diff options
Diffstat (limited to 'drivers/mtd/nand/denali.c')
| -rw-r--r-- | drivers/mtd/nand/denali.c | 1608 |
1 files changed, 0 insertions, 1608 deletions
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c deleted file mode 100644 index 0c8bb6bf8424..000000000000 --- a/drivers/mtd/nand/denali.c +++ /dev/null @@ -1,1608 +0,0 @@ -/* - * NAND Flash Controller Device Driver - * Copyright © 2009-2010, Intel Corporation and its suppliers. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - * - */ -#include <linux/interrupt.h> -#include <linux/delay.h> -#include <linux/dma-mapping.h> -#include <linux/wait.h> -#include <linux/mutex.h> -#include <linux/slab.h> -#include <linux/mtd/mtd.h> -#include <linux/module.h> - -#include "denali.h" - -MODULE_LICENSE("GPL"); - -/* We define a module parameter that allows the user to override - * the hardware and decide what timing mode should be used. - */ -#define NAND_DEFAULT_TIMINGS -1 - -static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; -module_param(onfi_timing_mode, int, S_IRUGO); -MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." - " -1 indicates use default timings"); - -#define DENALI_NAND_NAME "denali-nand" - -/* We define a macro here that combines all interrupts this driver uses into - * a single constant value, for convenience. */ -#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ - INTR_STATUS__ECC_TRANSACTION_DONE | \ - INTR_STATUS__ECC_ERR | \ - INTR_STATUS__PROGRAM_FAIL | \ - INTR_STATUS__LOAD_COMP | \ - INTR_STATUS__PROGRAM_COMP | \ - INTR_STATUS__TIME_OUT | \ - INTR_STATUS__ERASE_FAIL | \ - INTR_STATUS__RST_COMP | \ - INTR_STATUS__ERASE_COMP) - -/* indicates whether or not the internal value for the flash bank is - * valid or not */ -#define CHIP_SELECT_INVALID -1 - -#define SUPPORT_8BITECC 1 - -/* This macro divides two integers and rounds fractional values up - * to the nearest integer value. */ -#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) - -/* this macro allows us to convert from an MTD structure to our own - * device context (denali) structure. - */ -#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) - -/* These constants are defined by the driver to enable common driver - * configuration options. */ -#define SPARE_ACCESS 0x41 -#define MAIN_ACCESS 0x42 -#define MAIN_SPARE_ACCESS 0x43 - -#define DENALI_READ 0 -#define DENALI_WRITE 0x100 - -/* types of device accesses. We can issue commands and get status */ -#define COMMAND_CYCLE 0 -#define ADDR_CYCLE 1 -#define STATUS_CYCLE 2 - -/* this is a helper macro that allows us to - * format the bank into the proper bits for the controller */ -#define BANK(x) ((x) << 24) - -/* forward declarations */ -static void clear_interrupts(struct denali_nand_info *denali); -static uint32_t wait_for_irq(struct denali_nand_info *denali, - uint32_t irq_mask); -static void denali_irq_enable(struct denali_nand_info *denali, - uint32_t int_mask); -static uint32_t read_interrupt_status(struct denali_nand_info *denali); - -/* Certain operations for the denali NAND controller use - * an indexed mode to read/write data. The operation is - * performed by writing the address value of the command - * to the device memory followed by the data. This function - * abstracts this common operation. -*/ -static void index_addr(struct denali_nand_info *denali, - uint32_t address, uint32_t data) -{ - iowrite32(address, denali->flash_mem); - iowrite32(data, denali->flash_mem + 0x10); -} - -/* Perform an indexed read of the device */ -static void index_addr_read_data(struct denali_nand_info *denali, - uint32_t address, uint32_t *pdata) -{ - iowrite32(address, denali->flash_mem); - *pdata = ioread32(denali->flash_mem + 0x10); -} - -/* We need to buffer some data for some of the NAND core routines. - * The operations manage buffering that data. */ -static void reset_buf(struct denali_nand_info *denali) -{ - denali->buf.head = denali->buf.tail = 0; -} - -static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) -{ - BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); - denali->buf.buf[denali->buf.tail++] = byte; -} - -/* reads the status of the device */ -static void read_status(struct denali_nand_info *denali) -{ - uint32_t cmd = 0x0; - - /* initialize the data buffer to store status */ - reset_buf(denali); - - cmd = ioread32(denali->flash_reg + WRITE_PROTECT); - if (cmd) - write_byte_to_buf(denali, NAND_STATUS_WP); - else - write_byte_to_buf(denali, 0); -} - -/* resets a specific device connected to the core */ -static void reset_bank(struct denali_nand_info *denali) -{ - uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS__RST_COMP | - INTR_STATUS__TIME_OUT; - - clear_interrupts(denali); - - iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); - - irq_status = wait_for_irq(denali, irq_mask); - - if (irq_status & INTR_STATUS__TIME_OUT) - dev_err(denali->dev, "reset bank failed.\n"); -} - -/* Reset the flash controller */ -static uint16_t denali_nand_reset(struct denali_nand_info *denali) -{ - uint32_t i; - - dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", - __FILE__, __LINE__, __func__); - - for (i = 0 ; i < denali->max_banks; i++) - iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, - denali->flash_reg + INTR_STATUS(i)); - - for (i = 0 ; i < denali->max_banks; i++) { - iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); - while (!(ioread32(denali->flash_reg + - INTR_STATUS(i)) & - (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) - cpu_relax(); - if (ioread32(denali->flash_reg + INTR_STATUS(i)) & - INTR_STATUS__TIME_OUT) - dev_dbg(denali->dev, - "NAND Reset operation timed out on bank %d\n", i); - } - - for (i = 0; i < denali->max_banks; i++) - iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, - denali->flash_reg + INTR_STATUS(i)); - - return PASS; -} - -/* this routine calculates the ONFI timing values for a given mode and - * programs the clocking register accordingly. The mode is determined by - * the get_onfi_nand_para routine. - */ -static void nand_onfi_timing_set(struct denali_nand_info *denali, - uint16_t mode) -{ - uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; - uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; - uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; - uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; - uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; - uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; - uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; - uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; - uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; - uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; - uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; - uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; - - uint16_t TclsRising = 1; - uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; - uint16_t dv_window = 0; - uint16_t en_lo, en_hi; - uint16_t acc_clks; - uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; - - dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", - __FILE__, __LINE__, __func__); - - en_lo = CEIL_DIV(Trp[mode], CLK_X); - en_hi = CEIL_DIV(Treh[mode], CLK_X); -#if ONFI_BLOOM_TIME - if ((en_hi * CLK_X) < (Treh[mode] + 2)) - en_hi++; -#endif - - if ((en_lo + en_hi) * CLK_X < Trc[mode]) - en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); - - if ((en_lo + en_hi) < CLK_MULTI) - en_lo += CLK_MULTI - en_lo - en_hi; - - while (dv_window < 8) { - data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; - - data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; - - data_invalid = - data_invalid_rhoh < - data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; - - dv_window = data_invalid - Trea[mode]; - - if (dv_window < 8) - en_lo++; - } - - acc_clks = CEIL_DIV(Trea[mode], CLK_X); - - while (((acc_clks * CLK_X) - Trea[mode]) < 3) - acc_clks++; - - if ((data_invalid - acc_clks * CLK_X) < 2) - dev_warn(denali->dev, "%s, Line %d: Warning!\n", - __FILE__, __LINE__); - - addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); - re_2_we = CEIL_DIV(Trhw[mode], CLK_X); - re_2_re = CEIL_DIV(Trhz[mode], CLK_X); - we_2_re = CEIL_DIV(Twhr[mode], CLK_X); - cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); - if (!TclsRising) - cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); - if (cs_cnt == 0) - cs_cnt = 1; - - if (Tcea[mode]) { - while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) - cs_cnt++; - } - -#if MODE5_WORKAROUND - if (mode == 5) - acc_clks = 5; -#endif - - /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ - if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) && - (ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) - acc_clks = 6; - - iowrite32(acc_clks, denali->flash_reg + ACC_CLKS); - iowrite32(re_2_we, denali->flash_reg + RE_2_WE); - iowrite32(re_2_re, denali->flash_reg + RE_2_RE); - iowrite32(we_2_re, denali->flash_reg + WE_2_RE); - iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA); - iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); - iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); - iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); -} - -/* queries the NAND device to see what ONFI modes it supports. */ -static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) -{ - int i; - /* we needn't to do a reset here because driver has already - * reset all the banks before - * */ - if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & - ONFI_TIMING_MODE__VALUE)) - return FAIL; - - for (i = 5; i > 0; i--) { - if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & - (0x01 << i)) - break; - } - - nand_onfi_timing_set(denali, i); - - /* By now, all the ONFI devices we know support the page cache */ - /* rw feature. So here we enable the pipeline_rw_ahead feature */ - /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ - /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ - - return PASS; -} - -static void get_samsung_nand_para(struct denali_nand_info *denali, - uint8_t device_id) -{ - if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ - /* Set timing register values according to datasheet */ - iowrite32(5, denali->flash_reg + ACC_CLKS); - iowrite32(20, denali->flash_reg + RE_2_WE); - iowrite32(12, denali->flash_reg + WE_2_RE); - iowrite32(14, denali->flash_reg + ADDR_2_DATA); - iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT); - iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT); - iowrite32(2, denali->flash_reg + CS_SETUP_CNT); - } -} - -static void get_toshiba_nand_para(struct denali_nand_info *denali) -{ - uint32_t tmp; - - /* Workaround to fix a controller bug which reports a wrong */ - /* spare area size for some kind of Toshiba NAND device */ - if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && - (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { - iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * - ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - iowrite32(tmp, - denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); -#if SUPPORT_15BITECC - iowrite32(15, denali->flash_reg + ECC_CORRECTION); -#elif SUPPORT_8BITECC - iowrite32(8, denali->flash_reg + ECC_CORRECTION); -#endif - } -} - -static void get_hynix_nand_para(struct denali_nand_info *denali, - uint8_t device_id) -{ - uint32_t main_size, spare_size; - - switch (device_id) { - case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ - case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ - iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); - iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); - iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - main_size = 4096 * - ioread32(denali->flash_reg + DEVICES_CONNECTED); - spare_size = 224 * - ioread32(denali->flash_reg + DEVICES_CONNECTED); - iowrite32(main_size, - denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); - iowrite32(spare_size, - denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); - iowrite32(0, denali->flash_reg + DEVICE_WIDTH); -#if SUPPORT_15BITECC - iowrite32(15, denali->flash_reg + ECC_CORRECTION); -#elif SUPPORT_8BITECC - iowrite32(8, denali->flash_reg + ECC_CORRECTION); -#endif - break; - default: - dev_warn(denali->dev, - "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." - "Will use default parameter values instead.\n", - device_id); - } -} - -/* determines how many NAND chips are connected to the controller. Note for - * Intel CE4100 devices we don't support more than one device. - */ -static void find_valid_banks(struct denali_nand_info *denali) -{ - uint32_t id[denali->max_banks]; - int i; - - denali->total_used_banks = 1; - for (i = 0; i < denali->max_banks; i++) { - index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); - index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); - index_addr_read_data(denali, - (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); - - dev_dbg(denali->dev, - "Return 1st ID for bank[%d]: %x\n", i, id[i]); - - if (i == 0) { - if (!(id[i] & 0x0ff)) - break; /* WTF? */ - } else { - if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) - denali->total_used_banks++; - else - break; - } - } - - if (denali->platform == INTEL_CE4100) { - /* Platform limitations of the CE4100 device limit - * users to a single chip solution for NAND. - * Multichip support is not enabled. - */ - if (denali->total_used_banks != 1) { - dev_err(denali->dev, - "Sorry, Intel CE4100 only supports " - "a single NAND device.\n"); - BUG(); - } - } - dev_dbg(denali->dev, - "denali->total_used_banks: %d\n", denali->total_used_banks); -} - -/* - * Use the configuration feature register to determine the maximum number of - * banks that the hardware supports. - */ -static void detect_max_banks(struct denali_nand_info *denali) -{ - uint32_t features = ioread32(denali->flash_reg + FEATURES); - - denali->max_banks = 2 << (features & FEATURES__N_BANKS); -} - -static void detect_partition_feature(struct denali_nand_info *denali) -{ - /* For MRST platform, denali->fwblks represent the - * number of blocks firmware is taken, - * FW is in protect partition and MTD driver has no - * permission to access it. So let driver know how many - * blocks it can't touch. - * */ - if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { - if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) & - PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { - denali->fwblks = - ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) & - MIN_MAX_BANK__MIN_VALUE) * - denali->blksperchip) - + - (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) & - MIN_BLK_ADDR__VALUE); - } else - denali->fwblks = SPECTRA_START_BLOCK; - } else - denali->fwblks = SPECTRA_START_BLOCK; -} - -static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) -{ - uint16_t status = PASS; - uint32_t id_bytes[5], addr; - uint8_t i, maf_id, device_id; - - dev_dbg(denali->dev, - "%s, Line %d, Function: %s\n", - __FILE__, __LINE__, __func__); - - /* Use read id method to get device ID and other - * params. For some NAND chips, controller can't - * report the correct device ID by reading from - * DEVICE_ID register - * */ - addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); - index_addr(denali, (uint32_t)addr | 0, 0x90); - index_addr(denali, (uint32_t)addr | 1, 0); - for (i = 0; i < 5; i++) - index_addr_read_data(denali, addr | 2, &id_bytes[i]); - maf_id = id_bytes[0]; - device_id = id_bytes[1]; - - if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & - ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ - if (FAIL == get_onfi_nand_para(denali)) - return FAIL; - } else if (maf_id == 0xEC) { /* Samsung NAND */ - get_samsung_nand_para(denali, device_id); - } else if (maf_id == 0x98) { /* Toshiba NAND */ - get_toshiba_nand_para(denali); - } else if (maf_id == 0xAD) { /* Hynix NAND */ - get_hynix_nand_para(denali, device_id); - } - - dev_info(denali->dev, - "Dump timing register values:" - "acc_clks: %d, re_2_we: %d, re_2_re: %d\n" - "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n" - "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", - ioread32(denali->flash_reg + ACC_CLKS), - ioread32(denali->flash_reg + RE_2_WE), - ioread32(denali->flash_reg + RE_2_RE), - ioread32(denali->flash_reg + WE_2_RE), - ioread32(denali->flash_reg + ADDR_2_DATA), - ioread32(denali->flash_reg + RDWR_EN_LO_CNT), - ioread32(denali->flash_reg + RDWR_EN_HI_CNT), - ioread32(denali->flash_reg + CS_SETUP_CNT)); - - find_valid_banks(denali); - - detect_partition_feature(denali); - - /* If the user specified to override the default timings - * with a specific ONFI mode, we apply those changes here. - */ - if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) - nand_onfi_timing_set(denali, onfi_timing_mode); - - return status; -} - -static void denali_set_intr_modes(struct denali_nand_info *denali, - uint16_t INT_ENABLE) -{ - dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", - __FILE__, __LINE__, __func__); - - if (INT_ENABLE) - iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE); - else - iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE); -} - -/* validation function to verify that the controlling software is making - * a valid request - */ -static inline bool is_flash_bank_valid(int flash_bank) -{ - return (flash_bank >= 0 && flash_bank < 4); -} - -static void denali_irq_init(struct denali_nand_info *denali) -{ - uint32_t int_mask = 0; - int i; - - /* Disable global interrupts */ - denali_set_intr_modes(denali, false); - - int_mask = DENALI_IRQ_ALL; - - /* Clear all status bits */ - for (i = 0; i < denali->max_banks; ++i) - iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i)); - - denali_irq_enable(denali, int_mask); -} - -static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) -{ - denali_set_intr_modes(denali, false); - free_irq(irqnum, denali); -} - -static void denali_irq_enable(struct denali_nand_info *denali, - uint32_t int_mask) -{ - int i; - - for (i = 0; i < denali->max_banks; ++i) - iowrite32(int_mask, denali->flash_reg + INTR_EN(i)); -} - -/* This function only returns when an interrupt that this driver cares about - * occurs. This is to reduce the overhead of servicing interrupts - */ -static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) -{ - return read_interrupt_status(denali) & DENALI_IRQ_ALL; -} - -/* Interrupts are cleared by writing a 1 to the appropriate status bit */ -static inline void clear_interrupt(struct denali_nand_info *denali, - uint32_t irq_mask) -{ - uint32_t intr_status_reg = 0; - - intr_status_reg = INTR_STATUS(denali->flash_bank); - - iowrite32(irq_mask, denali->flash_reg + intr_status_reg); -} - -static void clear_interrupts(struct denali_nand_info *denali) -{ - uint32_t status = 0x0; - spin_lock_irq(&denali->irq_lock); - - status = read_interrupt_status(denali); - clear_interrupt(denali, status); - - denali->irq_status = 0x0; - spin_unlock_irq(&denali->irq_lock); -} - -static uint32_t read_interrupt_status(struct denali_nand_info *denali) -{ - uint32_t intr_status_reg = 0; - - intr_status_reg = INTR_STATUS(denali->flash_bank); - - return ioread32(denali->flash_reg + intr_status_reg); -} - -/* This is the interrupt service routine. It handles all interrupts - * sent to this device. Note that on CE4100, this is a shared - * interrupt. - */ -static irqreturn_t denali_isr(int irq, void *dev_id) -{ - struct denali_nand_info *denali = dev_id; - uint32_t irq_status = 0x0; - irqreturn_t result = IRQ_NONE; - - spin_lock(&denali->irq_lock); - - /* check to see if a valid NAND chip has - * been selected. - */ - if (is_flash_bank_valid(denali->flash_bank)) { - /* check to see if controller generated - * the interrupt, since this is a shared interrupt */ - irq_status = denali_irq_detected(denali); - if (irq_status != 0) { - /* handle interrupt */ - /* first acknowledge it */ - clear_interrupt(denali, irq_status); - /* store the status in the device context for someone - to read */ - denali->irq_status |= irq_status; - /* notify anyone who cares that it happened */ - complete(&denali->complete); - /* tell the OS that we've handled this */ - result = IRQ_HANDLED; - } - } - spin_unlock(&denali->irq_lock); - return result; -} -#define BANK(x) ((x) << 24) - -static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) -{ - unsigned long comp_res = 0; - uint32_t intr_status = 0; - bool retry = false; - unsigned long timeout = msecs_to_jiffies(1000); - - do { - comp_res = - wait_for_completion_timeout(&denali->complete, timeout); - spin_lock_irq(&denali->irq_lock); - intr_status = denali->irq_status; - - if (intr_status & irq_mask) { - denali->irq_status &= ~irq_mask; - spin_unlock_irq(&denali->irq_lock); - /* our interrupt was detected */ - break; - } else { - /* these are not the interrupts you are looking for - - * need to wait again */ - spin_unlock_irq(&denali->irq_lock); - retry = true; - } - } while (comp_res != 0); - - if (comp_res == 0) { - /* timeout */ - pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n", - intr_status, irq_mask); - - intr_status = 0; - } - return intr_status; -} - -/* This helper function setups the registers for ECC and whether or not - * the spare area will be transferred. */ -static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, - bool transfer_spare) -{ - int ecc_en_flag = 0, transfer_spare_flag = 0; - - /* set ECC, transfer spare bits if needed */ - ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; - transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; - - /* Enable spare area/ECC per user's request. */ - iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); - iowrite32(transfer_spare_flag, - denali->flash_reg + TRANSFER_SPARE_REG); -} - -/* sends a pipeline command operation to the controller. See the Denali NAND - * controller's user guide for more information (section 4.2.3.6). - */ -static int denali_send_pipeline_cmd(struct denali_nand_info *denali, - bool ecc_en, - bool transfer_spare, - int access_type, - int op) -{ - int status = PASS; - uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, - irq_mask = 0; - - if (op == DENALI_READ) - irq_mask = INTR_STATUS__LOAD_COMP; - else if (op == DENALI_WRITE) - irq_mask = 0; - else - BUG(); - - setup_ecc_for_xfer(denali, ecc_en, transfer_spare); - - /* clear interrupts */ - clear_interrupts(denali); - - addr = BANK(denali->flash_bank) | denali->page; - - if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { - /* read spare area */ - cmd = MODE_10 | addr; - index_addr(denali, (uint32_t)cmd, access_type); - - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } else if (op == DENALI_READ) { - /* setup page read request for access type */ - cmd = MODE_10 | addr; - index_addr(denali, (uint32_t)cmd, access_type); - - /* page 33 of the NAND controller spec indicates we should not - use the pipeline commands in Spare area only mode. So we - don't. - */ - if (access_type == SPARE_ACCESS) { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } else { - index_addr(denali, (uint32_t)cmd, - 0x2000 | op | page_count); - - /* wait for command to be accepted - * can always use status0 bit as the - * mask is identical for each - * bank. */ - irq_status = wait_for_irq(denali, irq_mask); - - if (irq_status == 0) { - dev_err(denali->dev, - "cmd, page, addr on timeout " - "(0x%x, 0x%x, 0x%x)\n", - cmd, denali->page, addr); - status = FAIL; - } else { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } - } - } - return status; -} - -/* helper function that simply writes a buffer to the flash */ -static int write_data_to_flash_mem(struct denali_nand_info *denali, - const uint8_t *buf, - int len) -{ - uint32_t i = 0, *buf32; - - /* verify that the len is a multiple of 4. see comment in - * read_data_from_flash_mem() */ - BUG_ON((len % 4) != 0); - - /* write the data to the flash memory */ - buf32 = (uint32_t *)buf; - for (i = 0; i < len / 4; i++) - iowrite32(*buf32++, denali->flash_mem + 0x10); - return i*4; /* intent is to return the number of bytes read */ -} - -/* helper function that simply reads a buffer from the flash */ -static int read_data_from_flash_mem(struct denali_nand_info *denali, - uint8_t *buf, - int len) -{ - uint32_t i = 0, *buf32; - - /* we assume that len will be a multiple of 4, if not - * it would be nice to know about it ASAP rather than - * have random failures... - * This assumption is based on the fact that this - * function is designed to be used to read flash pages, - * which are typically multiples of 4... - */ - - BUG_ON((len % 4) != 0); - - /* transfer the data from the flash */ - buf32 = (uint32_t *)buf; - for (i = 0; i < len / 4; i++) - *buf32++ = ioread32(denali->flash_mem + 0x10); - return i*4; /* intent is to return the number of bytes read */ -} - -/* writes OOB data to the device */ -static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | - INTR_STATUS__PROGRAM_FAIL; - int status = 0; - - denali->page = page; - - if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, - DENALI_WRITE) == PASS) { - write_data_to_flash_mem(denali, buf, mtd->oobsize); - - /* wait for operation to complete */ - irq_status = wait_for_irq(denali, irq_mask); - - if (irq_status == 0) { - dev_err(denali->dev, "OOB write failed\n"); - status = -EIO; - } - } else { - dev_err(denali->dev, "unable to send pipeline command\n"); - status = -EIO; - } - return status; -} - -/* reads OOB data from the device */ -static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t irq_mask = INTR_STATUS__LOAD_COMP, - irq_status = 0, addr = 0x0, cmd = 0x0; - - denali->page = page; - - if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, - DENALI_READ) == PASS) { - read_data_from_flash_mem(denali, buf, mtd->oobsize); - - /* wait for command to be accepted - * can always use status0 bit as the mask is identical for each - * bank. */ - irq_status = wait_for_irq(denali, irq_mask); - - if (irq_status == 0) - dev_err(denali->dev, "page on OOB timeout %d\n", - denali->page); - - /* We set the device back to MAIN_ACCESS here as I observed - * instability with the controller if you do a block erase - * and the last transaction was a SPARE_ACCESS. Block erase - * is reliable (according to the MTD test infrastructure) - * if you are in MAIN_ACCESS. - */ - addr = BANK(denali->flash_bank) | denali->page; - cmd = MODE_10 | addr; - index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); - } -} - -/* this function examines buffers to see if they contain data that - * indicate that the buffer is part of an erased region of flash. - */ -bool is_erased(uint8_t *buf, int len) -{ - int i = 0; - for (i = 0; i < len; i++) - if (buf[i] != 0xFF) - return false; - return true; -} -#define ECC_SECTOR_SIZE 512 - -#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) -#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) -#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) -#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) -#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) -#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) - -static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, - uint32_t irq_status, unsigned int *max_bitflips) -{ - bool check_erased_page = false; - unsigned int bitflips = 0; - - if (irq_status & INTR_STATUS__ECC_ERR) { - /* read the ECC errors. we'll ignore them for now */ - uint32_t err_address = 0, err_correction_info = 0; - uint32_t err_byte = 0, err_sector = 0, err_device = 0; - uint32_t err_correction_value = 0; - denali_set_intr_modes(denali, false); - - do { - err_address = ioread32(denali->flash_reg + - ECC_ERROR_ADDRESS); - err_sector = ECC_SECTOR(err_address); - err_byte = ECC_BYTE(err_address); - - err_correction_info = ioread32(denali->flash_reg + - ERR_CORRECTION_INFO); - err_correction_value = - ECC_CORRECTION_VALUE(err_correction_info); - err_device = ECC_ERR_DEVICE(err_correction_info); - - if (ECC_ERROR_CORRECTABLE(err_correction_info)) { - /* If err_byte is larger than ECC_SECTOR_SIZE, - * means error happened in OOB, so we ignore - * it. It's no need for us to correct it - * err_device is represented the NAND error - * bits are happened in if there are more - * than one NAND connected. - * */ - if (err_byte < ECC_SECTOR_SIZE) { - int offset; - offset = (err_sector * - ECC_SECTOR_SIZE + - err_byte) * - denali->devnum + - err_device; - /* correct the ECC error */ - buf[offset] ^= err_correction_value; - denali->mtd.ecc_stats.corrected++; - bitflips++; - } - } else { - /* if the error is not correctable, need to - * look at the page to see if it is an erased - * page. if so, then it's not a real ECC error - * */ - check_erased_page = true; - } - } while (!ECC_LAST_ERR(err_correction_info)); - /* Once handle all ecc errors, controller will triger - * a ECC_TRANSACTION_DONE interrupt, so here just wait - * for a while for this interrupt - * */ - while (!(read_interrupt_status(denali) & - INTR_STATUS__ECC_TRANSACTION_DONE)) - cpu_relax(); - clear_interrupts(denali); - denali_set_intr_modes(denali, true); - } - *max_bitflips = bitflips; - return check_erased_page; -} - -/* programs the controller to either enable/disable DMA transfers */ -static void denali_enable_dma(struct denali_nand_info *denali, bool en) -{ - uint32_t reg_val = 0x0; - - if (en) - reg_val = DMA_ENABLE__FLAG; - - iowrite32(reg_val, denali->flash_reg + DMA_ENABLE); - ioread32(denali->flash_reg + DMA_ENABLE); -} - -/* setups the HW to perform the data DMA */ -static void denali_setup_dma(struct denali_nand_info *denali, int op) -{ - uint32_t mode = 0x0; - const int page_count = 1; - dma_addr_t addr = denali->buf.dma_buf; - - mode = MODE_10 | BANK(denali->flash_bank); - - /* DMA is a four step process */ - - /* 1. setup transfer type and # of pages */ - index_addr(denali, mode | denali->page, 0x2000 | op | page_count); - - /* 2. set memory high address bits 23:8 */ - index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); - - /* 3. set memory low address bits 23:8 */ - index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); - - /* 4. interrupt when complete, burst len = 64 bytes*/ - index_addr(denali, mode | 0x14000, 0x2400); -} - -/* writes a page. user specifies type, and this function handles the - * configuration details. */ -static int write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, bool raw_xfer) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - dma_addr_t addr = denali->buf.dma_buf; - size_t size = denali->mtd.writesize + denali->mtd.oobsize; - - uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP | - INTR_STATUS__PROGRAM_FAIL; - - /* if it is a raw xfer, we want to disable ecc, and send - * the spare area. - * !raw_xfer - enable ecc - * raw_xfer - transfer spare - */ - setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); - - /* copy buffer into DMA buffer */ - memcpy(denali->buf.buf, buf, mtd->writesize); - - if (raw_xfer) { - /* transfer the data to the spare area */ - memcpy(denali->buf.buf + mtd->writesize, - chip->oob_poi, - mtd->oobsize); - } - - dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE); - - clear_interrupts(denali); - denali_enable_dma(denali, true); - - denali_setup_dma(denali, DENALI_WRITE); - - /* wait for operation to complete */ - irq_status = wait_for_irq(denali, irq_mask); - - if (irq_status == 0) { - dev_err(denali->dev, - "timeout on write_page (type = %d)\n", - raw_xfer); - denali->status = - (irq_status & INTR_STATUS__PROGRAM_FAIL) ? - NAND_STATUS_FAIL : PASS; - } - - denali_enable_dma(denali, false); - dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); - - return 0; -} - -/* NAND core entry points */ - -/* this is the callback that the NAND core calls to write a page. Since - * writing a page with ECC or without is similar, all the work is done - * by write_page above. - * */ -static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required) -{ - /* for regular page writes, we let HW handle all the ECC - * data written to the device. */ - return write_page(mtd, chip, buf, false); -} - -/* This is the callback that the NAND core calls to write a page without ECC. - * raw access is similar to ECC page writes, so all the work is done in the - * write_page() function above. - */ -static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required) -{ - /* for raw page writes, we want to disable ECC and simply write - whatever data is in the buffer. */ - return write_page(mtd, chip, buf, true); -} - -static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return write_oob_data(mtd, chip->oob_poi, page); -} - -static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - read_oob_data(mtd, chip->oob_poi, page); - - return 0; -} - -static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - unsigned int max_bitflips; - struct denali_nand_info *denali = mtd_to_denali(mtd); - - dma_addr_t addr = denali->buf.dma_buf; - size_t size = denali->mtd.writesize + denali->mtd.oobsize; - - uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE | - INTR_STATUS__ECC_ERR; - bool check_erased_page = false; - - if (page != denali->page) { - dev_err(denali->dev, "IN %s: page %d is not" - " equal to denali->page %d, investigate!!", - __func__, page, denali->page); - BUG(); - } - - setup_ecc_for_xfer(denali, true, false); - - denali_enable_dma(denali, true); - dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); - - clear_interrupts(denali); - denali_setup_dma(denali, DENALI_READ); - - /* wait for operation to complete */ - irq_status = wait_for_irq(denali, irq_mask); - - dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); - - memcpy(buf, denali->buf.buf, mtd->writesize); - - check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips); - denali_enable_dma(denali, false); - - if (check_erased_page) { - read_oob_data(&denali->mtd, chip->oob_poi, denali->page); - - /* check ECC failures that may have occurred on erased pages */ - if (check_erased_page) { - if (!is_erased(buf, denali->mtd.writesize)) - denali->mtd.ecc_stats.failed++; - if (!is_erased(buf, denali->mtd.oobsize)) - denali->mtd.ecc_stats.failed++; - } - } - return max_bitflips; -} - -static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - dma_addr_t addr = denali->buf.dma_buf; - size_t size = denali->mtd.writesize + denali->mtd.oobsize; - - uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; - - if (page != denali->page) { - dev_err(denali->dev, "IN %s: page %d is not" - " equal to denali->page %d, investigate!!", - __func__, page, denali->page); - BUG(); - } - - setup_ecc_for_xfer(denali, false, true); - denali_enable_dma(denali, true); - - dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); - - clear_interrupts(denali); - denali_setup_dma(denali, DENALI_READ); - - /* wait for operation to complete */ - irq_status = wait_for_irq(denali, irq_mask); - - dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); - - denali_enable_dma(denali, false); - - memcpy(buf, denali->buf.buf, mtd->writesize); - memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); - - return 0; -} - -static uint8_t denali_read_byte(struct mtd_info *mtd) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint8_t result = 0xff; - - if (denali->buf.head < denali->buf.tail) - result = denali->buf.buf[denali->buf.head++]; - - return result; -} - -static void denali_select_chip(struct mtd_info *mtd, int chip) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - spin_lock_irq(&denali->irq_lock); - denali->flash_bank = chip; - spin_unlock_irq(&denali->irq_lock); -} - -static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - int status = denali->status; - denali->status = 0; - - return status; -} - -static void denali_erase(struct mtd_info *mtd, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - uint32_t cmd = 0x0, irq_status = 0; - - /* clear interrupts */ - clear_interrupts(denali); - - /* setup page read request for access type */ - cmd = MODE_10 | BANK(denali->flash_bank) | page; - index_addr(denali, (uint32_t)cmd, 0x1); - - /* wait for erase to complete or failure to occur */ - irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | - INTR_STATUS__ERASE_FAIL); - - denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ? - NAND_STATUS_FAIL : PASS; -} - -static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, - int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t addr, id; - int i; - - switch (cmd) { - case NAND_CMD_PAGEPROG: - break; - case NAND_CMD_STATUS: - read_status(denali); - break; - case NAND_CMD_READID: - case NAND_CMD_PARAM: - reset_buf(denali); - /*sometimes ManufactureId read from register is not right - * e.g. some of Micron MT29F32G08QAA MLC NAND chips - * So here we send READID cmd to NAND insteand - * */ - addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); - index_addr(denali, (uint32_t)addr | 0, 0x90); - index_addr(denali, (uint32_t)addr | 1, 0); - for (i = 0; i < 5; i++) { - index_addr_read_data(denali, - (uint32_t)addr | 2, - &id); - write_byte_to_buf(denali, id); - } - break; - case NAND_CMD_READ0: - case NAND_CMD_SEQIN: - denali->page = page; - break; - case NAND_CMD_RESET: - reset_bank(denali); - break; - case NAND_CMD_READOOB: - /* TODO: Read OOB data */ - break; - default: - pr_err(": unsupported command received 0x%x\n", cmd); - break; - } -} - -/* stubs for ECC functions not used by the NAND core */ -static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, - uint8_t *ecc_code) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - dev_err(denali->dev, - "denali_ecc_calculate called unexpectedly\n"); - BUG(); - return -EIO; -} - -static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, - uint8_t *read_ecc, uint8_t *calc_ecc) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - dev_err(denali->dev, - "denali_ecc_correct called unexpectedly\n"); - BUG(); - return -EIO; -} - -static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - dev_err(denali->dev, - "denali_ecc_hwctl called unexpectedly\n"); - BUG(); -} -/* end NAND core entry points */ - -/* Initialization code to bring the device up to a known good state */ -static void denali_hw_init(struct denali_nand_info *denali) -{ - /* tell driver how many bit controller will skip before - * writing ECC code in OOB, this register may be already - * set by firmware. So we read this value out. - * if this value is 0, just let it be. - * */ - denali->bbtskipbytes = ioread32(denali->flash_reg + - SPARE_AREA_SKIP_BYTES); - detect_max_banks(denali); - denali_nand_reset(denali); - iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); - iowrite32(CHIP_EN_DONT_CARE__FLAG, - denali->flash_reg + CHIP_ENABLE_DONT_CARE); - - iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); - - /* Should set value for these registers when init */ - iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); - iowrite32(1, denali->flash_reg + ECC_ENABLE); - denali_nand_timing_set(denali); - denali_irq_init(denali); -} - -/* Althogh controller spec said SLC ECC is forceb to be 4bit, - * but denali controller in MRST only support 15bit and 8bit ECC - * correction - * */ -#define ECC_8BITS 14 -static struct nand_ecclayout nand_8bit_oob = { - .eccbytes = 14, -}; - -#define ECC_15BITS 26 -static struct nand_ecclayout nand_15bit_oob = { - .eccbytes = 26, -}; - -static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; -static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 8, - .len = 4, - .veroffs = 12, - .maxblocks = 4, - .pattern = bbt_pattern, -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 8, - .len = 4, - .veroffs = 12, - .maxblocks = 4, - .pattern = mirror_pattern, -}; - -/* initialize driver data structures */ -void denali_drv_init(struct denali_nand_info *denali) -{ - denali->idx = 0; - - /* setup interrupt handler */ - /* the completion object will be used to notify - * the callee that the interrupt is done */ - init_completion(&denali->complete); - - /* the spinlock will be used to synchronize the ISR - * with any element that might be access shared - * data (interrupt status) */ - spin_lock_init(&denali->irq_lock); - - /* indicate that MTD has not selected a valid bank yet */ - denali->flash_bank = CHIP_SELECT_INVALID; - - /* initialize our irq_status variable to indicate no interrupts */ - denali->irq_status = 0; -} - -int denali_init(struct denali_nand_info *denali) -{ - int ret; - - if (denali->platform == INTEL_CE4100) { - /* Due to a silicon limitation, we can only support - * ONFI timing mode 1 and below. - */ - if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { - pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n"); - return -EINVAL; - } - } - - /* Is 32-bit DMA supported? */ - ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32)); - if (ret) { - pr_err("Spectra: no usable DMA configuration\n"); - return ret; - } - denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf, - DENALI_BUF_SIZE, - DMA_BIDIRECTIONAL); - - if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) { - dev_err(denali->dev, "Spectra: failed to map DMA buffer\n"); - return -EIO; - } - denali->mtd.dev.parent = denali->dev; - denali_hw_init(denali); - denali_drv_init(denali); - - /* denali_isr register is done after all the hardware - * initilization is finished*/ - if (request_irq(denali->irq, denali_isr, IRQF_SHARED, - DENALI_NAND_NAME, denali)) { - pr_err("Spectra: Unable to allocate IRQ\n"); - return -ENODEV; - } - - /* now that our ISR is registered, we can enable interrupts */ - denali_set_intr_modes(denali, true); - denali->mtd.name = "denali-nand"; - denali->mtd.owner = THIS_MODULE; - denali->mtd.priv = &denali->nand; - - /* register the driver with the NAND core subsystem */ - denali->nand.select_chip = denali_select_chip; - denali->nand.cmdfunc = denali_cmdfunc; - denali->nand.read_byte = denali_read_byte; - denali->nand.waitfunc = denali_waitfunc; - - /* scan for NAND devices attached to the controller - * this is the first stage in a two step process to register - * with the nand subsystem */ - if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) { - ret = -ENXIO; - goto failed_req_irq; - } - - /* MTD supported page sizes vary by kernel. We validate our - * kernel supports the device here. - */ - if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) { - ret = -ENODEV; - pr_err("Spectra: device size not supported by this version of MTD."); - goto failed_req_irq; - } - - /* support for multi nand - * MTD known nothing about multi nand, - * so we should tell it the real pagesize - * and anything necessery - */ - denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); - denali->nand.chipsize <<= (denali->devnum - 1); - denali->nand.page_shift += (denali->devnum - 1); - denali->nand.pagemask = (denali->nand.chipsize >> - denali->nand.page_shift) - 1; - denali->nand.bbt_erase_shift += (denali->devnum - 1); - denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift; - denali->nand.chip_shift += (denali->devnum - 1); - denali->mtd.writesize <<= (denali->devnum - 1); - denali->mtd.oobsize <<= (denali->devnum - 1); - denali->mtd.erasesize <<= (denali->devnum - 1); - denali->mtd.size = denali->nand.numchips * denali->nand.chipsize; - denali->bbtskipbytes *= denali->devnum; - - /* second stage of the NAND scan - * this stage requires information regarding ECC and - * bad block management. */ - - /* Bad block management */ - denali->nand.bbt_td = &bbt_main_descr; - denali->nand.bbt_md = &bbt_mirror_descr; - - /* skip the scan for now until we have OOB read and write support */ - denali->nand.bbt_options |= NAND_BBT_USE_FLASH; - denali->nand.options |= NAND_SKIP_BBTSCAN; - denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; - - /* Denali Controller only support 15bit and 8bit ECC in MRST, - * so just let controller do 15bit ECC for MLC and 8bit ECC for - * SLC if possible. - * */ - if (denali->nand.cellinfo & 0xc && - (denali->mtd.oobsize > (denali->bbtskipbytes + - ECC_15BITS * (denali->mtd.writesize / - ECC_SECTOR_SIZE)))) { - /* if MLC OOB size is large enough, use 15bit ECC*/ - denali->nand.ecc.strength = 15; - denali->nand.ecc.layout = &nand_15bit_oob; - denali->nand.ecc.bytes = ECC_15BITS; - iowrite32(15, denali->flash_reg + ECC_CORRECTION); - } else if (denali->mtd.oobsize < (denali->bbtskipbytes + - ECC_8BITS * (denali->mtd.writesize / - ECC_SECTOR_SIZE))) { - pr_err("Your NAND chip OOB is not large enough to \ - contain 8bit ECC correction codes"); - goto failed_req_irq; - } else { - denali->nand.ecc.strength = 8; - denali->nand.ecc.layout = &nand_8bit_oob; - denali->nand.ecc.bytes = ECC_8BITS; - iowrite32(8, denali->flash_reg + ECC_CORRECTION); - } - - denali->nand.ecc.bytes *= denali->devnum; - denali->nand.ecc.strength *= denali->devnum; - denali->nand.ecc.layout->eccbytes *= - denali->mtd.writesize / ECC_SECTOR_SIZE; - denali->nand.ecc.layout->oobfree[0].offset = - denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes; - denali->nand.ecc.layout->oobfree[0].length = - denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes - - denali->bbtskipbytes; - - /* Let driver know the total blocks number and - * how many blocks contained by each nand chip. - * blksperchip will help driver to know how many - * blocks is taken by FW. - * */ - denali->totalblks = denali->mtd.size >> - denali->nand.phys_erase_shift; - denali->blksperchip = denali->totalblks / denali->nand.numchips; - - /* These functions are required by the NAND core framework, otherwise, - * the NAND core will assert. However, we don't need them, so we'll stub - * them out. */ - denali->nand.ecc.calculate = denali_ecc_calculate; - denali->nand.ecc.correct = denali_ecc_correct; - denali->nand.ecc.hwctl = denali_ecc_hwctl; - - /* override the default read operations */ - denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum; - denali->nand.ecc.read_page = denali_read_page; - denali->nand.ecc.read_page_raw = denali_read_page_raw; - denali->nand.ecc.write_page = denali_write_page; - denali->nand.ecc.write_page_raw = denali_write_page_raw; - denali->nand.ecc.read_oob = denali_read_oob; - denali->nand.ecc.write_oob = denali_write_oob; - denali->nand.erase_cmd = denali_erase; - - if (nand_scan_tail(&denali->mtd)) { - ret = -ENXIO; - goto failed_req_irq; - } - - ret = mtd_device_register(&denali->mtd, NULL, 0); - if (ret) { - dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n", - ret); - goto failed_req_irq; - } - return 0; - -failed_req_irq: - denali_irq_cleanup(denali->irq, denali); - - return ret; -} -EXPORT_SYMBOL(denali_init); - -/* driver exit point */ -void denali_remove(struct denali_nand_info *denali) -{ - denali_irq_cleanup(denali->irq, denali); - dma_unmap_single(denali->dev, denali->buf.dma_buf, DENALI_BUF_SIZE, - DMA_BIDIRECTIONAL); -} -EXPORT_SYMBOL(denali_remove); |
