summaryrefslogtreecommitdiff
path: root/drivers/md/raid1-10.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/md/raid1-10.c')
-rw-r--r--drivers/md/raid1-10.c305
1 files changed, 305 insertions, 0 deletions
diff --git a/drivers/md/raid1-10.c b/drivers/md/raid1-10.c
new file mode 100644
index 000000000000..521625756128
--- /dev/null
+++ b/drivers/md/raid1-10.c
@@ -0,0 +1,305 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Maximum size of each resync request */
+#define RESYNC_BLOCK_SIZE (64*1024)
+#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
+
+/*
+ * Number of guaranteed raid bios in case of extreme VM load:
+ */
+#define NR_RAID_BIOS 256
+
+/* when we get a read error on a read-only array, we redirect to another
+ * device without failing the first device, or trying to over-write to
+ * correct the read error. To keep track of bad blocks on a per-bio
+ * level, we store IO_BLOCKED in the appropriate 'bios' pointer
+ */
+#define IO_BLOCKED ((struct bio *)1)
+/* When we successfully write to a known bad-block, we need to remove the
+ * bad-block marking which must be done from process context. So we record
+ * the success by setting devs[n].bio to IO_MADE_GOOD
+ */
+#define IO_MADE_GOOD ((struct bio *)2)
+
+#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
+#define MAX_PLUG_BIO 32
+
+/* for managing resync I/O pages */
+struct resync_pages {
+ void *raid_bio;
+ struct page *pages[RESYNC_PAGES];
+};
+
+struct raid1_plug_cb {
+ struct blk_plug_cb cb;
+ struct bio_list pending;
+ unsigned int count;
+};
+
+static void rbio_pool_free(void *rbio, void *data)
+{
+ kfree(rbio);
+}
+
+static inline int resync_alloc_pages(struct resync_pages *rp,
+ gfp_t gfp_flags)
+{
+ int i;
+
+ for (i = 0; i < RESYNC_PAGES; i++) {
+ rp->pages[i] = alloc_page(gfp_flags);
+ if (!rp->pages[i])
+ goto out_free;
+ }
+
+ return 0;
+
+out_free:
+ while (--i >= 0)
+ put_page(rp->pages[i]);
+ return -ENOMEM;
+}
+
+static inline void resync_free_pages(struct resync_pages *rp)
+{
+ int i;
+
+ for (i = 0; i < RESYNC_PAGES; i++)
+ put_page(rp->pages[i]);
+}
+
+static inline void resync_get_all_pages(struct resync_pages *rp)
+{
+ int i;
+
+ for (i = 0; i < RESYNC_PAGES; i++)
+ get_page(rp->pages[i]);
+}
+
+static inline struct page *resync_fetch_page(struct resync_pages *rp,
+ unsigned idx)
+{
+ if (WARN_ON_ONCE(idx >= RESYNC_PAGES))
+ return NULL;
+ return rp->pages[idx];
+}
+
+/*
+ * 'strct resync_pages' stores actual pages used for doing the resync
+ * IO, and it is per-bio, so make .bi_private points to it.
+ */
+static inline struct resync_pages *get_resync_pages(struct bio *bio)
+{
+ return bio->bi_private;
+}
+
+/* generally called after bio_reset() for reseting bvec */
+static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp,
+ int size)
+{
+ int idx = 0;
+
+ /* initialize bvec table again */
+ do {
+ struct page *page = resync_fetch_page(rp, idx);
+ int len = min_t(int, size, PAGE_SIZE);
+
+ if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
+ bio->bi_status = BLK_STS_RESOURCE;
+ bio_endio(bio);
+ return;
+ }
+
+ size -= len;
+ } while (idx++ < RESYNC_PAGES && size > 0);
+}
+
+
+static inline void raid1_submit_write(struct bio *bio)
+{
+ struct md_rdev *rdev = (void *)bio->bi_bdev;
+
+ bio->bi_next = NULL;
+ bio_set_dev(bio, rdev->bdev);
+ if (test_bit(Faulty, &rdev->flags))
+ bio_io_error(bio);
+ else if (unlikely(bio_op(bio) == REQ_OP_DISCARD &&
+ !bdev_max_discard_sectors(bio->bi_bdev)))
+ /* Just ignore it */
+ bio_endio(bio);
+ else
+ submit_bio_noacct(bio);
+}
+
+static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
+ blk_plug_cb_fn unplug, int copies)
+{
+ struct raid1_plug_cb *plug = NULL;
+ struct blk_plug_cb *cb;
+
+ /*
+ * If bitmap is not enabled, it's safe to submit the io directly, and
+ * this can get optimal performance.
+ */
+ if (!md_bitmap_enabled(mddev, true)) {
+ raid1_submit_write(bio);
+ return true;
+ }
+
+ cb = blk_check_plugged(unplug, mddev, sizeof(*plug));
+ if (!cb)
+ return false;
+
+ plug = container_of(cb, struct raid1_plug_cb, cb);
+ bio_list_add(&plug->pending, bio);
+ if (++plug->count / MAX_PLUG_BIO >= copies) {
+ list_del(&cb->list);
+ cb->callback(cb, false);
+ }
+
+
+ return true;
+}
+
+/*
+ * current->bio_list will be set under submit_bio() context, in this case bitmap
+ * io will be added to the list and wait for current io submission to finish,
+ * while current io submission must wait for bitmap io to be done. In order to
+ * avoid such deadlock, submit bitmap io asynchronously.
+ */
+static inline void raid1_prepare_flush_writes(struct mddev *mddev)
+{
+ mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL);
+}
+
+/*
+ * Used by fix_read_error() to decay the per rdev read_errors.
+ * We halve the read error count for every hour that has elapsed
+ * since the last recorded read error.
+ */
+static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
+{
+ long cur_time_mon;
+ unsigned long hours_since_last;
+ unsigned int read_errors = atomic_read(&rdev->read_errors);
+
+ cur_time_mon = ktime_get_seconds();
+
+ if (rdev->last_read_error == 0) {
+ /* first time we've seen a read error */
+ rdev->last_read_error = cur_time_mon;
+ return;
+ }
+
+ hours_since_last = (long)(cur_time_mon -
+ rdev->last_read_error) / 3600;
+
+ rdev->last_read_error = cur_time_mon;
+
+ /*
+ * if hours_since_last is > the number of bits in read_errors
+ * just set read errors to 0. We do this to avoid
+ * overflowing the shift of read_errors by hours_since_last.
+ */
+ if (hours_since_last >= 8 * sizeof(read_errors))
+ atomic_set(&rdev->read_errors, 0);
+ else
+ atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
+}
+
+static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev)
+{
+ int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
+ int read_errors;
+
+ check_decay_read_errors(mddev, rdev);
+ read_errors = atomic_inc_return(&rdev->read_errors);
+ if (read_errors > max_read_errors) {
+ pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
+ mdname(mddev), rdev->bdev, read_errors, max_read_errors);
+ pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n",
+ mdname(mddev), rdev->bdev);
+ md_error(mddev, rdev);
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * raid1_check_read_range() - check a given read range for bad blocks,
+ * available read length is returned;
+ * @rdev: the rdev to read;
+ * @this_sector: read position;
+ * @len: read length;
+ *
+ * helper function for read_balance()
+ *
+ * 1) If there are no bad blocks in the range, @len is returned;
+ * 2) If the range are all bad blocks, 0 is returned;
+ * 3) If there are partial bad blocks:
+ * - If the bad block range starts after @this_sector, the length of first
+ * good region is returned;
+ * - If the bad block range starts before @this_sector, 0 is returned and
+ * the @len is updated to the offset into the region before we get to the
+ * good blocks;
+ */
+static inline int raid1_check_read_range(struct md_rdev *rdev,
+ sector_t this_sector, int *len)
+{
+ sector_t first_bad;
+ sector_t bad_sectors;
+
+ /* no bad block overlap */
+ if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors))
+ return *len;
+
+ /*
+ * bad block range starts offset into our range so we can return the
+ * number of sectors before the bad blocks start.
+ */
+ if (first_bad > this_sector)
+ return first_bad - this_sector;
+
+ /* read range is fully consumed by bad blocks. */
+ if (this_sector + *len <= first_bad + bad_sectors)
+ return 0;
+
+ /*
+ * final case, bad block range starts before or at the start of our
+ * range but does not cover our entire range so we still return 0 but
+ * update the length with the number of sectors before we get to the
+ * good ones.
+ */
+ *len = first_bad + bad_sectors - this_sector;
+ return 0;
+}
+
+/*
+ * Check if read should choose the first rdev.
+ *
+ * Balance on the whole device if no resync is going on (recovery is ok) or
+ * below the resync window. Otherwise, take the first readable disk.
+ */
+static inline bool raid1_should_read_first(struct mddev *mddev,
+ sector_t this_sector, int len)
+{
+ if ((mddev->resync_offset < this_sector + len))
+ return true;
+
+ if (mddev_is_clustered(mddev) &&
+ mddev->cluster_ops->area_resyncing(mddev, READ, this_sector,
+ this_sector + len))
+ return true;
+
+ return false;
+}
+
+/*
+ * bio with REQ_RAHEAD or REQ_NOWAIT can fail at anytime, before such IO is
+ * submitted to the underlying disks, hence don't record badblocks or retry
+ * in this case.
+ */
+static inline bool raid1_should_handle_error(struct bio *bio)
+{
+ return !(bio->bi_opf & (REQ_RAHEAD | REQ_NOWAIT));
+}