diff options
Diffstat (limited to 'drivers/misc/lkdtm/heap.c')
| -rw-r--r-- | drivers/misc/lkdtm/heap.c | 231 |
1 files changed, 201 insertions, 30 deletions
diff --git a/drivers/misc/lkdtm/heap.c b/drivers/misc/lkdtm/heap.c index 3c5cec85edce..c1a05b935894 100644 --- a/drivers/misc/lkdtm/heap.c +++ b/drivers/misc/lkdtm/heap.c @@ -4,7 +4,9 @@ * page allocation and slab allocations. */ #include "lkdtm.h" +#include <linux/kfence.h> #include <linux/slab.h> +#include <linux/vmalloc.h> #include <linux/sched.h> static struct kmem_cache *double_free_cache; @@ -12,22 +14,56 @@ static struct kmem_cache *a_cache; static struct kmem_cache *b_cache; /* + * Using volatile here means the compiler cannot ever make assumptions + * about this value. This means compile-time length checks involving + * this variable cannot be performed; only run-time checks. + */ +static volatile int __offset = 1; + +/* + * If there aren't guard pages, it's likely that a consecutive allocation will + * let us overflow into the second allocation without overwriting something real. + * + * This should always be caught because there is an unconditional unmapped + * page after vmap allocations. + */ +static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void) +{ + char *one, *two; + + one = vzalloc(PAGE_SIZE); + OPTIMIZER_HIDE_VAR(one); + two = vzalloc(PAGE_SIZE); + + pr_info("Attempting vmalloc linear overflow ...\n"); + memset(one, 0xAA, PAGE_SIZE + __offset); + + vfree(two); + vfree(one); +} + +/* * This tries to stay within the next largest power-of-2 kmalloc cache * to avoid actually overwriting anything important if it's not detected * correctly. + * + * This should get caught by either memory tagging, KASan, or by using + * CONFIG_SLUB_DEBUG=y and slab_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y). */ -void lkdtm_OVERWRITE_ALLOCATION(void) +static void lkdtm_SLAB_LINEAR_OVERFLOW(void) { size_t len = 1020; u32 *data = kmalloc(len, GFP_KERNEL); if (!data) return; + pr_info("Attempting slab linear overflow ...\n"); + OPTIMIZER_HIDE_VAR(data); data[1024 / sizeof(u32)] = 0x12345678; kfree(data); } -void lkdtm_WRITE_AFTER_FREE(void) +static void lkdtm_WRITE_AFTER_FREE(void) { int *base, *again; size_t len = 1024; @@ -53,16 +89,17 @@ void lkdtm_WRITE_AFTER_FREE(void) pr_info("Hmm, didn't get the same memory range.\n"); } -void lkdtm_READ_AFTER_FREE(void) +static void lkdtm_READ_AFTER_FREE(void) { int *base, *val, saw; size_t len = 1024; /* - * The slub allocator uses the first word to store the free - * pointer in some configurations. Use the middle of the - * allocation to avoid running into the freelist + * The slub allocator will use the either the first word or + * the middle of the allocation to store the free pointer, + * depending on configurations. Store in the second word to + * avoid running into the freelist. */ - size_t offset = (len / sizeof(*base)) / 2; + size_t offset = sizeof(*base); base = kmalloc(len, GFP_KERNEL); if (!base) { @@ -88,14 +125,73 @@ void lkdtm_READ_AFTER_FREE(void) if (saw != *val) { /* Good! Poisoning happened, so declare a win. */ pr_info("Memory correctly poisoned (%x)\n", saw); - BUG(); + } else { + pr_err("FAIL: Memory was not poisoned!\n"); + pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); } - pr_info("Memory was not poisoned\n"); kfree(val); } -void lkdtm_WRITE_BUDDY_AFTER_FREE(void) +static void lkdtm_KFENCE_READ_AFTER_FREE(void) +{ + int *base, val, saw; + unsigned long timeout, resched_after; + size_t len = 1024; + /* + * The slub allocator will use the either the first word or + * the middle of the allocation to store the free pointer, + * depending on configurations. Store in the second word to + * avoid running into the freelist. + */ + size_t offset = sizeof(*base); + + /* + * 100x the sample interval should be more than enough to ensure we get + * a KFENCE allocation eventually. + */ + timeout = jiffies + msecs_to_jiffies(100 * kfence_sample_interval); + /* + * Especially for non-preemption kernels, ensure the allocation-gate + * timer can catch up: after @resched_after, every failed allocation + * attempt yields, to ensure the allocation-gate timer is scheduled. + */ + resched_after = jiffies + msecs_to_jiffies(kfence_sample_interval); + do { + base = kmalloc(len, GFP_KERNEL); + if (!base) { + pr_err("FAIL: Unable to allocate kfence memory!\n"); + return; + } + + if (is_kfence_address(base)) { + val = 0x12345678; + base[offset] = val; + pr_info("Value in memory before free: %x\n", base[offset]); + + kfree(base); + + pr_info("Attempting bad read from freed memory\n"); + saw = base[offset]; + if (saw != val) { + /* Good! Poisoning happened, so declare a win. */ + pr_info("Memory correctly poisoned (%x)\n", saw); + } else { + pr_err("FAIL: Memory was not poisoned!\n"); + pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); + } + return; + } + + kfree(base); + if (time_after(jiffies, resched_after)) + cond_resched(); + } while (time_before(jiffies, timeout)); + + pr_err("FAIL: kfence memory never allocated!\n"); +} + +static void lkdtm_WRITE_BUDDY_AFTER_FREE(void) { unsigned long p = __get_free_page(GFP_KERNEL); if (!p) { @@ -115,7 +211,7 @@ void lkdtm_WRITE_BUDDY_AFTER_FREE(void) schedule(); } -void lkdtm_READ_BUDDY_AFTER_FREE(void) +static void lkdtm_READ_BUDDY_AFTER_FREE(void) { unsigned long p = __get_free_page(GFP_KERNEL); int saw, *val; @@ -144,14 +240,80 @@ void lkdtm_READ_BUDDY_AFTER_FREE(void) if (saw != *val) { /* Good! Poisoning happened, so declare a win. */ pr_info("Memory correctly poisoned (%x)\n", saw); - BUG(); + } else { + pr_err("FAIL: Buddy page was not poisoned!\n"); + pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); } - pr_info("Buddy page was not poisoned\n"); kfree(val); } -void lkdtm_SLAB_FREE_DOUBLE(void) +static void lkdtm_SLAB_INIT_ON_ALLOC(void) +{ + u8 *first; + u8 *val; + + first = kmalloc(512, GFP_KERNEL); + if (!first) { + pr_info("Unable to allocate 512 bytes the first time.\n"); + return; + } + + memset(first, 0xAB, 512); + kfree(first); + + val = kmalloc(512, GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate 512 bytes the second time.\n"); + return; + } + if (val != first) { + pr_warn("Reallocation missed clobbered memory.\n"); + } + + if (memchr(val, 0xAB, 512) == NULL) { + pr_info("Memory appears initialized (%x, no earlier values)\n", *val); + } else { + pr_err("FAIL: Slab was not initialized\n"); + pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); + } + kfree(val); +} + +static void lkdtm_BUDDY_INIT_ON_ALLOC(void) +{ + u8 *first; + u8 *val; + + first = (u8 *)__get_free_page(GFP_KERNEL); + if (!first) { + pr_info("Unable to allocate first free page\n"); + return; + } + + memset(first, 0xAB, PAGE_SIZE); + free_page((unsigned long)first); + + val = (u8 *)__get_free_page(GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate second free page\n"); + return; + } + + if (val != first) { + pr_warn("Reallocation missed clobbered memory.\n"); + } + + if (memchr(val, 0xAB, PAGE_SIZE) == NULL) { + pr_info("Memory appears initialized (%x, no earlier values)\n", *val); + } else { + pr_err("FAIL: Slab was not initialized\n"); + pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); + } + free_page((unsigned long)val); +} + +static void lkdtm_SLAB_FREE_DOUBLE(void) { int *val; @@ -168,7 +330,7 @@ void lkdtm_SLAB_FREE_DOUBLE(void) kmem_cache_free(double_free_cache, val); } -void lkdtm_SLAB_FREE_CROSS(void) +static void lkdtm_SLAB_FREE_CROSS(void) { int *val; @@ -184,7 +346,7 @@ void lkdtm_SLAB_FREE_CROSS(void) kmem_cache_free(b_cache, val); } -void lkdtm_SLAB_FREE_PAGE(void) +static void lkdtm_SLAB_FREE_PAGE(void) { unsigned long p = __get_free_page(GFP_KERNEL); @@ -193,23 +355,12 @@ void lkdtm_SLAB_FREE_PAGE(void) free_page(p); } -/* - * We have constructors to keep the caches distinctly separated without - * needing to boot with "slab_nomerge". - */ -static void ctor_double_free(void *region) -{ } -static void ctor_a(void *region) -{ } -static void ctor_b(void *region) -{ } - void __init lkdtm_heap_init(void) { double_free_cache = kmem_cache_create("lkdtm-heap-double_free", - 64, 0, 0, ctor_double_free); - a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a); - b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b); + 64, 0, SLAB_NO_MERGE, NULL); + a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, SLAB_NO_MERGE, NULL); + b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, SLAB_NO_MERGE, NULL); } void __exit lkdtm_heap_exit(void) @@ -218,3 +369,23 @@ void __exit lkdtm_heap_exit(void) kmem_cache_destroy(a_cache); kmem_cache_destroy(b_cache); } + +static struct crashtype crashtypes[] = { + CRASHTYPE(SLAB_LINEAR_OVERFLOW), + CRASHTYPE(VMALLOC_LINEAR_OVERFLOW), + CRASHTYPE(WRITE_AFTER_FREE), + CRASHTYPE(READ_AFTER_FREE), + CRASHTYPE(KFENCE_READ_AFTER_FREE), + CRASHTYPE(WRITE_BUDDY_AFTER_FREE), + CRASHTYPE(READ_BUDDY_AFTER_FREE), + CRASHTYPE(SLAB_INIT_ON_ALLOC), + CRASHTYPE(BUDDY_INIT_ON_ALLOC), + CRASHTYPE(SLAB_FREE_DOUBLE), + CRASHTYPE(SLAB_FREE_CROSS), + CRASHTYPE(SLAB_FREE_PAGE), +}; + +struct crashtype_category heap_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; |
