable(tile, bb, 0, pt_op, &updates[j], + pt_update); + } + } + + job = xe_bb_create_migration_job(pt_update_ops->q, bb, + xe_migrate_batch_base(m, usm), + update_idx); + if (IS_ERR(job)) { + err = PTR_ERR(job); + goto err_sa; + } + + xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB); + + if (ops->pre_commit) { + pt_update->job = job; + err = ops->pre_commit(pt_update); + if (err) + goto err_job; + } + if (is_migrate) + mutex_lock(&m->job_mutex); + + xe_sched_job_arm(job); + fence = dma_fence_get(&job->drm.s_fence->finished); + xe_sched_job_push(job); + + if (is_migrate) + mutex_unlock(&m->job_mutex); + + xe_bb_free(bb, fence); + drm_suballoc_free(sa_bo, fence); + + return fence; + +err_job: + xe_sched_job_put(job); +err_sa: + drm_suballoc_free(sa_bo, NULL); +err_bb: + xe_bb_free(bb, NULL); + return ERR_PTR(err); +} + +/** + * xe_migrate_update_pgtables() - Pipelined page-table update + * @m: The migrate context. + * @pt_update: PT update arguments + * + * Perform a pipelined page-table update. The update descriptors are typically + * built under the same lock critical section as a call to this function. If + * using the default engine for the updates, they will be performed in the + * order they grab the job_mutex. If different engines are used, external + * synchronization is needed for overlapping updates to maintain page-table + * consistency. Note that the meaning of "overlapping" is that the updates + * touch the same page-table, which might be a higher-level page-directory. + * If no pipelining is needed, then updates may be performed by the cpu. + * + * Return: A dma_fence that, when signaled, indicates the update completion. + */ +struct dma_fence * +xe_migrate_update_pgtables(struct xe_migrate *m, + struct xe_migrate_pt_update *pt_update) + +{ + struct xe_vm_pgtable_update_ops *pt_update_ops = + &pt_update->vops->pt_update_ops[pt_update->tile_id]; + struct dma_fence *fence; + + fence = xe_migrate_update_pgtables_cpu(m, pt_update); + + /* -ETIME indicates a job is needed, anything else is legit error */ + if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME) + return fence; + + return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops); +} + +/** + * xe_migrate_wait() - Complete all operations using the xe_migrate context + * @m: Migrate context to wait for. + * + * Waits until the GPU no longer uses the migrate context's default engine + * or its page-table objects. FIXME: What about separate page-table update + * engines? + */ +void xe_migrate_wait(struct xe_migrate *m) +{ + if (m->fence) + dma_fence_wait(m->fence, false); +} + +static u32 pte_update_cmd_size(u64 size) +{ + u32 num_dword; + u64 entries = DIV_U64_ROUND_UP(size, XE_PAGE_SIZE); + + XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER); + + /* + * MI_STORE_DATA_IMM command is used to update page table. Each + * instruction can update maximumly MAX_PTE_PER_SDI pte entries. To + * update n (n <= MAX_PTE_PER_SDI) pte entries, we need: + * + * - 1 dword for the MI_STORE_DATA_IMM command header (opcode etc) + * - 2 dword for the page table's physical location + * - 2*n dword for value of pte to fill (each pte entry is 2 dwords) + */ + num_dword = (1 + 2) * DIV_U64_ROUND_UP(entries, MAX_PTE_PER_SDI); + num_dword += entries * 2; + + return num_dword; +} + +static void build_pt_update_batch_sram(struct xe_migrate *m, + struct xe_bb *bb, u32 pt_offset, + struct drm_pagemap_addr *sram_addr, + u32 size, int level) +{ + u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB]; + u64 gpu_page_size = 0x1ull << xe_pt_shift(level); + u32 ptes; + int i = 0; + + xe_tile_assert(m->tile, PAGE_ALIGNED(size)); + + ptes = DIV_ROUND_UP(size, gpu_page_size); + while (ptes) { + u32 chunk = min(MAX_PTE_PER_SDI, ptes); + + if (!level) + chunk = ALIGN_DOWN(chunk, PAGE_SIZE / XE_PAGE_SIZE); + + bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); + bb->cs[bb->len++] = pt_offset; + bb->cs[bb->len++] = 0; + + pt_offset += chunk * 8; + ptes -= chunk; + + while (chunk--) { + u64 addr = sram_addr[i].addr; + u64 pte; + + xe_tile_assert(m->tile, sram_addr[i].proto == + DRM_INTERCONNECT_SYSTEM); + xe_tile_assert(m->tile, addr); + xe_tile_assert(m->tile, PAGE_ALIGNED(addr)); + +again: + pte = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe, + addr, pat_index, + level, false, 0); + bb->cs[bb->len++] = lower_32_bits(pte); + bb->cs[bb->len++] = upper_32_bits(pte); + + if (gpu_page_size < PAGE_SIZE) { + addr += XE_PAGE_SIZE; + if (!PAGE_ALIGNED(addr)) { + chunk--; + goto again; + } + i++; + } else { + i += gpu_page_size / PAGE_SIZE; + } + } + } +} + +static bool xe_migrate_vram_use_pde(struct drm_pagemap_addr *sram_addr, + unsigned long size) +{ + u32 large_size = (0x1 << xe_pt_shift(1)); + unsigned long i, incr = large_size / PAGE_SIZE; + + for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE); i += incr) + if (PAGE_SIZE << sram_addr[i].order != large_size) + return false; + + return true; +} + +#define XE_CACHELINE_BYTES 64ull +#define XE_CACHELINE_MASK (XE_CACHELINE_BYTES - 1) + +static u32 xe_migrate_copy_pitch(struct xe_device *xe, u32 len) +{ + u32 pitch; + + if (IS_ALIGNED(len, PAGE_SIZE)) + pitch = PAGE_SIZE; + else if (IS_ALIGNED(len, SZ_4K)) + pitch = SZ_4K; + else if (IS_ALIGNED(len, SZ_256)) + pitch = SZ_256; + else if (IS_ALIGNED(len, 4)) + pitch = 4; + else + pitch = 1; + + xe_assert(xe, pitch > 1 || xe->info.has_mem_copy_instr); + return pitch; +} + +static struct dma_fence *xe_migrate_vram(struct xe_migrate *m, + unsigned long len, + unsigned long sram_offset, + struct drm_pagemap_addr *sram_addr, + u64 vram_addr, + const enum xe_migrate_copy_dir dir) +{ + struct xe_gt *gt = m->tile->primary_gt; + struct xe_device *xe = gt_to_xe(gt); + bool use_usm_batch = xe->info.has_usm; + struct dma_fence *fence = NULL; + u32 batch_size = 1; + u64 src_L0_ofs, dst_L0_ofs; + struct xe_sched_job *job; + struct xe_bb *bb; + u32 update_idx, pt_slot = 0; + unsigned long npages = DIV_ROUND_UP(len + sram_offset, PAGE_SIZE); + unsigned int pitch = xe_migrate_copy_pitch(xe, len); + int err; + unsigned long i, j; + bool use_pde = xe_migrate_vram_use_pde(sram_addr, len + sram_offset); + + if (!xe->info.has_mem_copy_instr && + drm_WARN_ON(&xe->drm, + (!IS_ALIGNED(len, pitch)) || (sram_offset | vram_addr) & XE_CACHELINE_MASK)) + return ERR_PTR(-EOPNOTSUPP); + + xe_assert(xe, npages * PAGE_SIZE <= MAX_PREEMPTDISABLE_TRANSFER); + + batch_size += pte_update_cmd_size(npages << PAGE_SHIFT); + batch_size += EMIT_COPY_DW; + + bb = xe_bb_new(gt, batch_size, use_usm_batch); + if (IS_ERR(bb)) { + err = PTR_ERR(bb); + return ERR_PTR(err); + } + + /* + * If the order of a struct drm_pagemap_addr entry is greater than 0, + * the entry is populated by GPU pagemap but subsequent entries within + * the range of that order are not populated. + * build_pt_update_batch_sram() expects a fully populated array of + * struct drm_pagemap_addr. Ensure this is the case even with higher + * orders. + */ + for (i = 0; !use_pde && i < npages;) { + unsigned int order = sram_addr[i].order; + + for (j = 1; j < NR_PAGES(order) && i + j < npages; j++) + if (!sram_addr[i + j].addr) + sram_addr[i + j].addr = sram_addr[i].addr + j * PAGE_SIZE; + + i += NR_PAGES(order); + } + + if (use_pde) + build_pt_update_batch_sram(m, bb, m->large_page_copy_pdes, + sram_addr, npages << PAGE_SHIFT, 1); + else + build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE, + sram_addr, npages << PAGE_SHIFT, 0); + + if (dir == XE_MIGRATE_COPY_TO_VRAM) { + if (use_pde) + src_L0_ofs = m->large_page_copy_ofs + sram_offset; + else + src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset; + dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false); + + } else { + src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false); + if (use_pde) + dst_L0_ofs = m->large_page_copy_ofs + sram_offset; + else + dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset; + } + + bb->cs[bb->len++] = MI_BATCH_BUFFER_END; + update_idx = bb->len; + + emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, len, pitch); + + job = xe_bb_create_migration_job(m->q, bb, + xe_migrate_batch_base(m, use_usm_batch), + update_idx); + if (IS_ERR(job)) { + err = PTR_ERR(job); + goto err; + } + + xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB); + + mutex_lock(&m->job_mutex); + xe_sched_job_arm(job); + fence = dma_fence_get(&job->drm.s_fence->finished); + xe_sched_job_push(job); + + dma_fence_put(m->fence); + m->fence = dma_fence_get(fence); + mutex_unlock(&m->job_mutex); + + xe_bb_free(bb, fence); + + return fence; + +err: + xe_bb_free(bb, NULL); + + return ERR_PTR(err); +} + +/** + * xe_migrate_to_vram() - Migrate to VRAM + * @m: The migration context. + * @npages: Number of pages to migrate. + * @src_addr: Array of DMA information (source of migrate) + * @dst_addr: Device physical address of VRAM (destination of migrate) + * + * Copy from an array dma addresses to a VRAM device physical address + * + * Return: dma fence for migrate to signal completion on success, ERR_PTR on + * failure + */ +struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m, + unsigned long npages, + struct drm_pagemap_addr *src_addr, + u64 dst_addr) +{ + return xe_migrate_vram(m, npages * PAGE_SIZE, 0, src_addr, dst_addr, + XE_MIGRATE_COPY_TO_VRAM); +} + +/** + * xe_migrate_from_vram() - Migrate from VRAM + * @m: The migration context. + * @npages: Number of pages to migrate. + * @src_addr: Device physical address of VRAM (source of migrate) + * @dst_addr: Array of DMA information (destination of migrate) + * + * Copy from a VRAM device physical address to an array dma addresses + * + * Return: dma fence for migrate to signal completion on success, ERR_PTR on + * failure + */ +struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m, + unsigned long npages, + u64 src_addr, + struct drm_pagemap_addr *dst_addr) +{ + return xe_migrate_vram(m, npages * PAGE_SIZE, 0, dst_addr, src_addr, + XE_MIGRATE_COPY_TO_SRAM); +} + +static void xe_migrate_dma_unmap(struct xe_device *xe, + struct drm_pagemap_addr *pagemap_addr, + int len, int write) +{ + unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE); + + for (i = 0; i < npages; ++i) { + if (!pagemap_addr[i].addr) + break; + + dma_unmap_page(xe->drm.dev, pagemap_addr[i].addr, PAGE_SIZE, + write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); + } + kfree(pagemap_addr); +} + +static struct drm_pagemap_addr *xe_migrate_dma_map(struct xe_device *xe, + void *buf, int len, + int write) +{ + struct drm_pagemap_addr *pagemap_addr; + unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE); + + pagemap_addr = kcalloc(npages, sizeof(*pagemap_addr), GFP_KERNEL); + if (!pagemap_addr) + return ERR_PTR(-ENOMEM); + + for (i = 0; i < npages; ++i) { + dma_addr_t addr; + struct page *page; + enum dma_data_direction dir = write ? DMA_TO_DEVICE : + DMA_FROM_DEVICE; + + if (is_vmalloc_addr(buf)) + page = vmalloc_to_page(buf); + else + page = virt_to_page(buf); + + addr = dma_map_page(xe->drm.dev, page, 0, PAGE_SIZE, dir); + if (dma_mapping_error(xe->drm.dev, addr)) + goto err_fault; + + pagemap_addr[i] = + drm_pagemap_addr_encode(addr, + DRM_INTERCONNECT_SYSTEM, + 0, dir); + buf += PAGE_SIZE; + } + + return pagemap_addr; + +err_fault: + xe_migrate_dma_unmap(xe, pagemap_addr, len, write); + return ERR_PTR(-EFAULT); +} + +/** + * xe_migrate_access_memory - Access memory of a BO via GPU + * + * @m: The migration context. + * @bo: buffer object + * @offset: access offset into buffer object + * @buf: pointer to caller memory to read into or write from + * @len: length of access + * @write: write access + * + * Access memory of a BO via GPU either reading in or writing from a passed in + * pointer. Pointer is dma mapped for GPU access and GPU commands are issued to + * read to or write from pointer. + * + * Returns: + * 0 if successful, negative error code on failure. + */ +int xe_migrate_access_memory(struct xe_migrate *m, struct xe_bo *bo, + unsigned long offset, void *buf, int len, + int write) +{ + struct xe_tile *tile = m->tile; + struct xe_device *xe = tile_to_xe(tile); + struct xe_res_cursor cursor; + struct dma_fence *fence = NULL; + struct drm_pagemap_addr *pagemap_addr; + unsigned long page_offset = (unsigned long)buf & ~PAGE_MASK; + int bytes_left = len, current_page = 0; + void *orig_buf = buf; + + xe_bo_assert_held(bo); + + /* Use bounce buffer for small access and unaligned access */ + if (!xe->info.has_mem_copy_instr && + (!IS_ALIGNED(len, 4) || + !IS_ALIGNED(page_offset, XE_CACHELINE_BYTES) || + !IS_ALIGNED(offset, XE_CACHELINE_BYTES))) { + int buf_offset = 0; + void *bounce; + int err; + + BUILD_BUG_ON(!is_power_of_2(XE_CACHELINE_BYTES)); + bounce = kmalloc(XE_CACHELINE_BYTES, GFP_KERNEL); + if (!bounce) + return -ENOMEM; + + /* + * Less than ideal for large unaligned access but this should be + * fairly rare, can fixup if this becomes common. + */ + do { + int copy_bytes = min_t(int, bytes_left, + XE_CACHELINE_BYTES - + (offset & XE_CACHELINE_MASK)); + int ptr_offset = offset & XE_CACHELINE_MASK; + + err = xe_migrate_access_memory(m, bo, + offset & + ~XE_CACHELINE_MASK, + bounce, + XE_CACHELINE_BYTES, 0); + if (err) + break; + + if (write) { + memcpy(bounce + ptr_offset, buf + buf_offset, copy_bytes); + + err = xe_migrate_access_memory(m, bo, + offset & ~XE_CACHELINE_MASK, + bounce, + XE_CACHELINE_BYTES, write); + if (err) + break; + } else { + memcpy(buf + buf_offset, bounce + ptr_offset, + copy_bytes); + } + + bytes_left -= copy_bytes; + buf_offset += copy_bytes; + offset += copy_bytes; + } while (bytes_left); + + kfree(bounce); + return err; + } + + pagemap_addr = xe_migrate_dma_map(xe, buf, len + page_offset, write); + if (IS_ERR(pagemap_addr)) + return PTR_ERR(pagemap_addr); + + xe_res_first(bo->ttm.resource, offset, xe_bo_size(bo) - offset, &cursor); + + do { + struct dma_fence *__fence; + u64 vram_addr = vram_region_gpu_offset(bo->ttm.resource) + + cursor.start; + int current_bytes; + u32 pitch; + + if (cursor.size > MAX_PREEMPTDISABLE_TRANSFER) + current_bytes = min_t(int, bytes_left, + MAX_PREEMPTDISABLE_TRANSFER); + else + current_bytes = min_t(int, bytes_left, cursor.size); + + pitch = xe_migrate_copy_pitch(xe, current_bytes); + if (xe->info.has_mem_copy_instr) + current_bytes = min_t(int, current_bytes, U16_MAX * pitch); + else + current_bytes = min_t(int, current_bytes, + round_down(S16_MAX * pitch, + XE_CACHELINE_BYTES)); + + __fence = xe_migrate_vram(m, current_bytes, + (unsigned long)buf & ~PAGE_MASK, + &pagemap_addr[current_page], + vram_addr, write ? + XE_MIGRATE_COPY_TO_VRAM : + XE_MIGRATE_COPY_TO_SRAM); + if (IS_ERR(__fence)) { + if (fence) { + dma_fence_wait(fence, false); + dma_fence_put(fence); + } + fence = __fence; + goto out_err; + } + + dma_fence_put(fence); + fence = __fence; + + buf += current_bytes; + offset += current_bytes; + current_page = (int)(buf - orig_buf) / PAGE_SIZE; + bytes_left -= current_bytes; + if (bytes_left) + xe_res_next(&cursor, current_bytes); + } while (bytes_left); + + dma_fence_wait(fence, false); + dma_fence_put(fence); + +out_err: + xe_migrate_dma_unmap(xe, pagemap_addr, len + page_offset, write); + return IS_ERR(fence) ? PTR_ERR(fence) : 0; +} + +/** + * xe_migrate_job_lock() - Lock migrate job lock + * @m: The migration context. + * @q: Queue associated with the operation which requires a lock + * + * Lock the migrate job lock if the queue is a migration queue, otherwise + * assert the VM's dma-resv is held (user queue's have own locking). + */ +void xe_migrate_job_lock(struct xe_migrate *m, struct xe_exec_queue *q) +{ + bool is_migrate = q == m->q; + + if (is_migrate) + mutex_lock(&m->job_mutex); + else + xe_vm_assert_held(q->vm); /* User queues VM's should be locked */ +} + +/** + * xe_migrate_job_unlock() - Unlock migrate job lock + * @m: The migration context. + * @q: Queue associated with the operation which requires a lock + * + * Unlock the migrate job lock if the queue is a migration queue, otherwise + * assert the VM's dma-resv is held (user queue's have own locking). + */ +void xe_migrate_job_unlock(struct xe_migrate *m, struct xe_exec_queue *q) +{ + bool is_migrate = q == m->q; + + if (is_migrate) + mutex_unlock(&m->job_mutex); + else + xe_vm_assert_held(q->vm); /* User queues VM's should be locked */ +} + +#if IS_ENABLED(CONFIG_PROVE_LOCKING) +/** + * xe_migrate_job_lock_assert() - Assert migrate job lock held of queue + * @q: Migrate queue + */ +void xe_migrate_job_lock_assert(struct xe_exec_queue *q) +{ + struct xe_migrate *m = gt_to_tile(q->gt)->migrate; + + xe_gt_assert(q->gt, q == m->q); + lockdep_assert_held(&m->job_mutex); +} +#endif + +#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) +#include "tests/xe_migrate.c" +#endif |
