summaryrefslogtreecommitdiff
path: root/drivers/iio/accel/adxl345_core.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/iio/accel/adxl345_core.c')
-rw-r--r--drivers/iio/accel/adxl345_core.c2034
1 files changed, 1884 insertions, 150 deletions
diff --git a/drivers/iio/accel/adxl345_core.c b/drivers/iio/accel/adxl345_core.c
index 780f87f72338..78e3f799ecc1 100644
--- a/drivers/iio/accel/adxl345_core.c
+++ b/drivers/iio/accel/adxl345_core.c
@@ -1,98 +1,1065 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* ADXL345 3-Axis Digital Accelerometer IIO core driver
*
* Copyright (c) 2017 Eva Rachel Retuya <eraretuya@gmail.com>
*
- * This file is subject to the terms and conditions of version 2 of
- * the GNU General Public License. See the file COPYING in the main
- * directory of this archive for more details.
- *
- * Datasheet: http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
+ * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
*/
+#include <linux/bitfield.h>
+#include <linux/bitops.h>
+#include <linux/interrupt.h>
#include <linux/module.h>
+#include <linux/property.h>
#include <linux/regmap.h>
+#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
+#include <linux/iio/buffer.h>
+#include <linux/iio/events.h>
+#include <linux/iio/kfifo_buf.h>
#include "adxl345.h"
-#define ADXL345_REG_DEVID 0x00
-#define ADXL345_REG_OFSX 0x1e
-#define ADXL345_REG_OFSY 0x1f
-#define ADXL345_REG_OFSZ 0x20
-#define ADXL345_REG_OFS_AXIS(index) (ADXL345_REG_OFSX + (index))
-#define ADXL345_REG_BW_RATE 0x2C
-#define ADXL345_REG_POWER_CTL 0x2D
-#define ADXL345_REG_DATA_FORMAT 0x31
-#define ADXL345_REG_DATAX0 0x32
-#define ADXL345_REG_DATAY0 0x34
-#define ADXL345_REG_DATAZ0 0x36
-#define ADXL345_REG_DATA_AXIS(index) \
- (ADXL345_REG_DATAX0 + (index) * sizeof(__le16))
-
-#define ADXL345_BW_RATE GENMASK(3, 0)
-#define ADXL345_BASE_RATE_NANO_HZ 97656250LL
-#define NHZ_PER_HZ 1000000000LL
-
-#define ADXL345_POWER_CTL_MEASURE BIT(3)
-#define ADXL345_POWER_CTL_STANDBY 0x00
-
-#define ADXL345_DATA_FORMAT_FULL_RES BIT(3) /* Up to 13-bits resolution */
-#define ADXL345_DATA_FORMAT_2G 0
-#define ADXL345_DATA_FORMAT_4G 1
-#define ADXL345_DATA_FORMAT_8G 2
-#define ADXL345_DATA_FORMAT_16G 3
-
-#define ADXL345_DEVID 0xE5
+#define ADXL345_FIFO_BYPASS 0
+#define ADXL345_FIFO_FIFO 1
+#define ADXL345_FIFO_STREAM 2
+
+#define ADXL345_DIRS 3
+
+#define ADXL345_INT_NONE 0xff
+#define ADXL345_INT1 0
+#define ADXL345_INT2 1
+
+#define ADXL345_REG_TAP_AXIS_MSK GENMASK(2, 0)
+#define ADXL345_REG_TAP_SUPPRESS_MSK BIT(3)
+#define ADXL345_REG_TAP_SUPPRESS BIT(3)
+#define ADXL345_POWER_CTL_INACT_MSK (ADXL345_POWER_CTL_AUTO_SLEEP | ADXL345_POWER_CTL_LINK)
+
+#define ADXL345_TAP_Z_EN BIT(0)
+#define ADXL345_TAP_Y_EN BIT(1)
+#define ADXL345_TAP_X_EN BIT(2)
+#define ADXL345_REG_TAP_SUPPRESS BIT(3)
+
+#define ADXL345_INACT_Z_EN BIT(0)
+#define ADXL345_INACT_Y_EN BIT(1)
+#define ADXL345_INACT_X_EN BIT(2)
+#define ADXL345_REG_INACT_ACDC BIT(3)
+#define ADXL345_ACT_INACT_NO_AXIS_EN 0x00
+#define ADXL345_INACT_XYZ_EN (ADXL345_INACT_Z_EN | ADXL345_INACT_Y_EN | ADXL345_INACT_X_EN)
+
+#define ADXL345_ACT_Z_EN BIT(4)
+#define ADXL345_ACT_Y_EN BIT(5)
+#define ADXL345_ACT_X_EN BIT(6)
+#define ADXL345_REG_ACT_ACDC BIT(7)
+#define ADXL345_ACT_XYZ_EN (ADXL345_ACT_Z_EN | ADXL345_ACT_Y_EN | ADXL345_ACT_X_EN)
+
+#define ADXL345_COUPLING_DC 0
+#define ADXL345_COUPLING_AC 1
+#define ADXL345_REG_NO_ACDC 0x00
+
+/* single/double tap */
+enum adxl345_tap_type {
+ ADXL345_SINGLE_TAP,
+ ADXL345_DOUBLE_TAP,
+};
+
+static const unsigned int adxl345_tap_int_reg[] = {
+ [ADXL345_SINGLE_TAP] = ADXL345_INT_SINGLE_TAP,
+ [ADXL345_DOUBLE_TAP] = ADXL345_INT_DOUBLE_TAP,
+};
+
+enum adxl345_tap_time_type {
+ ADXL345_TAP_TIME_LATENT,
+ ADXL345_TAP_TIME_WINDOW,
+ ADXL345_TAP_TIME_DUR,
+};
+
+static const unsigned int adxl345_tap_time_reg[] = {
+ [ADXL345_TAP_TIME_LATENT] = ADXL345_REG_LATENT,
+ [ADXL345_TAP_TIME_WINDOW] = ADXL345_REG_WINDOW,
+ [ADXL345_TAP_TIME_DUR] = ADXL345_REG_DUR,
+};
+
+/* activity/inactivity */
+enum adxl345_activity_type {
+ ADXL345_ACTIVITY,
+ ADXL345_INACTIVITY,
+ ADXL345_ACTIVITY_AC,
+ ADXL345_INACTIVITY_AC,
+ ADXL345_INACTIVITY_FF,
+};
+
+static const unsigned int adxl345_act_int_reg[] = {
+ [ADXL345_ACTIVITY] = ADXL345_INT_ACTIVITY,
+ [ADXL345_INACTIVITY] = ADXL345_INT_INACTIVITY,
+ [ADXL345_ACTIVITY_AC] = ADXL345_INT_ACTIVITY,
+ [ADXL345_INACTIVITY_AC] = ADXL345_INT_INACTIVITY,
+ [ADXL345_INACTIVITY_FF] = ADXL345_INT_FREE_FALL,
+};
+
+static const unsigned int adxl345_act_thresh_reg[] = {
+ [ADXL345_ACTIVITY] = ADXL345_REG_THRESH_ACT,
+ [ADXL345_INACTIVITY] = ADXL345_REG_THRESH_INACT,
+ [ADXL345_ACTIVITY_AC] = ADXL345_REG_THRESH_ACT,
+ [ADXL345_INACTIVITY_AC] = ADXL345_REG_THRESH_INACT,
+ [ADXL345_INACTIVITY_FF] = ADXL345_REG_THRESH_FF,
+};
+
+static const unsigned int adxl345_act_acdc_msk[] = {
+ [ADXL345_ACTIVITY] = ADXL345_REG_ACT_ACDC,
+ [ADXL345_INACTIVITY] = ADXL345_REG_INACT_ACDC,
+ [ADXL345_ACTIVITY_AC] = ADXL345_REG_ACT_ACDC,
+ [ADXL345_INACTIVITY_AC] = ADXL345_REG_INACT_ACDC,
+ [ADXL345_INACTIVITY_FF] = ADXL345_REG_NO_ACDC,
+};
+
+enum adxl345_odr {
+ ADXL345_ODR_0P10HZ = 0,
+ ADXL345_ODR_0P20HZ,
+ ADXL345_ODR_0P39HZ,
+ ADXL345_ODR_0P78HZ,
+ ADXL345_ODR_1P56HZ,
+ ADXL345_ODR_3P13HZ,
+ ADXL345_ODR_6P25HZ,
+ ADXL345_ODR_12P50HZ,
+ ADXL345_ODR_25HZ,
+ ADXL345_ODR_50HZ,
+ ADXL345_ODR_100HZ,
+ ADXL345_ODR_200HZ,
+ ADXL345_ODR_400HZ,
+ ADXL345_ODR_800HZ,
+ ADXL345_ODR_1600HZ,
+ ADXL345_ODR_3200HZ,
+};
+
+enum adxl345_range {
+ ADXL345_2G_RANGE = 0,
+ ADXL345_4G_RANGE,
+ ADXL345_8G_RANGE,
+ ADXL345_16G_RANGE,
+};
+
+/* Certain features recommend 12.5 Hz - 400 Hz ODR */
+static const int adxl345_odr_tbl[][2] = {
+ [ADXL345_ODR_0P10HZ] = { 0, 97000 },
+ [ADXL345_ODR_0P20HZ] = { 0, 195000 },
+ [ADXL345_ODR_0P39HZ] = { 0, 390000 },
+ [ADXL345_ODR_0P78HZ] = { 0, 781000 },
+ [ADXL345_ODR_1P56HZ] = { 1, 562000 },
+ [ADXL345_ODR_3P13HZ] = { 3, 125000 },
+ [ADXL345_ODR_6P25HZ] = { 6, 250000 },
+ [ADXL345_ODR_12P50HZ] = { 12, 500000 },
+ [ADXL345_ODR_25HZ] = { 25, 0 },
+ [ADXL345_ODR_50HZ] = { 50, 0 },
+ [ADXL345_ODR_100HZ] = { 100, 0 },
+ [ADXL345_ODR_200HZ] = { 200, 0 },
+ [ADXL345_ODR_400HZ] = { 400, 0 },
+ [ADXL345_ODR_800HZ] = { 800, 0 },
+ [ADXL345_ODR_1600HZ] = { 1600, 0 },
+ [ADXL345_ODR_3200HZ] = { 3200, 0 },
+};
/*
- * In full-resolution mode, scale factor is maintained at ~4 mg/LSB
- * in all g ranges.
+ * Full resolution frequency table:
+ * (g * 2 * 9.80665) / (2^(resolution) - 1)
*
- * At +/- 16g with 13-bit resolution, scale is computed as:
- * (16 + 16) * 9.81 / (2^13 - 1) = 0.0383
+ * resolution := 13 (full)
+ * g := 2|4|8|16
+ *
+ * 2g at 13bit: 0.004789
+ * 4g at 13bit: 0.009578
+ * 8g at 13bit: 0.019156
+ * 16g at 16bit: 0.038312
*/
-static const int adxl345_uscale = 38300;
+static const int adxl345_fullres_range_tbl[][2] = {
+ [ADXL345_2G_RANGE] = { 0, 4789 },
+ [ADXL345_4G_RANGE] = { 0, 9578 },
+ [ADXL345_8G_RANGE] = { 0, 19156 },
+ [ADXL345_16G_RANGE] = { 0, 38312 },
+};
-/*
- * The Datasheet lists a resolution of Resolution is ~49 mg per LSB. That's
- * ~480mm/s**2 per LSB.
- */
-static const int adxl375_uscale = 480000;
+/* scaling */
+static const int adxl345_range_factor_tbl[] = {
+ [ADXL345_2G_RANGE] = 1,
+ [ADXL345_4G_RANGE] = 2,
+ [ADXL345_8G_RANGE] = 4,
+ [ADXL345_16G_RANGE] = 8,
+};
-struct adxl345_data {
+struct adxl345_state {
+ const struct adxl345_chip_info *info;
struct regmap *regmap;
- u8 data_range;
- enum adxl345_device_type type;
+ bool fifo_delay; /* delay: delay is needed for SPI */
+ u8 watermark;
+ u8 fifo_mode;
+
+ u8 inact_threshold;
+ u32 inact_time_ms;
+
+ u32 tap_duration_us;
+ u32 tap_latent_us;
+ u32 tap_window_us;
+
+ __le16 fifo_buf[ADXL345_DIRS * ADXL345_FIFO_SIZE + 1] __aligned(IIO_DMA_MINALIGN);
};
-#define ADXL345_CHANNEL(index, axis) { \
+static const struct iio_event_spec adxl345_events[] = {
+ {
+ /* activity */
+ .type = IIO_EV_TYPE_MAG,
+ .dir = IIO_EV_DIR_RISING,
+ .mask_shared_by_type =
+ BIT(IIO_EV_INFO_ENABLE) |
+ BIT(IIO_EV_INFO_VALUE),
+ },
+ {
+ /* activity, ac bit set */
+ .type = IIO_EV_TYPE_MAG_ADAPTIVE,
+ .dir = IIO_EV_DIR_RISING,
+ .mask_shared_by_type =
+ BIT(IIO_EV_INFO_ENABLE) |
+ BIT(IIO_EV_INFO_VALUE),
+ },
+ {
+ /* single tap */
+ .type = IIO_EV_TYPE_GESTURE,
+ .dir = IIO_EV_DIR_SINGLETAP,
+ .mask_separate = BIT(IIO_EV_INFO_ENABLE),
+ .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
+ BIT(IIO_EV_INFO_TIMEOUT),
+ },
+ {
+ /* double tap */
+ .type = IIO_EV_TYPE_GESTURE,
+ .dir = IIO_EV_DIR_DOUBLETAP,
+ .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) |
+ BIT(IIO_EV_INFO_RESET_TIMEOUT) |
+ BIT(IIO_EV_INFO_TAP2_MIN_DELAY),
+ },
+};
+
+#define ADXL345_CHANNEL(index, reg, axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
- .address = index, \
+ .address = (reg), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
+ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_SAMP_FREQ), \
+ .scan_index = (index), \
+ .scan_type = { \
+ .sign = 's', \
+ .realbits = 13, \
+ .storagebits = 16, \
+ .endianness = IIO_LE, \
+ }, \
+ .event_spec = adxl345_events, \
+ .num_event_specs = ARRAY_SIZE(adxl345_events), \
}
+enum adxl345_chans {
+ chan_x, chan_y, chan_z,
+};
+
+static const struct iio_event_spec adxl345_fake_chan_events[] = {
+ {
+ /* inactivity */
+ .type = IIO_EV_TYPE_MAG,
+ .dir = IIO_EV_DIR_FALLING,
+ .mask_separate = BIT(IIO_EV_INFO_ENABLE),
+ .mask_shared_by_type =
+ BIT(IIO_EV_INFO_VALUE) |
+ BIT(IIO_EV_INFO_PERIOD),
+ },
+ {
+ /* inactivity, AC bit set */
+ .type = IIO_EV_TYPE_MAG_ADAPTIVE,
+ .dir = IIO_EV_DIR_FALLING,
+ .mask_separate = BIT(IIO_EV_INFO_ENABLE),
+ .mask_shared_by_type =
+ BIT(IIO_EV_INFO_VALUE) |
+ BIT(IIO_EV_INFO_PERIOD),
+ },
+};
+
static const struct iio_chan_spec adxl345_channels[] = {
- ADXL345_CHANNEL(0, X),
- ADXL345_CHANNEL(1, Y),
- ADXL345_CHANNEL(2, Z),
+ ADXL345_CHANNEL(0, chan_x, X),
+ ADXL345_CHANNEL(1, chan_y, Y),
+ ADXL345_CHANNEL(2, chan_z, Z),
+ {
+ .type = IIO_ACCEL,
+ .modified = 1,
+ .channel2 = IIO_MOD_X_AND_Y_AND_Z,
+ .scan_index = -1, /* Fake channel */
+ .event_spec = adxl345_fake_chan_events,
+ .num_event_specs = ARRAY_SIZE(adxl345_fake_chan_events),
+ },
+};
+
+static const unsigned long adxl345_scan_masks[] = {
+ BIT(chan_x) | BIT(chan_y) | BIT(chan_z),
+ 0
};
+bool adxl345_is_volatile_reg(struct device *dev, unsigned int reg)
+{
+ switch (reg) {
+ case ADXL345_REG_DATA_AXIS(0):
+ case ADXL345_REG_DATA_AXIS(1):
+ case ADXL345_REG_DATA_AXIS(2):
+ case ADXL345_REG_DATA_AXIS(3):
+ case ADXL345_REG_DATA_AXIS(4):
+ case ADXL345_REG_DATA_AXIS(5):
+ case ADXL345_REG_ACT_TAP_STATUS:
+ case ADXL345_REG_FIFO_STATUS:
+ case ADXL345_REG_INT_SOURCE:
+ return true;
+ default:
+ return false;
+ }
+}
+EXPORT_SYMBOL_NS_GPL(adxl345_is_volatile_reg, "IIO_ADXL345");
+
+/**
+ * adxl345_set_measure_en() - Enable and disable measuring.
+ *
+ * @st: The device data.
+ * @en: Enable measurements, else standby mode.
+ *
+ * For lowest power operation, standby mode can be used. In standby mode,
+ * current consumption is supposed to be reduced to 0.1uA (typical). In this
+ * mode no measurements are made. Placing the device into standby mode
+ * preserves the contents of FIFO.
+ *
+ * Return: Returns 0 if successful, or a negative error value.
+ */
+static int adxl345_set_measure_en(struct adxl345_state *st, bool en)
+{
+ return regmap_assign_bits(st->regmap, ADXL345_REG_POWER_CTL,
+ ADXL345_POWER_CTL_MEASURE, en);
+}
+
+/* activity / inactivity */
+
+static int adxl345_set_inact_threshold(struct adxl345_state *st,
+ unsigned int threshold)
+{
+ int ret;
+
+ st->inact_threshold = min(U8_MAX, threshold);
+
+ ret = regmap_write(st->regmap,
+ adxl345_act_thresh_reg[ADXL345_INACTIVITY],
+ st->inact_threshold);
+ if (ret)
+ return ret;
+
+ return regmap_write(st->regmap,
+ adxl345_act_thresh_reg[ADXL345_INACTIVITY_FF],
+ st->inact_threshold);
+}
+
+static int adxl345_set_default_time(struct adxl345_state *st)
+{
+ int max_boundary = U8_MAX;
+ int min_boundary = 10;
+ enum adxl345_odr odr;
+ unsigned int regval;
+ unsigned int val;
+ int ret;
+
+ /* Generated inactivity time based on ODR */
+ ret = regmap_read(st->regmap, ADXL345_REG_BW_RATE, &regval);
+ if (ret)
+ return ret;
+
+ odr = FIELD_GET(ADXL345_BW_RATE_MSK, regval);
+ val = clamp(max_boundary - adxl345_odr_tbl[odr][0],
+ min_boundary, max_boundary);
+ st->inact_time_ms = MILLI * val;
+
+ /* Inactivity time in s */
+ return regmap_write(st->regmap, ADXL345_REG_TIME_INACT, val);
+}
+
+static int adxl345_set_inactivity_time(struct adxl345_state *st, u32 val_int)
+{
+ st->inact_time_ms = MILLI * val_int;
+
+ return regmap_write(st->regmap, ADXL345_REG_TIME_INACT, val_int);
+}
+
+static int adxl345_set_freefall_time(struct adxl345_state *st, u32 val_fract)
+{
+ /*
+ * Datasheet max. value is 255 * 5000 us = 1.275000 seconds.
+ *
+ * Recommended values between 100ms and 350ms (0x14 to 0x46)
+ */
+ st->inact_time_ms = DIV_ROUND_UP(val_fract, MILLI);
+
+ return regmap_write(st->regmap, ADXL345_REG_TIME_FF,
+ DIV_ROUND_CLOSEST(val_fract, 5));
+}
+
+/**
+ * adxl345_set_inact_time - Configure inactivity time explicitly or by ODR.
+ * @st: The sensor state instance.
+ * @val_int: The inactivity time, integer part.
+ * @val_fract: The inactivity time, fractional part when val_int is 0.
+ *
+ * Inactivity time can be configured between 1 and 255 seconds. If a user sets
+ * val_s to 0, a default inactivity time is calculated automatically (since 0 is
+ * also invalid and undefined by the sensor).
+ *
+ * In such cases, power consumption should be considered: the inactivity period
+ * should be shorter at higher sampling frequencies and longer at lower ones.
+ * Specifically, for frequencies above 255 Hz, the default is set to 10 seconds;
+ * for frequencies below 10 Hz, it defaults to 255 seconds.
+ *
+ * The calculation method subtracts the integer part of the configured sample
+ * frequency from 255 to estimate the inactivity time in seconds. Sub-Hertz
+ * values are ignored in this approximation. Since the recommended output data
+ * rates (ODRs) for features like activity/inactivity detection, sleep modes,
+ * and free fall range between 12.5 Hz and 400 Hz, frequencies outside this
+ * range will either use the defined boundary defaults or require explicit
+ * configuration via val_s.
+ *
+ * Return: 0 or error value.
+ */
+static int adxl345_set_inact_time(struct adxl345_state *st, u32 val_int,
+ u32 val_fract)
+{
+ if (val_int > 0) {
+ /* Time >= 1s, inactivity */
+ return adxl345_set_inactivity_time(st, val_int);
+ } else if (val_int == 0) {
+ if (val_fract > 0) {
+ /* Time < 1s, free-fall */
+ return adxl345_set_freefall_time(st, val_fract);
+ } else if (val_fract == 0) {
+ /* Time == 0.0s */
+ return adxl345_set_default_time(st);
+ }
+ }
+
+ /* Do not support negative or wrong input. */
+ return -EINVAL;
+}
+
+/**
+ * adxl345_is_act_inact_ac() - Verify if AC or DC coupling is currently enabled.
+ *
+ * @st: The device data.
+ * @type: The activity or inactivity type.
+ *
+ * Given a type of activity / inactivity combined with either AC coupling set or
+ * default to DC, this function verifies if the combination is currently
+ * configured, hence enabled or not.
+ *
+ * Return: true if configured coupling matches the provided type, else a negative
+ * error value.
+ */
+static int adxl345_is_act_inact_ac(struct adxl345_state *st,
+ enum adxl345_activity_type type)
+{
+ unsigned int regval;
+ bool coupling;
+ int ret;
+
+ if (type == ADXL345_INACTIVITY_FF)
+ return true;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &regval);
+ if (ret)
+ return ret;
+
+ coupling = adxl345_act_acdc_msk[type] & regval;
+
+ switch (type) {
+ case ADXL345_ACTIVITY:
+ case ADXL345_INACTIVITY:
+ return coupling == ADXL345_COUPLING_DC;
+ case ADXL345_ACTIVITY_AC:
+ case ADXL345_INACTIVITY_AC:
+ return coupling == ADXL345_COUPLING_AC;
+ default:
+ return -EINVAL;
+ }
+}
+
+/**
+ * adxl345_set_act_inact_ac() - Configure AC coupling or DC coupling.
+ *
+ * @st: The device data.
+ * @type: Provide a type of activity or inactivity.
+ * @cmd_en: enable or disable AC coupling.
+ *
+ * Enables AC coupling or DC coupling depending on the provided type argument.
+ * Note: Activity and inactivity can be either AC coupled or DC coupled not
+ * both at the same time.
+ *
+ * Return: 0 if successful, else error value.
+ */
+static int adxl345_set_act_inact_ac(struct adxl345_state *st,
+ enum adxl345_activity_type type,
+ bool cmd_en)
+{
+ unsigned int act_inact_ac;
+
+ if (type == ADXL345_ACTIVITY_AC || type == ADXL345_INACTIVITY_AC)
+ act_inact_ac = ADXL345_COUPLING_AC && cmd_en;
+ else
+ act_inact_ac = ADXL345_COUPLING_DC && cmd_en;
+
+ /*
+ * A setting of false selects dc-coupled operation, and a setting of
+ * true enables ac-coupled operation. In dc-coupled operation, the
+ * current acceleration magnitude is compared directly with
+ * ADXL345_REG_THRESH_ACT and ADXL345_REG_THRESH_INACT to determine
+ * whether activity or inactivity is detected.
+ *
+ * In ac-coupled operation for activity detection, the acceleration
+ * value at the start of activity detection is taken as a reference
+ * value. New samples of acceleration are then compared to this
+ * reference value, and if the magnitude of the difference exceeds the
+ * ADXL345_REG_THRESH_ACT value, the device triggers an activity
+ * interrupt.
+ *
+ * Similarly, in ac-coupled operation for inactivity detection, a
+ * reference value is used for comparison and is updated whenever the
+ * device exceeds the inactivity threshold. After the reference value
+ * is selected, the device compares the magnitude of the difference
+ * between the reference value and the current acceleration with
+ * ADXL345_REG_THRESH_INACT. If the difference is less than the value in
+ * ADXL345_REG_THRESH_INACT for the time in ADXL345_REG_TIME_INACT, the
+ * device is considered inactive and the inactivity interrupt is
+ * triggered. [quoted from p. 24, ADXL345 datasheet Rev. G]
+ *
+ * In a conclusion, the first acceleration snapshot sample which hit the
+ * threshold in a particular direction is always taken as acceleration
+ * reference value to that direction. Since for the hardware activity
+ * and inactivity depend on the x/y/z axis, so do ac and dc coupling.
+ * Note, this sw driver always enables or disables all three x/y/z axis
+ * for detection via act_axis_ctrl and inact_axis_ctrl, respectively.
+ * Where in dc-coupling samples are compared against the thresholds, in
+ * ac-coupling measurement difference to the first acceleration
+ * reference value are compared against the threshold. So, ac-coupling
+ * allows for a bit more dynamic compensation depending on the initial
+ * sample.
+ */
+ return regmap_assign_bits(st->regmap, ADXL345_REG_ACT_INACT_CTRL,
+ adxl345_act_acdc_msk[type], act_inact_ac);
+}
+
+static int adxl345_is_act_inact_en(struct adxl345_state *st,
+ enum adxl345_activity_type type)
+{
+ unsigned int axis_ctrl;
+ unsigned int regval;
+ bool int_en, en;
+ int ret;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &axis_ctrl);
+ if (ret)
+ return ret;
+
+ /* Check if axis for activity are enabled */
+ switch (type) {
+ case ADXL345_ACTIVITY:
+ case ADXL345_ACTIVITY_AC:
+ en = FIELD_GET(ADXL345_ACT_XYZ_EN, axis_ctrl);
+ if (!en)
+ return false;
+ break;
+ case ADXL345_INACTIVITY:
+ case ADXL345_INACTIVITY_AC:
+ en = FIELD_GET(ADXL345_INACT_XYZ_EN, axis_ctrl);
+ if (!en)
+ return false;
+ break;
+ case ADXL345_INACTIVITY_FF:
+ en = true;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* Check if specific interrupt is enabled */
+ ret = regmap_read(st->regmap, ADXL345_REG_INT_ENABLE, &regval);
+ if (ret)
+ return ret;
+
+ int_en = adxl345_act_int_reg[type] & regval;
+ if (!int_en)
+ return false;
+
+ /* Check if configured coupling matches provided type */
+ return adxl345_is_act_inact_ac(st, type);
+}
+
+static int adxl345_set_act_inact_linkbit(struct adxl345_state *st,
+ enum adxl345_activity_type type,
+ bool en)
+{
+ int act_ac_en, inact_ac_en;
+ int act_en, inact_en;
+
+ act_en = adxl345_is_act_inact_en(st, ADXL345_ACTIVITY);
+ if (act_en < 0)
+ return act_en;
+
+ act_ac_en = adxl345_is_act_inact_en(st, ADXL345_ACTIVITY_AC);
+ if (act_ac_en < 0)
+ return act_ac_en;
+
+ if (type == ADXL345_INACTIVITY_FF) {
+ inact_en = false;
+ } else {
+ inact_en = adxl345_is_act_inact_en(st, ADXL345_INACTIVITY);
+ if (inact_en < 0)
+ return inact_en;
+
+ inact_ac_en = adxl345_is_act_inact_en(st, ADXL345_INACTIVITY_AC);
+ if (inact_ac_en < 0)
+ return inact_ac_en;
+
+ inact_en = inact_en || inact_ac_en;
+ }
+
+ act_en = act_en || act_ac_en;
+
+ return regmap_assign_bits(st->regmap, ADXL345_REG_POWER_CTL,
+ ADXL345_POWER_CTL_INACT_MSK,
+ en && act_en && inact_en);
+}
+
+static int adxl345_set_act_inact_en(struct adxl345_state *st,
+ enum adxl345_activity_type type,
+ bool cmd_en)
+{
+ unsigned int axis_ctrl;
+ unsigned int threshold;
+ unsigned int period;
+ int ret;
+
+ if (cmd_en) {
+ /* When turning on, check if threshold is valid */
+ if (type == ADXL345_ACTIVITY || type == ADXL345_ACTIVITY_AC) {
+ ret = regmap_read(st->regmap,
+ adxl345_act_thresh_reg[type],
+ &threshold);
+ if (ret)
+ return ret;
+ } else {
+ threshold = st->inact_threshold;
+ }
+
+ if (!threshold) /* Just ignore the command if threshold is 0 */
+ return 0;
+
+ /* When turning on inactivity, check if inact time is valid */
+ if (type == ADXL345_INACTIVITY || type == ADXL345_INACTIVITY_AC) {
+ ret = regmap_read(st->regmap,
+ ADXL345_REG_TIME_INACT,
+ &period);
+ if (ret)
+ return ret;
+
+ if (!period)
+ return 0;
+ }
+ } else {
+ /*
+ * When turning off an activity, ensure that the correct
+ * coupling event is specified. This step helps prevent misuse -
+ * for example, if an AC-coupled activity is active and the
+ * current call attempts to turn off a DC-coupled activity, this
+ * inconsistency should be detected here.
+ */
+ if (adxl345_is_act_inact_ac(st, type) <= 0)
+ return 0;
+ }
+
+ /* Start modifying configuration registers */
+ ret = adxl345_set_measure_en(st, false);
+ if (ret)
+ return ret;
+
+ /* Enable axis according to the command */
+ switch (type) {
+ case ADXL345_ACTIVITY:
+ case ADXL345_ACTIVITY_AC:
+ axis_ctrl = ADXL345_ACT_XYZ_EN;
+ break;
+ case ADXL345_INACTIVITY:
+ case ADXL345_INACTIVITY_AC:
+ axis_ctrl = ADXL345_INACT_XYZ_EN;
+ break;
+ case ADXL345_INACTIVITY_FF:
+ axis_ctrl = ADXL345_ACT_INACT_NO_AXIS_EN;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ret = regmap_assign_bits(st->regmap, ADXL345_REG_ACT_INACT_CTRL,
+ axis_ctrl, cmd_en);
+ if (ret)
+ return ret;
+
+ /* Update AC/DC-coupling according to the command */
+ ret = adxl345_set_act_inact_ac(st, type, cmd_en);
+ if (ret)
+ return ret;
+
+ /* Enable the interrupt line, according to the command */
+ ret = regmap_assign_bits(st->regmap, ADXL345_REG_INT_ENABLE,
+ adxl345_act_int_reg[type], cmd_en);
+ if (ret)
+ return ret;
+
+ /* Set link-bit and auto-sleep only when ACT and INACT are enabled */
+ ret = adxl345_set_act_inact_linkbit(st, type, cmd_en);
+ if (ret)
+ return ret;
+
+ return adxl345_set_measure_en(st, true);
+}
+
+/* tap */
+
+static int _adxl345_set_tap_int(struct adxl345_state *st,
+ enum adxl345_tap_type type, bool state)
+{
+ unsigned int int_map = 0x00;
+ unsigned int tap_threshold;
+ bool axis_valid;
+ bool singletap_args_valid = false;
+ bool doubletap_args_valid = false;
+ bool en = false;
+ u32 axis_ctrl;
+ int ret;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
+ if (ret)
+ return ret;
+
+ axis_valid = FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl) > 0;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP, &tap_threshold);
+ if (ret)
+ return ret;
+
+ /*
+ * Note: A value of 0 for threshold and/or dur may result in undesirable
+ * behavior if single tap/double tap interrupts are enabled.
+ */
+ singletap_args_valid = tap_threshold > 0 && st->tap_duration_us > 0;
+
+ if (type == ADXL345_SINGLE_TAP) {
+ en = axis_valid && singletap_args_valid;
+ } else {
+ /* doubletap: Window must be equal or greater than latent! */
+ doubletap_args_valid = st->tap_latent_us > 0 &&
+ st->tap_window_us > 0 &&
+ st->tap_window_us >= st->tap_latent_us;
+
+ en = axis_valid && singletap_args_valid && doubletap_args_valid;
+ }
+
+ if (state && en)
+ int_map |= adxl345_tap_int_reg[type];
+
+ return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE,
+ adxl345_tap_int_reg[type], int_map);
+}
+
+static int adxl345_is_tap_en(struct adxl345_state *st,
+ enum iio_modifier axis,
+ enum adxl345_tap_type type, bool *en)
+{
+ unsigned int regval;
+ u32 axis_ctrl;
+ int ret;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
+ if (ret)
+ return ret;
+
+ /* Verify if axis is enabled for the tap detection. */
+ switch (axis) {
+ case IIO_MOD_X:
+ *en = FIELD_GET(ADXL345_TAP_X_EN, axis_ctrl);
+ break;
+ case IIO_MOD_Y:
+ *en = FIELD_GET(ADXL345_TAP_Y_EN, axis_ctrl);
+ break;
+ case IIO_MOD_Z:
+ *en = FIELD_GET(ADXL345_TAP_Z_EN, axis_ctrl);
+ break;
+ default:
+ *en = false;
+ return -EINVAL;
+ }
+
+ if (*en) {
+ /*
+ * If axis allow for tap detection, verify if the interrupt is
+ * enabled for tap detection.
+ */
+ ret = regmap_read(st->regmap, ADXL345_REG_INT_ENABLE, &regval);
+ if (ret)
+ return ret;
+
+ *en = adxl345_tap_int_reg[type] & regval;
+ }
+
+ return 0;
+}
+
+static int adxl345_set_singletap_en(struct adxl345_state *st,
+ enum iio_modifier axis, bool en)
+{
+ int ret;
+ u32 axis_ctrl;
+
+ switch (axis) {
+ case IIO_MOD_X:
+ axis_ctrl = ADXL345_TAP_X_EN;
+ break;
+ case IIO_MOD_Y:
+ axis_ctrl = ADXL345_TAP_Y_EN;
+ break;
+ case IIO_MOD_Z:
+ axis_ctrl = ADXL345_TAP_Z_EN;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (en)
+ ret = regmap_set_bits(st->regmap, ADXL345_REG_TAP_AXIS,
+ axis_ctrl);
+ else
+ ret = regmap_clear_bits(st->regmap, ADXL345_REG_TAP_AXIS,
+ axis_ctrl);
+ if (ret)
+ return ret;
+
+ return _adxl345_set_tap_int(st, ADXL345_SINGLE_TAP, en);
+}
+
+static int adxl345_set_doubletap_en(struct adxl345_state *st, bool en)
+{
+ int ret;
+
+ /*
+ * Generally suppress detection of spikes during the latency period as
+ * double taps here, this is fully optional for double tap detection
+ */
+ ret = regmap_assign_bits(st->regmap, ADXL345_REG_TAP_AXIS,
+ ADXL345_REG_TAP_SUPPRESS, en);
+ if (ret)
+ return ret;
+
+ return _adxl345_set_tap_int(st, ADXL345_DOUBLE_TAP, en);
+}
+
+static int _adxl345_set_tap_time(struct adxl345_state *st,
+ enum adxl345_tap_time_type type, u32 val_us)
+{
+ unsigned int regval;
+
+ switch (type) {
+ case ADXL345_TAP_TIME_WINDOW:
+ st->tap_window_us = val_us;
+ break;
+ case ADXL345_TAP_TIME_LATENT:
+ st->tap_latent_us = val_us;
+ break;
+ case ADXL345_TAP_TIME_DUR:
+ st->tap_duration_us = val_us;
+ break;
+ }
+
+ /*
+ * The scale factor is 1250us / LSB for tap_window_us and tap_latent_us.
+ * For tap_duration_us the scale factor is 625us / LSB.
+ */
+ if (type == ADXL345_TAP_TIME_DUR)
+ regval = DIV_ROUND_CLOSEST(val_us, 625);
+ else
+ regval = DIV_ROUND_CLOSEST(val_us, 1250);
+
+ return regmap_write(st->regmap, adxl345_tap_time_reg[type], regval);
+}
+
+static int adxl345_set_tap_duration(struct adxl345_state *st, u32 val_int,
+ u32 val_fract_us)
+{
+ /*
+ * Max value is 255 * 625 us = 0.159375 seconds
+ *
+ * Note: the scaling is similar to the scaling in the ADXL380
+ */
+ if (val_int || val_fract_us > 159375)
+ return -EINVAL;
+
+ return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_DUR, val_fract_us);
+}
+
+static int adxl345_set_tap_window(struct adxl345_state *st, u32 val_int,
+ u32 val_fract_us)
+{
+ /*
+ * Max value is 255 * 1250 us = 0.318750 seconds
+ *
+ * Note: the scaling is similar to the scaling in the ADXL380
+ */
+ if (val_int || val_fract_us > 318750)
+ return -EINVAL;
+
+ return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_WINDOW, val_fract_us);
+}
+
+static int adxl345_set_tap_latent(struct adxl345_state *st, u32 val_int,
+ u32 val_fract_us)
+{
+ /*
+ * Max value is 255 * 1250 us = 0.318750 seconds
+ *
+ * Note: the scaling is similar to the scaling in the ADXL380
+ */
+ if (val_int || val_fract_us > 318750)
+ return -EINVAL;
+
+ return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_LATENT, val_fract_us);
+}
+
+static int adxl345_find_odr(struct adxl345_state *st, int val,
+ int val2, enum adxl345_odr *odr)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(adxl345_odr_tbl); i++) {
+ if (val == adxl345_odr_tbl[i][0] &&
+ val2 == adxl345_odr_tbl[i][1]) {
+ *odr = i;
+ return 0;
+ }
+ }
+
+ return -EINVAL;
+}
+
+static int adxl345_set_odr(struct adxl345_state *st, enum adxl345_odr odr)
+{
+ int ret;
+
+ ret = regmap_update_bits(st->regmap, ADXL345_REG_BW_RATE,
+ ADXL345_BW_RATE_MSK,
+ FIELD_PREP(ADXL345_BW_RATE_MSK, odr));
+ if (ret)
+ return ret;
+
+ /* update inactivity time by ODR */
+ return adxl345_set_inact_time(st, 0, 0);
+}
+
+static int adxl345_find_range(struct adxl345_state *st, int val, int val2,
+ enum adxl345_range *range)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(adxl345_fullres_range_tbl); i++) {
+ if (val == adxl345_fullres_range_tbl[i][0] &&
+ val2 == adxl345_fullres_range_tbl[i][1]) {
+ *range = i;
+ return 0;
+ }
+ }
+
+ return -EINVAL;
+}
+
+static int adxl345_set_range(struct adxl345_state *st, enum adxl345_range range)
+{
+ unsigned int act_threshold, inact_threshold;
+ unsigned int range_old;
+ unsigned int regval;
+ int ret;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_DATA_FORMAT, &regval);
+ if (ret)
+ return ret;
+ range_old = FIELD_GET(ADXL345_DATA_FORMAT_RANGE, regval);
+
+ ret = regmap_read(st->regmap,
+ adxl345_act_thresh_reg[ADXL345_ACTIVITY],
+ &act_threshold);
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(st->regmap, ADXL345_REG_DATA_FORMAT,
+ ADXL345_DATA_FORMAT_RANGE,
+ FIELD_PREP(ADXL345_DATA_FORMAT_RANGE, range));
+ if (ret)
+ return ret;
+
+ act_threshold = act_threshold * adxl345_range_factor_tbl[range_old]
+ / adxl345_range_factor_tbl[range];
+ act_threshold = min(U8_MAX, max(1, act_threshold));
+
+ inact_threshold = st->inact_threshold;
+ inact_threshold = inact_threshold * adxl345_range_factor_tbl[range_old]
+ / adxl345_range_factor_tbl[range];
+ inact_threshold = min(U8_MAX, max(1, inact_threshold));
+
+ ret = regmap_write(st->regmap, adxl345_act_thresh_reg[ADXL345_ACTIVITY],
+ act_threshold);
+ if (ret)
+ return ret;
+
+ return adxl345_set_inact_threshold(st, inact_threshold);
+}
+
+static int adxl345_read_avail(struct iio_dev *indio_dev,
+ struct iio_chan_spec const *chan,
+ const int **vals, int *type,
+ int *length, long mask)
+{
+ switch (mask) {
+ case IIO_CHAN_INFO_SCALE:
+ *vals = (int *)adxl345_fullres_range_tbl;
+ *type = IIO_VAL_INT_PLUS_MICRO;
+ *length = ARRAY_SIZE(adxl345_fullres_range_tbl) * 2;
+ return IIO_AVAIL_LIST;
+ case IIO_CHAN_INFO_SAMP_FREQ:
+ *vals = (int *)adxl345_odr_tbl;
+ *type = IIO_VAL_INT_PLUS_MICRO;
+ *length = ARRAY_SIZE(adxl345_odr_tbl) * 2;
+ return IIO_AVAIL_LIST;
+ }
+
+ return -EINVAL;
+}
+
static int adxl345_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
- struct adxl345_data *data = iio_priv(indio_dev);
+ struct adxl345_state *st = iio_priv(indio_dev);
__le16 accel;
- long long samp_freq_nhz;
unsigned int regval;
+ enum adxl345_odr odr;
+ enum adxl345_range range;
int ret;
switch (mask) {
@@ -102,30 +1069,26 @@ static int adxl345_read_raw(struct iio_dev *indio_dev,
* ADXL345_REG_DATA(X0/Y0/Z0) contain the least significant byte
* and ADXL345_REG_DATA(X0/Y0/Z0) + 1 the most significant byte
*/
- ret = regmap_bulk_read(data->regmap,
+ ret = regmap_bulk_read(st->regmap,
ADXL345_REG_DATA_AXIS(chan->address),
&accel, sizeof(accel));
- if (ret < 0)
+ if (ret)
return ret;
*val = sign_extend32(le16_to_cpu(accel), 12);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
- *val = 0;
- switch (data->type) {
- case ADXL345:
- *val2 = adxl345_uscale;
- break;
- case ADXL375:
- *val2 = adxl375_uscale;
- break;
- }
-
+ ret = regmap_read(st->regmap, ADXL345_REG_DATA_FORMAT, &regval);
+ if (ret)
+ return ret;
+ range = FIELD_GET(ADXL345_DATA_FORMAT_RANGE, regval);
+ *val = adxl345_fullres_range_tbl[range][0];
+ *val2 = adxl345_fullres_range_tbl[range][1];
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_CALIBBIAS:
- ret = regmap_read(data->regmap,
+ ret = regmap_read(st->regmap,
ADXL345_REG_OFS_AXIS(chan->address), &regval);
- if (ret < 0)
+ if (ret)
return ret;
/*
* 8-bit resolution at +/- 2g, that is 4x accel data scale
@@ -135,26 +1098,30 @@ static int adxl345_read_raw(struct iio_dev *indio_dev,
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
- ret = regmap_read(data->regmap, ADXL345_REG_BW_RATE, &regval);
- if (ret < 0)
+ ret = regmap_read(st->regmap, ADXL345_REG_BW_RATE, &regval);
+ if (ret)
return ret;
-
- samp_freq_nhz = ADXL345_BASE_RATE_NANO_HZ <<
- (regval & ADXL345_BW_RATE);
- *val = div_s64_rem(samp_freq_nhz, NHZ_PER_HZ, val2);
-
- return IIO_VAL_INT_PLUS_NANO;
+ odr = FIELD_GET(ADXL345_BW_RATE_MSK, regval);
+ *val = adxl345_odr_tbl[odr][0];
+ *val2 = adxl345_odr_tbl[odr][1];
+ return IIO_VAL_INT_PLUS_MICRO;
}
return -EINVAL;
}
static int adxl345_write_raw(struct iio_dev *indio_dev,
- struct iio_chan_spec const *chan,
- int val, int val2, long mask)
+ struct iio_chan_spec const *chan,
+ int val, int val2, long mask)
{
- struct adxl345_data *data = iio_priv(indio_dev);
- s64 n;
+ struct adxl345_state *st = iio_priv(indio_dev);
+ enum adxl345_range range;
+ enum adxl345_odr odr;
+ int ret;
+
+ ret = adxl345_set_measure_en(st, false);
+ if (ret)
+ return ret;
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
@@ -162,19 +1129,354 @@ static int adxl345_write_raw(struct iio_dev *indio_dev,
* 8-bit resolution at +/- 2g, that is 4x accel data scale
* factor
*/
- return regmap_write(data->regmap,
- ADXL345_REG_OFS_AXIS(chan->address),
- val / 4);
+ ret = regmap_write(st->regmap,
+ ADXL345_REG_OFS_AXIS(chan->address),
+ val / 4);
+ if (ret)
+ return ret;
+ break;
case IIO_CHAN_INFO_SAMP_FREQ:
- n = div_s64(val * NHZ_PER_HZ + val2, ADXL345_BASE_RATE_NANO_HZ);
+ ret = adxl345_find_odr(st, val, val2, &odr);
+ if (ret)
+ return ret;
+
+ ret = adxl345_set_odr(st, odr);
+ if (ret)
+ return ret;
+ break;
+ case IIO_CHAN_INFO_SCALE:
+ ret = adxl345_find_range(st, val, val2, &range);
+ if (ret)
+ return ret;
- return regmap_update_bits(data->regmap, ADXL345_REG_BW_RATE,
- ADXL345_BW_RATE,
- clamp_val(ilog2(n), 0,
- ADXL345_BW_RATE));
+ ret = adxl345_set_range(st, range);
+ if (ret)
+ return ret;
+ break;
+ default:
+ return -EINVAL;
}
- return -EINVAL;
+ return adxl345_set_measure_en(st, true);
+}
+
+static int adxl345_read_mag_config(struct adxl345_state *st,
+ enum iio_event_direction dir,
+ enum adxl345_activity_type type_act,
+ enum adxl345_activity_type type_inact)
+{
+ switch (dir) {
+ case IIO_EV_DIR_RISING:
+ return !!adxl345_is_act_inact_en(st, type_act);
+ case IIO_EV_DIR_FALLING:
+ return !!adxl345_is_act_inact_en(st, type_inact);
+ default:
+ return -EINVAL;
+ }
+}
+
+static int adxl345_write_mag_config(struct adxl345_state *st,
+ enum iio_event_direction dir,
+ enum adxl345_activity_type type_act,
+ enum adxl345_activity_type type_inact,
+ bool state)
+{
+ switch (dir) {
+ case IIO_EV_DIR_RISING:
+ return adxl345_set_act_inact_en(st, type_act, state);
+ case IIO_EV_DIR_FALLING:
+ return adxl345_set_act_inact_en(st, type_inact, state);
+ default:
+ return -EINVAL;
+ }
+}
+
+static int adxl345_read_event_config(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+ bool int_en;
+ int ret;
+
+ switch (type) {
+ case IIO_EV_TYPE_MAG:
+ return adxl345_read_mag_config(st, dir,
+ ADXL345_ACTIVITY,
+ ADXL345_INACTIVITY);
+ case IIO_EV_TYPE_MAG_ADAPTIVE:
+ return adxl345_read_mag_config(st, dir,
+ ADXL345_ACTIVITY_AC,
+ ADXL345_INACTIVITY_AC);
+ case IIO_EV_TYPE_GESTURE:
+ switch (dir) {
+ case IIO_EV_DIR_SINGLETAP:
+ ret = adxl345_is_tap_en(st, chan->channel2,
+ ADXL345_SINGLE_TAP, &int_en);
+ if (ret)
+ return ret;
+ return int_en;
+ case IIO_EV_DIR_DOUBLETAP:
+ ret = adxl345_is_tap_en(st, chan->channel2,
+ ADXL345_DOUBLE_TAP, &int_en);
+ if (ret)
+ return ret;
+ return int_en;
+ default:
+ return -EINVAL;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static int adxl345_write_event_config(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir,
+ bool state)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+
+ switch (type) {
+ case IIO_EV_TYPE_MAG:
+ return adxl345_write_mag_config(st, dir,
+ ADXL345_ACTIVITY,
+ ADXL345_INACTIVITY,
+ state);
+ case IIO_EV_TYPE_MAG_ADAPTIVE:
+ return adxl345_write_mag_config(st, dir,
+ ADXL345_ACTIVITY_AC,
+ ADXL345_INACTIVITY_AC,
+ state);
+ case IIO_EV_TYPE_GESTURE:
+ switch (dir) {
+ case IIO_EV_DIR_SINGLETAP:
+ return adxl345_set_singletap_en(st, chan->channel2, state);
+ case IIO_EV_DIR_DOUBLETAP:
+ return adxl345_set_doubletap_en(st, state);
+ default:
+ return -EINVAL;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static int adxl345_read_mag_value(struct adxl345_state *st,
+ enum iio_event_direction dir,
+ enum iio_event_info info,
+ enum adxl345_activity_type type_act,
+ enum adxl345_activity_type type_inact,
+ int *val, int *val2)
+{
+ unsigned int threshold;
+ int ret;
+
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ switch (dir) {
+ case IIO_EV_DIR_RISING:
+ ret = regmap_read(st->regmap,
+ adxl345_act_thresh_reg[type_act],
+ &threshold);
+ if (ret)
+ return ret;
+ *val = 62500 * threshold;
+ *val2 = MICRO;
+ return IIO_VAL_FRACTIONAL;
+ case IIO_EV_DIR_FALLING:
+ *val = 62500 * st->inact_threshold;
+ *val2 = MICRO;
+ return IIO_VAL_FRACTIONAL;
+ default:
+ return -EINVAL;
+ }
+ case IIO_EV_INFO_PERIOD:
+ *val = st->inact_time_ms;
+ *val2 = MILLI;
+ return IIO_VAL_FRACTIONAL;
+ default:
+ return -EINVAL;
+ }
+}
+
+static int adxl345_write_mag_value(struct adxl345_state *st,
+ enum iio_event_direction dir,
+ enum iio_event_info info,
+ enum adxl345_activity_type type_act,
+ enum adxl345_activity_type type_inact,
+ int val, int val2)
+{
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ /* Scaling factor 62.5mg/LSB, i.e. ~16g corresponds to 0xff */
+ val = DIV_ROUND_CLOSEST(val * MICRO + val2, 62500);
+ switch (dir) {
+ case IIO_EV_DIR_RISING:
+ return regmap_write(st->regmap,
+ adxl345_act_thresh_reg[type_act],
+ val);
+ case IIO_EV_DIR_FALLING:
+ return adxl345_set_inact_threshold(st, val);
+ default:
+ return -EINVAL;
+ }
+ case IIO_EV_INFO_PERIOD:
+ return adxl345_set_inact_time(st, val, val2);
+ default:
+ return -EINVAL;
+ }
+}
+
+static int adxl345_read_event_value(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir,
+ enum iio_event_info info,
+ int *val, int *val2)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+ unsigned int tap_threshold;
+ int ret;
+
+ switch (type) {
+ case IIO_EV_TYPE_MAG:
+ return adxl345_read_mag_value(st, dir, info,
+ ADXL345_ACTIVITY,
+ ADXL345_INACTIVITY,
+ val, val2);
+ case IIO_EV_TYPE_MAG_ADAPTIVE:
+ return adxl345_read_mag_value(st, dir, info,
+ ADXL345_ACTIVITY_AC,
+ ADXL345_INACTIVITY_AC,
+ val, val2);
+ case IIO_EV_TYPE_GESTURE:
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ /*
+ * The scale factor would be 62.5mg/LSB (i.e. 0xFF = 16g) but
+ * not applied here. In context of this general purpose sensor,
+ * what imports is rather signal intensity than the absolute
+ * measured g value.
+ */
+ ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP,
+ &tap_threshold);
+ if (ret)
+ return ret;
+ *val = sign_extend32(tap_threshold, 7);
+ return IIO_VAL_INT;
+ case IIO_EV_INFO_TIMEOUT:
+ *val = st->tap_duration_us;
+ *val2 = MICRO;
+ return IIO_VAL_FRACTIONAL;
+ case IIO_EV_INFO_RESET_TIMEOUT:
+ *val = st->tap_window_us;
+ *val2 = MICRO;
+ return IIO_VAL_FRACTIONAL;
+ case IIO_EV_INFO_TAP2_MIN_DELAY:
+ *val = st->tap_latent_us;
+ *val2 = MICRO;
+ return IIO_VAL_FRACTIONAL;
+ default:
+ return -EINVAL;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static int adxl345_write_event_value(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir,
+ enum iio_event_info info,
+ int val, int val2)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+ int ret;
+
+ ret = adxl345_set_measure_en(st, false);
+ if (ret)
+ return ret;
+
+ switch (type) {
+ case IIO_EV_TYPE_MAG:
+ ret = adxl345_write_mag_value(st, dir, info,
+ ADXL345_ACTIVITY,
+ ADXL345_INACTIVITY,
+ val, val2);
+ if (ret)
+ return ret;
+ break;
+ case IIO_EV_TYPE_MAG_ADAPTIVE:
+ ret = adxl345_write_mag_value(st, dir, info,
+ ADXL345_ACTIVITY_AC,
+ ADXL345_INACTIVITY_AC,
+ val, val2);
+ if (ret)
+ return ret;
+ break;
+ case IIO_EV_TYPE_GESTURE:
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP,
+ min(val, 0xFF));
+ if (ret)
+ return ret;
+ break;
+ case IIO_EV_INFO_TIMEOUT:
+ ret = adxl345_set_tap_duration(st, val, val2);
+ if (ret)
+ return ret;
+ break;
+ case IIO_EV_INFO_RESET_TIMEOUT:
+ ret = adxl345_set_tap_window(st, val, val2);
+ if (ret)
+ return ret;
+ break;
+ case IIO_EV_INFO_TAP2_MIN_DELAY:
+ ret = adxl345_set_tap_latent(st, val, val2);
+ if (ret)
+ return ret;
+ break;
+ default:
+ return -EINVAL;
+ }
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return adxl345_set_measure_en(st, true);
+}
+
+static int adxl345_reg_access(struct iio_dev *indio_dev, unsigned int reg,
+ unsigned int writeval, unsigned int *readval)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+
+ if (readval)
+ return regmap_read(st->regmap, reg, readval);
+ return regmap_write(st->regmap, reg, writeval);
+}
+
+static int adxl345_set_watermark(struct iio_dev *indio_dev, unsigned int value)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+ const unsigned int fifo_mask = 0x1F, watermark_mask = 0x02;
+ int ret;
+
+ value = min(value, ADXL345_FIFO_SIZE - 1);
+
+ ret = regmap_update_bits(st->regmap, ADXL345_REG_FIFO_CTL, fifo_mask, value);
+ if (ret)
+ return ret;
+
+ st->watermark = value;
+ return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE,
+ watermark_mask, ADXL345_INT_WATERMARK);
}
static int adxl345_write_raw_get_fmt(struct iio_dev *indio_dev,
@@ -184,108 +1486,540 @@ static int adxl345_write_raw_get_fmt(struct iio_dev *indio_dev,
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
return IIO_VAL_INT;
+ case IIO_CHAN_INFO_SCALE:
+ return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
- return IIO_VAL_INT_PLUS_NANO;
+ return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
-static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
-"0.09765625 0.1953125 0.390625 0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600 3200"
-);
+static void adxl345_powerdown(void *ptr)
+{
+ struct adxl345_state *st = ptr;
-static struct attribute *adxl345_attrs[] = {
- &iio_const_attr_sampling_frequency_available.dev_attr.attr,
- NULL,
-};
+ adxl345_set_measure_en(st, false);
+}
+
+static int adxl345_set_fifo(struct adxl345_state *st)
+{
+ unsigned int intio;
+ int ret;
+
+ /* FIFO should only be configured while in standby mode */
+ ret = adxl345_set_measure_en(st, false);
+ if (ret)
+ return ret;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_INT_MAP, &intio);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL,
+ FIELD_PREP(ADXL345_FIFO_CTL_SAMPLES_MSK,
+ st->watermark) |
+ FIELD_PREP(ADXL345_FIFO_CTL_TRIGGER_MSK, intio) |
+ FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK,
+ st->fifo_mode));
+ if (ret)
+ return ret;
+
+ return adxl345_set_measure_en(st, true);
+}
+
+/**
+ * adxl345_get_samples() - Read number of FIFO entries.
+ * @st: The initialized state instance of this driver.
+ *
+ * The sensor does not support treating any axis individually, or exclude them
+ * from measuring.
+ *
+ * Return: negative error, or value.
+ */
+static int adxl345_get_samples(struct adxl345_state *st)
+{
+ unsigned int regval = 0;
+ int ret;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_FIFO_STATUS, &regval);
+ if (ret)
+ return ret;
+
+ return FIELD_GET(ADXL345_REG_FIFO_STATUS_MSK, regval);
+}
-static const struct attribute_group adxl345_attrs_group = {
- .attrs = adxl345_attrs,
+/**
+ * adxl345_fifo_transfer() - Read samples number of elements.
+ * @st: The instance of the state object of this sensor.
+ * @samples: The number of lines in the FIFO referred to as fifo_entry.
+ *
+ * It is recommended that a multiple-byte read of all registers be performed to
+ * prevent a change in data between reads of sequential registers. That is to
+ * read out the data registers X0, X1, Y0, Y1, Z0, Z1, i.e. 6 bytes at once.
+ *
+ * Return: 0 or error value.
+ */
+static int adxl345_fifo_transfer(struct adxl345_state *st, int samples)
+{
+ int i, ret = 0;
+
+ for (i = 0; i < samples; i++) {
+ ret = regmap_bulk_read(st->regmap, ADXL345_REG_XYZ_BASE,
+ st->fifo_buf + (i * ADXL345_DIRS),
+ sizeof(st->fifo_buf[0]) * ADXL345_DIRS);
+ if (ret)
+ return ret;
+
+ /*
+ * To ensure that the FIFO has completely popped, there must be at least 5
+ * us between the end of reading the data registers, signified by the
+ * transition to register 0x38 from 0x37 or the CS pin going high, and the
+ * start of new reads of the FIFO or reading the FIFO_STATUS register. For
+ * SPI operation at 1.5 MHz or lower, the register addressing portion of the
+ * transmission is sufficient delay to ensure the FIFO has completely
+ * popped. It is necessary for SPI operation greater than 1.5 MHz to
+ * de-assert the CS pin to ensure a total of 5 us, which is at most 3.4 us
+ * at 5 MHz operation.
+ */
+ if (st->fifo_delay && samples > 1)
+ udelay(3);
+ }
+ return ret;
+}
+
+/**
+ * adxl345_fifo_reset() - Empty the FIFO in error condition.
+ * @st: The instance to the state object of the sensor.
+ *
+ * Read all elements of the FIFO. Reading the interrupt source register
+ * resets the sensor.
+ */
+static void adxl345_fifo_reset(struct adxl345_state *st)
+{
+ int regval;
+ int samples;
+
+ adxl345_set_measure_en(st, false);
+
+ samples = adxl345_get_samples(st);
+ if (samples > 0)
+ adxl345_fifo_transfer(st, samples);
+
+ regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, &regval);
+
+ adxl345_set_measure_en(st, true);
+}
+
+static int adxl345_buffer_postenable(struct iio_dev *indio_dev)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+
+ st->fifo_mode = ADXL345_FIFO_STREAM;
+ return adxl345_set_fifo(st);
+}
+
+static int adxl345_buffer_predisable(struct iio_dev *indio_dev)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+ int ret;
+
+ st->fifo_mode = ADXL345_FIFO_BYPASS;
+ ret = adxl345_set_fifo(st);
+ if (ret)
+ return ret;
+
+ return regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00);
+}
+
+static const struct iio_buffer_setup_ops adxl345_buffer_ops = {
+ .postenable = adxl345_buffer_postenable,
+ .predisable = adxl345_buffer_predisable,
};
+static int adxl345_fifo_push(struct iio_dev *indio_dev,
+ int samples)
+{
+ struct adxl345_state *st = iio_priv(indio_dev);
+ int i, ret;
+
+ if (samples <= 0)
+ return -EINVAL;
+
+ ret = adxl345_fifo_transfer(st, samples);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < ADXL345_DIRS * samples; i += ADXL345_DIRS)
+ iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
+
+ return 0;
+}
+
+static int adxl345_push_event(struct iio_dev *indio_dev, int int_stat,
+ enum iio_modifier act_dir,
+ enum iio_modifier tap_dir)
+{
+ s64 ts = iio_get_time_ns(indio_dev);
+ struct adxl345_state *st = iio_priv(indio_dev);
+ unsigned int regval;
+ int samples;
+ int ret = -ENOENT;
+
+ if (FIELD_GET(ADXL345_INT_SINGLE_TAP, int_stat)) {
+ ret = iio_push_event(indio_dev,
+ IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir,
+ IIO_EV_TYPE_GESTURE,
+ IIO_EV_DIR_SINGLETAP),
+ ts);
+ if (ret)
+ return ret;
+ }
+
+ if (FIELD_GET(ADXL345_INT_DOUBLE_TAP, int_stat)) {
+ ret = iio_push_event(indio_dev,
+ IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir,
+ IIO_EV_TYPE_GESTURE,
+ IIO_EV_DIR_DOUBLETAP),
+ ts);
+ if (ret)
+ return ret;
+ }
+
+ if (FIELD_GET(ADXL345_INT_ACTIVITY, int_stat)) {
+ ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &regval);
+ if (ret)
+ return ret;
+
+ if (FIELD_GET(ADXL345_REG_ACT_ACDC, regval)) {
+ /* AC coupled */
+ ret = iio_push_event(indio_dev,
+ IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, act_dir,
+ IIO_EV_TYPE_MAG_ADAPTIVE,
+ IIO_EV_DIR_RISING),
+ ts);
+
+ } else {
+ /* DC coupled, relying on THRESH */
+ ret = iio_push_event(indio_dev,
+ IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, act_dir,
+ IIO_EV_TYPE_MAG,
+ IIO_EV_DIR_RISING),
+ ts);
+ }
+ if (ret)
+ return ret;
+ }
+
+ if (FIELD_GET(ADXL345_INT_INACTIVITY, int_stat)) {
+ ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &regval);
+ if (ret)
+ return ret;
+
+ if (FIELD_GET(ADXL345_REG_INACT_ACDC, regval)) {
+ /* AC coupled */
+ ret = iio_push_event(indio_dev,
+ IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
+ IIO_MOD_X_AND_Y_AND_Z,
+ IIO_EV_TYPE_MAG_ADAPTIVE,
+ IIO_EV_DIR_FALLING),
+ ts);
+ } else {
+ /* DC coupled, relying on THRESH */
+ ret = iio_push_event(indio_dev,
+ IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
+ IIO_MOD_X_AND_Y_AND_Z,
+ IIO_EV_TYPE_MAG,
+ IIO_EV_DIR_FALLING),
+ ts);
+ }
+ if (ret)
+ return ret;
+ }
+
+ if (FIELD_GET(ADXL345_INT_FREE_FALL, int_stat)) {
+ ret = iio_push_event(indio_dev,
+ IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
+ IIO_MOD_X_AND_Y_AND_Z,
+ IIO_EV_TYPE_MAG,
+ IIO_EV_DIR_FALLING),
+ ts);
+ if (ret)
+ return ret;
+ }
+
+ if (FIELD_GET(ADXL345_INT_WATERMARK, int_stat)) {
+ samples = adxl345_get_samples(st);
+ if (samples < 0)
+ return -EINVAL;
+
+ if (adxl345_fifo_push(indio_dev, samples) < 0)
+ return -EINVAL;
+
+ ret = 0;
+ }
+
+ return ret;
+}
+
+/**
+ * adxl345_irq_handler() - Handle irqs of the ADXL345.
+ * @irq: The irq being handled.
+ * @p: The struct iio_device pointer for the device.
+ *
+ * Return: The interrupt was handled.
+ */
+static irqreturn_t adxl345_irq_handler(int irq, void *p)
+{
+ struct iio_dev *indio_dev = p;
+ struct adxl345_state *st = iio_priv(indio_dev);
+ unsigned int regval;
+ enum iio_modifier tap_dir = IIO_NO_MOD;
+ enum iio_modifier act_dir = IIO_NO_MOD;
+ u32 axis_ctrl;
+ int int_stat;
+ int ret;
+
+ ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
+ if (ret)
+ return IRQ_NONE;
+
+ if (FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl) ||
+ FIELD_GET(ADXL345_ACT_XYZ_EN, axis_ctrl)) {
+ ret = regmap_read(st->regmap, ADXL345_REG_ACT_TAP_STATUS, &regval);
+ if (ret)
+ return IRQ_NONE;
+
+ if (FIELD_GET(ADXL345_TAP_Z_EN, regval))
+ tap_dir = IIO_MOD_Z;
+ else if (FIELD_GET(ADXL345_TAP_Y_EN, regval))
+ tap_dir = IIO_MOD_Y;
+ else if (FIELD_GET(ADXL345_TAP_X_EN, regval))
+ tap_dir = IIO_MOD_X;
+
+ if (FIELD_GET(ADXL345_ACT_Z_EN, regval))
+ act_dir = IIO_MOD_Z;
+ else if (FIELD_GET(ADXL345_ACT_Y_EN, regval))
+ act_dir = IIO_MOD_Y;
+ else if (FIELD_GET(ADXL345_ACT_X_EN, regval))
+ act_dir = IIO_MOD_X;
+ }
+
+ if (regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, &int_stat))
+ return IRQ_NONE;
+
+ if (adxl345_push_event(indio_dev, int_stat, act_dir, tap_dir))
+ goto err;
+
+ if (FIELD_GET(ADXL345_INT_OVERRUN, int_stat))
+ goto err;
+
+ return IRQ_HANDLED;
+
+err:
+ adxl345_fifo_reset(st);
+
+ return IRQ_HANDLED;
+}
+
static const struct iio_info adxl345_info = {
- .attrs = &adxl345_attrs_group,
.read_raw = adxl345_read_raw,
.write_raw = adxl345_write_raw,
+ .read_avail = adxl345_read_avail,
.write_raw_get_fmt = adxl345_write_raw_get_fmt,
+ .read_event_config = adxl345_read_event_config,
+ .write_event_config = adxl345_write_event_config,
+ .read_event_value = adxl345_read_event_value,
+ .write_event_value = adxl345_write_event_value,
+ .debugfs_reg_access = &adxl345_reg_access,
+ .hwfifo_set_watermark = adxl345_set_watermark,
};
+static int adxl345_get_int_line(struct device *dev, int *irq)
+{
+ *irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
+ if (*irq > 0)
+ return ADXL345_INT1;
+
+ *irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT2");
+ if (*irq > 0)
+ return ADXL345_INT2;
+
+ return ADXL345_INT_NONE;
+}
+
+/**
+ * adxl345_core_probe() - Probe and setup for the accelerometer.
+ * @dev: Driver model representation of the device
+ * @regmap: Regmap instance for the device
+ * @fifo_delay_default: Using FIFO with SPI needs delay
+ * @setup: Setup routine to be executed right before the standard device
+ * setup
+ *
+ * For SPI operation greater than 1.6 MHz, it is necessary to deassert the CS
+ * pin to ensure a total delay of 5 us; otherwise, the delay is not sufficient.
+ * The total delay necessary for 5 MHz operation is at most 3.4 us. This is not
+ * a concern when using I2C mode because the communication rate is low enough
+ * to ensure a sufficient delay between FIFO reads.
+ * Ref: "Retrieving Data from FIFO", p. 21 of 36, Data Sheet ADXL345 Rev. G
+ *
+ * Return: 0 on success, negative errno on error
+ */
int adxl345_core_probe(struct device *dev, struct regmap *regmap,
- enum adxl345_device_type type, const char *name)
+ bool fifo_delay_default,
+ int (*setup)(struct device*, struct regmap*))
{
- struct adxl345_data *data;
+ struct adxl345_state *st;
struct iio_dev *indio_dev;
u32 regval;
+ u8 intio = ADXL345_INT1;
+ unsigned int data_format_mask = (ADXL345_DATA_FORMAT_RANGE |
+ ADXL345_DATA_FORMAT_JUSTIFY |
+ ADXL345_DATA_FORMAT_FULL_RES |
+ ADXL345_DATA_FORMAT_SELF_TEST);
+ unsigned int tap_threshold;
+ int irq;
int ret;
- ret = regmap_read(regmap, ADXL345_REG_DEVID, &regval);
- if (ret < 0) {
- dev_err(dev, "Error reading device ID: %d\n", ret);
- return ret;
- }
-
- if (regval != ADXL345_DEVID) {
- dev_err(dev, "Invalid device ID: %x, expected %x\n",
- regval, ADXL345_DEVID);
- return -ENODEV;
- }
-
- indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
+ indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
- data = iio_priv(indio_dev);
- dev_set_drvdata(dev, indio_dev);
- data->regmap = regmap;
- data->type = type;
- /* Enable full-resolution mode */
- data->data_range = ADXL345_DATA_FORMAT_FULL_RES;
+ st = iio_priv(indio_dev);
+ st->regmap = regmap;
+ st->info = device_get_match_data(dev);
+ if (!st->info)
+ return -ENODEV;
+ st->fifo_delay = fifo_delay_default;
- ret = regmap_write(data->regmap, ADXL345_REG_DATA_FORMAT,
- data->data_range);
- if (ret < 0) {
- dev_err(dev, "Failed to set data range: %d\n", ret);
- return ret;
- }
+ /* Init with reasonable values */
+ tap_threshold = 48; /* 48 [0x30] -> ~3g */
+ st->tap_duration_us = 16; /* 16 [0x10] -> .010 */
+ st->tap_window_us = 64; /* 64 [0x40] -> .080 */
+ st->tap_latent_us = 16; /* 16 [0x10] -> .020 */
- indio_dev->dev.parent = dev;
- indio_dev->name = name;
+ indio_dev->name = st->info->name;
indio_dev->info = &adxl345_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adxl345_channels;
indio_dev->num_channels = ARRAY_SIZE(adxl345_channels);
+ indio_dev->available_scan_masks = adxl345_scan_masks;
- /* Enable measurement mode */
- ret = regmap_write(data->regmap, ADXL345_REG_POWER_CTL,
- ADXL345_POWER_CTL_MEASURE);
- if (ret < 0) {
- dev_err(dev, "Failed to enable measurement mode: %d\n", ret);
+ /*
+ * Using I2C at 100kHz would limit the maximum ODR to 200Hz, operation
+ * at an output rate above the recommended maximum may result in
+ * undesired behavior.
+ */
+ ret = adxl345_set_odr(st, ADXL345_ODR_200HZ);
+ if (ret)
return ret;
- }
- ret = iio_device_register(indio_dev);
- if (ret < 0) {
- dev_err(dev, "iio_device_register failed: %d\n", ret);
- regmap_write(data->regmap, ADXL345_REG_POWER_CTL,
- ADXL345_POWER_CTL_STANDBY);
+ ret = adxl345_set_range(st, ADXL345_16G_RANGE);
+ if (ret)
+ return ret;
+
+ /* Reset interrupts at start up */
+ ret = regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00);
+ if (ret)
+ return ret;
+
+ if (setup) {
+ /* Perform optional initial bus specific configuration */
+ ret = setup(dev, st->regmap);
+ if (ret)
+ return ret;
+
+ /* Enable full-resolution mode */
+ ret = regmap_update_bits(st->regmap, ADXL345_REG_DATA_FORMAT,
+ data_format_mask,
+ ADXL345_DATA_FORMAT_FULL_RES);
+ if (ret)
+ return dev_err_probe(dev, ret,
+ "Failed to set data range\n");
+
+ } else {
+ /* Enable full-resolution mode (init all data_format bits) */
+ ret = regmap_write(st->regmap, ADXL345_REG_DATA_FORMAT,
+ ADXL345_DATA_FORMAT_FULL_RES);
+ if (ret)
+ return dev_err_probe(dev, ret,
+ "Failed to set data range\n");
}
- return ret;
-}
-EXPORT_SYMBOL_GPL(adxl345_core_probe);
+ ret = regmap_read(st->regmap, ADXL345_REG_DEVID, &regval);
+ if (ret)
+ return dev_err_probe(dev, ret, "Error reading device ID\n");
-int adxl345_core_remove(struct device *dev)
-{
- struct iio_dev *indio_dev = dev_get_drvdata(dev);
- struct adxl345_data *data = iio_priv(indio_dev);
+ if (regval != ADXL345_DEVID)
+ return dev_err_probe(dev, -ENODEV, "Invalid device ID: %x, expected %x\n",
+ regval, ADXL345_DEVID);
+
+ /* Enable measurement mode */
+ ret = adxl345_set_measure_en(st, true);
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to enable measurement mode\n");
+
+ ret = devm_add_action_or_reset(dev, adxl345_powerdown, st);
+ if (ret)
+ return ret;
+
+ intio = adxl345_get_int_line(dev, &irq);
+ if (intio != ADXL345_INT_NONE) {
+ /*
+ * In the INT map register, bits set to 0 route their
+ * corresponding interrupts to the INT1 pin, while bits set to 1
+ * route them to the INT2 pin. The intio should handle this
+ * mapping accordingly.
+ */
+ ret = regmap_assign_bits(st->regmap, ADXL345_REG_INT_MAP,
+ U8_MAX, intio);
+ if (ret)
+ return ret;
+
+ /*
+ * Initialized with sensible default values to streamline
+ * sensor operation. These defaults are partly derived from
+ * the previous input driver for the ADXL345 and partly
+ * based on the recommendations provided in the datasheet.
+ */
+ ret = regmap_write(st->regmap, ADXL345_REG_ACT_INACT_CTRL, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(st->regmap, ADXL345_REG_THRESH_ACT, 6);
+ if (ret)
+ return ret;
- iio_device_unregister(indio_dev);
+ ret = adxl345_set_inact_threshold(st, 4);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP, tap_threshold);
+ if (ret)
+ return ret;
+
+ /* FIFO_STREAM mode is going to be activated later */
+ ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &adxl345_buffer_ops);
+ if (ret)
+ return ret;
+
+ ret = devm_request_threaded_irq(dev, irq, NULL,
+ &adxl345_irq_handler,
+ IRQF_SHARED | IRQF_ONESHOT,
+ indio_dev->name, indio_dev);
+ if (ret)
+ return ret;
+ } else {
+ ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL,
+ FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK,
+ ADXL345_FIFO_BYPASS));
+ if (ret)
+ return ret;
+ }
- return regmap_write(data->regmap, ADXL345_REG_POWER_CTL,
- ADXL345_POWER_CTL_STANDBY);
+ return devm_iio_device_register(dev, indio_dev);
}
-EXPORT_SYMBOL_GPL(adxl345_core_remove);
+EXPORT_SYMBOL_NS_GPL(adxl345_core_probe, "IIO_ADXL345");
MODULE_AUTHOR("Eva Rachel Retuya <eraretuya@gmail.com>");
MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer core driver");