diff options
Diffstat (limited to 'drivers/gpu/nova-core/regs/macros.rs')
| -rw-r--r-- | drivers/gpu/nova-core/regs/macros.rs | 721 |
1 files changed, 721 insertions, 0 deletions
diff --git a/drivers/gpu/nova-core/regs/macros.rs b/drivers/gpu/nova-core/regs/macros.rs new file mode 100644 index 000000000000..fd1a815fa57d --- /dev/null +++ b/drivers/gpu/nova-core/regs/macros.rs @@ -0,0 +1,721 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! `register!` macro to define register layout and accessors. +//! +//! A single register typically includes several fields, which are accessed through a combination +//! of bit-shift and mask operations that introduce a class of potential mistakes, notably because +//! not all possible field values are necessarily valid. +//! +//! The `register!` macro in this module provides an intuitive and readable syntax for defining a +//! dedicated type for each register. Each such type comes with its own field accessors that can +//! return an error if a field's value is invalid. Please look at the [`bitfield`] macro for the +//! complete syntax of fields definitions. + +/// Trait providing a base address to be added to the offset of a relative register to obtain +/// its actual offset. +/// +/// The `T` generic argument is used to distinguish which base to use, in case a type provides +/// several bases. It is given to the `register!` macro to restrict the use of the register to +/// implementors of this particular variant. +pub(crate) trait RegisterBase<T> { + const BASE: usize; +} + +/// Defines a dedicated type for a register with an absolute offset, including getter and setter +/// methods for its fields and methods to read and write it from an `Io` region. +/// +/// Example: +/// +/// ```no_run +/// register!(BOOT_0 @ 0x00000100, "Basic revision information about the GPU" { +/// 3:0 minor_revision as u8, "Minor revision of the chip"; +/// 7:4 major_revision as u8, "Major revision of the chip"; +/// 28:20 chipset as u32 ?=> Chipset, "Chipset model"; +/// }); +/// ``` +/// +/// This defines a `BOOT_0` type which can be read or written from offset `0x100` of an `Io` +/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 least +/// significant bits of the register. Each field can be accessed and modified using accessor +/// methods: +/// +/// ```no_run +/// // Read from the register's defined offset (0x100). +/// let boot0 = BOOT_0::read(&bar); +/// pr_info!("chip revision: {}.{}", boot0.major_revision(), boot0.minor_revision()); +/// +/// // `Chipset::try_from` is called with the value of the `chipset` field and returns an +/// // error if it is invalid. +/// let chipset = boot0.chipset()?; +/// +/// // Update some fields and write the value back. +/// boot0.set_major_revision(3).set_minor_revision(10).write(&bar); +/// +/// // Or, just read and update the register in a single step: +/// BOOT_0::update(&bar, |r| r.set_major_revision(3).set_minor_revision(10)); +/// ``` +/// +/// The documentation strings are optional. If present, they will be added to the type's +/// definition, or the field getter and setter methods they are attached to. +/// +/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful +/// for cases where a register's interpretation depends on the context: +/// +/// ```no_run +/// register!(SCRATCH @ 0x00000200, "Scratch register" { +/// 31:0 value as u32, "Raw value"; +/// }); +/// +/// register!(SCRATCH_BOOT_STATUS => SCRATCH, "Boot status of the firmware" { +/// 0:0 completed as bool, "Whether the firmware has completed booting"; +/// }); +/// ``` +/// +/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH`, while also +/// providing its own `completed` field. +/// +/// ## Relative registers +/// +/// A register can be defined as being accessible from a fixed offset of a provided base. For +/// instance, imagine the following I/O space: +/// +/// ```text +/// +-----------------------------+ +/// | ... | +/// | | +/// 0x100--->+------------CPU0-------------+ +/// | | +/// 0x110--->+-----------------------------+ +/// | CPU_CTL | +/// +-----------------------------+ +/// | ... | +/// | | +/// | | +/// 0x200--->+------------CPU1-------------+ +/// | | +/// 0x210--->+-----------------------------+ +/// | CPU_CTL | +/// +-----------------------------+ +/// | ... | +/// +-----------------------------+ +/// ``` +/// +/// `CPU0` and `CPU1` both have a `CPU_CTL` register that starts at offset `0x10` of their I/O +/// space segment. Since both instances of `CPU_CTL` share the same layout, we don't want to define +/// them twice and would prefer a way to select which one to use from a single definition +/// +/// This can be done using the `Base[Offset]` syntax when specifying the register's address. +/// +/// `Base` is an arbitrary type (typically a ZST) to be used as a generic parameter of the +/// [`RegisterBase`] trait to provide the base as a constant, i.e. each type providing a base for +/// this register needs to implement `RegisterBase<Base>`. Here is the above example translated +/// into code: +/// +/// ```no_run +/// // Type used to identify the base. +/// pub(crate) struct CpuCtlBase; +/// +/// // ZST describing `CPU0`. +/// struct Cpu0; +/// impl RegisterBase<CpuCtlBase> for Cpu0 { +/// const BASE: usize = 0x100; +/// } +/// // Singleton of `CPU0` used to identify it. +/// const CPU0: Cpu0 = Cpu0; +/// +/// // ZST describing `CPU1`. +/// struct Cpu1; +/// impl RegisterBase<CpuCtlBase> for Cpu1 { +/// const BASE: usize = 0x200; +/// } +/// // Singleton of `CPU1` used to identify it. +/// const CPU1: Cpu1 = Cpu1; +/// +/// // This makes `CPU_CTL` accessible from all implementors of `RegisterBase<CpuCtlBase>`. +/// register!(CPU_CTL @ CpuCtlBase[0x10], "CPU core control" { +/// 0:0 start as bool, "Start the CPU core"; +/// }); +/// +/// // The `read`, `write` and `update` methods of relative registers take an extra `base` argument +/// // that is used to resolve its final address by adding its `BASE` to the offset of the +/// // register. +/// +/// // Start `CPU0`. +/// CPU_CTL::update(bar, &CPU0, |r| r.set_start(true)); +/// +/// // Start `CPU1`. +/// CPU_CTL::update(bar, &CPU1, |r| r.set_start(true)); +/// +/// // Aliases can also be defined for relative register. +/// register!(CPU_CTL_ALIAS => CpuCtlBase[CPU_CTL], "Alias to CPU core control" { +/// 1:1 alias_start as bool, "Start the aliased CPU core"; +/// }); +/// +/// // Start the aliased `CPU0`. +/// CPU_CTL_ALIAS::update(bar, &CPU0, |r| r.set_alias_start(true)); +/// ``` +/// +/// ## Arrays of registers +/// +/// Some I/O areas contain consecutive values that can be interpreted in the same way. These areas +/// can be defined as an array of identical registers, allowing them to be accessed by index with +/// compile-time or runtime bound checking. Simply define their address as `Address[Size]`, and add +/// an `idx` parameter to their `read`, `write` and `update` methods: +/// +/// ```no_run +/// # fn no_run() -> Result<(), Error> { +/// # fn get_scratch_idx() -> usize { +/// # 0x15 +/// # } +/// // Array of 64 consecutive registers with the same layout starting at offset `0x80`. +/// register!(SCRATCH @ 0x00000080[64], "Scratch registers" { +/// 31:0 value as u32; +/// }); +/// +/// // Read scratch register 0, i.e. I/O address `0x80`. +/// let scratch_0 = SCRATCH::read(bar, 0).value(); +/// // Read scratch register 15, i.e. I/O address `0x80 + (15 * 4)`. +/// let scratch_15 = SCRATCH::read(bar, 15).value(); +/// +/// // This is out of bounds and won't build. +/// // let scratch_128 = SCRATCH::read(bar, 128).value(); +/// +/// // Runtime-obtained array index. +/// let scratch_idx = get_scratch_idx(); +/// // Access on a runtime index returns an error if it is out-of-bounds. +/// let some_scratch = SCRATCH::try_read(bar, scratch_idx)?.value(); +/// +/// // Alias to a particular register in an array. +/// // Here `SCRATCH[8]` is used to convey the firmware exit code. +/// register!(FIRMWARE_STATUS => SCRATCH[8], "Firmware exit status code" { +/// 7:0 status as u8; +/// }); +/// +/// let status = FIRMWARE_STATUS::read(bar).status(); +/// +/// // Non-contiguous register arrays can be defined by adding a stride parameter. +/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the +/// // registers of the two declarations below are interleaved. +/// register!(SCRATCH_INTERLEAVED_0 @ 0x000000c0[16 ; 8], "Scratch registers bank 0" { +/// 31:0 value as u32; +/// }); +/// register!(SCRATCH_INTERLEAVED_1 @ 0x000000c4[16 ; 8], "Scratch registers bank 1" { +/// 31:0 value as u32; +/// }); +/// # Ok(()) +/// # } +/// ``` +/// +/// ## Relative arrays of registers +/// +/// Combining the two features described in the sections above, arrays of registers accessible from +/// a base can also be defined: +/// +/// ```no_run +/// # fn no_run() -> Result<(), Error> { +/// # fn get_scratch_idx() -> usize { +/// # 0x15 +/// # } +/// // Type used as parameter of `RegisterBase` to specify the base. +/// pub(crate) struct CpuCtlBase; +/// +/// // ZST describing `CPU0`. +/// struct Cpu0; +/// impl RegisterBase<CpuCtlBase> for Cpu0 { +/// const BASE: usize = 0x100; +/// } +/// // Singleton of `CPU0` used to identify it. +/// const CPU0: Cpu0 = Cpu0; +/// +/// // ZST describing `CPU1`. +/// struct Cpu1; +/// impl RegisterBase<CpuCtlBase> for Cpu1 { +/// const BASE: usize = 0x200; +/// } +/// // Singleton of `CPU1` used to identify it. +/// const CPU1: Cpu1 = Cpu1; +/// +/// // 64 per-cpu scratch registers, arranged as an contiguous array. +/// register!(CPU_SCRATCH @ CpuCtlBase[0x00000080[64]], "Per-CPU scratch registers" { +/// 31:0 value as u32; +/// }); +/// +/// let cpu0_scratch_0 = CPU_SCRATCH::read(bar, &Cpu0, 0).value(); +/// let cpu1_scratch_15 = CPU_SCRATCH::read(bar, &Cpu1, 15).value(); +/// +/// // This won't build. +/// // let cpu0_scratch_128 = CPU_SCRATCH::read(bar, &Cpu0, 128).value(); +/// +/// // Runtime-obtained array index. +/// let scratch_idx = get_scratch_idx(); +/// // Access on a runtime value returns an error if it is out-of-bounds. +/// let cpu0_some_scratch = CPU_SCRATCH::try_read(bar, &Cpu0, scratch_idx)?.value(); +/// +/// // `SCRATCH[8]` is used to convey the firmware exit code. +/// register!(CPU_FIRMWARE_STATUS => CpuCtlBase[CPU_SCRATCH[8]], +/// "Per-CPU firmware exit status code" { +/// 7:0 status as u8; +/// }); +/// +/// let cpu0_status = CPU_FIRMWARE_STATUS::read(bar, &Cpu0).status(); +/// +/// // Non-contiguous register arrays can be defined by adding a stride parameter. +/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the +/// // registers of the two declarations below are interleaved. +/// register!(CPU_SCRATCH_INTERLEAVED_0 @ CpuCtlBase[0x00000d00[16 ; 8]], +/// "Scratch registers bank 0" { +/// 31:0 value as u32; +/// }); +/// register!(CPU_SCRATCH_INTERLEAVED_1 @ CpuCtlBase[0x00000d04[16 ; 8]], +/// "Scratch registers bank 1" { +/// 31:0 value as u32; +/// }); +/// # Ok(()) +/// # } +/// ``` +macro_rules! register { + // Creates a register at a fixed offset of the MMIO space. + ($name:ident @ $offset:literal $(, $comment:literal)? { $($fields:tt)* } ) => { + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_fixed $name @ $offset); + }; + + // Creates an alias register of fixed offset register `alias` with its own fields. + ($name:ident => $alias:ident $(, $comment:literal)? { $($fields:tt)* } ) => { + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_fixed $name @ $alias::OFFSET); + }; + + // Creates a register at a relative offset from a base address provider. + ($name:ident @ $base:ty [ $offset:literal ] $(, $comment:literal)? { $($fields:tt)* } ) => { + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_relative $name @ $base [ $offset ]); + }; + + // Creates an alias register of relative offset register `alias` with its own fields. + ($name:ident => $base:ty [ $alias:ident ] $(, $comment:literal)? { $($fields:tt)* }) => { + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_relative $name @ $base [ $alias::OFFSET ]); + }; + + // Creates an array of registers at a fixed offset of the MMIO space. + ( + $name:ident @ $offset:literal [ $size:expr ; $stride:expr ] $(, $comment:literal)? { + $($fields:tt)* + } + ) => { + static_assert!(::core::mem::size_of::<u32>() <= $stride); + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_array $name @ $offset [ $size ; $stride ]); + }; + + // Shortcut for contiguous array of registers (stride == size of element). + ( + $name:ident @ $offset:literal [ $size:expr ] $(, $comment:literal)? { + $($fields:tt)* + } + ) => { + register!($name @ $offset [ $size ; ::core::mem::size_of::<u32>() ] $(, $comment)? { + $($fields)* + } ); + }; + + // Creates an array of registers at a relative offset from a base address provider. + ( + $name:ident @ $base:ty [ $offset:literal [ $size:expr ; $stride:expr ] ] + $(, $comment:literal)? { $($fields:tt)* } + ) => { + static_assert!(::core::mem::size_of::<u32>() <= $stride); + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_relative_array $name @ $base [ $offset [ $size ; $stride ] ]); + }; + + // Shortcut for contiguous array of relative registers (stride == size of element). + ( + $name:ident @ $base:ty [ $offset:literal [ $size:expr ] ] $(, $comment:literal)? { + $($fields:tt)* + } + ) => { + register!($name @ $base [ $offset [ $size ; ::core::mem::size_of::<u32>() ] ] + $(, $comment)? { $($fields)* } ); + }; + + // Creates an alias of register `idx` of relative array of registers `alias` with its own + // fields. + ( + $name:ident => $base:ty [ $alias:ident [ $idx:expr ] ] $(, $comment:literal)? { + $($fields:tt)* + } + ) => { + static_assert!($idx < $alias::SIZE); + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_relative $name @ $base [ $alias::OFFSET + $idx * $alias::STRIDE ] ); + }; + + // Creates an alias of register `idx` of array of registers `alias` with its own fields. + // This rule belongs to the (non-relative) register arrays set, but needs to be put last + // to avoid it being interpreted in place of the relative register array alias rule. + ($name:ident => $alias:ident [ $idx:expr ] $(, $comment:literal)? { $($fields:tt)* }) => { + static_assert!($idx < $alias::SIZE); + bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } ); + register!(@io_fixed $name @ $alias::OFFSET + $idx * $alias::STRIDE ); + }; + + // Generates the IO accessors for a fixed offset register. + (@io_fixed $name:ident @ $offset:expr) => { + #[allow(dead_code)] + impl $name { + pub(crate) const OFFSET: usize = $offset; + + /// Read the register from its address in `io`. + #[inline(always)] + pub(crate) fn read<const SIZE: usize, T>(io: &T) -> Self where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + { + Self(io.read32($offset)) + } + + /// Write the value contained in `self` to the register address in `io`. + #[inline(always)] + pub(crate) fn write<const SIZE: usize, T>(self, io: &T) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + { + io.write32(self.0, $offset) + } + + /// Read the register from its address in `io` and run `f` on its value to obtain a new + /// value to write back. + #[inline(always)] + pub(crate) fn update<const SIZE: usize, T, F>( + io: &T, + f: F, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + F: ::core::ops::FnOnce(Self) -> Self, + { + let reg = f(Self::read(io)); + reg.write(io); + } + } + }; + + // Generates the IO accessors for a relative offset register. + (@io_relative $name:ident @ $base:ty [ $offset:expr ]) => { + #[allow(dead_code)] + impl $name { + pub(crate) const OFFSET: usize = $offset; + + /// Read the register from `io`, using the base address provided by `base` and adding + /// the register's offset to it. + #[inline(always)] + pub(crate) fn read<const SIZE: usize, T, B>( + io: &T, + #[allow(unused_variables)] + base: &B, + ) -> Self where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + const OFFSET: usize = $name::OFFSET; + + let value = io.read32( + <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET + ); + + Self(value) + } + + /// Write the value contained in `self` to `io`, using the base address provided by + /// `base` and adding the register's offset to it. + #[inline(always)] + pub(crate) fn write<const SIZE: usize, T, B>( + self, + io: &T, + #[allow(unused_variables)] + base: &B, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + const OFFSET: usize = $name::OFFSET; + + io.write32( + self.0, + <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET + ); + } + + /// Read the register from `io`, using the base address provided by `base` and adding + /// the register's offset to it, then run `f` on its value to obtain a new value to + /// write back. + #[inline(always)] + pub(crate) fn update<const SIZE: usize, T, B, F>( + io: &T, + base: &B, + f: F, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + F: ::core::ops::FnOnce(Self) -> Self, + { + let reg = f(Self::read(io, base)); + reg.write(io, base); + } + } + }; + + // Generates the IO accessors for an array of registers. + (@io_array $name:ident @ $offset:literal [ $size:expr ; $stride:expr ]) => { + #[allow(dead_code)] + impl $name { + pub(crate) const OFFSET: usize = $offset; + pub(crate) const SIZE: usize = $size; + pub(crate) const STRIDE: usize = $stride; + + /// Read the array register at index `idx` from its address in `io`. + #[inline(always)] + pub(crate) fn read<const SIZE: usize, T>( + io: &T, + idx: usize, + ) -> Self where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + { + build_assert!(idx < Self::SIZE); + + let offset = Self::OFFSET + (idx * Self::STRIDE); + let value = io.read32(offset); + + Self(value) + } + + /// Write the value contained in `self` to the array register with index `idx` in `io`. + #[inline(always)] + pub(crate) fn write<const SIZE: usize, T>( + self, + io: &T, + idx: usize + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + { + build_assert!(idx < Self::SIZE); + + let offset = Self::OFFSET + (idx * Self::STRIDE); + + io.write32(self.0, offset); + } + + /// Read the array register at index `idx` in `io` and run `f` on its value to obtain a + /// new value to write back. + #[inline(always)] + pub(crate) fn update<const SIZE: usize, T, F>( + io: &T, + idx: usize, + f: F, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + F: ::core::ops::FnOnce(Self) -> Self, + { + let reg = f(Self::read(io, idx)); + reg.write(io, idx); + } + + /// Read the array register at index `idx` from its address in `io`. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_read<const SIZE: usize, T>( + io: &T, + idx: usize, + ) -> ::kernel::error::Result<Self> where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + { + if idx < Self::SIZE { + Ok(Self::read(io, idx)) + } else { + Err(EINVAL) + } + } + + /// Write the value contained in `self` to the array register with index `idx` in `io`. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_write<const SIZE: usize, T>( + self, + io: &T, + idx: usize, + ) -> ::kernel::error::Result where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + { + if idx < Self::SIZE { + Ok(self.write(io, idx)) + } else { + Err(EINVAL) + } + } + + /// Read the array register at index `idx` in `io` and run `f` on its value to obtain a + /// new value to write back. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_update<const SIZE: usize, T, F>( + io: &T, + idx: usize, + f: F, + ) -> ::kernel::error::Result where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + F: ::core::ops::FnOnce(Self) -> Self, + { + if idx < Self::SIZE { + Ok(Self::update(io, idx, f)) + } else { + Err(EINVAL) + } + } + } + }; + + // Generates the IO accessors for an array of relative registers. + ( + @io_relative_array $name:ident @ $base:ty + [ $offset:literal [ $size:expr ; $stride:expr ] ] + ) => { + #[allow(dead_code)] + impl $name { + pub(crate) const OFFSET: usize = $offset; + pub(crate) const SIZE: usize = $size; + pub(crate) const STRIDE: usize = $stride; + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it. + #[inline(always)] + pub(crate) fn read<const SIZE: usize, T, B>( + io: &T, + #[allow(unused_variables)] + base: &B, + idx: usize, + ) -> Self where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + build_assert!(idx < Self::SIZE); + + let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE + + Self::OFFSET + (idx * Self::STRIDE); + let value = io.read32(offset); + + Self(value) + } + + /// Write the value contained in `self` to `io`, using the base address provided by + /// `base` and adding the offset of array register `idx` to it. + #[inline(always)] + pub(crate) fn write<const SIZE: usize, T, B>( + self, + io: &T, + #[allow(unused_variables)] + base: &B, + idx: usize + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + build_assert!(idx < Self::SIZE); + + let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE + + Self::OFFSET + (idx * Self::STRIDE); + + io.write32(self.0, offset); + } + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it, then run `f` on its value to + /// obtain a new value to write back. + #[inline(always)] + pub(crate) fn update<const SIZE: usize, T, B, F>( + io: &T, + base: &B, + idx: usize, + f: F, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + F: ::core::ops::FnOnce(Self) -> Self, + { + let reg = f(Self::read(io, base, idx)); + reg.write(io, base, idx); + } + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_read<const SIZE: usize, T, B>( + io: &T, + base: &B, + idx: usize, + ) -> ::kernel::error::Result<Self> where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + if idx < Self::SIZE { + Ok(Self::read(io, base, idx)) + } else { + Err(EINVAL) + } + } + + /// Write the value contained in `self` to `io`, using the base address provided by + /// `base` and adding the offset of array register `idx` to it. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_write<const SIZE: usize, T, B>( + self, + io: &T, + base: &B, + idx: usize, + ) -> ::kernel::error::Result where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + if idx < Self::SIZE { + Ok(self.write(io, base, idx)) + } else { + Err(EINVAL) + } + } + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it, then run `f` on its value to + /// obtain a new value to write back. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_update<const SIZE: usize, T, B, F>( + io: &T, + base: &B, + idx: usize, + f: F, + ) -> ::kernel::error::Result where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + F: ::core::ops::FnOnce(Self) -> Self, + { + if idx < Self::SIZE { + Ok(Self::update(io, base, idx, f)) + } else { + Err(EINVAL) + } + } + } + }; +} |
