diff options
Diffstat (limited to 'drivers/md/persistent-data/dm-btree.c')
| -rw-r--r-- | drivers/md/persistent-data/dm-btree.c | 644 |
1 files changed, 559 insertions, 85 deletions
diff --git a/drivers/md/persistent-data/dm-btree.c b/drivers/md/persistent-data/dm-btree.c index 58b319757b1e..0c7a2e8d1846 100644 --- a/drivers/md/persistent-data/dm-btree.c +++ b/drivers/md/persistent-data/dm-btree.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011 Red Hat, Inc. * @@ -13,9 +14,11 @@ #define DM_MSG_PREFIX "btree" -/*---------------------------------------------------------------- +/* + *-------------------------------------------------------------- * Array manipulation - *--------------------------------------------------------------*/ + *-------------------------------------------------------------- + */ static void memcpy_disk(void *dest, const void *src, size_t len) __dm_written_to_disk(src) { @@ -23,8 +26,8 @@ static void memcpy_disk(void *dest, const void *src, size_t len) __dm_unbless_for_disk(src); } -static void array_insert(void *base, size_t elt_size, unsigned nr_elts, - unsigned index, void *elt) +static void array_insert(void *base, size_t elt_size, unsigned int nr_elts, + unsigned int index, void *elt) __dm_written_to_disk(elt) { if (index < nr_elts) @@ -71,26 +74,26 @@ static int upper_bound(struct btree_node *n, uint64_t key) void inc_children(struct dm_transaction_manager *tm, struct btree_node *n, struct dm_btree_value_type *vt) { - unsigned i; uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) - for (i = 0; i < nr_entries; i++) - dm_tm_inc(tm, value64(n, i)); + dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range); + else if (vt->inc) - for (i = 0; i < nr_entries; i++) - vt->inc(vt->context, value_ptr(n, i)); + vt->inc(vt->context, value_ptr(n, 0), nr_entries); } -static int insert_at(size_t value_size, struct btree_node *node, unsigned index, - uint64_t key, void *value) - __dm_written_to_disk(value) +static int insert_at(size_t value_size, struct btree_node *node, unsigned int index, + uint64_t key, void *value) + __dm_written_to_disk(value) { uint32_t nr_entries = le32_to_cpu(node->header.nr_entries); + uint32_t max_entries = le32_to_cpu(node->header.max_entries); __le64 key_le = cpu_to_le64(key); if (index > nr_entries || - index >= le32_to_cpu(node->header.max_entries)) { + index >= max_entries || + nr_entries >= max_entries) { DMERR("too many entries in btree node for insert"); __dm_unbless_for_disk(value); return -ENOMEM; @@ -162,9 +165,9 @@ EXPORT_SYMBOL_GPL(dm_btree_empty); struct frame { struct dm_block *b; struct btree_node *n; - unsigned level; - unsigned nr_children; - unsigned current_child; + unsigned int level; + unsigned int nr_children; + unsigned int current_child; }; struct del_stack { @@ -193,7 +196,7 @@ static int unprocessed_frames(struct del_stack *s) static void prefetch_children(struct del_stack *s, struct frame *f) { - unsigned i; + unsigned int i; struct dm_block_manager *bm = dm_tm_get_bm(s->tm); for (i = 0; i < f->nr_children; i++) @@ -205,7 +208,7 @@ static bool is_internal_level(struct dm_btree_info *info, struct frame *f) return f->level < (info->levels - 1); } -static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) +static int push_frame(struct del_stack *s, dm_block_t b, unsigned int level) { int r; uint32_t ref_count; @@ -318,13 +321,9 @@ int dm_btree_del(struct dm_btree_info *info, dm_block_t root) goto out; } else { - if (info->value_type.dec) { - unsigned i; - - for (i = 0; i < f->nr_children; i++) - info->value_type.dec(info->value_type.context, - value_ptr(f->n, i)); - } + if (info->value_type.dec) + info->value_type.dec(info->value_type.context, + value_ptr(f->n, 0), f->nr_children); pop_frame(s); } } @@ -366,7 +365,8 @@ static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key, } while (!(flags & LEAF_NODE)); *result_key = le64_to_cpu(ro_node(s)->keys[i]); - memcpy(v, value_ptr(ro_node(s), i), value_size); + if (v) + memcpy(v, value_ptr(ro_node(s), i), value_size); return 0; } @@ -374,7 +374,7 @@ static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key, int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, void *value_le) { - unsigned level, last_level = info->levels - 1; + unsigned int level, last_level = info->levels - 1; int r = -ENODATA; uint64_t rkey; __le64 internal_value_le; @@ -470,7 +470,7 @@ out: int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, uint64_t *rkey, void *value_le) { - unsigned level; + unsigned int level; int r = -ENODATA; __le64 internal_value_le; struct ro_spine spine; @@ -496,9 +496,131 @@ out: exit_ro_spine(&spine); return r; } - EXPORT_SYMBOL_GPL(dm_btree_lookup_next); +/*----------------------------------------------------------------*/ + +/* + * Copies entries from one region of a btree node to another. The regions + * must not overlap. + */ +static void copy_entries(struct btree_node *dest, unsigned int dest_offset, + struct btree_node *src, unsigned int src_offset, + unsigned int count) +{ + size_t value_size = le32_to_cpu(dest->header.value_size); + + memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t)); + memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size); +} + +/* + * Moves entries from one region fo a btree node to another. The regions + * may overlap. + */ +static void move_entries(struct btree_node *dest, unsigned int dest_offset, + struct btree_node *src, unsigned int src_offset, + unsigned int count) +{ + size_t value_size = le32_to_cpu(dest->header.value_size); + + memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t)); + memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size); +} + +/* + * Erases the first 'count' entries of a btree node, shifting following + * entries down into their place. + */ +static void shift_down(struct btree_node *n, unsigned int count) +{ + move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count); +} + +/* + * Moves entries in a btree node up 'count' places, making space for + * new entries at the start of the node. + */ +static void shift_up(struct btree_node *n, unsigned int count) +{ + move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries)); +} + +/* + * Redistributes entries between two btree nodes to make them + * have similar numbers of entries. + */ +static void redistribute2(struct btree_node *left, struct btree_node *right) +{ + unsigned int nr_left = le32_to_cpu(left->header.nr_entries); + unsigned int nr_right = le32_to_cpu(right->header.nr_entries); + unsigned int total = nr_left + nr_right; + unsigned int target_left = total / 2; + unsigned int target_right = total - target_left; + + if (nr_left < target_left) { + unsigned int delta = target_left - nr_left; + + copy_entries(left, nr_left, right, 0, delta); + shift_down(right, delta); + } else if (nr_left > target_left) { + unsigned int delta = nr_left - target_left; + + if (nr_right) + shift_up(right, delta); + copy_entries(right, 0, left, target_left, delta); + } + + left->header.nr_entries = cpu_to_le32(target_left); + right->header.nr_entries = cpu_to_le32(target_right); +} + +/* + * Redistribute entries between three nodes. Assumes the central + * node is empty. + */ +static void redistribute3(struct btree_node *left, struct btree_node *center, + struct btree_node *right) +{ + unsigned int nr_left = le32_to_cpu(left->header.nr_entries); + unsigned int nr_center = le32_to_cpu(center->header.nr_entries); + unsigned int nr_right = le32_to_cpu(right->header.nr_entries); + unsigned int total, target_left, target_center, target_right; + + BUG_ON(nr_center); + + total = nr_left + nr_right; + target_left = total / 3; + target_center = (total - target_left) / 2; + target_right = (total - target_left - target_center); + + if (nr_left < target_left) { + unsigned int left_short = target_left - nr_left; + + copy_entries(left, nr_left, right, 0, left_short); + copy_entries(center, 0, right, left_short, target_center); + shift_down(right, nr_right - target_right); + + } else if (nr_left < (target_left + target_center)) { + unsigned int left_to_center = nr_left - target_left; + + copy_entries(center, 0, left, target_left, left_to_center); + copy_entries(center, left_to_center, right, 0, target_center - left_to_center); + shift_down(right, nr_right - target_right); + + } else { + unsigned int right_short = target_right - nr_right; + + shift_up(right, right_short); + copy_entries(right, 0, left, nr_left - right_short, right_short); + copy_entries(center, 0, left, target_left, nr_left - target_left); + } + + left->header.nr_entries = cpu_to_le32(target_left); + center->header.nr_entries = cpu_to_le32(target_center); + right->header.nr_entries = cpu_to_le32(target_right); +} + /* * Splits a node by creating a sibling node and shifting half the nodes * contents across. Assumes there is a parent node, and it has room for @@ -529,12 +651,10 @@ EXPORT_SYMBOL_GPL(dm_btree_lookup_next); * * Where A* is a shadow of A. */ -static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index, - uint64_t key) +static int split_one_into_two(struct shadow_spine *s, unsigned int parent_index, + struct dm_btree_value_type *vt, uint64_t key) { int r; - size_t size; - unsigned nr_left, nr_right; struct dm_block *left, *right, *parent; struct btree_node *ln, *rn, *pn; __le64 location; @@ -548,36 +668,18 @@ static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index, ln = dm_block_data(left); rn = dm_block_data(right); - nr_left = le32_to_cpu(ln->header.nr_entries) / 2; - nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left; - - ln->header.nr_entries = cpu_to_le32(nr_left); - rn->header.flags = ln->header.flags; - rn->header.nr_entries = cpu_to_le32(nr_right); + rn->header.nr_entries = cpu_to_le32(0); rn->header.max_entries = ln->header.max_entries; rn->header.value_size = ln->header.value_size; - memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0])); - - size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ? - sizeof(uint64_t) : s->info->value_type.size; - memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left), - size * nr_right); + redistribute2(ln, rn); - /* - * Patch up the parent - */ + /* patch up the parent */ parent = shadow_parent(s); - pn = dm_block_data(parent); - location = cpu_to_le64(dm_block_location(left)); - __dm_bless_for_disk(&location); - memcpy_disk(value_ptr(pn, parent_index), - &location, sizeof(__le64)); location = cpu_to_le64(dm_block_location(right)); __dm_bless_for_disk(&location); - r = insert_at(sizeof(__le64), pn, parent_index + 1, le64_to_cpu(rn->keys[0]), &location); if (r) { @@ -585,6 +687,7 @@ static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index, return r; } + /* patch up the spine */ if (key < le64_to_cpu(rn->keys[0])) { unlock_block(s->info, right); s->nodes[1] = left; @@ -597,6 +700,121 @@ static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index, } /* + * We often need to modify a sibling node. This function shadows a particular + * child of the given parent node. Making sure to update the parent to point + * to the new shadow. + */ +static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, + struct btree_node *parent, unsigned int index, + struct dm_block **result) +{ + int r, inc; + dm_block_t root; + struct btree_node *node; + + root = value64(parent, index); + + r = dm_tm_shadow_block(info->tm, root, &btree_node_validator, + result, &inc); + if (r) + return r; + + node = dm_block_data(*result); + + if (inc) + inc_children(info->tm, node, vt); + + *((__le64 *) value_ptr(parent, index)) = + cpu_to_le64(dm_block_location(*result)); + + return 0; +} + +/* + * Splits two nodes into three. This is more work, but results in fuller + * nodes, so saves metadata space. + */ +static int split_two_into_three(struct shadow_spine *s, unsigned int parent_index, + struct dm_btree_value_type *vt, uint64_t key) +{ + int r; + unsigned int middle_index; + struct dm_block *left, *middle, *right, *parent; + struct btree_node *ln, *rn, *mn, *pn; + __le64 location; + + parent = shadow_parent(s); + pn = dm_block_data(parent); + + if (parent_index == 0) { + middle_index = 1; + left = shadow_current(s); + r = shadow_child(s->info, vt, pn, parent_index + 1, &right); + if (r) + return r; + } else { + middle_index = parent_index; + right = shadow_current(s); + r = shadow_child(s->info, vt, pn, parent_index - 1, &left); + if (r) + return r; + } + + r = new_block(s->info, &middle); + if (r < 0) + return r; + + ln = dm_block_data(left); + mn = dm_block_data(middle); + rn = dm_block_data(right); + + mn->header.nr_entries = cpu_to_le32(0); + mn->header.flags = ln->header.flags; + mn->header.max_entries = ln->header.max_entries; + mn->header.value_size = ln->header.value_size; + + redistribute3(ln, mn, rn); + + /* patch up the parent */ + pn->keys[middle_index] = rn->keys[0]; + location = cpu_to_le64(dm_block_location(middle)); + __dm_bless_for_disk(&location); + r = insert_at(sizeof(__le64), pn, middle_index, + le64_to_cpu(mn->keys[0]), &location); + if (r) { + if (shadow_current(s) != left) + unlock_block(s->info, left); + + unlock_block(s->info, middle); + + if (shadow_current(s) != right) + unlock_block(s->info, right); + + return r; + } + + + /* patch up the spine */ + if (key < le64_to_cpu(mn->keys[0])) { + unlock_block(s->info, middle); + unlock_block(s->info, right); + s->nodes[1] = left; + } else if (key < le64_to_cpu(rn->keys[0])) { + unlock_block(s->info, left); + unlock_block(s->info, right); + s->nodes[1] = middle; + } else { + unlock_block(s->info, left); + unlock_block(s->info, middle); + s->nodes[1] = right; + } + + return 0; +} + +/*----------------------------------------------------------------*/ + +/* * Splits a node by creating two new children beneath the given node. * * Before: @@ -621,46 +839,47 @@ static int btree_split_beneath(struct shadow_spine *s, uint64_t key) { int r; size_t size; - unsigned nr_left, nr_right; + unsigned int nr_left, nr_right; struct dm_block *left, *right, *new_parent; struct btree_node *pn, *ln, *rn; __le64 val; new_parent = shadow_current(s); + pn = dm_block_data(new_parent); + size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ? + sizeof(__le64) : s->info->value_type.size; + + /* create & init the left block */ r = new_block(s->info, &left); if (r < 0) return r; + ln = dm_block_data(left); + nr_left = le32_to_cpu(pn->header.nr_entries) / 2; + + ln->header.flags = pn->header.flags; + ln->header.nr_entries = cpu_to_le32(nr_left); + ln->header.max_entries = pn->header.max_entries; + ln->header.value_size = pn->header.value_size; + memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0])); + memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size); + + /* create & init the right block */ r = new_block(s->info, &right); if (r < 0) { unlock_block(s->info, left); return r; } - pn = dm_block_data(new_parent); - ln = dm_block_data(left); rn = dm_block_data(right); - - nr_left = le32_to_cpu(pn->header.nr_entries) / 2; nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left; - ln->header.flags = pn->header.flags; - ln->header.nr_entries = cpu_to_le32(nr_left); - ln->header.max_entries = pn->header.max_entries; - ln->header.value_size = pn->header.value_size; - rn->header.flags = pn->header.flags; rn->header.nr_entries = cpu_to_le32(nr_right); rn->header.max_entries = pn->header.max_entries; rn->header.value_size = pn->header.value_size; - - memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0])); memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0])); - - size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ? - sizeof(__le64) : s->info->value_type.size; - memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size); memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left), nr_right * size); @@ -688,9 +907,191 @@ static int btree_split_beneath(struct shadow_spine *s, uint64_t key) return 0; } +/*----------------------------------------------------------------*/ + +/* + * Redistributes a node's entries with its left sibling. + */ +static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt, + unsigned int parent_index, uint64_t key) +{ + int r; + struct dm_block *sib; + struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s)); + + r = shadow_child(s->info, vt, parent, parent_index - 1, &sib); + if (r) + return r; + + left = dm_block_data(sib); + right = dm_block_data(shadow_current(s)); + redistribute2(left, right); + *key_ptr(parent, parent_index) = right->keys[0]; + + if (key < le64_to_cpu(right->keys[0])) { + unlock_block(s->info, s->nodes[1]); + s->nodes[1] = sib; + } else { + unlock_block(s->info, sib); + } + + return 0; +} + +/* + * Redistributes a nodes entries with its right sibling. + */ +static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt, + unsigned int parent_index, uint64_t key) +{ + int r; + struct dm_block *sib; + struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s)); + + r = shadow_child(s->info, vt, parent, parent_index + 1, &sib); + if (r) + return r; + + left = dm_block_data(shadow_current(s)); + right = dm_block_data(sib); + redistribute2(left, right); + *key_ptr(parent, parent_index + 1) = right->keys[0]; + + if (key < le64_to_cpu(right->keys[0])) { + unlock_block(s->info, sib); + } else { + unlock_block(s->info, s->nodes[1]); + s->nodes[1] = sib; + } + + return 0; +} + +/* + * Returns the number of spare entries in a node. + */ +static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned int *space) +{ + int r; + unsigned int nr_entries; + struct dm_block *block; + struct btree_node *node; + + r = bn_read_lock(info, b, &block); + if (r) + return r; + + node = dm_block_data(block); + nr_entries = le32_to_cpu(node->header.nr_entries); + *space = le32_to_cpu(node->header.max_entries) - nr_entries; + + unlock_block(info, block); + return 0; +} + +/* + * Make space in a node, either by moving some entries to a sibling, + * or creating a new sibling node. SPACE_THRESHOLD defines the minimum + * number of free entries that must be in the sibling to make the move + * worth while. If the siblings are shared (eg, part of a snapshot), + * then they are not touched, since this break sharing and so consume + * more space than we save. + */ +#define SPACE_THRESHOLD 8 +static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt, + unsigned int parent_index, uint64_t key) +{ + int r; + struct btree_node *parent = dm_block_data(shadow_parent(s)); + unsigned int nr_parent = le32_to_cpu(parent->header.nr_entries); + unsigned int free_space; + int left_shared = 0, right_shared = 0; + + /* Should we move entries to the left sibling? */ + if (parent_index > 0) { + dm_block_t left_b = value64(parent, parent_index - 1); + + r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared); + if (r) + return r; + + if (!left_shared) { + r = get_node_free_space(s->info, left_b, &free_space); + if (r) + return r; + + if (free_space >= SPACE_THRESHOLD) + return rebalance_left(s, vt, parent_index, key); + } + } + + /* Should we move entries to the right sibling? */ + if (parent_index < (nr_parent - 1)) { + dm_block_t right_b = value64(parent, parent_index + 1); + + r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared); + if (r) + return r; + + if (!right_shared) { + r = get_node_free_space(s->info, right_b, &free_space); + if (r) + return r; + + if (free_space >= SPACE_THRESHOLD) + return rebalance_right(s, vt, parent_index, key); + } + } + + /* + * We need to split the node, normally we split two nodes + * into three. But when inserting a sequence that is either + * monotonically increasing or decreasing it's better to split + * a single node into two. + */ + if (left_shared || right_shared || (nr_parent <= 2) || + (parent_index == 0) || (parent_index + 1 == nr_parent)) { + return split_one_into_two(s, parent_index, vt, key); + } else { + return split_two_into_three(s, parent_index, vt, key); + } +} + +/* + * Does the node contain a particular key? + */ +static bool contains_key(struct btree_node *node, uint64_t key) +{ + int i = lower_bound(node, key); + + if (i >= 0 && le64_to_cpu(node->keys[i]) == key) + return true; + + return false; +} + +/* + * In general we preemptively make sure there's a free entry in every + * node on the spine when doing an insert. But we can avoid that with + * leaf nodes if we know it's an overwrite. + */ +static bool has_space_for_insert(struct btree_node *node, uint64_t key) +{ + if (node->header.nr_entries == node->header.max_entries) { + if (le32_to_cpu(node->header.flags) & LEAF_NODE) { + /* we don't need space if it's an overwrite */ + return contains_key(node, key); + } + + return false; + } + + return true; +} + static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, struct dm_btree_value_type *vt, - uint64_t key, unsigned *index) + uint64_t key, unsigned int *index) { int r, i = *index, top = 1; struct btree_node *node; @@ -717,17 +1118,18 @@ static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, node = dm_block_data(shadow_current(s)); - if (node->header.nr_entries == node->header.max_entries) { + if (!has_space_for_insert(node, key)) { if (top) r = btree_split_beneath(s, key); else - r = btree_split_sibling(s, i, key); + r = rebalance_or_split(s, vt, i, key); if (r < 0) return r; - } - node = dm_block_data(shadow_current(s)); + /* making space can cause the current node to change */ + node = dm_block_data(shadow_current(s)); + } i = lower_bound(node, key); @@ -751,10 +1153,81 @@ static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, return 0; } +static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root, + uint64_t key, int *index) +{ + int r, i = -1; + struct btree_node *node; + + *index = 0; + for (;;) { + r = shadow_step(s, root, &s->info->value_type); + if (r < 0) + return r; + + node = dm_block_data(shadow_current(s)); + + /* + * We have to patch up the parent node, ugly, but I don't + * see a way to do this automatically as part of the spine + * op. + */ + if (shadow_has_parent(s) && i >= 0) { + __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); + + __dm_bless_for_disk(&location); + memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i), + &location, sizeof(__le64)); + } + + node = dm_block_data(shadow_current(s)); + i = lower_bound(node, key); + + BUG_ON(i < 0); + BUG_ON(i >= le32_to_cpu(node->header.nr_entries)); + + if (le32_to_cpu(node->header.flags) & LEAF_NODE) { + if (key != le64_to_cpu(node->keys[i])) + return -EINVAL; + break; + } + + root = value64(node, i); + } + + *index = i; + return 0; +} + +int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root, + uint64_t key, int *index, + dm_block_t *new_root, struct dm_block **leaf) +{ + int r; + struct shadow_spine spine; + + BUG_ON(info->levels > 1); + init_shadow_spine(&spine, info); + r = __btree_get_overwrite_leaf(&spine, root, key, index); + if (!r) { + *new_root = shadow_root(&spine); + *leaf = shadow_current(&spine); + + /* + * Decrement the count so exit_shadow_spine() doesn't + * unlock the leaf. + */ + spine.count--; + } + exit_shadow_spine(&spine); + + return r; +} + static bool need_insert(struct btree_node *node, uint64_t *keys, - unsigned level, unsigned index) + unsigned int level, unsigned int index) { - return ((index >= le32_to_cpu(node->header.nr_entries)) || + return ((index >= le32_to_cpu(node->header.nr_entries)) || (le64_to_cpu(node->keys[index]) != keys[level])); } @@ -764,7 +1237,7 @@ static int insert(struct dm_btree_info *info, dm_block_t root, __dm_written_to_disk(value) { int r; - unsigned level, index = -1, last_level = info->levels - 1; + unsigned int level, index = -1, last_level = info->levels - 1; dm_block_t block = root; struct shadow_spine spine; struct btree_node *n; @@ -827,7 +1300,7 @@ static int insert(struct dm_btree_info *info, dm_block_t root, value_ptr(n, index), value))) { info->value_type.dec(info->value_type.context, - value_ptr(n, index)); + value_ptr(n, index), 1); } memcpy_disk(value_ptr(n, index), value, info->value_type.size); @@ -847,7 +1320,7 @@ bad_unblessed: int dm_btree_insert(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, void *value, dm_block_t *new_root) - __dm_written_to_disk(value) + __dm_written_to_disk(value) { return insert(info, root, keys, value, new_root, NULL); } @@ -856,7 +1329,7 @@ EXPORT_SYMBOL_GPL(dm_btree_insert); int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, void *value, dm_block_t *new_root, int *inserted) - __dm_written_to_disk(value) + __dm_written_to_disk(value) { return insert(info, root, keys, value, new_root, inserted); } @@ -879,8 +1352,8 @@ static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest, i = le32_to_cpu(ro_node(s)->header.nr_entries); if (!i) return -ENODATA; - else - i--; + + i--; if (find_highest) *result_key = le64_to_cpu(ro_node(s)->keys[i]); @@ -950,7 +1423,7 @@ static int walk_node(struct dm_btree_info *info, dm_block_t block, void *context) { int r; - unsigned i, nr; + unsigned int i, nr; struct dm_block *node; struct btree_node *n; uint64_t keys; @@ -993,7 +1466,7 @@ EXPORT_SYMBOL_GPL(dm_btree_walk); static void prefetch_values(struct dm_btree_cursor *c) { - unsigned i, nr; + unsigned int i, nr; __le64 value_le; struct cursor_node *n = c->nodes + c->depth - 1; struct btree_node *bn = dm_block_data(n->b); @@ -1123,6 +1596,7 @@ EXPORT_SYMBOL_GPL(dm_btree_cursor_end); int dm_btree_cursor_next(struct dm_btree_cursor *c) { int r = inc_or_backtrack(c); + if (!r) { r = find_leaf(c); if (r) |
