diff options
Diffstat (limited to 'drivers/iommu/dma-iommu.c')
| -rw-r--r-- | drivers/iommu/dma-iommu.c | 1993 |
1 files changed, 1646 insertions, 347 deletions
diff --git a/drivers/iommu/dma-iommu.c b/drivers/iommu/dma-iommu.c index 9d1cebe7f6cb..c92088855450 100644 --- a/drivers/iommu/dma-iommu.c +++ b/drivers/iommu/dma-iommu.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * A fairly generic DMA-API to IOMMU-API glue layer. * @@ -5,33 +6,36 @@ * * based in part on arch/arm/mm/dma-mapping.c: * Copyright (C) 2000-2004 Russell King - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. */ +#include <linux/acpi_iort.h> +#include <linux/atomic.h> +#include <linux/crash_dump.h> #include <linux/device.h> -#include <linux/dma-iommu.h> +#include <linux/dma-direct.h> +#include <linux/dma-map-ops.h> #include <linux/gfp.h> #include <linux/huge_mm.h> #include <linux/iommu.h> +#include <linux/iommu-dma.h> #include <linux/iova.h> #include <linux/irq.h> +#include <linux/list_sort.h> +#include <linux/memremap.h> #include <linux/mm.h> +#include <linux/mutex.h> +#include <linux/msi.h> +#include <linux/of_iommu.h> #include <linux/pci.h> +#include <linux/pci-p2pdma.h> #include <linux/scatterlist.h> +#include <linux/spinlock.h> +#include <linux/swiotlb.h> #include <linux/vmalloc.h> +#include <trace/events/swiotlb.h> -#define IOMMU_MAPPING_ERROR 0 +#include "dma-iommu.h" +#include "iommu-pages.h" struct iommu_dma_msi_page { struct list_head list; @@ -39,67 +43,344 @@ struct iommu_dma_msi_page { phys_addr_t phys; }; -enum iommu_dma_cookie_type { - IOMMU_DMA_IOVA_COOKIE, - IOMMU_DMA_MSI_COOKIE, +enum iommu_dma_queue_type { + IOMMU_DMA_OPTS_PER_CPU_QUEUE, + IOMMU_DMA_OPTS_SINGLE_QUEUE, +}; + +struct iommu_dma_options { + enum iommu_dma_queue_type qt; + size_t fq_size; + unsigned int fq_timeout; }; struct iommu_dma_cookie { - enum iommu_dma_cookie_type type; + struct iova_domain iovad; + struct list_head msi_page_list; + /* Flush queue */ union { - /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ - struct iova_domain iovad; - /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ - dma_addr_t msi_iova; + struct iova_fq *single_fq; + struct iova_fq __percpu *percpu_fq; }; - struct list_head msi_page_list; - spinlock_t msi_lock; + /* Number of TLB flushes that have been started */ + atomic64_t fq_flush_start_cnt; + /* Number of TLB flushes that have been finished */ + atomic64_t fq_flush_finish_cnt; + /* Timer to regularily empty the flush queues */ + struct timer_list fq_timer; + /* 1 when timer is active, 0 when not */ + atomic_t fq_timer_on; + /* Domain for flush queue callback; NULL if flush queue not in use */ + struct iommu_domain *fq_domain; + /* Options for dma-iommu use */ + struct iommu_dma_options options; }; -static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) +struct iommu_dma_msi_cookie { + dma_addr_t msi_iova; + struct list_head msi_page_list; +}; + +static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); +bool iommu_dma_forcedac __read_mostly; + +static int __init iommu_dma_forcedac_setup(char *str) { - if (cookie->type == IOMMU_DMA_IOVA_COOKIE) - return cookie->iovad.granule; - return PAGE_SIZE; + int ret = kstrtobool(str, &iommu_dma_forcedac); + + if (!ret && iommu_dma_forcedac) + pr_info("Forcing DAC for PCI devices\n"); + return ret; } +early_param("iommu.forcedac", iommu_dma_forcedac_setup); + +/* Number of entries per flush queue */ +#define IOVA_DEFAULT_FQ_SIZE 256 +#define IOVA_SINGLE_FQ_SIZE 32768 + +/* Timeout (in ms) after which entries are flushed from the queue */ +#define IOVA_DEFAULT_FQ_TIMEOUT 10 +#define IOVA_SINGLE_FQ_TIMEOUT 1000 + +/* Flush queue entry for deferred flushing */ +struct iova_fq_entry { + unsigned long iova_pfn; + unsigned long pages; + struct iommu_pages_list freelist; + u64 counter; /* Flush counter when this entry was added */ +}; -static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) +/* Per-CPU flush queue structure */ +struct iova_fq { + spinlock_t lock; + unsigned int head, tail; + unsigned int mod_mask; + struct iova_fq_entry entries[]; +}; + +#define fq_ring_for_each(i, fq) \ + for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) + +static inline bool fq_full(struct iova_fq *fq) { - struct iommu_dma_cookie *cookie; + assert_spin_locked(&fq->lock); + return (((fq->tail + 1) & fq->mod_mask) == fq->head); +} - cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); - if (cookie) { - spin_lock_init(&cookie->msi_lock); - INIT_LIST_HEAD(&cookie->msi_page_list); - cookie->type = type; +static inline unsigned int fq_ring_add(struct iova_fq *fq) +{ + unsigned int idx = fq->tail; + + assert_spin_locked(&fq->lock); + + fq->tail = (idx + 1) & fq->mod_mask; + + return idx; +} + +static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) +{ + u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); + unsigned int idx; + + assert_spin_locked(&fq->lock); + + fq_ring_for_each(idx, fq) { + + if (fq->entries[idx].counter >= counter) + break; + + iommu_put_pages_list(&fq->entries[idx].freelist); + free_iova_fast(&cookie->iovad, + fq->entries[idx].iova_pfn, + fq->entries[idx].pages); + + fq->entries[idx].freelist = + IOMMU_PAGES_LIST_INIT(fq->entries[idx].freelist); + fq->head = (fq->head + 1) & fq->mod_mask; } - return cookie; } -int iommu_dma_init(void) +static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) { - return iova_cache_get(); + unsigned long flags; + + spin_lock_irqsave(&fq->lock, flags); + fq_ring_free_locked(cookie, fq); + spin_unlock_irqrestore(&fq->lock, flags); +} + +static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) +{ + atomic64_inc(&cookie->fq_flush_start_cnt); + cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); + atomic64_inc(&cookie->fq_flush_finish_cnt); +} + +static void fq_flush_timeout(struct timer_list *t) +{ + struct iommu_dma_cookie *cookie = timer_container_of(cookie, t, + fq_timer); + int cpu; + + atomic_set(&cookie->fq_timer_on, 0); + fq_flush_iotlb(cookie); + + if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { + fq_ring_free(cookie, cookie->single_fq); + } else { + for_each_possible_cpu(cpu) + fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); + } +} + +static void queue_iova(struct iommu_dma_cookie *cookie, + unsigned long pfn, unsigned long pages, + struct iommu_pages_list *freelist) +{ + struct iova_fq *fq; + unsigned long flags; + unsigned int idx; + + /* + * Order against the IOMMU driver's pagetable update from unmapping + * @pte, to guarantee that fq_flush_iotlb() observes that if called + * from a different CPU before we release the lock below. Full barrier + * so it also pairs with iommu_dma_init_fq() to avoid seeing partially + * written fq state here. + */ + smp_mb(); + + if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) + fq = cookie->single_fq; + else + fq = raw_cpu_ptr(cookie->percpu_fq); + + spin_lock_irqsave(&fq->lock, flags); + + /* + * First remove all entries from the flush queue that have already been + * flushed out on another CPU. This makes the fq_full() check below less + * likely to be true. + */ + fq_ring_free_locked(cookie, fq); + + if (fq_full(fq)) { + fq_flush_iotlb(cookie); + fq_ring_free_locked(cookie, fq); + } + + idx = fq_ring_add(fq); + + fq->entries[idx].iova_pfn = pfn; + fq->entries[idx].pages = pages; + fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); + iommu_pages_list_splice(freelist, &fq->entries[idx].freelist); + + spin_unlock_irqrestore(&fq->lock, flags); + + /* Avoid false sharing as much as possible. */ + if (!atomic_read(&cookie->fq_timer_on) && + !atomic_xchg(&cookie->fq_timer_on, 1)) + mod_timer(&cookie->fq_timer, + jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); +} + +static void iommu_dma_free_fq_single(struct iova_fq *fq) +{ + int idx; + + fq_ring_for_each(idx, fq) + iommu_put_pages_list(&fq->entries[idx].freelist); + vfree(fq); +} + +static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) +{ + int cpu, idx; + + /* The IOVAs will be torn down separately, so just free our queued pages */ + for_each_possible_cpu(cpu) { + struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); + + fq_ring_for_each(idx, fq) + iommu_put_pages_list(&fq->entries[idx].freelist); + } + + free_percpu(percpu_fq); +} + +static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) +{ + if (!cookie->fq_domain) + return; + + timer_delete_sync(&cookie->fq_timer); + if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) + iommu_dma_free_fq_single(cookie->single_fq); + else + iommu_dma_free_fq_percpu(cookie->percpu_fq); +} + +static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) +{ + int i; + + fq->head = 0; + fq->tail = 0; + fq->mod_mask = fq_size - 1; + + spin_lock_init(&fq->lock); + + for (i = 0; i < fq_size; i++) + fq->entries[i].freelist = + IOMMU_PAGES_LIST_INIT(fq->entries[i].freelist); +} + +static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) +{ + size_t fq_size = cookie->options.fq_size; + struct iova_fq *queue; + + queue = vmalloc(struct_size(queue, entries, fq_size)); + if (!queue) + return -ENOMEM; + iommu_dma_init_one_fq(queue, fq_size); + cookie->single_fq = queue; + + return 0; +} + +static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) +{ + size_t fq_size = cookie->options.fq_size; + struct iova_fq __percpu *queue; + int cpu; + + queue = __alloc_percpu(struct_size(queue, entries, fq_size), + __alignof__(*queue)); + if (!queue) + return -ENOMEM; + + for_each_possible_cpu(cpu) + iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); + cookie->percpu_fq = queue; + return 0; +} + +/* sysfs updates are serialised by the mutex of the group owning @domain */ +int iommu_dma_init_fq(struct iommu_domain *domain) +{ + struct iommu_dma_cookie *cookie = domain->iova_cookie; + int rc; + + if (cookie->fq_domain) + return 0; + + atomic64_set(&cookie->fq_flush_start_cnt, 0); + atomic64_set(&cookie->fq_flush_finish_cnt, 0); + + if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) + rc = iommu_dma_init_fq_single(cookie); + else + rc = iommu_dma_init_fq_percpu(cookie); + + if (rc) { + pr_warn("iova flush queue initialization failed\n"); + return -ENOMEM; + } + + timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); + atomic_set(&cookie->fq_timer_on, 0); + /* + * Prevent incomplete fq state being observable. Pairs with path from + * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() + */ + smp_wmb(); + WRITE_ONCE(cookie->fq_domain, domain); + return 0; } /** * iommu_get_dma_cookie - Acquire DMA-API resources for a domain * @domain: IOMMU domain to prepare for DMA-API usage - * - * IOMMU drivers should normally call this from their domain_alloc - * callback when domain->type == IOMMU_DOMAIN_DMA. */ int iommu_get_dma_cookie(struct iommu_domain *domain) { - if (domain->iova_cookie) + struct iommu_dma_cookie *cookie; + + if (domain->cookie_type != IOMMU_COOKIE_NONE) return -EEXIST; - domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); - if (!domain->iova_cookie) + cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); + if (!cookie) return -ENOMEM; + INIT_LIST_HEAD(&cookie->msi_page_list); + domain->cookie_type = IOMMU_COOKIE_DMA_IOVA; + domain->iova_cookie = cookie; return 0; } -EXPORT_SYMBOL(iommu_get_dma_cookie); /** * iommu_get_msi_cookie - Acquire just MSI remapping resources @@ -115,50 +396,57 @@ EXPORT_SYMBOL(iommu_get_dma_cookie); */ int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) { - struct iommu_dma_cookie *cookie; + struct iommu_dma_msi_cookie *cookie; if (domain->type != IOMMU_DOMAIN_UNMANAGED) return -EINVAL; - if (domain->iova_cookie) + if (domain->cookie_type != IOMMU_COOKIE_NONE) return -EEXIST; - cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); + cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); if (!cookie) return -ENOMEM; cookie->msi_iova = base; - domain->iova_cookie = cookie; + INIT_LIST_HEAD(&cookie->msi_page_list); + domain->cookie_type = IOMMU_COOKIE_DMA_MSI; + domain->msi_cookie = cookie; return 0; } EXPORT_SYMBOL(iommu_get_msi_cookie); /** * iommu_put_dma_cookie - Release a domain's DMA mapping resources - * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or - * iommu_get_msi_cookie() - * - * IOMMU drivers should normally call this from their domain_free callback. + * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() */ void iommu_put_dma_cookie(struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iommu_dma_msi_page *msi, *tmp; - if (!cookie) - return; - - if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) + if (cookie->iovad.granule) { + iommu_dma_free_fq(cookie); put_iova_domain(&cookie->iovad); + } + list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) + kfree(msi); + kfree(cookie); +} + +/** + * iommu_put_msi_cookie - Release a domain's MSI mapping resources + * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie() + */ +void iommu_put_msi_cookie(struct iommu_domain *domain) +{ + struct iommu_dma_msi_cookie *cookie = domain->msi_cookie; + struct iommu_dma_msi_page *msi, *tmp; - list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { - list_del(&msi->list); + list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) kfree(msi); - } kfree(cookie); - domain->iova_cookie = NULL; } -EXPORT_SYMBOL(iommu_put_dma_cookie); /** * iommu_dma_get_resv_regions - Reserved region driver helper @@ -166,35 +454,18 @@ EXPORT_SYMBOL(iommu_put_dma_cookie); * @list: Reserved region list from iommu_get_resv_regions() * * IOMMU drivers can use this to implement their .get_resv_regions callback - * for general non-IOMMU-specific reservations. Currently, this covers host - * bridge windows for PCI devices. + * for general non-IOMMU-specific reservations. Currently, this covers GICv3 + * ITS region reservation on ACPI based ARM platforms that may require HW MSI + * reservation. */ void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) { - struct pci_host_bridge *bridge; - struct resource_entry *window; - - if (!dev_is_pci(dev)) - return; - - bridge = pci_find_host_bridge(to_pci_dev(dev)->bus); - resource_list_for_each_entry(window, &bridge->windows) { - struct iommu_resv_region *region; - phys_addr_t start; - size_t length; - - if (resource_type(window->res) != IORESOURCE_MEM) - continue; - start = window->res->start - window->offset; - length = window->res->end - window->res->start + 1; - region = iommu_alloc_resv_region(start, length, 0, - IOMMU_RESV_RESERVED); - if (!region) - return; + if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) + iort_iommu_get_resv_regions(dev, list); - list_add_tail(®ion->list, list); - } + if (dev->of_node) + of_iommu_get_resv_regions(dev, list); } EXPORT_SYMBOL(iommu_dma_get_resv_regions); @@ -208,21 +479,76 @@ static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, start -= iova_offset(iovad, start); num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); - msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); - if (!msi_page) - return -ENOMEM; - for (i = 0; i < num_pages; i++) { - msi_page[i].phys = start; - msi_page[i].iova = start; - INIT_LIST_HEAD(&msi_page[i].list); - list_add(&msi_page[i].list, &cookie->msi_page_list); + msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); + if (!msi_page) + return -ENOMEM; + + msi_page->phys = start; + msi_page->iova = start; + INIT_LIST_HEAD(&msi_page->list); + list_add(&msi_page->list, &cookie->msi_page_list); start += iovad->granule; } return 0; } +static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, + const struct list_head *b) +{ + struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); + struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); + + return res_a->res->start > res_b->res->start; +} + +static int iova_reserve_pci_windows(struct pci_dev *dev, + struct iova_domain *iovad) +{ + struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); + struct resource_entry *window; + unsigned long lo, hi; + phys_addr_t start = 0, end; + + resource_list_for_each_entry(window, &bridge->windows) { + if (resource_type(window->res) != IORESOURCE_MEM) + continue; + + lo = iova_pfn(iovad, window->res->start - window->offset); + hi = iova_pfn(iovad, window->res->end - window->offset); + reserve_iova(iovad, lo, hi); + } + + /* Get reserved DMA windows from host bridge */ + list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); + resource_list_for_each_entry(window, &bridge->dma_ranges) { + end = window->res->start - window->offset; +resv_iova: + if (end > start) { + lo = iova_pfn(iovad, start); + hi = iova_pfn(iovad, end); + reserve_iova(iovad, lo, hi); + } else if (end < start) { + /* DMA ranges should be non-overlapping */ + dev_err(&dev->dev, + "Failed to reserve IOVA [%pa-%pa]\n", + &start, &end); + return -EINVAL; + } + + start = window->res->end - window->offset + 1; + /* If window is last entry */ + if (window->node.next == &bridge->dma_ranges && + end != ~(phys_addr_t)0) { + end = ~(phys_addr_t)0; + goto resv_iova; + } + } + + return 0; +} + static int iova_reserve_iommu_regions(struct device *dev, struct iommu_domain *domain) { @@ -232,6 +558,12 @@ static int iova_reserve_iommu_regions(struct device *dev, LIST_HEAD(resv_regions); int ret = 0; + if (dev_is_pci(dev)) { + ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); + if (ret) + return ret; + } + iommu_get_resv_regions(dev, &resv_regions); list_for_each_entry(region, &resv_regions, list) { unsigned long lo, hi; @@ -255,55 +587,104 @@ static int iova_reserve_iommu_regions(struct device *dev, return ret; } +static bool dev_is_untrusted(struct device *dev) +{ + return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; +} + +static bool dev_use_swiotlb(struct device *dev, size_t size, + enum dma_data_direction dir) +{ + return IS_ENABLED(CONFIG_SWIOTLB) && + (dev_is_untrusted(dev) || + dma_kmalloc_needs_bounce(dev, size, dir)); +} + +static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, + int nents, enum dma_data_direction dir) +{ + struct scatterlist *s; + int i; + + if (!IS_ENABLED(CONFIG_SWIOTLB)) + return false; + + if (dev_is_untrusted(dev)) + return true; + + /* + * If kmalloc() buffers are not DMA-safe for this device and + * direction, check the individual lengths in the sg list. If any + * element is deemed unsafe, use the swiotlb for bouncing. + */ + if (!dma_kmalloc_safe(dev, dir)) { + for_each_sg(sg, s, nents, i) + if (!dma_kmalloc_size_aligned(s->length)) + return true; + } + + return false; +} + +/** + * iommu_dma_init_options - Initialize dma-iommu options + * @options: The options to be initialized + * @dev: Device the options are set for + * + * This allows tuning dma-iommu specific to device properties + */ +static void iommu_dma_init_options(struct iommu_dma_options *options, + struct device *dev) +{ + /* Shadowing IOTLB flushes do better with a single large queue */ + if (dev->iommu->shadow_on_flush) { + options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; + options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; + options->fq_size = IOVA_SINGLE_FQ_SIZE; + } else { + options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; + options->fq_size = IOVA_DEFAULT_FQ_SIZE; + options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; + } +} + /** * iommu_dma_init_domain - Initialise a DMA mapping domain * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() - * @base: IOVA at which the mappable address space starts - * @size: Size of IOVA space * @dev: Device the domain is being initialised for * - * @base and @size should be exact multiples of IOMMU page granularity to - * avoid rounding surprises. If necessary, we reserve the page at address 0 + * If the geometry and dma_range_map include address 0, we reserve that page * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but * any change which could make prior IOVAs invalid will fail. */ -int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, - u64 size, struct device *dev) +static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev) { struct iommu_dma_cookie *cookie = domain->iova_cookie; - struct iova_domain *iovad = &cookie->iovad; - unsigned long order, base_pfn, end_pfn; + const struct bus_dma_region *map = dev->dma_range_map; + unsigned long order, base_pfn; + struct iova_domain *iovad; + int ret; - if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) + if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA) return -EINVAL; + iovad = &cookie->iovad; + /* Use the smallest supported page size for IOVA granularity */ order = __ffs(domain->pgsize_bitmap); - base_pfn = max_t(unsigned long, 1, base >> order); - end_pfn = (base + size - 1) >> order; + base_pfn = 1; /* Check the domain allows at least some access to the device... */ - if (domain->geometry.force_aperture) { - if (base > domain->geometry.aperture_end || - base + size <= domain->geometry.aperture_start) { + if (map) { + if (dma_range_map_min(map) > domain->geometry.aperture_end || + dma_range_map_max(map) < domain->geometry.aperture_start) { pr_warn("specified DMA range outside IOMMU capability\n"); return -EFAULT; } - /* ...then finally give it a kicking to make sure it fits */ - base_pfn = max_t(unsigned long, base_pfn, - domain->geometry.aperture_start >> order); - end_pfn = min_t(unsigned long, end_pfn, - domain->geometry.aperture_end >> order); } - /* - * PCI devices may have larger DMA masks, but still prefer allocating - * within a 32-bit mask to avoid DAC addressing. Such limitations don't - * apply to the typical platform device, so for those we may as well - * leave the cache limit at the top of their range to save an rb_last() - * traversal on every allocation. - */ - if (dev && dev_is_pci(dev)) - end_pfn &= DMA_BIT_MASK(32) >> order; + /* ...then finally give it a kicking to make sure it fits */ + base_pfn = max_t(unsigned long, base_pfn, + domain->geometry.aperture_start >> order); /* start_pfn is always nonzero for an already-initialised domain */ if (iovad->start_pfn) { @@ -312,22 +693,24 @@ int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, pr_warn("Incompatible range for DMA domain\n"); return -EFAULT; } - /* - * If we have devices with different DMA masks, move the free - * area cache limit down for the benefit of the smaller one. - */ - iovad->dma_32bit_pfn = min(end_pfn + 1, iovad->dma_32bit_pfn); return 0; } - init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); - if (!dev) - return 0; + init_iova_domain(iovad, 1UL << order, base_pfn); + ret = iova_domain_init_rcaches(iovad); + if (ret) + return ret; + + iommu_dma_init_options(&cookie->options, dev); + + /* If the FQ fails we can simply fall back to strict mode */ + if (domain->type == IOMMU_DOMAIN_DMA_FQ && + (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) + domain->type = IOMMU_DOMAIN_DMA; return iova_reserve_iommu_regions(dev, domain); } -EXPORT_SYMBOL(iommu_dma_init_domain); /** * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API @@ -338,10 +721,15 @@ EXPORT_SYMBOL(iommu_dma_init_domain); * * Return: corresponding IOMMU API page protection flags */ -int dma_info_to_prot(enum dma_data_direction dir, bool coherent, +static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, unsigned long attrs) { - int prot = coherent ? IOMMU_CACHE : 0; + int prot; + + if (attrs & DMA_ATTR_MMIO) + prot = IOMMU_MMIO; + else + prot = coherent ? IOMMU_CACHE : 0; if (attrs & DMA_ATTR_PRIVILEGED) prot |= IOMMU_PRIV; @@ -359,66 +747,120 @@ int dma_info_to_prot(enum dma_data_direction dir, bool coherent, } static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, - size_t size, dma_addr_t dma_limit, struct device *dev) + size_t size, u64 dma_limit, struct device *dev) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; - unsigned long shift, iova_len, iova = 0; + unsigned long shift, iova_len, iova; - if (cookie->type == IOMMU_DMA_MSI_COOKIE) { - cookie->msi_iova += size; - return cookie->msi_iova - size; + if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) { + domain->msi_cookie->msi_iova += size; + return domain->msi_cookie->msi_iova - size; } shift = iova_shift(iovad); iova_len = size >> shift; - /* - * Freeing non-power-of-two-sized allocations back into the IOVA caches - * will come back to bite us badly, so we have to waste a bit of space - * rounding up anything cacheable to make sure that can't happen. The - * order of the unadjusted size will still match upon freeing. - */ - if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) - iova_len = roundup_pow_of_two(iova_len); - if (domain->geometry.force_aperture) - dma_limit = min(dma_limit, domain->geometry.aperture_end); + dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); - /* Try to get PCI devices a SAC address */ - if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) - iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift); + if (domain->geometry.force_aperture) + dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); - if (!iova) - iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift); + /* + * Try to use all the 32-bit PCI addresses first. The original SAC vs. + * DAC reasoning loses relevance with PCIe, but enough hardware and + * firmware bugs are still lurking out there that it's safest not to + * venture into the 64-bit space until necessary. + * + * If your device goes wrong after seeing the notice then likely either + * its driver is not setting DMA masks accurately, the hardware has + * some inherent bug in handling >32-bit addresses, or not all the + * expected address bits are wired up between the device and the IOMMU. + */ + if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { + iova = alloc_iova_fast(iovad, iova_len, + DMA_BIT_MASK(32) >> shift, false); + if (iova) + goto done; + + dev->iommu->pci_32bit_workaround = false; + dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); + } + iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); +done: return (dma_addr_t)iova << shift; } -static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, - dma_addr_t iova, size_t size) +static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova, + size_t size, struct iommu_iotlb_gather *gather) { - struct iova_domain *iovad = &cookie->iovad; + struct iova_domain *iovad = &domain->iova_cookie->iovad; /* The MSI case is only ever cleaning up its most recent allocation */ - if (cookie->type == IOMMU_DMA_MSI_COOKIE) - cookie->msi_iova -= size; + if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) + domain->msi_cookie->msi_iova -= size; + else if (gather && gather->queued) + queue_iova(domain->iova_cookie, iova_pfn(iovad, iova), + size >> iova_shift(iovad), + &gather->freelist); else free_iova_fast(iovad, iova_pfn(iovad, iova), size >> iova_shift(iovad)); } -static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, +static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t size) { + struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; size_t iova_off = iova_offset(iovad, dma_addr); + struct iommu_iotlb_gather iotlb_gather; + size_t unmapped; dma_addr -= iova_off; size = iova_align(iovad, size + iova_off); + iommu_iotlb_gather_init(&iotlb_gather); + iotlb_gather.queued = READ_ONCE(cookie->fq_domain); + + unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); + WARN_ON(unmapped != size); + + if (!iotlb_gather.queued) + iommu_iotlb_sync(domain, &iotlb_gather); + iommu_dma_free_iova(domain, dma_addr, size, &iotlb_gather); +} + +static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, + size_t size, int prot, u64 dma_mask) +{ + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + size_t iova_off = iova_offset(iovad, phys); + dma_addr_t iova; + + if (static_branch_unlikely(&iommu_deferred_attach_enabled) && + iommu_deferred_attach(dev, domain)) + return DMA_MAPPING_ERROR; + + /* If anyone ever wants this we'd need support in the IOVA allocator */ + if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad), + "Unsupported alignment constraint\n")) + return DMA_MAPPING_ERROR; + + size = iova_align(iovad, size + iova_off); + + iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); + if (!iova) + return DMA_MAPPING_ERROR; - WARN_ON(iommu_unmap(domain, dma_addr, size) != size); - iommu_dma_free_iova(cookie, dma_addr, size); + if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { + iommu_dma_free_iova(domain, iova, size, NULL); + return DMA_MAPPING_ERROR; + } + return iova + iova_off; } static void __iommu_dma_free_pages(struct page **pages, int count) @@ -428,20 +870,17 @@ static void __iommu_dma_free_pages(struct page **pages, int count) kvfree(pages); } -static struct page **__iommu_dma_alloc_pages(unsigned int count, - unsigned long order_mask, gfp_t gfp) +static struct page **__iommu_dma_alloc_pages(struct device *dev, + unsigned int count, unsigned long order_mask, gfp_t gfp) { struct page **pages; - unsigned int i = 0, array_size = count * sizeof(*pages); + unsigned int i = 0, nid = dev_to_node(dev); - order_mask &= (2U << MAX_ORDER) - 1; + order_mask &= GENMASK(MAX_PAGE_ORDER, 0); if (!order_mask) return NULL; - if (array_size <= PAGE_SIZE) - pages = kzalloc(array_size, GFP_KERNEL); - else - pages = vzalloc(array_size); + pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); if (!pages) return NULL; @@ -457,24 +896,20 @@ static struct page **__iommu_dma_alloc_pages(unsigned int count, * than a necessity, hence using __GFP_NORETRY until * falling back to minimum-order allocations. */ - for (order_mask &= (2U << __fls(count)) - 1; + for (order_mask &= GENMASK(__fls(count), 0); order_mask; order_mask &= ~order_size) { unsigned int order = __fls(order_mask); + gfp_t alloc_flags = gfp; order_size = 1U << order; - page = alloc_pages((order_mask - order_size) ? - gfp | __GFP_NORETRY : gfp, order); + if (order_mask > order_size) + alloc_flags |= __GFP_NORETRY; + page = alloc_pages_node(nid, alloc_flags, order); if (!page) continue; - if (!order) - break; - if (!PageCompound(page)) { + if (order) split_page(page, order); - break; - } else if (!split_huge_page(page)) { - break; - } - __free_pages(page, order); + break; } if (!page) { __iommu_dma_free_pages(pages, i); @@ -487,55 +922,26 @@ static struct page **__iommu_dma_alloc_pages(unsigned int count, return pages; } -/** - * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() - * @dev: Device which owns this buffer - * @pages: Array of buffer pages as returned by iommu_dma_alloc() - * @size: Size of buffer in bytes - * @handle: DMA address of buffer - * - * Frees both the pages associated with the buffer, and the array - * describing them - */ -void iommu_dma_free(struct device *dev, struct page **pages, size_t size, - dma_addr_t *handle) -{ - __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size); - __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); - *handle = IOMMU_MAPPING_ERROR; -} - -/** - * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space - * @dev: Device to allocate memory for. Must be a real device - * attached to an iommu_dma_domain - * @size: Size of buffer in bytes - * @gfp: Allocation flags - * @attrs: DMA attributes for this allocation - * @prot: IOMMU mapping flags - * @handle: Out argument for allocated DMA handle - * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the - * given VA/PA are visible to the given non-coherent device. - * - * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, +/* + * If size is less than PAGE_SIZE, then a full CPU page will be allocated, * but an IOMMU which supports smaller pages might not map the whole thing. - * - * Return: Array of struct page pointers describing the buffer, - * or NULL on failure. */ -struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, - unsigned long attrs, int prot, dma_addr_t *handle, - void (*flush_page)(struct device *, const void *, phys_addr_t)) +static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, + size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs) { - struct iommu_domain *domain = iommu_get_domain_for_dev(dev); + struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; + bool coherent = dev_is_dma_coherent(dev); + int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); + unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; struct page **pages; - struct sg_table sgt; dma_addr_t iova; - unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; + ssize_t ret; - *handle = IOMMU_MAPPING_ERROR; + if (static_branch_unlikely(&iommu_deferred_attach_enabled) && + iommu_deferred_attach(dev, domain)) + return NULL; min_size = alloc_sizes & -alloc_sizes; if (min_size < PAGE_SIZE) { @@ -548,7 +954,8 @@ struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, alloc_sizes = min_size; count = PAGE_ALIGN(size) >> PAGE_SHIFT; - pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); + pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, + gfp); if (!pages) return NULL; @@ -557,97 +964,290 @@ struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, if (!iova) goto out_free_pages; - if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) + /* + * Remove the zone/policy flags from the GFP - these are applied to the + * __iommu_dma_alloc_pages() but are not used for the supporting + * internal allocations that follow. + */ + gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); + + if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) goto out_free_iova; - if (!(prot & IOMMU_CACHE)) { - struct sg_mapping_iter miter; - /* - * The CPU-centric flushing implied by SG_MITER_TO_SG isn't - * sufficient here, so skip it by using the "wrong" direction. - */ - sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); - while (sg_miter_next(&miter)) - flush_page(dev, miter.addr, page_to_phys(miter.page)); - sg_miter_stop(&miter); + if (!(ioprot & IOMMU_CACHE)) { + struct scatterlist *sg; + int i; + + for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) + arch_dma_prep_coherent(sg_page(sg), sg->length); } - if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) - < size) + ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, + gfp); + if (ret < 0 || ret < size) goto out_free_sg; - *handle = iova; - sg_free_table(&sgt); + sgt->sgl->dma_address = iova; + sgt->sgl->dma_length = size; return pages; out_free_sg: - sg_free_table(&sgt); + sg_free_table(sgt); out_free_iova: - iommu_dma_free_iova(cookie, iova, size); + iommu_dma_free_iova(domain, iova, size, NULL); out_free_pages: __iommu_dma_free_pages(pages, count); return NULL; } -/** - * iommu_dma_mmap - Map a buffer into provided user VMA - * @pages: Array representing buffer from iommu_dma_alloc() - * @size: Size of buffer in bytes - * @vma: VMA describing requested userspace mapping +static void *iommu_dma_alloc_remap(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +{ + struct page **pages; + struct sg_table sgt; + void *vaddr; + pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); + + pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs); + if (!pages) + return NULL; + *dma_handle = sgt.sgl->dma_address; + sg_free_table(&sgt); + vaddr = dma_common_pages_remap(pages, size, prot, + __builtin_return_address(0)); + if (!vaddr) + goto out_unmap; + return vaddr; + +out_unmap: + __iommu_dma_unmap(dev, *dma_handle, size); + __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); + return NULL; +} + +/* + * This is the actual return value from the iommu_dma_alloc_noncontiguous. * - * Maps the pages of the buffer in @pages into @vma. The caller is responsible - * for verifying the correct size and protection of @vma beforehand. + * The users of the DMA API should only care about the sg_table, but to make + * the DMA-API internal vmaping and freeing easier we stash away the page + * array as well (except for the fallback case). This can go away any time, + * e.g. when a vmap-variant that takes a scatterlist comes along. */ +struct dma_sgt_handle { + struct sg_table sgt; + struct page **pages; +}; +#define sgt_handle(sgt) \ + container_of((sgt), struct dma_sgt_handle, sgt) -int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) +struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, + enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) { - unsigned long uaddr = vma->vm_start; - unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; - int ret = -ENXIO; + struct dma_sgt_handle *sh; - for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { - ret = vm_insert_page(vma, uaddr, pages[i]); - if (ret) - break; - uaddr += PAGE_SIZE; + sh = kmalloc(sizeof(*sh), gfp); + if (!sh) + return NULL; + + sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs); + if (!sh->pages) { + kfree(sh); + return NULL; } - return ret; + return &sh->sgt; } -static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, - size_t size, int prot) +void iommu_dma_free_noncontiguous(struct device *dev, size_t size, + struct sg_table *sgt, enum dma_data_direction dir) { - struct iommu_domain *domain = iommu_get_domain_for_dev(dev); - struct iommu_dma_cookie *cookie = domain->iova_cookie; - size_t iova_off = 0; - dma_addr_t iova; + struct dma_sgt_handle *sh = sgt_handle(sgt); + + __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); + __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); + sg_free_table(&sh->sgt); + kfree(sh); +} + +void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size, + struct sg_table *sgt) +{ + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); +} + +int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, + size_t size, struct sg_table *sgt) +{ + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) + return -ENXIO; + return vm_map_pages(vma, sgt_handle(sgt)->pages, count); +} - if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { - iova_off = iova_offset(&cookie->iovad, phys); - size = iova_align(&cookie->iovad, size + iova_off); +void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, + size_t size, enum dma_data_direction dir) +{ + phys_addr_t phys; + + if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) + return; + + phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_cpu(phys, size, dir); + + swiotlb_sync_single_for_cpu(dev, phys, size, dir); +} + +void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, + size_t size, enum dma_data_direction dir) +{ + phys_addr_t phys; + + if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) + return; + + phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); + swiotlb_sync_single_for_device(dev, phys, size, dir); + + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_device(phys, size, dir); +} + +void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + if (sg_dma_is_swiotlb(sgl)) + for_each_sg(sgl, sg, nelems, i) + iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), + sg->length, dir); + else if (!dev_is_dma_coherent(dev)) + for_each_sg(sgl, sg, nelems, i) + arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); +} + +void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + if (sg_dma_is_swiotlb(sgl)) + for_each_sg(sgl, sg, nelems, i) + iommu_dma_sync_single_for_device(dev, + sg_dma_address(sg), + sg->length, dir); + else if (!dev_is_dma_coherent(dev)) + for_each_sg(sgl, sg, nelems, i) + arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); +} + +static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iova_domain *iovad = &domain->iova_cookie->iovad; + + if (!is_swiotlb_active(dev)) { + dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); + return (phys_addr_t)DMA_MAPPING_ERROR; } - iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); - if (!iova) - return IOMMU_MAPPING_ERROR; + trace_swiotlb_bounced(dev, phys, size); - if (iommu_map(domain, iova, phys - iova_off, size, prot)) { - iommu_dma_free_iova(cookie, iova, size); - return IOMMU_MAPPING_ERROR; + phys = swiotlb_tbl_map_single(dev, phys, size, iova_mask(iovad), dir, + attrs); + + /* + * Untrusted devices should not see padding areas with random leftover + * kernel data, so zero the pre- and post-padding. + * swiotlb_tbl_map_single() has initialized the bounce buffer proper to + * the contents of the original memory buffer. + */ + if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_is_untrusted(dev)) { + size_t start, virt = (size_t)phys_to_virt(phys); + + /* Pre-padding */ + start = iova_align_down(iovad, virt); + memset((void *)start, 0, virt - start); + + /* Post-padding */ + start = virt + size; + memset((void *)start, 0, iova_align(iovad, start) - start); } - return iova + iova_off; + + return phys; } -dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, - unsigned long offset, size_t size, int prot) +/* + * Checks if a physical buffer has unaligned boundaries with respect to + * the IOMMU granule. Returns non-zero if either the start or end + * address is not aligned to the granule boundary. + */ +static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys, + size_t size) { - return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot); + return iova_offset(iovad, phys | size); } -void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, +dma_addr_t iommu_dma_map_phys(struct device *dev, phys_addr_t phys, size_t size, enum dma_data_direction dir, unsigned long attrs) { - __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size); + bool coherent = dev_is_dma_coherent(dev); + int prot = dma_info_to_prot(dir, coherent, attrs); + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + dma_addr_t iova, dma_mask = dma_get_mask(dev); + + /* + * If both the physical buffer start address and size are page aligned, + * we don't need to use a bounce page. + */ + if (dev_use_swiotlb(dev, size, dir) && + iova_unaligned(iovad, phys, size)) { + if (attrs & DMA_ATTR_MMIO) + return DMA_MAPPING_ERROR; + + phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs); + if (phys == (phys_addr_t)DMA_MAPPING_ERROR) + return DMA_MAPPING_ERROR; + } + + if (!coherent && !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) + arch_sync_dma_for_device(phys, size, dir); + + iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); + if (iova == DMA_MAPPING_ERROR && !(attrs & DMA_ATTR_MMIO)) + swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); + return iova; +} + +void iommu_dma_unmap_phys(struct device *dev, dma_addr_t dma_handle, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + phys_addr_t phys; + + if (attrs & DMA_ATTR_MMIO) { + __iommu_dma_unmap(dev, dma_handle, size); + return; + } + + phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); + if (WARN_ON(!phys)) + return; + + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) + arch_sync_dma_for_cpu(phys, size, dir); + + __iommu_dma_unmap(dev, dma_handle, size); + + swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); } /* @@ -667,14 +1267,29 @@ static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, for_each_sg(sg, s, nents, i) { /* Restore this segment's original unaligned fields first */ + dma_addr_t s_dma_addr = sg_dma_address(s); unsigned int s_iova_off = sg_dma_address(s); unsigned int s_length = sg_dma_len(s); unsigned int s_iova_len = s->length; + sg_dma_address(s) = DMA_MAPPING_ERROR; + sg_dma_len(s) = 0; + + if (sg_dma_is_bus_address(s)) { + if (i > 0) + cur = sg_next(cur); + + sg_dma_unmark_bus_address(s); + sg_dma_address(cur) = s_dma_addr; + sg_dma_len(cur) = s_length; + sg_dma_mark_bus_address(cur); + count++; + cur_len = 0; + continue; + } + s->offset += s_iova_off; s->length = s_length; - sg_dma_address(s) = IOMMU_MAPPING_ERROR; - sg_dma_len(s) = 0; /* * Now fill in the real DMA data. If... @@ -684,7 +1299,7 @@ static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, * - and wouldn't make the resulting output segment too long */ if (cur_len && !s_iova_off && (dma_addr & seg_mask) && - (cur_len + s_length <= max_len)) { + (max_len - cur_len >= s_length)) { /* ...then concatenate it with the previous one */ cur_len += s_length; } else { @@ -716,15 +1331,53 @@ static void __invalidate_sg(struct scatterlist *sg, int nents) int i; for_each_sg(sg, s, nents, i) { - if (sg_dma_address(s) != IOMMU_MAPPING_ERROR) - s->offset += sg_dma_address(s); - if (sg_dma_len(s)) - s->length = sg_dma_len(s); - sg_dma_address(s) = IOMMU_MAPPING_ERROR; + if (sg_dma_is_bus_address(s)) { + sg_dma_unmark_bus_address(s); + } else { + if (sg_dma_address(s) != DMA_MAPPING_ERROR) + s->offset += sg_dma_address(s); + if (sg_dma_len(s)) + s->length = sg_dma_len(s); + } + sg_dma_address(s) = DMA_MAPPING_ERROR; sg_dma_len(s) = 0; } } +static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + struct scatterlist *s; + int i; + + for_each_sg(sg, s, nents, i) + iommu_dma_unmap_phys(dev, sg_dma_address(s), + sg_dma_len(s), dir, attrs); +} + +static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + struct scatterlist *s; + int i; + + sg_dma_mark_swiotlb(sg); + + for_each_sg(sg, s, nents, i) { + sg_dma_address(s) = iommu_dma_map_phys(dev, sg_phys(s), + s->length, dir, attrs); + if (sg_dma_address(s) == DMA_MAPPING_ERROR) + goto out_unmap; + sg_dma_len(s) = s->length; + } + + return nents; + +out_unmap: + iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); + return -EIO; +} + /* * The DMA API client is passing in a scatterlist which could describe * any old buffer layout, but the IOMMU API requires everything to be @@ -732,18 +1385,33 @@ static void __invalidate_sg(struct scatterlist *sg, int nents) * impedance-matching, to be able to hand off a suitably-aligned list, * but still preserve the original offsets and sizes for the caller. */ -int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, - int nents, int prot) +int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, + enum dma_data_direction dir, unsigned long attrs) { - struct iommu_domain *domain = iommu_get_domain_for_dev(dev); + struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; struct scatterlist *s, *prev = NULL; + int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); + struct pci_p2pdma_map_state p2pdma_state = {}; dma_addr_t iova; size_t iova_len = 0; unsigned long mask = dma_get_seg_boundary(dev); + ssize_t ret; int i; + if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { + ret = iommu_deferred_attach(dev, domain); + if (ret) + goto out; + } + + if (dev_use_sg_swiotlb(dev, sg, nents, dir)) + return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); + + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + iommu_dma_sync_sg_for_device(dev, sg, nents, dir); + /* * Work out how much IOVA space we need, and align the segments to * IOVA granules for the IOMMU driver to handle. With some clever @@ -755,6 +1423,32 @@ int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, size_t s_length = s->length; size_t pad_len = (mask - iova_len + 1) & mask; + switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(s))) { + case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: + /* + * Mapping through host bridge should be mapped with + * regular IOVAs, thus we do nothing here and continue + * below. + */ + break; + case PCI_P2PDMA_MAP_NONE: + break; + case PCI_P2PDMA_MAP_BUS_ADDR: + /* + * iommu_map_sg() will skip this segment as it is marked + * as a bus address, __finalise_sg() will copy the dma + * address into the output segment. + */ + s->dma_address = pci_p2pdma_bus_addr_map( + p2pdma_state.mem, sg_phys(s)); + sg_dma_len(s) = sg->length; + sg_dma_mark_bus_address(s); + continue; + default: + ret = -EREMOTEIO; + goto out_restore_sg; + } + sg_dma_address(s) = s_iova_off; sg_dma_len(s) = s_length; s->offset -= s_iova_off; @@ -783,133 +1477,738 @@ int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, prev = s; } + if (!iova_len) + return __finalise_sg(dev, sg, nents, 0); + iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); - if (!iova) + if (!iova) { + ret = -ENOMEM; goto out_restore_sg; + } /* * We'll leave any physical concatenation to the IOMMU driver's * implementation - it knows better than we do. */ - if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) + ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); + if (ret < 0 || ret < iova_len) goto out_free_iova; return __finalise_sg(dev, sg, nents, iova); out_free_iova: - iommu_dma_free_iova(cookie, iova, iova_len); + iommu_dma_free_iova(domain, iova, iova_len, NULL); out_restore_sg: __invalidate_sg(sg, nents); - return 0; +out: + if (ret != -ENOMEM && ret != -EREMOTEIO) + return -EINVAL; + return ret; } void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { - dma_addr_t start, end; + dma_addr_t end = 0, start; struct scatterlist *tmp; int i; + + if (sg_dma_is_swiotlb(sg)) { + iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); + return; + } + + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); + /* * The scatterlist segments are mapped into a single - * contiguous IOVA allocation, so this is incredibly easy. + * contiguous IOVA allocation, the start and end points + * just have to be determined. */ - start = sg_dma_address(sg); - for_each_sg(sg_next(sg), tmp, nents - 1, i) { + for_each_sg(sg, tmp, nents, i) { + if (sg_dma_is_bus_address(tmp)) { + sg_dma_unmark_bus_address(tmp); + continue; + } + + if (sg_dma_len(tmp) == 0) + break; + + start = sg_dma_address(tmp); + break; + } + + nents -= i; + for_each_sg(tmp, tmp, nents, i) { + if (sg_dma_is_bus_address(tmp)) { + sg_dma_unmark_bus_address(tmp); + continue; + } + if (sg_dma_len(tmp) == 0) break; - sg = tmp; + + end = sg_dma_address(tmp) + sg_dma_len(tmp); } - end = sg_dma_address(sg) + sg_dma_len(sg); - __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start); + + if (end) + __iommu_dma_unmap(dev, start, end - start); } -dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, - size_t size, enum dma_data_direction dir, unsigned long attrs) +static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) +{ + size_t alloc_size = PAGE_ALIGN(size); + int count = alloc_size >> PAGE_SHIFT; + struct page *page = NULL, **pages = NULL; + + /* Non-coherent atomic allocation? Easy */ + if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + dma_free_from_pool(dev, cpu_addr, alloc_size)) + return; + + if (is_vmalloc_addr(cpu_addr)) { + /* + * If it the address is remapped, then it's either non-coherent + * or highmem CMA, or an iommu_dma_alloc_remap() construction. + */ + pages = dma_common_find_pages(cpu_addr); + if (!pages) + page = vmalloc_to_page(cpu_addr); + dma_common_free_remap(cpu_addr, alloc_size); + } else { + /* Lowmem means a coherent atomic or CMA allocation */ + page = virt_to_page(cpu_addr); + } + + if (pages) + __iommu_dma_free_pages(pages, count); + if (page) + dma_free_contiguous(dev, page, alloc_size); +} + +void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, + dma_addr_t handle, unsigned long attrs) +{ + __iommu_dma_unmap(dev, handle, size); + __iommu_dma_free(dev, size, cpu_addr); +} + +static void *iommu_dma_alloc_pages(struct device *dev, size_t size, + struct page **pagep, gfp_t gfp, unsigned long attrs) +{ + bool coherent = dev_is_dma_coherent(dev); + size_t alloc_size = PAGE_ALIGN(size); + int node = dev_to_node(dev); + struct page *page = NULL; + void *cpu_addr; + + page = dma_alloc_contiguous(dev, alloc_size, gfp); + if (!page) + page = alloc_pages_node(node, gfp, get_order(alloc_size)); + if (!page) + return NULL; + + if (!coherent || PageHighMem(page)) { + pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); + + cpu_addr = dma_common_contiguous_remap(page, alloc_size, + prot, __builtin_return_address(0)); + if (!cpu_addr) + goto out_free_pages; + + if (!coherent) + arch_dma_prep_coherent(page, size); + } else { + cpu_addr = page_address(page); + } + + *pagep = page; + memset(cpu_addr, 0, alloc_size); + return cpu_addr; +out_free_pages: + dma_free_contiguous(dev, page, alloc_size); + return NULL; +} + +void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, + gfp_t gfp, unsigned long attrs) +{ + bool coherent = dev_is_dma_coherent(dev); + int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); + struct page *page = NULL; + void *cpu_addr; + + gfp |= __GFP_ZERO; + + if (gfpflags_allow_blocking(gfp) && + !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { + return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); + } + + if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + !gfpflags_allow_blocking(gfp) && !coherent) + page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, + gfp, NULL); + else + cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); + if (!cpu_addr) + return NULL; + + *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, + dev->coherent_dma_mask); + if (*handle == DMA_MAPPING_ERROR) { + __iommu_dma_free(dev, size, cpu_addr); + return NULL; + } + + return cpu_addr; +} + +int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) +{ + unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned long pfn, off = vma->vm_pgoff; + int ret; + + vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); + + if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) + return ret; + + if (off >= nr_pages || vma_pages(vma) > nr_pages - off) + return -ENXIO; + + if (is_vmalloc_addr(cpu_addr)) { + struct page **pages = dma_common_find_pages(cpu_addr); + + if (pages) + return vm_map_pages(vma, pages, nr_pages); + pfn = vmalloc_to_pfn(cpu_addr); + } else { + pfn = page_to_pfn(virt_to_page(cpu_addr)); + } + + return remap_pfn_range(vma, vma->vm_start, pfn + off, + vma->vm_end - vma->vm_start, + vma->vm_page_prot); +} + +int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) +{ + struct page *page; + int ret; + + if (is_vmalloc_addr(cpu_addr)) { + struct page **pages = dma_common_find_pages(cpu_addr); + + if (pages) { + return sg_alloc_table_from_pages(sgt, pages, + PAGE_ALIGN(size) >> PAGE_SHIFT, + 0, size, GFP_KERNEL); + } + + page = vmalloc_to_page(cpu_addr); + } else { + page = virt_to_page(cpu_addr); + } + + ret = sg_alloc_table(sgt, 1, GFP_KERNEL); + if (!ret) + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + return ret; +} + +unsigned long iommu_dma_get_merge_boundary(struct device *dev) { - return __iommu_dma_map(dev, phys, size, - dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO); + struct iommu_domain *domain = iommu_get_dma_domain(dev); + + return (1UL << __ffs(domain->pgsize_bitmap)) - 1; } -void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, +size_t iommu_dma_opt_mapping_size(void) +{ + return iova_rcache_range(); +} + +size_t iommu_dma_max_mapping_size(struct device *dev) +{ + if (dev_is_untrusted(dev)) + return swiotlb_max_mapping_size(dev); + + return SIZE_MAX; +} + +/** + * dma_iova_try_alloc - Try to allocate an IOVA space + * @dev: Device to allocate the IOVA space for + * @state: IOVA state + * @phys: physical address + * @size: IOVA size + * + * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space + * for the given base address and size. + * + * Note: @phys is only used to calculate the IOVA alignment. Callers that always + * do PAGE_SIZE aligned transfers can safely pass 0 here. + * + * Returns %true if the IOVA-based DMA API can be used and IOVA space has been + * allocated, or %false if the regular DMA API should be used. + */ +bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state, + phys_addr_t phys, size_t size) +{ + struct iommu_dma_cookie *cookie; + struct iommu_domain *domain; + struct iova_domain *iovad; + size_t iova_off; + dma_addr_t addr; + + memset(state, 0, sizeof(*state)); + if (!use_dma_iommu(dev)) + return false; + + domain = iommu_get_dma_domain(dev); + cookie = domain->iova_cookie; + iovad = &cookie->iovad; + iova_off = iova_offset(iovad, phys); + + if (static_branch_unlikely(&iommu_deferred_attach_enabled) && + iommu_deferred_attach(dev, iommu_get_domain_for_dev(dev))) + return false; + + if (WARN_ON_ONCE(!size)) + return false; + + /* + * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu + * internals, make sure that caller didn't set it and/or + * didn't use this interface to map SIZE_MAX. + */ + if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB)) + return false; + + addr = iommu_dma_alloc_iova(domain, + iova_align(iovad, size + iova_off), + dma_get_mask(dev), dev); + if (!addr) + return false; + + state->addr = addr + iova_off; + state->__size = size; + return true; +} +EXPORT_SYMBOL_GPL(dma_iova_try_alloc); + +/** + * dma_iova_free - Free an IOVA space + * @dev: Device to free the IOVA space for + * @state: IOVA state + * + * Undoes a successful dma_try_iova_alloc(). + * + * Note that all dma_iova_link() calls need to be undone first. For callers + * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead + * which unlinks all ranges and frees the IOVA space in a single efficient + * operation. + */ +void dma_iova_free(struct device *dev, struct dma_iova_state *state) +{ + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + size_t iova_start_pad = iova_offset(iovad, state->addr); + size_t size = dma_iova_size(state); + + iommu_dma_free_iova(domain, state->addr - iova_start_pad, + iova_align(iovad, size + iova_start_pad), NULL); +} +EXPORT_SYMBOL_GPL(dma_iova_free); + +static int __dma_iova_link(struct device *dev, dma_addr_t addr, + phys_addr_t phys, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + bool coherent = dev_is_dma_coherent(dev); + int prot = dma_info_to_prot(dir, coherent, attrs); + + if (!coherent && !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) + arch_sync_dma_for_device(phys, size, dir); + + return iommu_map_nosync(iommu_get_dma_domain(dev), addr, phys, size, + prot, GFP_ATOMIC); +} + +static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr, + phys_addr_t phys, size_t bounce_len, + enum dma_data_direction dir, unsigned long attrs, + size_t iova_start_pad) +{ + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iova_domain *iovad = &domain->iova_cookie->iovad; + phys_addr_t bounce_phys; + int error; + + bounce_phys = iommu_dma_map_swiotlb(dev, phys, bounce_len, dir, attrs); + if (bounce_phys == DMA_MAPPING_ERROR) + return -ENOMEM; + + error = __dma_iova_link(dev, addr - iova_start_pad, + bounce_phys - iova_start_pad, + iova_align(iovad, bounce_len), dir, attrs); + if (error) + swiotlb_tbl_unmap_single(dev, bounce_phys, bounce_len, dir, + attrs); + return error; +} + +static int iommu_dma_iova_link_swiotlb(struct device *dev, + struct dma_iova_state *state, phys_addr_t phys, size_t offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { - __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size); + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + size_t iova_start_pad = iova_offset(iovad, phys); + size_t iova_end_pad = iova_offset(iovad, phys + size); + dma_addr_t addr = state->addr + offset; + size_t mapped = 0; + int error; + + if (iova_start_pad) { + size_t bounce_len = min(size, iovad->granule - iova_start_pad); + + error = iommu_dma_iova_bounce_and_link(dev, addr, phys, + bounce_len, dir, attrs, iova_start_pad); + if (error) + return error; + state->__size |= DMA_IOVA_USE_SWIOTLB; + + mapped += bounce_len; + size -= bounce_len; + if (!size) + return 0; + } + + size -= iova_end_pad; + error = __dma_iova_link(dev, addr + mapped, phys + mapped, size, dir, + attrs); + if (error) + goto out_unmap; + mapped += size; + + if (iova_end_pad) { + error = iommu_dma_iova_bounce_and_link(dev, addr + mapped, + phys + mapped, iova_end_pad, dir, attrs, 0); + if (error) + goto out_unmap; + state->__size |= DMA_IOVA_USE_SWIOTLB; + } + + return 0; + +out_unmap: + dma_iova_unlink(dev, state, 0, mapped, dir, attrs); + return error; +} + +/** + * dma_iova_link - Link a range of IOVA space + * @dev: DMA device + * @state: IOVA state + * @phys: physical address to link + * @offset: offset into the IOVA state to map into + * @size: size of the buffer + * @dir: DMA direction + * @attrs: attributes of mapping properties + * + * Link a range of IOVA space for the given IOVA state without IOTLB sync. + * This function is used to link multiple physical addresses in contiguous + * IOVA space without performing costly IOTLB sync. + * + * The caller is responsible to call to dma_iova_sync() to sync IOTLB at + * the end of linkage. + */ +int dma_iova_link(struct device *dev, struct dma_iova_state *state, + phys_addr_t phys, size_t offset, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + size_t iova_start_pad = iova_offset(iovad, phys); + + if (WARN_ON_ONCE(iova_start_pad && offset > 0)) + return -EIO; + + if (dev_use_swiotlb(dev, size, dir) && + iova_unaligned(iovad, phys, size)) { + if (attrs & DMA_ATTR_MMIO) + return -EPERM; + + return iommu_dma_iova_link_swiotlb(dev, state, phys, offset, + size, dir, attrs); + } + + return __dma_iova_link(dev, state->addr + offset - iova_start_pad, + phys - iova_start_pad, + iova_align(iovad, size + iova_start_pad), dir, attrs); } +EXPORT_SYMBOL_GPL(dma_iova_link); -int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) +/** + * dma_iova_sync - Sync IOTLB + * @dev: DMA device + * @state: IOVA state + * @offset: offset into the IOVA state to sync + * @size: size of the buffer + * + * Sync IOTLB for the given IOVA state. This function should be called on + * the IOVA-contiguous range created by one ore more dma_iova_link() calls + * to sync the IOTLB. + */ +int dma_iova_sync(struct device *dev, struct dma_iova_state *state, + size_t offset, size_t size) { - return dma_addr == IOMMU_MAPPING_ERROR; + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + dma_addr_t addr = state->addr + offset; + size_t iova_start_pad = iova_offset(iovad, addr); + + return iommu_sync_map(domain, addr - iova_start_pad, + iova_align(iovad, size + iova_start_pad)); +} +EXPORT_SYMBOL_GPL(dma_iova_sync); + +static void iommu_dma_iova_unlink_range_slow(struct device *dev, + dma_addr_t addr, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + size_t iova_start_pad = iova_offset(iovad, addr); + dma_addr_t end = addr + size; + + do { + phys_addr_t phys; + size_t len; + + phys = iommu_iova_to_phys(domain, addr); + if (WARN_ON(!phys)) + /* Something very horrible happen here */ + return; + + len = min_t(size_t, + end - addr, iovad->granule - iova_start_pad); + + if (!dev_is_dma_coherent(dev) && + !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) + arch_sync_dma_for_cpu(phys, len, dir); + + swiotlb_tbl_unmap_single(dev, phys, len, dir, attrs); + + addr += len; + iova_start_pad = 0; + } while (addr < end); +} + +static void __iommu_dma_iova_unlink(struct device *dev, + struct dma_iova_state *state, size_t offset, size_t size, + enum dma_data_direction dir, unsigned long attrs, + bool free_iova) +{ + struct iommu_domain *domain = iommu_get_dma_domain(dev); + struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct iova_domain *iovad = &cookie->iovad; + dma_addr_t addr = state->addr + offset; + size_t iova_start_pad = iova_offset(iovad, addr); + struct iommu_iotlb_gather iotlb_gather; + size_t unmapped; + + if ((state->__size & DMA_IOVA_USE_SWIOTLB) || + (!dev_is_dma_coherent(dev) && + !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO)))) + iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs); + + iommu_iotlb_gather_init(&iotlb_gather); + iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain); + + size = iova_align(iovad, size + iova_start_pad); + addr -= iova_start_pad; + unmapped = iommu_unmap_fast(domain, addr, size, &iotlb_gather); + WARN_ON(unmapped != size); + + if (!iotlb_gather.queued) + iommu_iotlb_sync(domain, &iotlb_gather); + if (free_iova) + iommu_dma_free_iova(domain, addr, size, &iotlb_gather); +} + +/** + * dma_iova_unlink - Unlink a range of IOVA space + * @dev: DMA device + * @state: IOVA state + * @offset: offset into the IOVA state to unlink + * @size: size of the buffer + * @dir: DMA direction + * @attrs: attributes of mapping properties + * + * Unlink a range of IOVA space for the given IOVA state. + */ +void dma_iova_unlink(struct device *dev, struct dma_iova_state *state, + size_t offset, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, false); +} +EXPORT_SYMBOL_GPL(dma_iova_unlink); + +/** + * dma_iova_destroy - Finish a DMA mapping transaction + * @dev: DMA device + * @state: IOVA state + * @mapped_len: number of bytes to unmap + * @dir: DMA direction + * @attrs: attributes of mapping properties + * + * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The + * range of IOVA from dma_addr to @mapped_len must all be linked, and be the + * only linked IOVA in state. + */ +void dma_iova_destroy(struct device *dev, struct dma_iova_state *state, + size_t mapped_len, enum dma_data_direction dir, + unsigned long attrs) +{ + if (mapped_len) + __iommu_dma_iova_unlink(dev, state, 0, mapped_len, dir, attrs, + true); + else + /* + * We can be here if first call to dma_iova_link() failed and + * there is nothing to unlink, so let's be more clear. + */ + dma_iova_free(dev, state); +} +EXPORT_SYMBOL_GPL(dma_iova_destroy); + +void iommu_setup_dma_ops(struct device *dev) +{ + struct iommu_domain *domain = iommu_get_domain_for_dev(dev); + + if (dev_is_pci(dev)) + dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac; + + dev->dma_iommu = iommu_is_dma_domain(domain); + if (dev->dma_iommu && iommu_dma_init_domain(domain, dev)) + goto out_err; + + return; +out_err: + pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", + dev_name(dev)); + dev->dma_iommu = false; +} + +static bool has_msi_cookie(const struct iommu_domain *domain) +{ + return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA || + domain->cookie_type == IOMMU_COOKIE_DMA_MSI); +} + +static size_t cookie_msi_granule(const struct iommu_domain *domain) +{ + switch (domain->cookie_type) { + case IOMMU_COOKIE_DMA_IOVA: + return domain->iova_cookie->iovad.granule; + case IOMMU_COOKIE_DMA_MSI: + return PAGE_SIZE; + default: + BUG(); + } +} + +static struct list_head *cookie_msi_pages(const struct iommu_domain *domain) +{ + switch (domain->cookie_type) { + case IOMMU_COOKIE_DMA_IOVA: + return &domain->iova_cookie->msi_page_list; + case IOMMU_COOKIE_DMA_MSI: + return &domain->msi_cookie->msi_page_list; + default: + BUG(); + } } static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, phys_addr_t msi_addr, struct iommu_domain *domain) { - struct iommu_dma_cookie *cookie = domain->iova_cookie; + struct list_head *msi_page_list = cookie_msi_pages(domain); struct iommu_dma_msi_page *msi_page; dma_addr_t iova; int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; - size_t size = cookie_msi_granule(cookie); + size_t size = cookie_msi_granule(domain); msi_addr &= ~(phys_addr_t)(size - 1); - list_for_each_entry(msi_page, &cookie->msi_page_list, list) + list_for_each_entry(msi_page, msi_page_list, list) if (msi_page->phys == msi_addr) return msi_page; - msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); + msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); if (!msi_page) return NULL; - iova = __iommu_dma_map(dev, msi_addr, size, prot); - if (iommu_dma_mapping_error(dev, iova)) + iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); + if (!iova) goto out_free_page; + if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) + goto out_free_iova; + INIT_LIST_HEAD(&msi_page->list); msi_page->phys = msi_addr; msi_page->iova = iova; - list_add(&msi_page->list, &cookie->msi_page_list); + list_add(&msi_page->list, msi_page_list); return msi_page; +out_free_iova: + iommu_dma_free_iova(domain, iova, size, NULL); out_free_page: kfree(msi_page); return NULL; } -void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) +int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc, + phys_addr_t msi_addr) { - struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); - struct iommu_domain *domain = iommu_get_domain_for_dev(dev); - struct iommu_dma_cookie *cookie; - struct iommu_dma_msi_page *msi_page; - phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; - unsigned long flags; - - if (!domain || !domain->iova_cookie) - return; + struct device *dev = msi_desc_to_dev(desc); + const struct iommu_dma_msi_page *msi_page; - cookie = domain->iova_cookie; + if (!has_msi_cookie(domain)) { + msi_desc_set_iommu_msi_iova(desc, 0, 0); + return 0; + } - /* - * We disable IRQs to rule out a possible inversion against - * irq_desc_lock if, say, someone tries to retarget the affinity - * of an MSI from within an IPI handler. - */ - spin_lock_irqsave(&cookie->msi_lock, flags); + iommu_group_mutex_assert(dev); msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); - spin_unlock_irqrestore(&cookie->msi_lock, flags); + if (!msi_page) + return -ENOMEM; - if (WARN_ON(!msi_page)) { - /* - * We're called from a void callback, so the best we can do is - * 'fail' by filling the message with obviously bogus values. - * Since we got this far due to an IOMMU being present, it's - * not like the existing address would have worked anyway... - */ - msg->address_hi = ~0U; - msg->address_lo = ~0U; - msg->data = ~0U; - } else { - msg->address_hi = upper_32_bits(msi_page->iova); - msg->address_lo &= cookie_msi_granule(cookie) - 1; - msg->address_lo += lower_32_bits(msi_page->iova); - } + msi_desc_set_iommu_msi_iova(desc, msi_page->iova, + ilog2(cookie_msi_granule(domain))); + return 0; +} + +static int iommu_dma_init(void) +{ + if (is_kdump_kernel()) + static_branch_enable(&iommu_deferred_attach_enabled); + + return iova_cache_get(); } +arch_initcall(iommu_dma_init); |
