diff options
Diffstat (limited to 'drivers/mtd/nand/gpmi-nand/gpmi-nand.c')
| -rw-r--r-- | drivers/mtd/nand/gpmi-nand/gpmi-nand.c | 2201 |
1 files changed, 0 insertions, 2201 deletions
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c deleted file mode 100644 index 50f8d4a1b983..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c +++ /dev/null @@ -1,2201 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#include <linux/clk.h> -#include <linux/slab.h> -#include <linux/sched/task_stack.h> -#include <linux/interrupt.h> -#include <linux/module.h> -#include <linux/mtd/partitions.h> -#include <linux/of.h> -#include <linux/of_device.h> -#include "gpmi-nand.h" -#include "bch-regs.h" - -/* Resource names for the GPMI NAND driver. */ -#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" -#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" -#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" - -/* add our owner bbt descriptor */ -static uint8_t scan_ff_pattern[] = { 0xff }; -static struct nand_bbt_descr gpmi_bbt_descr = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern -}; - -/* - * We may change the layout if we can get the ECC info from the datasheet, - * else we will use all the (page + OOB). - */ -static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; - - if (section) - return -ERANGE; - - oobregion->offset = 0; - oobregion->length = geo->page_size - mtd->writesize; - - return 0; -} - -static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; - - if (section) - return -ERANGE; - - /* The available oob size we have. */ - if (geo->page_size < mtd->writesize + mtd->oobsize) { - oobregion->offset = geo->page_size - mtd->writesize; - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const char * const gpmi_clks_for_mx2x[] = { - "gpmi_io", -}; - -static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { - .ecc = gpmi_ooblayout_ecc, - .free = gpmi_ooblayout_free, -}; - -static const struct gpmi_devdata gpmi_devdata_imx23 = { - .type = IS_MX23, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const struct gpmi_devdata gpmi_devdata_imx28 = { - .type = IS_MX28, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const char * const gpmi_clks_for_mx6[] = { - "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", -}; - -static const struct gpmi_devdata gpmi_devdata_imx6q = { - .type = IS_MX6Q, - .bch_max_ecc_strength = 40, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const struct gpmi_devdata gpmi_devdata_imx6sx = { - .type = IS_MX6SX, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const char * const gpmi_clks_for_mx7d[] = { - "gpmi_io", "gpmi_bch_apb", -}; - -static const struct gpmi_devdata gpmi_devdata_imx7d = { - .type = IS_MX7D, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx7d, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), -}; - -static irqreturn_t bch_irq(int irq, void *cookie) -{ - struct gpmi_nand_data *this = cookie; - - gpmi_clear_bch(this); - complete(&this->bch_done); - return IRQ_HANDLED; -} - -/* - * Calculate the ECC strength by hand: - * E : The ECC strength. - * G : the length of Galois Field. - * N : The chunk count of per page. - * O : the oobsize of the NAND chip. - * M : the metasize of per page. - * - * The formula is : - * E * G * N - * ------------ <= (O - M) - * 8 - * - * So, we get E by: - * (O - M) * 8 - * E <= ------------- - * G * N - */ -static inline int get_ecc_strength(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - int ecc_strength; - - ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) - / (geo->gf_len * geo->ecc_chunk_count); - - /* We need the minor even number. */ - return round_down(ecc_strength, 2); -} - -static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - - /* Do the sanity check. */ - if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { - /* The mx23/mx28 only support the GF13. */ - if (geo->gf_len == 14) - return false; - } - return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; -} - -/* - * If we can get the ECC information from the nand chip, we do not - * need to calculate them ourselves. - * - * We may have available oob space in this case. - */ -static int set_geometry_by_ecc_info(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_mark_bit_offset; - - if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) - return -EINVAL; - - switch (chip->ecc_step_ds) { - case SZ_512: - geo->gf_len = 13; - break; - case SZ_1K: - geo->gf_len = 14; - break; - default: - dev_err(this->dev, - "unsupported nand chip. ecc bits : %d, ecc size : %d\n", - chip->ecc_strength_ds, chip->ecc_step_ds); - return -EINVAL; - } - geo->ecc_chunk_size = chip->ecc_step_ds; - geo->ecc_strength = round_up(chip->ecc_strength_ds, 2); - if (!gpmi_check_ecc(this)) - return -EINVAL; - - /* Keep the C >= O */ - if (geo->ecc_chunk_size < mtd->oobsize) { - dev_err(this->dev, - "unsupported nand chip. ecc size: %d, oob size : %d\n", - chip->ecc_step_ds, mtd->oobsize); - return -EINVAL; - } - - /* The default value, see comment in the legacy_set_geometry(). */ - geo->metadata_size = 10; - - geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; - - /* - * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: - * - * | P | - * |<----------------------------------------------------->| - * | | - * | (Block Mark) | - * | P' | | | | - * |<-------------------------------------------->| D | | O' | - * | |<---->| |<--->| - * V V V V V - * +---+----------+-+----------+-+----------+-+----------+-+-----+ - * | M | data |E| data |E| data |E| data |E| | - * +---+----------+-+----------+-+----------+-+----------+-+-----+ - * ^ ^ - * | O | - * |<------------>| - * | | - * - * P : the page size for BCH module. - * E : The ECC strength. - * G : the length of Galois Field. - * N : The chunk count of per page. - * M : the metasize of per page. - * C : the ecc chunk size, aka the "data" above. - * P': the nand chip's page size. - * O : the nand chip's oob size. - * O': the free oob. - * - * The formula for P is : - * - * E * G * N - * P = ------------ + P' + M - * 8 - * - * The position of block mark moves forward in the ECC-based view - * of page, and the delta is: - * - * E * G * (N - 1) - * D = (---------------- + M) - * 8 - * - * Please see the comment in legacy_set_geometry(). - * With the condition C >= O , we still can get same result. - * So the bit position of the physical block mark within the ECC-based - * view of the page is : - * (P' - D) * 8 - */ - geo->page_size = mtd->writesize + geo->metadata_size + - (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; - - geo->payload_size = mtd->writesize; - - geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); - geo->auxiliary_size = ALIGN(geo->metadata_size, 4) - + ALIGN(geo->ecc_chunk_count, 4); - - if (!this->swap_block_mark) - return 0; - - /* For bit swap. */ - block_mark_bit_offset = mtd->writesize * 8 - - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) - + geo->metadata_size * 8); - - geo->block_mark_byte_offset = block_mark_bit_offset / 8; - geo->block_mark_bit_offset = block_mark_bit_offset % 8; - return 0; -} - -static int legacy_set_geometry(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - unsigned int metadata_size; - unsigned int status_size; - unsigned int block_mark_bit_offset; - - /* - * The size of the metadata can be changed, though we set it to 10 - * bytes now. But it can't be too large, because we have to save - * enough space for BCH. - */ - geo->metadata_size = 10; - - /* The default for the length of Galois Field. */ - geo->gf_len = 13; - - /* The default for chunk size. */ - geo->ecc_chunk_size = 512; - while (geo->ecc_chunk_size < mtd->oobsize) { - geo->ecc_chunk_size *= 2; /* keep C >= O */ - geo->gf_len = 14; - } - - geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; - - /* We use the same ECC strength for all chunks. */ - geo->ecc_strength = get_ecc_strength(this); - if (!gpmi_check_ecc(this)) { - dev_err(this->dev, - "ecc strength: %d cannot be supported by the controller (%d)\n" - "try to use minimum ecc strength that NAND chip required\n", - geo->ecc_strength, - this->devdata->bch_max_ecc_strength); - return -EINVAL; - } - - geo->page_size = mtd->writesize + geo->metadata_size + - (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; - geo->payload_size = mtd->writesize; - - /* - * The auxiliary buffer contains the metadata and the ECC status. The - * metadata is padded to the nearest 32-bit boundary. The ECC status - * contains one byte for every ECC chunk, and is also padded to the - * nearest 32-bit boundary. - */ - metadata_size = ALIGN(geo->metadata_size, 4); - status_size = ALIGN(geo->ecc_chunk_count, 4); - - geo->auxiliary_size = metadata_size + status_size; - geo->auxiliary_status_offset = metadata_size; - - if (!this->swap_block_mark) - return 0; - - /* - * We need to compute the byte and bit offsets of - * the physical block mark within the ECC-based view of the page. - * - * NAND chip with 2K page shows below: - * (Block Mark) - * | | - * | D | - * |<---->| - * V V - * +---+----------+-+----------+-+----------+-+----------+-+ - * | M | data |E| data |E| data |E| data |E| - * +---+----------+-+----------+-+----------+-+----------+-+ - * - * The position of block mark moves forward in the ECC-based view - * of page, and the delta is: - * - * E * G * (N - 1) - * D = (---------------- + M) - * 8 - * - * With the formula to compute the ECC strength, and the condition - * : C >= O (C is the ecc chunk size) - * - * It's easy to deduce to the following result: - * - * E * G (O - M) C - M C - M - * ----------- <= ------- <= -------- < --------- - * 8 N N (N - 1) - * - * So, we get: - * - * E * G * (N - 1) - * D = (---------------- + M) < C - * 8 - * - * The above inequality means the position of block mark - * within the ECC-based view of the page is still in the data chunk, - * and it's NOT in the ECC bits of the chunk. - * - * Use the following to compute the bit position of the - * physical block mark within the ECC-based view of the page: - * (page_size - D) * 8 - * - * --Huang Shijie - */ - block_mark_bit_offset = mtd->writesize * 8 - - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) - + geo->metadata_size * 8); - - geo->block_mark_byte_offset = block_mark_bit_offset / 8; - geo->block_mark_bit_offset = block_mark_bit_offset % 8; - return 0; -} - -int common_nfc_set_geometry(struct gpmi_nand_data *this) -{ - if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) - || legacy_set_geometry(this)) - return set_geometry_by_ecc_info(this); - - return 0; -} - -struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) -{ - /* We use the DMA channel 0 to access all the nand chips. */ - return this->dma_chans[0]; -} - -/* Can we use the upper's buffer directly for DMA? */ -void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) -{ - struct scatterlist *sgl = &this->data_sgl; - int ret; - - /* first try to map the upper buffer directly */ - if (virt_addr_valid(this->upper_buf) && - !object_is_on_stack(this->upper_buf)) { - sg_init_one(sgl, this->upper_buf, this->upper_len); - ret = dma_map_sg(this->dev, sgl, 1, dr); - if (ret == 0) - goto map_fail; - - this->direct_dma_map_ok = true; - return; - } - -map_fail: - /* We have to use our own DMA buffer. */ - sg_init_one(sgl, this->data_buffer_dma, this->upper_len); - - if (dr == DMA_TO_DEVICE) - memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); - - dma_map_sg(this->dev, sgl, 1, dr); - - this->direct_dma_map_ok = false; -} - -/* This will be called after the DMA operation is finished. */ -static void dma_irq_callback(void *param) -{ - struct gpmi_nand_data *this = param; - struct completion *dma_c = &this->dma_done; - - switch (this->dma_type) { - case DMA_FOR_COMMAND: - dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); - break; - - case DMA_FOR_READ_DATA: - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); - if (this->direct_dma_map_ok == false) - memcpy(this->upper_buf, this->data_buffer_dma, - this->upper_len); - break; - - case DMA_FOR_WRITE_DATA: - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); - break; - - case DMA_FOR_READ_ECC_PAGE: - case DMA_FOR_WRITE_ECC_PAGE: - /* We have to wait the BCH interrupt to finish. */ - break; - - default: - dev_err(this->dev, "in wrong DMA operation.\n"); - } - - complete(dma_c); -} - -int start_dma_without_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) -{ - struct completion *dma_c = &this->dma_done; - unsigned long timeout; - - init_completion(dma_c); - - desc->callback = dma_irq_callback; - desc->callback_param = this; - dmaengine_submit(desc); - dma_async_issue_pending(get_dma_chan(this)); - - /* Wait for the interrupt from the DMA block. */ - timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "DMA timeout, last DMA :%d\n", - this->last_dma_type); - gpmi_dump_info(this); - return -ETIMEDOUT; - } - return 0; -} - -/* - * This function is used in BCH reading or BCH writing pages. - * It will wait for the BCH interrupt as long as ONE second. - * Actually, we must wait for two interrupts : - * [1] firstly the DMA interrupt and - * [2] secondly the BCH interrupt. - */ -int start_dma_with_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) -{ - struct completion *bch_c = &this->bch_done; - unsigned long timeout; - - /* Prepare to receive an interrupt from the BCH block. */ - init_completion(bch_c); - - /* start the DMA */ - start_dma_without_bch_irq(this, desc); - - /* Wait for the interrupt from the BCH block. */ - timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "BCH timeout, last DMA :%d\n", - this->last_dma_type); - gpmi_dump_info(this); - return -ETIMEDOUT; - } - return 0; -} - -static int acquire_register_block(struct gpmi_nand_data *this, - const char *res_name) -{ - struct platform_device *pdev = this->pdev; - struct resources *res = &this->resources; - struct resource *r; - void __iomem *p; - - r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); - p = devm_ioremap_resource(&pdev->dev, r); - if (IS_ERR(p)) - return PTR_ERR(p); - - if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) - res->gpmi_regs = p; - else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) - res->bch_regs = p; - else - dev_err(this->dev, "unknown resource name : %s\n", res_name); - - return 0; -} - -static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) -{ - struct platform_device *pdev = this->pdev; - const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; - struct resource *r; - int err; - - r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); - if (!r) { - dev_err(this->dev, "Can't get resource for %s\n", res_name); - return -ENODEV; - } - - err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); - if (err) - dev_err(this->dev, "error requesting BCH IRQ\n"); - - return err; -} - -static void release_dma_channels(struct gpmi_nand_data *this) -{ - unsigned int i; - for (i = 0; i < DMA_CHANS; i++) - if (this->dma_chans[i]) { - dma_release_channel(this->dma_chans[i]); - this->dma_chans[i] = NULL; - } -} - -static int acquire_dma_channels(struct gpmi_nand_data *this) -{ - struct platform_device *pdev = this->pdev; - struct dma_chan *dma_chan; - - /* request dma channel */ - dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); - if (!dma_chan) { - dev_err(this->dev, "Failed to request DMA channel.\n"); - goto acquire_err; - } - - this->dma_chans[0] = dma_chan; - return 0; - -acquire_err: - release_dma_channels(this); - return -EINVAL; -} - -static int gpmi_get_clks(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct clk *clk; - int err, i; - - for (i = 0; i < this->devdata->clks_count; i++) { - clk = devm_clk_get(this->dev, this->devdata->clks[i]); - if (IS_ERR(clk)) { - err = PTR_ERR(clk); - goto err_clock; - } - - r->clock[i] = clk; - } - - if (GPMI_IS_MX6(this)) - /* - * Set the default value for the gpmi clock. - * - * If you want to use the ONFI nand which is in the - * Synchronous Mode, you should change the clock as you need. - */ - clk_set_rate(r->clock[0], 22000000); - - return 0; - -err_clock: - dev_dbg(this->dev, "failed in finding the clocks.\n"); - return err; -} - -static int acquire_resources(struct gpmi_nand_data *this) -{ - int ret; - - ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); - if (ret) - goto exit_regs; - - ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); - if (ret) - goto exit_regs; - - ret = acquire_bch_irq(this, bch_irq); - if (ret) - goto exit_regs; - - ret = acquire_dma_channels(this); - if (ret) - goto exit_regs; - - ret = gpmi_get_clks(this); - if (ret) - goto exit_clock; - return 0; - -exit_clock: - release_dma_channels(this); -exit_regs: - return ret; -} - -static void release_resources(struct gpmi_nand_data *this) -{ - release_dma_channels(this); -} - -static int init_hardware(struct gpmi_nand_data *this) -{ - int ret; - - /* - * This structure contains the "safe" GPMI timing that should succeed - * with any NAND Flash device - * (although, with less-than-optimal performance). - */ - struct nand_timing safe_timing = { - .data_setup_in_ns = 80, - .data_hold_in_ns = 60, - .address_setup_in_ns = 25, - .gpmi_sample_delay_in_ns = 6, - .tREA_in_ns = -1, - .tRLOH_in_ns = -1, - .tRHOH_in_ns = -1, - }; - - /* Initialize the hardwares. */ - ret = gpmi_init(this); - if (ret) - return ret; - - this->timing = safe_timing; - return 0; -} - -static int read_page_prepare(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void **use_virt, dma_addr_t *use_phys) -{ - struct device *dev = this->dev; - - if (virt_addr_valid(destination)) { - dma_addr_t dest_phys; - - dest_phys = dma_map_single(dev, destination, - length, DMA_FROM_DEVICE); - if (dma_mapping_error(dev, dest_phys)) { - if (alt_size < length) { - dev_err(dev, "Alternate buffer is too small\n"); - return -ENOMEM; - } - goto map_failed; - } - *use_virt = destination; - *use_phys = dest_phys; - this->direct_dma_map_ok = true; - return 0; - } - -map_failed: - *use_virt = alt_virt; - *use_phys = alt_phys; - this->direct_dma_map_ok = false; - return 0; -} - -static inline void read_page_end(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void *used_virt, dma_addr_t used_phys) -{ - if (this->direct_dma_map_ok) - dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); -} - -static inline void read_page_swap_end(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void *used_virt, dma_addr_t used_phys) -{ - if (!this->direct_dma_map_ok) - memcpy(destination, alt_virt, length); -} - -static int send_page_prepare(struct gpmi_nand_data *this, - const void *source, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - const void **use_virt, dma_addr_t *use_phys) -{ - struct device *dev = this->dev; - - if (virt_addr_valid(source)) { - dma_addr_t source_phys; - - source_phys = dma_map_single(dev, (void *)source, length, - DMA_TO_DEVICE); - if (dma_mapping_error(dev, source_phys)) { - if (alt_size < length) { - dev_err(dev, "Alternate buffer is too small\n"); - return -ENOMEM; - } - goto map_failed; - } - *use_virt = source; - *use_phys = source_phys; - return 0; - } -map_failed: - /* - * Copy the content of the source buffer into the alternate - * buffer and set up the return values accordingly. - */ - memcpy(alt_virt, source, length); - - *use_virt = alt_virt; - *use_phys = alt_phys; - return 0; -} - -static void send_page_end(struct gpmi_nand_data *this, - const void *source, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - const void *used_virt, dma_addr_t used_phys) -{ - struct device *dev = this->dev; - if (used_virt == source) - dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); -} - -static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - - if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) - dma_free_coherent(dev, this->page_buffer_size, - this->page_buffer_virt, - this->page_buffer_phys); - kfree(this->cmd_buffer); - kfree(this->data_buffer_dma); - kfree(this->raw_buffer); - - this->cmd_buffer = NULL; - this->data_buffer_dma = NULL; - this->raw_buffer = NULL; - this->page_buffer_virt = NULL; - this->page_buffer_size = 0; -} - -/* Allocate the DMA buffers */ -static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct device *dev = this->dev; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - - /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ - this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); - if (this->cmd_buffer == NULL) - goto error_alloc; - - /* - * [2] Allocate a read/write data buffer. - * The gpmi_alloc_dma_buffer can be called twice. - * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer - * is called before the nand_scan_ident; and we allocate a buffer - * of the real NAND page size when the gpmi_alloc_dma_buffer is - * called after the nand_scan_ident. - */ - this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, - GFP_DMA | GFP_KERNEL); - if (this->data_buffer_dma == NULL) - goto error_alloc; - - /* - * [3] Allocate the page buffer. - * - * Both the payload buffer and the auxiliary buffer must appear on - * 32-bit boundaries. We presume the size of the payload buffer is a - * power of two and is much larger than four, which guarantees the - * auxiliary buffer will appear on a 32-bit boundary. - */ - this->page_buffer_size = geo->payload_size + geo->auxiliary_size; - this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, - &this->page_buffer_phys, GFP_DMA); - if (!this->page_buffer_virt) - goto error_alloc; - - this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); - if (!this->raw_buffer) - goto error_alloc; - - /* Slice up the page buffer. */ - this->payload_virt = this->page_buffer_virt; - this->payload_phys = this->page_buffer_phys; - this->auxiliary_virt = this->payload_virt + geo->payload_size; - this->auxiliary_phys = this->payload_phys + geo->payload_size; - return 0; - -error_alloc: - gpmi_free_dma_buffer(this); - return -ENOMEM; -} - -static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - int ret; - - /* - * Every operation begins with a command byte and a series of zero or - * more address bytes. These are distinguished by either the Address - * Latch Enable (ALE) or Command Latch Enable (CLE) signals being - * asserted. When MTD is ready to execute the command, it will deassert - * both latch enables. - * - * Rather than run a separate DMA operation for every single byte, we - * queue them up and run a single DMA operation for the entire series - * of command and data bytes. NAND_CMD_NONE means the END of the queue. - */ - if ((ctrl & (NAND_ALE | NAND_CLE))) { - if (data != NAND_CMD_NONE) - this->cmd_buffer[this->command_length++] = data; - return; - } - - if (!this->command_length) - return; - - ret = gpmi_send_command(this); - if (ret) - dev_err(this->dev, "Chip: %u, Error %d\n", - this->current_chip, ret); - - this->command_length = 0; -} - -static int gpmi_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - return gpmi_is_ready(this, this->current_chip); -} - -static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - if ((this->current_chip < 0) && (chipnr >= 0)) - gpmi_begin(this); - else if ((this->current_chip >= 0) && (chipnr < 0)) - gpmi_end(this); - - this->current_chip = chipnr; -} - -static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "len is %d\n", len); - this->upper_buf = buf; - this->upper_len = len; - - gpmi_read_data(this); -} - -static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "len is %d\n", len); - this->upper_buf = (uint8_t *)buf; - this->upper_len = len; - - gpmi_send_data(this); -} - -static uint8_t gpmi_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - uint8_t *buf = this->data_buffer_dma; - - gpmi_read_buf(mtd, buf, 1); - return buf[0]; -} - -/* - * Handles block mark swapping. - * It can be called in swapping the block mark, or swapping it back, - * because the the operations are the same. - */ -static void block_mark_swapping(struct gpmi_nand_data *this, - void *payload, void *auxiliary) -{ - struct bch_geometry *nfc_geo = &this->bch_geometry; - unsigned char *p; - unsigned char *a; - unsigned int bit; - unsigned char mask; - unsigned char from_data; - unsigned char from_oob; - - if (!this->swap_block_mark) - return; - - /* - * If control arrives here, we're swapping. Make some convenience - * variables. - */ - bit = nfc_geo->block_mark_bit_offset; - p = payload + nfc_geo->block_mark_byte_offset; - a = auxiliary; - - /* - * Get the byte from the data area that overlays the block mark. Since - * the ECC engine applies its own view to the bits in the page, the - * physical block mark won't (in general) appear on a byte boundary in - * the data. - */ - from_data = (p[0] >> bit) | (p[1] << (8 - bit)); - - /* Get the byte from the OOB. */ - from_oob = a[0]; - - /* Swap them. */ - a[0] = from_data; - - mask = (0x1 << bit) - 1; - p[0] = (p[0] & mask) | (from_oob << bit); - - mask = ~0 << bit; - p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); -} - -static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - void *payload_virt; - dma_addr_t payload_phys; - void *auxiliary_virt; - dma_addr_t auxiliary_phys; - unsigned int i; - unsigned char *status; - unsigned int max_bitflips = 0; - int ret; - - dev_dbg(this->dev, "page number is : %d\n", page); - ret = read_page_prepare(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - &payload_virt, &payload_phys); - if (ret) { - dev_err(this->dev, "Inadequate DMA buffer\n"); - ret = -ENOMEM; - return ret; - } - auxiliary_virt = this->auxiliary_virt; - auxiliary_phys = this->auxiliary_phys; - - /* go! */ - ret = gpmi_read_page(this, payload_phys, auxiliary_phys); - read_page_end(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - if (ret) { - dev_err(this->dev, "Error in ECC-based read: %d\n", ret); - return ret; - } - - /* handle the block mark swapping */ - block_mark_swapping(this, payload_virt, auxiliary_virt); - - /* Loop over status bytes, accumulating ECC status. */ - status = auxiliary_virt + nfc_geo->auxiliary_status_offset; - - read_page_swap_end(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - - for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { - if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) - continue; - - if (*status == STATUS_UNCORRECTABLE) { - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *eccbuf = this->raw_buffer; - int offset, bitoffset; - int eccbytes; - int flips; - - /* Read ECC bytes into our internal raw_buffer */ - offset = nfc_geo->metadata_size * 8; - offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); - offset -= eccbits; - bitoffset = offset % 8; - eccbytes = DIV_ROUND_UP(offset + eccbits, 8); - offset /= 8; - eccbytes -= offset; - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); - chip->read_buf(mtd, eccbuf, eccbytes); - - /* - * ECC data are not byte aligned and we may have - * in-band data in the first and last byte of - * eccbuf. Set non-eccbits to one so that - * nand_check_erased_ecc_chunk() does not count them - * as bitflips. - */ - if (bitoffset) - eccbuf[0] |= GENMASK(bitoffset - 1, 0); - - bitoffset = (bitoffset + eccbits) % 8; - if (bitoffset) - eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); - - /* - * The ECC hardware has an uncorrectable ECC status - * code in case we have bitflips in an erased page. As - * nothing was written into this subpage the ECC is - * obviously wrong and we can not trust it. We assume - * at this point that we are reading an erased page and - * try to correct the bitflips in buffer up to - * ecc_strength bitflips. If this is a page with random - * data, we exceed this number of bitflips and have a - * ECC failure. Otherwise we use the corrected buffer. - */ - if (i == 0) { - /* The first block includes metadata */ - flips = nand_check_erased_ecc_chunk( - buf + i * nfc_geo->ecc_chunk_size, - nfc_geo->ecc_chunk_size, - eccbuf, eccbytes, - auxiliary_virt, - nfc_geo->metadata_size, - nfc_geo->ecc_strength); - } else { - flips = nand_check_erased_ecc_chunk( - buf + i * nfc_geo->ecc_chunk_size, - nfc_geo->ecc_chunk_size, - eccbuf, eccbytes, - NULL, 0, - nfc_geo->ecc_strength); - } - - if (flips > 0) { - max_bitflips = max_t(unsigned int, max_bitflips, - flips); - mtd->ecc_stats.corrected += flips; - continue; - } - - mtd->ecc_stats.failed++; - continue; - } - - mtd->ecc_stats.corrected += *status; - max_bitflips = max_t(unsigned int, max_bitflips, *status); - } - - if (oob_required) { - /* - * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() - * for details about our policy for delivering the OOB. - * - * We fill the caller's buffer with set bits, and then copy the - * block mark to th caller's buffer. Note that, if block mark - * swapping was necessary, it has already been done, so we can - * rely on the first byte of the auxiliary buffer to contain - * the block mark. - */ - memset(chip->oob_poi, ~0, mtd->oobsize); - chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; - } - - return max_bitflips; -} - -/* Fake a virtual small page for the subpage read */ -static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offs, uint32_t len, uint8_t *buf, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - void __iomem *bch_regs = this->resources.bch_regs; - struct bch_geometry old_geo = this->bch_geometry; - struct bch_geometry *geo = &this->bch_geometry; - int size = chip->ecc.size; /* ECC chunk size */ - int meta, n, page_size; - u32 r1_old, r2_old, r1_new, r2_new; - unsigned int max_bitflips; - int first, last, marker_pos; - int ecc_parity_size; - int col = 0; - int old_swap_block_mark = this->swap_block_mark; - - /* The size of ECC parity */ - ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; - - /* Align it with the chunk size */ - first = offs / size; - last = (offs + len - 1) / size; - - if (this->swap_block_mark) { - /* - * Find the chunk which contains the Block Marker. - * If this chunk is in the range of [first, last], - * we have to read out the whole page. - * Why? since we had swapped the data at the position of Block - * Marker to the metadata which is bound with the chunk 0. - */ - marker_pos = geo->block_mark_byte_offset / size; - if (last >= marker_pos && first <= marker_pos) { - dev_dbg(this->dev, - "page:%d, first:%d, last:%d, marker at:%d\n", - page, first, last, marker_pos); - return gpmi_ecc_read_page(mtd, chip, buf, 0, page); - } - } - - meta = geo->metadata_size; - if (first) { - col = meta + (size + ecc_parity_size) * first; - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1); - - meta = 0; - buf = buf + first * size; - } - - /* Save the old environment */ - r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); - r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); - - /* change the BCH registers and bch_geometry{} */ - n = last - first + 1; - page_size = meta + (size + ecc_parity_size) * n; - - r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | - BM_BCH_FLASH0LAYOUT0_META_SIZE); - r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) - | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); - writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); - - r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; - r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); - writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); - - geo->ecc_chunk_count = n; - geo->payload_size = n * size; - geo->page_size = page_size; - geo->auxiliary_status_offset = ALIGN(meta, 4); - - dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", - page, offs, len, col, first, n, page_size); - - /* Read the subpage now */ - this->swap_block_mark = false; - max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page); - - /* Restore */ - writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); - writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); - this->bch_geometry = old_geo; - this->swap_block_mark = old_swap_block_mark; - - return max_bitflips; -} - -static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - const void *payload_virt; - dma_addr_t payload_phys; - const void *auxiliary_virt; - dma_addr_t auxiliary_phys; - int ret; - - dev_dbg(this->dev, "ecc write page.\n"); - if (this->swap_block_mark) { - /* - * If control arrives here, we're doing block mark swapping. - * Since we can't modify the caller's buffers, we must copy them - * into our own. - */ - memcpy(this->payload_virt, buf, mtd->writesize); - payload_virt = this->payload_virt; - payload_phys = this->payload_phys; - - memcpy(this->auxiliary_virt, chip->oob_poi, - nfc_geo->auxiliary_size); - auxiliary_virt = this->auxiliary_virt; - auxiliary_phys = this->auxiliary_phys; - - /* Handle block mark swapping. */ - block_mark_swapping(this, - (void *)payload_virt, (void *)auxiliary_virt); - } else { - /* - * If control arrives here, we're not doing block mark swapping, - * so we can to try and use the caller's buffers. - */ - ret = send_page_prepare(this, - buf, mtd->writesize, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - &payload_virt, &payload_phys); - if (ret) { - dev_err(this->dev, "Inadequate payload DMA buffer\n"); - return 0; - } - - ret = send_page_prepare(this, - chip->oob_poi, mtd->oobsize, - this->auxiliary_virt, this->auxiliary_phys, - nfc_geo->auxiliary_size, - &auxiliary_virt, &auxiliary_phys); - if (ret) { - dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); - goto exit_auxiliary; - } - } - - /* Ask the NFC. */ - ret = gpmi_send_page(this, payload_phys, auxiliary_phys); - if (ret) - dev_err(this->dev, "Error in ECC-based write: %d\n", ret); - - if (!this->swap_block_mark) { - send_page_end(this, chip->oob_poi, mtd->oobsize, - this->auxiliary_virt, this->auxiliary_phys, - nfc_geo->auxiliary_size, - auxiliary_virt, auxiliary_phys); -exit_auxiliary: - send_page_end(this, buf, mtd->writesize, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - } - - return 0; -} - -/* - * There are several places in this driver where we have to handle the OOB and - * block marks. This is the function where things are the most complicated, so - * this is where we try to explain it all. All the other places refer back to - * here. - * - * These are the rules, in order of decreasing importance: - * - * 1) Nothing the caller does can be allowed to imperil the block mark. - * - * 2) In read operations, the first byte of the OOB we return must reflect the - * true state of the block mark, no matter where that block mark appears in - * the physical page. - * - * 3) ECC-based read operations return an OOB full of set bits (since we never - * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads - * return). - * - * 4) "Raw" read operations return a direct view of the physical bytes in the - * page, using the conventional definition of which bytes are data and which - * are OOB. This gives the caller a way to see the actual, physical bytes - * in the page, without the distortions applied by our ECC engine. - * - * - * What we do for this specific read operation depends on two questions: - * - * 1) Are we doing a "raw" read, or an ECC-based read? - * - * 2) Are we using block mark swapping or transcription? - * - * There are four cases, illustrated by the following Karnaugh map: - * - * | Raw | ECC-based | - * -------------+-------------------------+-------------------------+ - * | Read the conventional | | - * | OOB at the end of the | | - * Swapping | page and return it. It | | - * | contains exactly what | | - * | we want. | Read the block mark and | - * -------------+-------------------------+ return it in a buffer | - * | Read the conventional | full of set bits. | - * | OOB at the end of the | | - * | page and also the block | | - * Transcribing | mark in the metadata. | | - * | Copy the block mark | | - * | into the first byte of | | - * | the OOB. | | - * -------------+-------------------------+-------------------------+ - * - * Note that we break rule #4 in the Transcribing/Raw case because we're not - * giving an accurate view of the actual, physical bytes in the page (we're - * overwriting the block mark). That's OK because it's more important to follow - * rule #2. - * - * It turns out that knowing whether we want an "ECC-based" or "raw" read is not - * easy. When reading a page, for example, the NAND Flash MTD code calls our - * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an - * ECC-based or raw view of the page is implicit in which function it calls - * (there is a similar pair of ECC-based/raw functions for writing). - */ -static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "page number is %d\n", page); - /* clear the OOB buffer */ - memset(chip->oob_poi, ~0, mtd->oobsize); - - /* Read out the conventional OOB. */ - chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - /* - * Now, we want to make sure the block mark is correct. In the - * non-transcribing case (!GPMI_IS_MX23()), we already have it. - * Otherwise, we need to explicitly read it. - */ - if (GPMI_IS_MX23(this)) { - /* Read the block mark into the first byte of the OOB buffer. */ - chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); - chip->oob_poi[0] = chip->read_byte(mtd); - } - - return 0; -} - -static int -gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) -{ - struct mtd_oob_region of = { }; - int status = 0; - - /* Do we have available oob area? */ - mtd_ooblayout_free(mtd, 0, &of); - if (!of.length) - return -EPERM; - - if (!nand_is_slc(chip)) - return -EPERM; - - chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of.offset, page); - chip->write_buf(mtd, chip->oob_poi + of.offset, of.length); - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - - status = chip->waitfunc(mtd, chip); - return status & NAND_STATUS_FAIL ? -EIO : 0; -} - -/* - * This function reads a NAND page without involving the ECC engine (no HW - * ECC correction). - * The tricky part in the GPMI/BCH controller is that it stores ECC bits - * inline (interleaved with payload DATA), and do not align data chunk on - * byte boundaries. - * We thus need to take care moving the payload data and ECC bits stored in the - * page into the provided buffers, which is why we're using gpmi_copy_bits. - * - * See set_geometry_by_ecc_info inline comments to have a full description - * of the layout used by the GPMI controller. - */ -static int gpmi_ecc_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - int eccsize = nfc_geo->ecc_chunk_size; - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *tmp_buf = this->raw_buffer; - size_t src_bit_off; - size_t oob_bit_off; - size_t oob_byte_off; - uint8_t *oob = chip->oob_poi; - int step; - - chip->read_buf(mtd, tmp_buf, - mtd->writesize + mtd->oobsize); - - /* - * If required, swap the bad block marker and the data stored in the - * metadata section, so that we don't wrongly consider a block as bad. - * - * See the layout description for a detailed explanation on why this - * is needed. - */ - if (this->swap_block_mark) { - u8 swap = tmp_buf[0]; - - tmp_buf[0] = tmp_buf[mtd->writesize]; - tmp_buf[mtd->writesize] = swap; - } - - /* - * Copy the metadata section into the oob buffer (this section is - * guaranteed to be aligned on a byte boundary). - */ - if (oob_required) - memcpy(oob, tmp_buf, nfc_geo->metadata_size); - - oob_bit_off = nfc_geo->metadata_size * 8; - src_bit_off = oob_bit_off; - - /* Extract interleaved payload data and ECC bits */ - for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { - if (buf) - gpmi_copy_bits(buf, step * eccsize * 8, - tmp_buf, src_bit_off, - eccsize * 8); - src_bit_off += eccsize * 8; - - /* Align last ECC block to align a byte boundary */ - if (step == nfc_geo->ecc_chunk_count - 1 && - (oob_bit_off + eccbits) % 8) - eccbits += 8 - ((oob_bit_off + eccbits) % 8); - - if (oob_required) - gpmi_copy_bits(oob, oob_bit_off, - tmp_buf, src_bit_off, - eccbits); - - src_bit_off += eccbits; - oob_bit_off += eccbits; - } - - if (oob_required) { - oob_byte_off = oob_bit_off / 8; - - if (oob_byte_off < mtd->oobsize) - memcpy(oob + oob_byte_off, - tmp_buf + mtd->writesize + oob_byte_off, - mtd->oobsize - oob_byte_off); - } - - return 0; -} - -/* - * This function writes a NAND page without involving the ECC engine (no HW - * ECC generation). - * The tricky part in the GPMI/BCH controller is that it stores ECC bits - * inline (interleaved with payload DATA), and do not align data chunk on - * byte boundaries. - * We thus need to take care moving the OOB area at the right place in the - * final page, which is why we're using gpmi_copy_bits. - * - * See set_geometry_by_ecc_info inline comments to have a full description - * of the layout used by the GPMI controller. - */ -static int gpmi_ecc_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - int eccsize = nfc_geo->ecc_chunk_size; - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *tmp_buf = this->raw_buffer; - uint8_t *oob = chip->oob_poi; - size_t dst_bit_off; - size_t oob_bit_off; - size_t oob_byte_off; - int step; - - /* - * Initialize all bits to 1 in case we don't have a buffer for the - * payload or oob data in order to leave unspecified bits of data - * to their initial state. - */ - if (!buf || !oob_required) - memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); - - /* - * First copy the metadata section (stored in oob buffer) at the - * beginning of the page, as imposed by the GPMI layout. - */ - memcpy(tmp_buf, oob, nfc_geo->metadata_size); - oob_bit_off = nfc_geo->metadata_size * 8; - dst_bit_off = oob_bit_off; - - /* Interleave payload data and ECC bits */ - for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { - if (buf) - gpmi_copy_bits(tmp_buf, dst_bit_off, - buf, step * eccsize * 8, eccsize * 8); - dst_bit_off += eccsize * 8; - - /* Align last ECC block to align a byte boundary */ - if (step == nfc_geo->ecc_chunk_count - 1 && - (oob_bit_off + eccbits) % 8) - eccbits += 8 - ((oob_bit_off + eccbits) % 8); - - if (oob_required) - gpmi_copy_bits(tmp_buf, dst_bit_off, - oob, oob_bit_off, eccbits); - - dst_bit_off += eccbits; - oob_bit_off += eccbits; - } - - oob_byte_off = oob_bit_off / 8; - - if (oob_required && oob_byte_off < mtd->oobsize) - memcpy(tmp_buf + mtd->writesize + oob_byte_off, - oob + oob_byte_off, mtd->oobsize - oob_byte_off); - - /* - * If required, swap the bad block marker and the first byte of the - * metadata section, so that we don't modify the bad block marker. - * - * See the layout description for a detailed explanation on why this - * is needed. - */ - if (this->swap_block_mark) { - u8 swap = tmp_buf[0]; - - tmp_buf[0] = tmp_buf[mtd->writesize]; - tmp_buf[mtd->writesize] = swap; - } - - chip->write_buf(mtd, tmp_buf, mtd->writesize + mtd->oobsize); - - return 0; -} - -static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); - - return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page); -} - -static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page); - - return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page); -} - -static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - int ret = 0; - uint8_t *block_mark; - int column, page, status, chipnr; - - chipnr = (int)(ofs >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; - - /* Write the block mark. */ - block_mark = this->data_buffer_dma; - block_mark[0] = 0; /* bad block marker */ - - /* Shift to get page */ - page = (int)(ofs >> chip->page_shift); - - chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); - chip->write_buf(mtd, block_mark, 1); - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - - status = chip->waitfunc(mtd, chip); - if (status & NAND_STATUS_FAIL) - ret = -EIO; - - chip->select_chip(mtd, -1); - - return ret; -} - -static int nand_boot_set_geometry(struct gpmi_nand_data *this) -{ - struct boot_rom_geometry *geometry = &this->rom_geometry; - - /* - * Set the boot block stride size. - * - * In principle, we should be reading this from the OTP bits, since - * that's where the ROM is going to get it. In fact, we don't have any - * way to read the OTP bits, so we go with the default and hope for the - * best. - */ - geometry->stride_size_in_pages = 64; - - /* - * Set the search area stride exponent. - * - * In principle, we should be reading this from the OTP bits, since - * that's where the ROM is going to get it. In fact, we don't have any - * way to read the OTP bits, so we go with the default and hope for the - * best. - */ - geometry->search_area_stride_exponent = 2; - return 0; -} - -static const char *fingerprint = "STMP"; -static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) -{ - struct boot_rom_geometry *rom_geo = &this->rom_geometry; - struct device *dev = this->dev; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int search_area_size_in_strides; - unsigned int stride; - unsigned int page; - uint8_t *buffer = chip->buffers->databuf; - int saved_chip_number; - int found_an_ncb_fingerprint = false; - - /* Compute the number of strides in a search area. */ - search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; - - saved_chip_number = this->current_chip; - chip->select_chip(mtd, 0); - - /* - * Loop through the first search area, looking for the NCB fingerprint. - */ - dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); - - for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page addresses. */ - page = stride * rom_geo->stride_size_in_pages; - - dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); - - /* - * Read the NCB fingerprint. The fingerprint is four bytes long - * and starts in the 12th byte of the page. - */ - chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); - chip->read_buf(mtd, buffer, strlen(fingerprint)); - - /* Look for the fingerprint. */ - if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { - found_an_ncb_fingerprint = true; - break; - } - - } - - chip->select_chip(mtd, saved_chip_number); - - if (found_an_ncb_fingerprint) - dev_dbg(dev, "\tFound a fingerprint\n"); - else - dev_dbg(dev, "\tNo fingerprint found\n"); - return found_an_ncb_fingerprint; -} - -/* Writes a transcription stamp. */ -static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - struct boot_rom_geometry *rom_geo = &this->rom_geometry; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_size_in_pages; - unsigned int search_area_size_in_strides; - unsigned int search_area_size_in_pages; - unsigned int search_area_size_in_blocks; - unsigned int block; - unsigned int stride; - unsigned int page; - uint8_t *buffer = chip->buffers->databuf; - int saved_chip_number; - int status; - - /* Compute the search area geometry. */ - block_size_in_pages = mtd->erasesize / mtd->writesize; - search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; - search_area_size_in_pages = search_area_size_in_strides * - rom_geo->stride_size_in_pages; - search_area_size_in_blocks = - (search_area_size_in_pages + (block_size_in_pages - 1)) / - block_size_in_pages; - - dev_dbg(dev, "Search Area Geometry :\n"); - dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); - dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); - dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); - - /* Select chip 0. */ - saved_chip_number = this->current_chip; - chip->select_chip(mtd, 0); - - /* Loop over blocks in the first search area, erasing them. */ - dev_dbg(dev, "Erasing the search area...\n"); - - for (block = 0; block < search_area_size_in_blocks; block++) { - /* Compute the page address. */ - page = block * block_size_in_pages; - - /* Erase this block. */ - dev_dbg(dev, "\tErasing block 0x%x\n", block); - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); - chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); - - /* Wait for the erase to finish. */ - status = chip->waitfunc(mtd, chip); - if (status & NAND_STATUS_FAIL) - dev_err(dev, "[%s] Erase failed.\n", __func__); - } - - /* Write the NCB fingerprint into the page buffer. */ - memset(buffer, ~0, mtd->writesize); - memcpy(buffer + 12, fingerprint, strlen(fingerprint)); - - /* Loop through the first search area, writing NCB fingerprints. */ - dev_dbg(dev, "Writing NCB fingerprints...\n"); - for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page addresses. */ - page = stride * rom_geo->stride_size_in_pages; - - /* Write the first page of the current stride. */ - dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); - chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); - chip->ecc.write_page_raw(mtd, chip, buffer, 0, page); - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - - /* Wait for the write to finish. */ - status = chip->waitfunc(mtd, chip); - if (status & NAND_STATUS_FAIL) - dev_err(dev, "[%s] Write failed.\n", __func__); - } - - /* Deselect chip 0. */ - chip->select_chip(mtd, saved_chip_number); - return 0; -} - -static int mx23_boot_init(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_count; - unsigned int block; - int chipnr; - int page; - loff_t byte; - uint8_t block_mark; - int ret = 0; - - /* - * If control arrives here, we can't use block mark swapping, which - * means we're forced to use transcription. First, scan for the - * transcription stamp. If we find it, then we don't have to do - * anything -- the block marks are already transcribed. - */ - if (mx23_check_transcription_stamp(this)) - return 0; - - /* - * If control arrives here, we couldn't find a transcription stamp, so - * so we presume the block marks are in the conventional location. - */ - dev_dbg(dev, "Transcribing bad block marks...\n"); - - /* Compute the number of blocks in the entire medium. */ - block_count = chip->chipsize >> chip->phys_erase_shift; - - /* - * Loop over all the blocks in the medium, transcribing block marks as - * we go. - */ - for (block = 0; block < block_count; block++) { - /* - * Compute the chip, page and byte addresses for this block's - * conventional mark. - */ - chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); - page = block << (chip->phys_erase_shift - chip->page_shift); - byte = block << chip->phys_erase_shift; - - /* Send the command to read the conventional block mark. */ - chip->select_chip(mtd, chipnr); - chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); - block_mark = chip->read_byte(mtd); - chip->select_chip(mtd, -1); - - /* - * Check if the block is marked bad. If so, we need to mark it - * again, but this time the result will be a mark in the - * location where we transcribe block marks. - */ - if (block_mark != 0xff) { - dev_dbg(dev, "Transcribing mark in block %u\n", block); - ret = chip->block_markbad(mtd, byte); - if (ret) - dev_err(dev, - "Failed to mark block bad with ret %d\n", - ret); - } - } - - /* Write the stamp that indicates we've transcribed the block marks. */ - mx23_write_transcription_stamp(this); - return 0; -} - -static int nand_boot_init(struct gpmi_nand_data *this) -{ - nand_boot_set_geometry(this); - - /* This is ROM arch-specific initilization before the BBT scanning. */ - if (GPMI_IS_MX23(this)) - return mx23_boot_init(this); - return 0; -} - -static int gpmi_set_geometry(struct gpmi_nand_data *this) -{ - int ret; - - /* Free the temporary DMA memory for reading ID. */ - gpmi_free_dma_buffer(this); - - /* Set up the NFC geometry which is used by BCH. */ - ret = bch_set_geometry(this); - if (ret) { - dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); - return ret; - } - - /* Alloc the new DMA buffers according to the pagesize and oobsize */ - return gpmi_alloc_dma_buffer(this); -} - -static int gpmi_init_last(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - struct bch_geometry *bch_geo = &this->bch_geometry; - int ret; - - /* Set up the medium geometry */ - ret = gpmi_set_geometry(this); - if (ret) - return ret; - - /* Init the nand_ecc_ctrl{} */ - ecc->read_page = gpmi_ecc_read_page; - ecc->write_page = gpmi_ecc_write_page; - ecc->read_oob = gpmi_ecc_read_oob; - ecc->write_oob = gpmi_ecc_write_oob; - ecc->read_page_raw = gpmi_ecc_read_page_raw; - ecc->write_page_raw = gpmi_ecc_write_page_raw; - ecc->read_oob_raw = gpmi_ecc_read_oob_raw; - ecc->write_oob_raw = gpmi_ecc_write_oob_raw; - ecc->mode = NAND_ECC_HW; - ecc->size = bch_geo->ecc_chunk_size; - ecc->strength = bch_geo->ecc_strength; - mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); - - /* - * We only enable the subpage read when: - * (1) the chip is imx6, and - * (2) the size of the ECC parity is byte aligned. - */ - if (GPMI_IS_MX6(this) && - ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { - ecc->read_subpage = gpmi_ecc_read_subpage; - chip->options |= NAND_SUBPAGE_READ; - } - - /* - * Can we enable the extra features? such as EDO or Sync mode. - * - * We do not check the return value now. That's means if we fail in - * enable the extra features, we still can run in the normal way. - */ - gpmi_extra_init(this); - - return 0; -} - -static int gpmi_nand_init(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - /* init current chip */ - this->current_chip = -1; - - /* init the MTD data structures */ - mtd->name = "gpmi-nand"; - mtd->dev.parent = this->dev; - - /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ - nand_set_controller_data(chip, this); - nand_set_flash_node(chip, this->pdev->dev.of_node); - chip->select_chip = gpmi_select_chip; - chip->cmd_ctrl = gpmi_cmd_ctrl; - chip->dev_ready = gpmi_dev_ready; - chip->read_byte = gpmi_read_byte; - chip->read_buf = gpmi_read_buf; - chip->write_buf = gpmi_write_buf; - chip->badblock_pattern = &gpmi_bbt_descr; - chip->block_markbad = gpmi_block_markbad; - chip->options |= NAND_NO_SUBPAGE_WRITE; - - /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ - this->swap_block_mark = !GPMI_IS_MX23(this); - - /* - * Allocate a temporary DMA buffer for reading ID in the - * nand_scan_ident(). - */ - this->bch_geometry.payload_size = 1024; - this->bch_geometry.auxiliary_size = 128; - ret = gpmi_alloc_dma_buffer(this); - if (ret) - goto err_out; - - ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL); - if (ret) - goto err_out; - - if (chip->bbt_options & NAND_BBT_USE_FLASH) { - chip->bbt_options |= NAND_BBT_NO_OOB; - - if (of_property_read_bool(this->dev->of_node, - "fsl,no-blockmark-swap")) - this->swap_block_mark = false; - } - dev_dbg(this->dev, "Blockmark swapping %sabled\n", - this->swap_block_mark ? "en" : "dis"); - - ret = gpmi_init_last(this); - if (ret) - goto err_out; - - chip->options |= NAND_SKIP_BBTSCAN; - ret = nand_scan_tail(mtd); - if (ret) - goto err_out; - - ret = nand_boot_init(this); - if (ret) - goto err_nand_cleanup; - ret = chip->scan_bbt(mtd); - if (ret) - goto err_nand_cleanup; - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) - goto err_nand_cleanup; - return 0; - -err_nand_cleanup: - nand_cleanup(chip); -err_out: - gpmi_free_dma_buffer(this); - return ret; -} - -static const struct of_device_id gpmi_nand_id_table[] = { - { - .compatible = "fsl,imx23-gpmi-nand", - .data = &gpmi_devdata_imx23, - }, { - .compatible = "fsl,imx28-gpmi-nand", - .data = &gpmi_devdata_imx28, - }, { - .compatible = "fsl,imx6q-gpmi-nand", - .data = &gpmi_devdata_imx6q, - }, { - .compatible = "fsl,imx6sx-gpmi-nand", - .data = &gpmi_devdata_imx6sx, - }, { - .compatible = "fsl,imx7d-gpmi-nand", - .data = &gpmi_devdata_imx7d, - }, {} -}; -MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); - -static int gpmi_nand_probe(struct platform_device *pdev) -{ - struct gpmi_nand_data *this; - const struct of_device_id *of_id; - int ret; - - this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); - if (!this) - return -ENOMEM; - - of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); - if (of_id) { - this->devdata = of_id->data; - } else { - dev_err(&pdev->dev, "Failed to find the right device id.\n"); - return -ENODEV; - } - - platform_set_drvdata(pdev, this); - this->pdev = pdev; - this->dev = &pdev->dev; - - ret = acquire_resources(this); - if (ret) - goto exit_acquire_resources; - - ret = init_hardware(this); - if (ret) - goto exit_nfc_init; - - ret = gpmi_nand_init(this); - if (ret) - goto exit_nfc_init; - - dev_info(this->dev, "driver registered.\n"); - - return 0; - -exit_nfc_init: - release_resources(this); -exit_acquire_resources: - - return ret; -} - -static int gpmi_nand_remove(struct platform_device *pdev) -{ - struct gpmi_nand_data *this = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&this->nand)); - gpmi_free_dma_buffer(this); - release_resources(this); - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int gpmi_pm_suspend(struct device *dev) -{ - struct gpmi_nand_data *this = dev_get_drvdata(dev); - - release_dma_channels(this); - return 0; -} - -static int gpmi_pm_resume(struct device *dev) -{ - struct gpmi_nand_data *this = dev_get_drvdata(dev); - int ret; - - ret = acquire_dma_channels(this); - if (ret < 0) - return ret; - - /* re-init the GPMI registers */ - this->flags &= ~GPMI_TIMING_INIT_OK; - ret = gpmi_init(this); - if (ret) { - dev_err(this->dev, "Error setting GPMI : %d\n", ret); - return ret; - } - - /* re-init the BCH registers */ - ret = bch_set_geometry(this); - if (ret) { - dev_err(this->dev, "Error setting BCH : %d\n", ret); - return ret; - } - - /* re-init others */ - gpmi_extra_init(this); - - return 0; -} -#endif /* CONFIG_PM_SLEEP */ - -static const struct dev_pm_ops gpmi_pm_ops = { - SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) -}; - -static struct platform_driver gpmi_nand_driver = { - .driver = { - .name = "gpmi-nand", - .pm = &gpmi_pm_ops, - .of_match_table = gpmi_nand_id_table, - }, - .probe = gpmi_nand_probe, - .remove = gpmi_nand_remove, -}; -module_platform_driver(gpmi_nand_driver); - -MODULE_AUTHOR("Freescale Semiconductor, Inc."); -MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); -MODULE_LICENSE("GPL"); |
