diff options
Diffstat (limited to 'drivers/mtd/spi-nor/spi-nor.c')
| -rw-r--r-- | drivers/mtd/spi-nor/spi-nor.c | 4167 |
1 files changed, 0 insertions, 4167 deletions
diff --git a/drivers/mtd/spi-nor/spi-nor.c b/drivers/mtd/spi-nor/spi-nor.c deleted file mode 100644 index 6e13bbd1aaa5..000000000000 --- a/drivers/mtd/spi-nor/spi-nor.c +++ /dev/null @@ -1,4167 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with - * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c - * - * Copyright (C) 2005, Intec Automation Inc. - * Copyright (C) 2014, Freescale Semiconductor, Inc. - */ - -#include <linux/err.h> -#include <linux/errno.h> -#include <linux/module.h> -#include <linux/device.h> -#include <linux/mutex.h> -#include <linux/math64.h> -#include <linux/sizes.h> -#include <linux/slab.h> -#include <linux/sort.h> - -#include <linux/mtd/mtd.h> -#include <linux/of_platform.h> -#include <linux/spi/flash.h> -#include <linux/mtd/spi-nor.h> - -/* Define max times to check status register before we give up. */ - -/* - * For everything but full-chip erase; probably could be much smaller, but kept - * around for safety for now - */ -#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) - -/* - * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up - * for larger flash - */ -#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) - -#define SPI_NOR_MAX_ID_LEN 6 -#define SPI_NOR_MAX_ADDR_WIDTH 4 - -struct spi_nor_read_command { - u8 num_mode_clocks; - u8 num_wait_states; - u8 opcode; - enum spi_nor_protocol proto; -}; - -struct spi_nor_pp_command { - u8 opcode; - enum spi_nor_protocol proto; -}; - -enum spi_nor_read_command_index { - SNOR_CMD_READ, - SNOR_CMD_READ_FAST, - SNOR_CMD_READ_1_1_1_DTR, - - /* Dual SPI */ - SNOR_CMD_READ_1_1_2, - SNOR_CMD_READ_1_2_2, - SNOR_CMD_READ_2_2_2, - SNOR_CMD_READ_1_2_2_DTR, - - /* Quad SPI */ - SNOR_CMD_READ_1_1_4, - SNOR_CMD_READ_1_4_4, - SNOR_CMD_READ_4_4_4, - SNOR_CMD_READ_1_4_4_DTR, - - /* Octo SPI */ - SNOR_CMD_READ_1_1_8, - SNOR_CMD_READ_1_8_8, - SNOR_CMD_READ_8_8_8, - SNOR_CMD_READ_1_8_8_DTR, - - SNOR_CMD_READ_MAX -}; - -enum spi_nor_pp_command_index { - SNOR_CMD_PP, - - /* Quad SPI */ - SNOR_CMD_PP_1_1_4, - SNOR_CMD_PP_1_4_4, - SNOR_CMD_PP_4_4_4, - - /* Octo SPI */ - SNOR_CMD_PP_1_1_8, - SNOR_CMD_PP_1_8_8, - SNOR_CMD_PP_8_8_8, - - SNOR_CMD_PP_MAX -}; - -struct spi_nor_flash_parameter { - u64 size; - u32 page_size; - - struct spi_nor_hwcaps hwcaps; - struct spi_nor_read_command reads[SNOR_CMD_READ_MAX]; - struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX]; - - int (*quad_enable)(struct spi_nor *nor); -}; - -struct sfdp_parameter_header { - u8 id_lsb; - u8 minor; - u8 major; - u8 length; /* in double words */ - u8 parameter_table_pointer[3]; /* byte address */ - u8 id_msb; -}; - -#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) -#define SFDP_PARAM_HEADER_PTP(p) \ - (((p)->parameter_table_pointer[2] << 16) | \ - ((p)->parameter_table_pointer[1] << 8) | \ - ((p)->parameter_table_pointer[0] << 0)) - -#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ -#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ -#define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ - -#define SFDP_SIGNATURE 0x50444653U -#define SFDP_JESD216_MAJOR 1 -#define SFDP_JESD216_MINOR 0 -#define SFDP_JESD216A_MINOR 5 -#define SFDP_JESD216B_MINOR 6 - -struct sfdp_header { - u32 signature; /* Ox50444653U <=> "SFDP" */ - u8 minor; - u8 major; - u8 nph; /* 0-base number of parameter headers */ - u8 unused; - - /* Basic Flash Parameter Table. */ - struct sfdp_parameter_header bfpt_header; -}; - -/* Basic Flash Parameter Table */ - -/* - * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs. - * They are indexed from 1 but C arrays are indexed from 0. - */ -#define BFPT_DWORD(i) ((i) - 1) -#define BFPT_DWORD_MAX 16 - -/* The first version of JESB216 defined only 9 DWORDs. */ -#define BFPT_DWORD_MAX_JESD216 9 - -/* 1st DWORD. */ -#define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) -#define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) -#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) -#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) -#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) -#define BFPT_DWORD1_DTR BIT(19) -#define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) -#define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) -#define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22) - -/* 5th DWORD. */ -#define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) -#define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4) - -/* 11th DWORD. */ -#define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 -#define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4) - -/* 15th DWORD. */ - -/* - * (from JESD216 rev B) - * Quad Enable Requirements (QER): - * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4 - * reads based on instruction. DQ3/HOLD# functions are hold during - * instruction phase. - * - 001b: QE is bit 1 of status register 2. It is set via Write Status with - * two data bytes where bit 1 of the second byte is one. - * [...] - * Writing only one byte to the status register has the side-effect of - * clearing status register 2, including the QE bit. The 100b code is - * used if writing one byte to the status register does not modify - * status register 2. - * - 010b: QE is bit 6 of status register 1. It is set via Write Status with - * one data byte where bit 6 is one. - * [...] - * - 011b: QE is bit 7 of status register 2. It is set via Write status - * register 2 instruction 3Eh with one data byte where bit 7 is one. - * [...] - * The status register 2 is read using instruction 3Fh. - * - 100b: QE is bit 1 of status register 2. It is set via Write Status with - * two data bytes where bit 1 of the second byte is one. - * [...] - * In contrast to the 001b code, writing one byte to the status - * register does not modify status register 2. - * - 101b: QE is bit 1 of status register 2. Status register 1 is read using - * Read Status instruction 05h. Status register2 is read using - * instruction 35h. QE is set via Writ Status instruction 01h with - * two data bytes where bit 1 of the second byte is one. - * [...] - */ -#define BFPT_DWORD15_QER_MASK GENMASK(22, 20) -#define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ -#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) -#define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ -#define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) -#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) -#define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */ - -struct sfdp_bfpt { - u32 dwords[BFPT_DWORD_MAX]; -}; - -/** - * struct spi_nor_fixups - SPI NOR fixup hooks - * @post_bfpt: called after the BFPT table has been parsed - * - * Those hooks can be used to tweak the SPI NOR configuration when the SFDP - * table is broken or not available. - */ -struct spi_nor_fixups { - int (*post_bfpt)(struct spi_nor *nor, - const struct sfdp_parameter_header *bfpt_header, - const struct sfdp_bfpt *bfpt, - struct spi_nor_flash_parameter *params); -}; - -struct flash_info { - char *name; - - /* - * This array stores the ID bytes. - * The first three bytes are the JEDIC ID. - * JEDEC ID zero means "no ID" (mostly older chips). - */ - u8 id[SPI_NOR_MAX_ID_LEN]; - u8 id_len; - - /* The size listed here is what works with SPINOR_OP_SE, which isn't - * necessarily called a "sector" by the vendor. - */ - unsigned sector_size; - u16 n_sectors; - - u16 page_size; - u16 addr_width; - - u16 flags; -#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */ -#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */ -#define SST_WRITE BIT(2) /* use SST byte programming */ -#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */ -#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */ -#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */ -#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */ -#define USE_FSR BIT(7) /* use flag status register */ -#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */ -#define SPI_NOR_HAS_TB BIT(9) /* - * Flash SR has Top/Bottom (TB) protect - * bit. Must be used with - * SPI_NOR_HAS_LOCK. - */ -#define SPI_S3AN BIT(10) /* - * Xilinx Spartan 3AN In-System Flash - * (MFR cannot be used for probing - * because it has the same value as - * ATMEL flashes) - */ -#define SPI_NOR_4B_OPCODES BIT(11) /* - * Use dedicated 4byte address op codes - * to support memory size above 128Mib. - */ -#define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */ -#define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */ -#define USE_CLSR BIT(14) /* use CLSR command */ - - /* Part specific fixup hooks. */ - const struct spi_nor_fixups *fixups; - - int (*quad_enable)(struct spi_nor *nor); -}; - -#define JEDEC_MFR(info) ((info)->id[0]) - -/* - * Read the status register, returning its value in the location - * Return the status register value. - * Returns negative if error occurred. - */ -static int read_sr(struct spi_nor *nor) -{ - int ret; - u8 val; - - ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); - if (ret < 0) { - pr_err("error %d reading SR\n", (int) ret); - return ret; - } - - return val; -} - -/* - * Read the flag status register, returning its value in the location - * Return the status register value. - * Returns negative if error occurred. - */ -static int read_fsr(struct spi_nor *nor) -{ - int ret; - u8 val; - - ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); - if (ret < 0) { - pr_err("error %d reading FSR\n", ret); - return ret; - } - - return val; -} - -/* - * Read configuration register, returning its value in the - * location. Return the configuration register value. - * Returns negative if error occurred. - */ -static int read_cr(struct spi_nor *nor) -{ - int ret; - u8 val; - - ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); - if (ret < 0) { - dev_err(nor->dev, "error %d reading CR\n", ret); - return ret; - } - - return val; -} - -/* - * Write status register 1 byte - * Returns negative if error occurred. - */ -static int write_sr(struct spi_nor *nor, u8 val) -{ - nor->cmd_buf[0] = val; - return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); -} - -/* - * Set write enable latch with Write Enable command. - * Returns negative if error occurred. - */ -static int write_enable(struct spi_nor *nor) -{ - return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); -} - -/* - * Send write disable instruction to the chip. - */ -static int write_disable(struct spi_nor *nor) -{ - return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); -} - -static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) -{ - return mtd->priv; -} - - -static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) -{ - size_t i; - - for (i = 0; i < size; i++) - if (table[i][0] == opcode) - return table[i][1]; - - /* No conversion found, keep input op code. */ - return opcode; -} - -static u8 spi_nor_convert_3to4_read(u8 opcode) -{ - static const u8 spi_nor_3to4_read[][2] = { - { SPINOR_OP_READ, SPINOR_OP_READ_4B }, - { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, - { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, - { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, - { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, - { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, - - { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, - { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, - { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, - }; - - return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, - ARRAY_SIZE(spi_nor_3to4_read)); -} - -static u8 spi_nor_convert_3to4_program(u8 opcode) -{ - static const u8 spi_nor_3to4_program[][2] = { - { SPINOR_OP_PP, SPINOR_OP_PP_4B }, - { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, - { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, - }; - - return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, - ARRAY_SIZE(spi_nor_3to4_program)); -} - -static u8 spi_nor_convert_3to4_erase(u8 opcode) -{ - static const u8 spi_nor_3to4_erase[][2] = { - { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, - { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, - { SPINOR_OP_SE, SPINOR_OP_SE_4B }, - }; - - return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, - ARRAY_SIZE(spi_nor_3to4_erase)); -} - -static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) -{ - /* Do some manufacturer fixups first */ - switch (JEDEC_MFR(nor->info)) { - case SNOR_MFR_SPANSION: - /* No small sector erase for 4-byte command set */ - nor->erase_opcode = SPINOR_OP_SE; - nor->mtd.erasesize = nor->info->sector_size; - break; - - default: - break; - } - - nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); - nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); - nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); - - if (!spi_nor_has_uniform_erase(nor)) { - struct spi_nor_erase_map *map = &nor->erase_map; - struct spi_nor_erase_type *erase; - int i; - - for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { - erase = &map->erase_type[i]; - erase->opcode = - spi_nor_convert_3to4_erase(erase->opcode); - } - } -} - -/* Enable/disable 4-byte addressing mode. */ -static int set_4byte(struct spi_nor *nor, bool enable) -{ - int status; - bool need_wren = false; - u8 cmd; - - switch (JEDEC_MFR(nor->info)) { - case SNOR_MFR_ST: - case SNOR_MFR_MICRON: - /* Some Micron need WREN command; all will accept it */ - need_wren = true; - /* fall through */ - case SNOR_MFR_MACRONIX: - case SNOR_MFR_WINBOND: - if (need_wren) - write_enable(nor); - - cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; - status = nor->write_reg(nor, cmd, NULL, 0); - if (need_wren) - write_disable(nor); - - if (!status && !enable && - JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) { - /* - * On Winbond W25Q256FV, leaving 4byte mode causes - * the Extended Address Register to be set to 1, so all - * 3-byte-address reads come from the second 16M. - * We must clear the register to enable normal behavior. - */ - write_enable(nor); - nor->cmd_buf[0] = 0; - nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1); - write_disable(nor); - } - - return status; - default: - /* Spansion style */ - nor->cmd_buf[0] = enable << 7; - return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); - } -} - -static int s3an_sr_ready(struct spi_nor *nor) -{ - int ret; - u8 val; - - ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); - if (ret < 0) { - dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); - return ret; - } - - return !!(val & XSR_RDY); -} - -static int spi_nor_sr_ready(struct spi_nor *nor) -{ - int sr = read_sr(nor); - if (sr < 0) - return sr; - - if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) { - if (sr & SR_E_ERR) - dev_err(nor->dev, "Erase Error occurred\n"); - else - dev_err(nor->dev, "Programming Error occurred\n"); - - nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0); - return -EIO; - } - - return !(sr & SR_WIP); -} - -static int spi_nor_fsr_ready(struct spi_nor *nor) -{ - int fsr = read_fsr(nor); - if (fsr < 0) - return fsr; - - if (fsr & (FSR_E_ERR | FSR_P_ERR)) { - if (fsr & FSR_E_ERR) - dev_err(nor->dev, "Erase operation failed.\n"); - else - dev_err(nor->dev, "Program operation failed.\n"); - - if (fsr & FSR_PT_ERR) - dev_err(nor->dev, - "Attempted to modify a protected sector.\n"); - - nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0); - return -EIO; - } - - return fsr & FSR_READY; -} - -static int spi_nor_ready(struct spi_nor *nor) -{ - int sr, fsr; - - if (nor->flags & SNOR_F_READY_XSR_RDY) - sr = s3an_sr_ready(nor); - else - sr = spi_nor_sr_ready(nor); - if (sr < 0) - return sr; - fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; - if (fsr < 0) - return fsr; - return sr && fsr; -} - -/* - * Service routine to read status register until ready, or timeout occurs. - * Returns non-zero if error. - */ -static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, - unsigned long timeout_jiffies) -{ - unsigned long deadline; - int timeout = 0, ret; - - deadline = jiffies + timeout_jiffies; - - while (!timeout) { - if (time_after_eq(jiffies, deadline)) - timeout = 1; - - ret = spi_nor_ready(nor); - if (ret < 0) - return ret; - if (ret) - return 0; - - cond_resched(); - } - - dev_err(nor->dev, "flash operation timed out\n"); - - return -ETIMEDOUT; -} - -static int spi_nor_wait_till_ready(struct spi_nor *nor) -{ - return spi_nor_wait_till_ready_with_timeout(nor, - DEFAULT_READY_WAIT_JIFFIES); -} - -/* - * Erase the whole flash memory - * - * Returns 0 if successful, non-zero otherwise. - */ -static int erase_chip(struct spi_nor *nor) -{ - dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); - - return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0); -} - -static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) -{ - int ret = 0; - - mutex_lock(&nor->lock); - - if (nor->prepare) { - ret = nor->prepare(nor, ops); - if (ret) { - dev_err(nor->dev, "failed in the preparation.\n"); - mutex_unlock(&nor->lock); - return ret; - } - } - return ret; -} - -static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) -{ - if (nor->unprepare) - nor->unprepare(nor, ops); - mutex_unlock(&nor->lock); -} - -/* - * This code converts an address to the Default Address Mode, that has non - * power of two page sizes. We must support this mode because it is the default - * mode supported by Xilinx tools, it can access the whole flash area and - * changing over to the Power-of-two mode is irreversible and corrupts the - * original data. - * Addr can safely be unsigned int, the biggest S3AN device is smaller than - * 4 MiB. - */ -static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr) -{ - unsigned int offset; - unsigned int page; - - offset = addr % nor->page_size; - page = addr / nor->page_size; - page <<= (nor->page_size > 512) ? 10 : 9; - - return page | offset; -} - -/* - * Initiate the erasure of a single sector - */ -static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) -{ - u8 buf[SPI_NOR_MAX_ADDR_WIDTH]; - int i; - - if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) - addr = spi_nor_s3an_addr_convert(nor, addr); - - if (nor->erase) - return nor->erase(nor, addr); - - /* - * Default implementation, if driver doesn't have a specialized HW - * control - */ - for (i = nor->addr_width - 1; i >= 0; i--) { - buf[i] = addr & 0xff; - addr >>= 8; - } - - return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width); -} - -/** - * spi_nor_div_by_erase_size() - calculate remainder and update new dividend - * @erase: pointer to a structure that describes a SPI NOR erase type - * @dividend: dividend value - * @remainder: pointer to u32 remainder (will be updated) - * - * Return: the result of the division - */ -static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, - u64 dividend, u32 *remainder) -{ - /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ - *remainder = (u32)dividend & erase->size_mask; - return dividend >> erase->size_shift; -} - -/** - * spi_nor_find_best_erase_type() - find the best erase type for the given - * offset in the serial flash memory and the - * number of bytes to erase. The region in - * which the address fits is expected to be - * provided. - * @map: the erase map of the SPI NOR - * @region: pointer to a structure that describes a SPI NOR erase region - * @addr: offset in the serial flash memory - * @len: number of bytes to erase - * - * Return: a pointer to the best fitted erase type, NULL otherwise. - */ -static const struct spi_nor_erase_type * -spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, - const struct spi_nor_erase_region *region, - u64 addr, u32 len) -{ - const struct spi_nor_erase_type *erase; - u32 rem; - int i; - u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; - - /* - * Erase types are ordered by size, with the biggest erase type at - * index 0. - */ - for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { - /* Does the erase region support the tested erase type? */ - if (!(erase_mask & BIT(i))) - continue; - - erase = &map->erase_type[i]; - - /* Don't erase more than what the user has asked for. */ - if (erase->size > len) - continue; - - /* Alignment is not mandatory for overlaid regions */ - if (region->offset & SNOR_OVERLAID_REGION) - return erase; - - spi_nor_div_by_erase_size(erase, addr, &rem); - if (rem) - continue; - else - return erase; - } - - return NULL; -} - -/** - * spi_nor_region_next() - get the next spi nor region - * @region: pointer to a structure that describes a SPI NOR erase region - * - * Return: the next spi nor region or NULL if last region. - */ -static struct spi_nor_erase_region * -spi_nor_region_next(struct spi_nor_erase_region *region) -{ - if (spi_nor_region_is_last(region)) - return NULL; - region++; - return region; -} - -/** - * spi_nor_find_erase_region() - find the region of the serial flash memory in - * which the offset fits - * @map: the erase map of the SPI NOR - * @addr: offset in the serial flash memory - * - * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno) - * otherwise. - */ -static struct spi_nor_erase_region * -spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr) -{ - struct spi_nor_erase_region *region = map->regions; - u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; - u64 region_end = region_start + region->size; - - while (addr < region_start || addr >= region_end) { - region = spi_nor_region_next(region); - if (!region) - return ERR_PTR(-EINVAL); - - region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; - region_end = region_start + region->size; - } - - return region; -} - -/** - * spi_nor_init_erase_cmd() - initialize an erase command - * @region: pointer to a structure that describes a SPI NOR erase region - * @erase: pointer to a structure that describes a SPI NOR erase type - * - * Return: the pointer to the allocated erase command, ERR_PTR(-errno) - * otherwise. - */ -static struct spi_nor_erase_command * -spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, - const struct spi_nor_erase_type *erase) -{ - struct spi_nor_erase_command *cmd; - - cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); - if (!cmd) - return ERR_PTR(-ENOMEM); - - INIT_LIST_HEAD(&cmd->list); - cmd->opcode = erase->opcode; - cmd->count = 1; - - if (region->offset & SNOR_OVERLAID_REGION) - cmd->size = region->size; - else - cmd->size = erase->size; - - return cmd; -} - -/** - * spi_nor_destroy_erase_cmd_list() - destroy erase command list - * @erase_list: list of erase commands - */ -static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) -{ - struct spi_nor_erase_command *cmd, *next; - - list_for_each_entry_safe(cmd, next, erase_list, list) { - list_del(&cmd->list); - kfree(cmd); - } -} - -/** - * spi_nor_init_erase_cmd_list() - initialize erase command list - * @nor: pointer to a 'struct spi_nor' - * @erase_list: list of erase commands to be executed once we validate that the - * erase can be performed - * @addr: offset in the serial flash memory - * @len: number of bytes to erase - * - * Builds the list of best fitted erase commands and verifies if the erase can - * be performed. - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, - struct list_head *erase_list, - u64 addr, u32 len) -{ - const struct spi_nor_erase_map *map = &nor->erase_map; - const struct spi_nor_erase_type *erase, *prev_erase = NULL; - struct spi_nor_erase_region *region; - struct spi_nor_erase_command *cmd = NULL; - u64 region_end; - int ret = -EINVAL; - - region = spi_nor_find_erase_region(map, addr); - if (IS_ERR(region)) - return PTR_ERR(region); - - region_end = spi_nor_region_end(region); - - while (len) { - erase = spi_nor_find_best_erase_type(map, region, addr, len); - if (!erase) - goto destroy_erase_cmd_list; - - if (prev_erase != erase || - region->offset & SNOR_OVERLAID_REGION) { - cmd = spi_nor_init_erase_cmd(region, erase); - if (IS_ERR(cmd)) { - ret = PTR_ERR(cmd); - goto destroy_erase_cmd_list; - } - - list_add_tail(&cmd->list, erase_list); - } else { - cmd->count++; - } - - addr += cmd->size; - len -= cmd->size; - - if (len && addr >= region_end) { - region = spi_nor_region_next(region); - if (!region) - goto destroy_erase_cmd_list; - region_end = spi_nor_region_end(region); - } - - prev_erase = erase; - } - - return 0; - -destroy_erase_cmd_list: - spi_nor_destroy_erase_cmd_list(erase_list); - return ret; -} - -/** - * spi_nor_erase_multi_sectors() - perform a non-uniform erase - * @nor: pointer to a 'struct spi_nor' - * @addr: offset in the serial flash memory - * @len: number of bytes to erase - * - * Build a list of best fitted erase commands and execute it once we validate - * that the erase can be performed. - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) -{ - LIST_HEAD(erase_list); - struct spi_nor_erase_command *cmd, *next; - int ret; - - ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); - if (ret) - return ret; - - list_for_each_entry_safe(cmd, next, &erase_list, list) { - nor->erase_opcode = cmd->opcode; - while (cmd->count) { - write_enable(nor); - - ret = spi_nor_erase_sector(nor, addr); - if (ret) - goto destroy_erase_cmd_list; - - addr += cmd->size; - cmd->count--; - - ret = spi_nor_wait_till_ready(nor); - if (ret) - goto destroy_erase_cmd_list; - } - list_del(&cmd->list); - kfree(cmd); - } - - return 0; - -destroy_erase_cmd_list: - spi_nor_destroy_erase_cmd_list(&erase_list); - return ret; -} - -/* - * Erase an address range on the nor chip. The address range may extend - * one or more erase sectors. Return an error is there is a problem erasing. - */ -static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - u32 addr, len; - uint32_t rem; - int ret; - - dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, - (long long)instr->len); - - if (spi_nor_has_uniform_erase(nor)) { - div_u64_rem(instr->len, mtd->erasesize, &rem); - if (rem) - return -EINVAL; - } - - addr = instr->addr; - len = instr->len; - - ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); - if (ret) - return ret; - - /* whole-chip erase? */ - if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { - unsigned long timeout; - - write_enable(nor); - - if (erase_chip(nor)) { - ret = -EIO; - goto erase_err; - } - - /* - * Scale the timeout linearly with the size of the flash, with - * a minimum calibrated to an old 2MB flash. We could try to - * pull these from CFI/SFDP, but these values should be good - * enough for now. - */ - timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, - CHIP_ERASE_2MB_READY_WAIT_JIFFIES * - (unsigned long)(mtd->size / SZ_2M)); - ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); - if (ret) - goto erase_err; - - /* REVISIT in some cases we could speed up erasing large regions - * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up - * to use "small sector erase", but that's not always optimal. - */ - - /* "sector"-at-a-time erase */ - } else if (spi_nor_has_uniform_erase(nor)) { - while (len) { - write_enable(nor); - - ret = spi_nor_erase_sector(nor, addr); - if (ret) - goto erase_err; - - addr += mtd->erasesize; - len -= mtd->erasesize; - - ret = spi_nor_wait_till_ready(nor); - if (ret) - goto erase_err; - } - - /* erase multiple sectors */ - } else { - ret = spi_nor_erase_multi_sectors(nor, addr, len); - if (ret) - goto erase_err; - } - - write_disable(nor); - -erase_err: - spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); - - return ret; -} - -/* Write status register and ensure bits in mask match written values */ -static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask) -{ - int ret; - - write_enable(nor); - ret = write_sr(nor, status_new); - if (ret) - return ret; - - ret = spi_nor_wait_till_ready(nor); - if (ret) - return ret; - - ret = read_sr(nor); - if (ret < 0) - return ret; - - return ((ret & mask) != (status_new & mask)) ? -EIO : 0; -} - -static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, - uint64_t *len) -{ - struct mtd_info *mtd = &nor->mtd; - u8 mask = SR_BP2 | SR_BP1 | SR_BP0; - int shift = ffs(mask) - 1; - int pow; - - if (!(sr & mask)) { - /* No protection */ - *ofs = 0; - *len = 0; - } else { - pow = ((sr & mask) ^ mask) >> shift; - *len = mtd->size >> pow; - if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB) - *ofs = 0; - else - *ofs = mtd->size - *len; - } -} - -/* - * Return 1 if the entire region is locked (if @locked is true) or unlocked (if - * @locked is false); 0 otherwise - */ -static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, - u8 sr, bool locked) -{ - loff_t lock_offs; - uint64_t lock_len; - - if (!len) - return 1; - - stm_get_locked_range(nor, sr, &lock_offs, &lock_len); - - if (locked) - /* Requested range is a sub-range of locked range */ - return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); - else - /* Requested range does not overlap with locked range */ - return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); -} - -static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, - u8 sr) -{ - return stm_check_lock_status_sr(nor, ofs, len, sr, true); -} - -static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, - u8 sr) -{ - return stm_check_lock_status_sr(nor, ofs, len, sr, false); -} - -/* - * Lock a region of the flash. Compatible with ST Micro and similar flash. - * Supports the block protection bits BP{0,1,2} in the status register - * (SR). Does not support these features found in newer SR bitfields: - * - SEC: sector/block protect - only handle SEC=0 (block protect) - * - CMP: complement protect - only support CMP=0 (range is not complemented) - * - * Support for the following is provided conditionally for some flash: - * - TB: top/bottom protect - * - * Sample table portion for 8MB flash (Winbond w25q64fw): - * - * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion - * -------------------------------------------------------------------------- - * X | X | 0 | 0 | 0 | NONE | NONE - * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 - * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 - * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 - * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 - * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 - * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 - * X | X | 1 | 1 | 1 | 8 MB | ALL - * ------|-------|-------|-------|-------|---------------|------------------- - * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 - * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 - * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 - * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 - * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 - * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 - * - * Returns negative on errors, 0 on success. - */ -static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) -{ - struct mtd_info *mtd = &nor->mtd; - int status_old, status_new; - u8 mask = SR_BP2 | SR_BP1 | SR_BP0; - u8 shift = ffs(mask) - 1, pow, val; - loff_t lock_len; - bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; - bool use_top; - - status_old = read_sr(nor); - if (status_old < 0) - return status_old; - - /* If nothing in our range is unlocked, we don't need to do anything */ - if (stm_is_locked_sr(nor, ofs, len, status_old)) - return 0; - - /* If anything below us is unlocked, we can't use 'bottom' protection */ - if (!stm_is_locked_sr(nor, 0, ofs, status_old)) - can_be_bottom = false; - - /* If anything above us is unlocked, we can't use 'top' protection */ - if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), - status_old)) - can_be_top = false; - - if (!can_be_bottom && !can_be_top) - return -EINVAL; - - /* Prefer top, if both are valid */ - use_top = can_be_top; - - /* lock_len: length of region that should end up locked */ - if (use_top) - lock_len = mtd->size - ofs; - else - lock_len = ofs + len; - - /* - * Need smallest pow such that: - * - * 1 / (2^pow) <= (len / size) - * - * so (assuming power-of-2 size) we do: - * - * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) - */ - pow = ilog2(mtd->size) - ilog2(lock_len); - val = mask - (pow << shift); - if (val & ~mask) - return -EINVAL; - /* Don't "lock" with no region! */ - if (!(val & mask)) - return -EINVAL; - - status_new = (status_old & ~mask & ~SR_TB) | val; - - /* Disallow further writes if WP pin is asserted */ - status_new |= SR_SRWD; - - if (!use_top) - status_new |= SR_TB; - - /* Don't bother if they're the same */ - if (status_new == status_old) - return 0; - - /* Only modify protection if it will not unlock other areas */ - if ((status_new & mask) < (status_old & mask)) - return -EINVAL; - - return write_sr_and_check(nor, status_new, mask); -} - -/* - * Unlock a region of the flash. See stm_lock() for more info - * - * Returns negative on errors, 0 on success. - */ -static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) -{ - struct mtd_info *mtd = &nor->mtd; - int status_old, status_new; - u8 mask = SR_BP2 | SR_BP1 | SR_BP0; - u8 shift = ffs(mask) - 1, pow, val; - loff_t lock_len; - bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; - bool use_top; - - status_old = read_sr(nor); - if (status_old < 0) - return status_old; - - /* If nothing in our range is locked, we don't need to do anything */ - if (stm_is_unlocked_sr(nor, ofs, len, status_old)) - return 0; - - /* If anything below us is locked, we can't use 'top' protection */ - if (!stm_is_unlocked_sr(nor, 0, ofs, status_old)) - can_be_top = false; - - /* If anything above us is locked, we can't use 'bottom' protection */ - if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), - status_old)) - can_be_bottom = false; - - if (!can_be_bottom && !can_be_top) - return -EINVAL; - - /* Prefer top, if both are valid */ - use_top = can_be_top; - - /* lock_len: length of region that should remain locked */ - if (use_top) - lock_len = mtd->size - (ofs + len); - else - lock_len = ofs; - - /* - * Need largest pow such that: - * - * 1 / (2^pow) >= (len / size) - * - * so (assuming power-of-2 size) we do: - * - * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) - */ - pow = ilog2(mtd->size) - order_base_2(lock_len); - if (lock_len == 0) { - val = 0; /* fully unlocked */ - } else { - val = mask - (pow << shift); - /* Some power-of-two sizes are not supported */ - if (val & ~mask) - return -EINVAL; - } - - status_new = (status_old & ~mask & ~SR_TB) | val; - - /* Don't protect status register if we're fully unlocked */ - if (lock_len == 0) - status_new &= ~SR_SRWD; - - if (!use_top) - status_new |= SR_TB; - - /* Don't bother if they're the same */ - if (status_new == status_old) - return 0; - - /* Only modify protection if it will not lock other areas */ - if ((status_new & mask) > (status_old & mask)) - return -EINVAL; - - return write_sr_and_check(nor, status_new, mask); -} - -/* - * Check if a region of the flash is (completely) locked. See stm_lock() for - * more info. - * - * Returns 1 if entire region is locked, 0 if any portion is unlocked, and - * negative on errors. - */ -static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) -{ - int status; - - status = read_sr(nor); - if (status < 0) - return status; - - return stm_is_locked_sr(nor, ofs, len, status); -} - -static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - int ret; - - ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); - if (ret) - return ret; - - ret = nor->flash_lock(nor, ofs, len); - - spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); - return ret; -} - -static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - int ret; - - ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); - if (ret) - return ret; - - ret = nor->flash_unlock(nor, ofs, len); - - spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); - return ret; -} - -static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - int ret; - - ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); - if (ret) - return ret; - - ret = nor->flash_is_locked(nor, ofs, len); - - spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); - return ret; -} - -/* - * Write status Register and configuration register with 2 bytes - * The first byte will be written to the status register, while the - * second byte will be written to the configuration register. - * Return negative if error occurred. - */ -static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr) -{ - int ret; - - write_enable(nor); - - ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2); - if (ret < 0) { - dev_err(nor->dev, - "error while writing configuration register\n"); - return -EINVAL; - } - - ret = spi_nor_wait_till_ready(nor); - if (ret) { - dev_err(nor->dev, - "timeout while writing configuration register\n"); - return ret; - } - - return 0; -} - -/** - * macronix_quad_enable() - set QE bit in Status Register. - * @nor: pointer to a 'struct spi_nor' - * - * Set the Quad Enable (QE) bit in the Status Register. - * - * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories. - * - * Return: 0 on success, -errno otherwise. - */ -static int macronix_quad_enable(struct spi_nor *nor) -{ - int ret, val; - - val = read_sr(nor); - if (val < 0) - return val; - if (val & SR_QUAD_EN_MX) - return 0; - - write_enable(nor); - - write_sr(nor, val | SR_QUAD_EN_MX); - - ret = spi_nor_wait_till_ready(nor); - if (ret) - return ret; - - ret = read_sr(nor); - if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { - dev_err(nor->dev, "Macronix Quad bit not set\n"); - return -EINVAL; - } - - return 0; -} - -/** - * spansion_quad_enable() - set QE bit in Configuraiton Register. - * @nor: pointer to a 'struct spi_nor' - * - * Set the Quad Enable (QE) bit in the Configuration Register. - * This function is kept for legacy purpose because it has been used for a - * long time without anybody complaining but it should be considered as - * deprecated and maybe buggy. - * First, this function doesn't care about the previous values of the Status - * and Configuration Registers when it sets the QE bit (bit 1) in the - * Configuration Register: all other bits are cleared, which may have unwanted - * side effects like removing some block protections. - * Secondly, it uses the Read Configuration Register (35h) instruction though - * some very old and few memories don't support this instruction. If a pull-up - * resistor is present on the MISO/IO1 line, we might still be able to pass the - * "read back" test because the QSPI memory doesn't recognize the command, - * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF. - * - * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI - * memories. - * - * Return: 0 on success, -errno otherwise. - */ -static int spansion_quad_enable(struct spi_nor *nor) -{ - u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN}; - int ret; - - ret = write_sr_cr(nor, sr_cr); - if (ret) - return ret; - - /* read back and check it */ - ret = read_cr(nor); - if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { - dev_err(nor->dev, "Spansion Quad bit not set\n"); - return -EINVAL; - } - - return 0; -} - -/** - * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register. - * @nor: pointer to a 'struct spi_nor' - * - * Set the Quad Enable (QE) bit in the Configuration Register. - * This function should be used with QSPI memories not supporting the Read - * Configuration Register (35h) instruction. - * - * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI - * memories. - * - * Return: 0 on success, -errno otherwise. - */ -static int spansion_no_read_cr_quad_enable(struct spi_nor *nor) -{ - u8 sr_cr[2]; - int ret; - - /* Keep the current value of the Status Register. */ - ret = read_sr(nor); - if (ret < 0) { - dev_err(nor->dev, "error while reading status register\n"); - return -EINVAL; - } - sr_cr[0] = ret; - sr_cr[1] = CR_QUAD_EN_SPAN; - - return write_sr_cr(nor, sr_cr); -} - -/** - * spansion_read_cr_quad_enable() - set QE bit in Configuration Register. - * @nor: pointer to a 'struct spi_nor' - * - * Set the Quad Enable (QE) bit in the Configuration Register. - * This function should be used with QSPI memories supporting the Read - * Configuration Register (35h) instruction. - * - * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI - * memories. - * - * Return: 0 on success, -errno otherwise. - */ -static int spansion_read_cr_quad_enable(struct spi_nor *nor) -{ - struct device *dev = nor->dev; - u8 sr_cr[2]; - int ret; - - /* Check current Quad Enable bit value. */ - ret = read_cr(nor); - if (ret < 0) { - dev_err(dev, "error while reading configuration register\n"); - return -EINVAL; - } - - if (ret & CR_QUAD_EN_SPAN) - return 0; - - sr_cr[1] = ret | CR_QUAD_EN_SPAN; - - /* Keep the current value of the Status Register. */ - ret = read_sr(nor); - if (ret < 0) { - dev_err(dev, "error while reading status register\n"); - return -EINVAL; - } - sr_cr[0] = ret; - - ret = write_sr_cr(nor, sr_cr); - if (ret) - return ret; - - /* Read back and check it. */ - ret = read_cr(nor); - if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { - dev_err(nor->dev, "Spansion Quad bit not set\n"); - return -EINVAL; - } - - return 0; -} - -/** - * sr2_bit7_quad_enable() - set QE bit in Status Register 2. - * @nor: pointer to a 'struct spi_nor' - * - * Set the Quad Enable (QE) bit in the Status Register 2. - * - * This is one of the procedures to set the QE bit described in the SFDP - * (JESD216 rev B) specification but no manufacturer using this procedure has - * been identified yet, hence the name of the function. - * - * Return: 0 on success, -errno otherwise. - */ -static int sr2_bit7_quad_enable(struct spi_nor *nor) -{ - u8 sr2; - int ret; - - /* Check current Quad Enable bit value. */ - ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1); - if (ret) - return ret; - if (sr2 & SR2_QUAD_EN_BIT7) - return 0; - - /* Update the Quad Enable bit. */ - sr2 |= SR2_QUAD_EN_BIT7; - - write_enable(nor); - - ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1); - if (ret < 0) { - dev_err(nor->dev, "error while writing status register 2\n"); - return -EINVAL; - } - - ret = spi_nor_wait_till_ready(nor); - if (ret < 0) { - dev_err(nor->dev, "timeout while writing status register 2\n"); - return ret; - } - - /* Read back and check it. */ - ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1); - if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) { - dev_err(nor->dev, "SR2 Quad bit not set\n"); - return -EINVAL; - } - - return 0; -} - -/* Used when the "_ext_id" is two bytes at most */ -#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ - .id = { \ - ((_jedec_id) >> 16) & 0xff, \ - ((_jedec_id) >> 8) & 0xff, \ - (_jedec_id) & 0xff, \ - ((_ext_id) >> 8) & 0xff, \ - (_ext_id) & 0xff, \ - }, \ - .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \ - .sector_size = (_sector_size), \ - .n_sectors = (_n_sectors), \ - .page_size = 256, \ - .flags = (_flags), - -#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ - .id = { \ - ((_jedec_id) >> 16) & 0xff, \ - ((_jedec_id) >> 8) & 0xff, \ - (_jedec_id) & 0xff, \ - ((_ext_id) >> 16) & 0xff, \ - ((_ext_id) >> 8) & 0xff, \ - (_ext_id) & 0xff, \ - }, \ - .id_len = 6, \ - .sector_size = (_sector_size), \ - .n_sectors = (_n_sectors), \ - .page_size = 256, \ - .flags = (_flags), - -#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ - .sector_size = (_sector_size), \ - .n_sectors = (_n_sectors), \ - .page_size = (_page_size), \ - .addr_width = (_addr_width), \ - .flags = (_flags), - -#define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \ - .id = { \ - ((_jedec_id) >> 16) & 0xff, \ - ((_jedec_id) >> 8) & 0xff, \ - (_jedec_id) & 0xff \ - }, \ - .id_len = 3, \ - .sector_size = (8*_page_size), \ - .n_sectors = (_n_sectors), \ - .page_size = _page_size, \ - .addr_width = 3, \ - .flags = SPI_NOR_NO_FR | SPI_S3AN, - -static int -mx25l25635_post_bfpt_fixups(struct spi_nor *nor, - const struct sfdp_parameter_header *bfpt_header, - const struct sfdp_bfpt *bfpt, - struct spi_nor_flash_parameter *params) -{ - /* - * MX25L25635F supports 4B opcodes but MX25L25635E does not. - * Unfortunately, Macronix has re-used the same JEDEC ID for both - * variants which prevents us from defining a new entry in the parts - * table. - * We need a way to differentiate MX25L25635E and MX25L25635F, and it - * seems that the F version advertises support for Fast Read 4-4-4 in - * its BFPT table. - */ - if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4) - nor->flags |= SNOR_F_4B_OPCODES; - - return 0; -} - -static struct spi_nor_fixups mx25l25635_fixups = { - .post_bfpt = mx25l25635_post_bfpt_fixups, -}; - -/* NOTE: double check command sets and memory organization when you add - * more nor chips. This current list focusses on newer chips, which - * have been converging on command sets which including JEDEC ID. - * - * All newly added entries should describe *hardware* and should use SECT_4K - * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage - * scenarios excluding small sectors there is config option that can be - * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS. - * For historical (and compatibility) reasons (before we got above config) some - * old entries may be missing 4K flag. - */ -static const struct flash_info spi_nor_ids[] = { - /* Atmel -- some are (confusingly) marketed as "DataFlash" */ - { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, - { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, - - { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, - { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, - { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, - { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, - - { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, - { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, - { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, - { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, - - { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, - - /* EON -- en25xxx */ - { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, - { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, - { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, - { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, - { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, - { "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) }, - { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, - { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, - { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) }, - - /* ESMT */ - { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, - { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, - { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) }, - - /* Everspin */ - { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - - /* Fujitsu */ - { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) }, - - /* GigaDevice */ - { - "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - .quad_enable = macronix_quad_enable, - }, - - /* Intel/Numonyx -- xxxs33b */ - { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, - { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, - { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, - - /* ISSI */ - { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) }, - { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64, - SECT_4K | SPI_NOR_DUAL_READ) }, - { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128, - SECT_4K | SPI_NOR_DUAL_READ) }, - { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256, - SECT_4K | SPI_NOR_DUAL_READ) }, - { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_4B_OPCODES) }, - { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - - /* Macronix */ - { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) }, - { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, - { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, - { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, - { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, - { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) }, - { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, - { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) }, - { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) }, - { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) }, - { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) }, - { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) }, - { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, - { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, - { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, - SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) - .fixups = &mx25l25635_fixups }, - { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) }, - { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, - { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, - { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, - { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, - - /* Micron <--> ST Micro */ - { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) }, - { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, - { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, - { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, - { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, - { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, - { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, - { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, - { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, - { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, - { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, - { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, - { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, - - /* Micron */ - { - "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512, - SECT_4K | USE_FSR | SPI_NOR_4B_OPCODES) - }, - - /* PMC */ - { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, - { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, - { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, - - /* Spansion/Cypress -- single (large) sector size only, at least - * for the chips listed here (without boot sectors). - */ - { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) }, - { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, - { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, - { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, - { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, - { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, - { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, - { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, - { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, - { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, - { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, - { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, - { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, - { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, - { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, - { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) }, - { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) }, - { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) }, - { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) }, - { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, - { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, - { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, - - /* SST -- large erase sizes are "overlays", "sectors" are 4K */ - { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, - { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, - { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, - { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, - { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, - { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, - { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, - { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, - { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) }, - { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) }, - { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, - { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, - { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - - /* ST Microelectronics -- newer production may have feature updates */ - { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, - { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, - { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, - { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, - { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, - { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, - { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, - { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, - { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, - - { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, - { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, - { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, - { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, - { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, - { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, - { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, - { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, - { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, - - { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, - { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, - { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, - - { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, - { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, - { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, - - { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, - { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, - { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, - { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, - { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, - { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) }, - - /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ - { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) }, - { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, - { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, - { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, - { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, - { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, - { - "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, - { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) }, - { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) }, - { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) }, - { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, - { - "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, - { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, - { - "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { - "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256, - SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | - SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) - }, - { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, - { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, - { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, - { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024, - SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) }, - - /* Catalyst / On Semiconductor -- non-JEDEC */ - { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, - - /* Xilinx S3AN Internal Flash */ - { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) }, - { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) }, - { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) }, - { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) }, - { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) }, - - /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */ - { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { }, -}; - -static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) -{ - int tmp; - u8 id[SPI_NOR_MAX_ID_LEN]; - const struct flash_info *info; - - tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); - if (tmp < 0) { - dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp); - return ERR_PTR(tmp); - } - - for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { - info = &spi_nor_ids[tmp]; - if (info->id_len) { - if (!memcmp(info->id, id, info->id_len)) - return &spi_nor_ids[tmp]; - } - } - dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n", - id[0], id[1], id[2]); - return ERR_PTR(-ENODEV); -} - -static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - int ret; - - dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); - - ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); - if (ret) - return ret; - - while (len) { - loff_t addr = from; - - if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) - addr = spi_nor_s3an_addr_convert(nor, addr); - - ret = nor->read(nor, addr, len, buf); - if (ret == 0) { - /* We shouldn't see 0-length reads */ - ret = -EIO; - goto read_err; - } - if (ret < 0) - goto read_err; - - WARN_ON(ret > len); - *retlen += ret; - buf += ret; - from += ret; - len -= ret; - } - ret = 0; - -read_err: - spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); - return ret; -} - -static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - size_t actual; - int ret; - - dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); - - ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); - if (ret) - return ret; - - write_enable(nor); - - nor->sst_write_second = false; - - actual = to % 2; - /* Start write from odd address. */ - if (actual) { - nor->program_opcode = SPINOR_OP_BP; - - /* write one byte. */ - ret = nor->write(nor, to, 1, buf); - if (ret < 0) - goto sst_write_err; - WARN(ret != 1, "While writing 1 byte written %i bytes\n", - (int)ret); - ret = spi_nor_wait_till_ready(nor); - if (ret) - goto sst_write_err; - } - to += actual; - - /* Write out most of the data here. */ - for (; actual < len - 1; actual += 2) { - nor->program_opcode = SPINOR_OP_AAI_WP; - - /* write two bytes. */ - ret = nor->write(nor, to, 2, buf + actual); - if (ret < 0) - goto sst_write_err; - WARN(ret != 2, "While writing 2 bytes written %i bytes\n", - (int)ret); - ret = spi_nor_wait_till_ready(nor); - if (ret) - goto sst_write_err; - to += 2; - nor->sst_write_second = true; - } - nor->sst_write_second = false; - - write_disable(nor); - ret = spi_nor_wait_till_ready(nor); - if (ret) - goto sst_write_err; - - /* Write out trailing byte if it exists. */ - if (actual != len) { - write_enable(nor); - - nor->program_opcode = SPINOR_OP_BP; - ret = nor->write(nor, to, 1, buf + actual); - if (ret < 0) - goto sst_write_err; - WARN(ret != 1, "While writing 1 byte written %i bytes\n", - (int)ret); - ret = spi_nor_wait_till_ready(nor); - if (ret) - goto sst_write_err; - write_disable(nor); - actual += 1; - } -sst_write_err: - *retlen += actual; - spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); - return ret; -} - -/* - * Write an address range to the nor chip. Data must be written in - * FLASH_PAGESIZE chunks. The address range may be any size provided - * it is within the physical boundaries. - */ -static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - size_t page_offset, page_remain, i; - ssize_t ret; - - dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); - - ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); - if (ret) - return ret; - - for (i = 0; i < len; ) { - ssize_t written; - loff_t addr = to + i; - - /* - * If page_size is a power of two, the offset can be quickly - * calculated with an AND operation. On the other cases we - * need to do a modulus operation (more expensive). - * Power of two numbers have only one bit set and we can use - * the instruction hweight32 to detect if we need to do a - * modulus (do_div()) or not. - */ - if (hweight32(nor->page_size) == 1) { - page_offset = addr & (nor->page_size - 1); - } else { - uint64_t aux = addr; - - page_offset = do_div(aux, nor->page_size); - } - /* the size of data remaining on the first page */ - page_remain = min_t(size_t, - nor->page_size - page_offset, len - i); - - if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) - addr = spi_nor_s3an_addr_convert(nor, addr); - - write_enable(nor); - ret = nor->write(nor, addr, page_remain, buf + i); - if (ret < 0) - goto write_err; - written = ret; - - ret = spi_nor_wait_till_ready(nor); - if (ret) - goto write_err; - *retlen += written; - i += written; - } - -write_err: - spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); - return ret; -} - -static int spi_nor_check(struct spi_nor *nor) -{ - if (!nor->dev || !nor->read || !nor->write || - !nor->read_reg || !nor->write_reg) { - pr_err("spi-nor: please fill all the necessary fields!\n"); - return -EINVAL; - } - - return 0; -} - -static int s3an_nor_scan(struct spi_nor *nor) -{ - int ret; - u8 val; - - ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); - if (ret < 0) { - dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); - return ret; - } - - nor->erase_opcode = SPINOR_OP_XSE; - nor->program_opcode = SPINOR_OP_XPP; - nor->read_opcode = SPINOR_OP_READ; - nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; - - /* - * This flashes have a page size of 264 or 528 bytes (known as - * Default addressing mode). It can be changed to a more standard - * Power of two mode where the page size is 256/512. This comes - * with a price: there is 3% less of space, the data is corrupted - * and the page size cannot be changed back to default addressing - * mode. - * - * The current addressing mode can be read from the XRDSR register - * and should not be changed, because is a destructive operation. - */ - if (val & XSR_PAGESIZE) { - /* Flash in Power of 2 mode */ - nor->page_size = (nor->page_size == 264) ? 256 : 512; - nor->mtd.writebufsize = nor->page_size; - nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors; - nor->mtd.erasesize = 8 * nor->page_size; - } else { - /* Flash in Default addressing mode */ - nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT; - } - - return 0; -} - -static void -spi_nor_set_read_settings(struct spi_nor_read_command *read, - u8 num_mode_clocks, - u8 num_wait_states, - u8 opcode, - enum spi_nor_protocol proto) -{ - read->num_mode_clocks = num_mode_clocks; - read->num_wait_states = num_wait_states; - read->opcode = opcode; - read->proto = proto; -} - -static void -spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, - u8 opcode, - enum spi_nor_protocol proto) -{ - pp->opcode = opcode; - pp->proto = proto; -} - -static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) -{ - size_t i; - - for (i = 0; i < size; i++) - if (table[i][0] == (int)hwcaps) - return table[i][1]; - - return -EINVAL; -} - -static int spi_nor_hwcaps_read2cmd(u32 hwcaps) -{ - static const int hwcaps_read2cmd[][2] = { - { SNOR_HWCAPS_READ, SNOR_CMD_READ }, - { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, - { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, - { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, - { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, - { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, - { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, - { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, - { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, - { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, - { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, - { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, - { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, - { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, - { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, - }; - - return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, - ARRAY_SIZE(hwcaps_read2cmd)); -} - -static int spi_nor_hwcaps_pp2cmd(u32 hwcaps) -{ - static const int hwcaps_pp2cmd[][2] = { - { SNOR_HWCAPS_PP, SNOR_CMD_PP }, - { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, - { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, - { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, - { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, - { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, - { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, - }; - - return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, - ARRAY_SIZE(hwcaps_pp2cmd)); -} - -/* - * Serial Flash Discoverable Parameters (SFDP) parsing. - */ - -/** - * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, - * addr_width and read_dummy members of the struct spi_nor - * should be previously - * set. - * @nor: pointer to a 'struct spi_nor' - * @addr: offset in the serial flash memory - * @len: number of bytes to read - * @buf: buffer where the data is copied into (dma-safe memory) - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) -{ - int ret; - - while (len) { - ret = nor->read(nor, addr, len, buf); - if (!ret || ret > len) - return -EIO; - if (ret < 0) - return ret; - - buf += ret; - addr += ret; - len -= ret; - } - return 0; -} - -/** - * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. - * @nor: pointer to a 'struct spi_nor' - * @addr: offset in the SFDP area to start reading data from - * @len: number of bytes to read - * @buf: buffer where the SFDP data are copied into (dma-safe memory) - * - * Whatever the actual numbers of bytes for address and dummy cycles are - * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always - * followed by a 3-byte address and 8 dummy clock cycles. - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, - size_t len, void *buf) -{ - u8 addr_width, read_opcode, read_dummy; - int ret; - - read_opcode = nor->read_opcode; - addr_width = nor->addr_width; - read_dummy = nor->read_dummy; - - nor->read_opcode = SPINOR_OP_RDSFDP; - nor->addr_width = 3; - nor->read_dummy = 8; - - ret = spi_nor_read_raw(nor, addr, len, buf); - - nor->read_opcode = read_opcode; - nor->addr_width = addr_width; - nor->read_dummy = read_dummy; - - return ret; -} - -/** - * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. - * @nor: pointer to a 'struct spi_nor' - * @addr: offset in the SFDP area to start reading data from - * @len: number of bytes to read - * @buf: buffer where the SFDP data are copied into - * - * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not - * guaranteed to be dma-safe. - * - * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() - * otherwise. - */ -static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, - size_t len, void *buf) -{ - void *dma_safe_buf; - int ret; - - dma_safe_buf = kmalloc(len, GFP_KERNEL); - if (!dma_safe_buf) - return -ENOMEM; - - ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); - memcpy(buf, dma_safe_buf, len); - kfree(dma_safe_buf); - - return ret; -} - -/* Fast Read settings. */ - -static void -spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, - u16 half, - enum spi_nor_protocol proto) -{ - read->num_mode_clocks = (half >> 5) & 0x07; - read->num_wait_states = (half >> 0) & 0x1f; - read->opcode = (half >> 8) & 0xff; - read->proto = proto; -} - -struct sfdp_bfpt_read { - /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ - u32 hwcaps; - - /* - * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us - * whether the Fast Read x-y-z command is supported. - */ - u32 supported_dword; - u32 supported_bit; - - /* - * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD - * encodes the op code, the number of mode clocks and the number of wait - * states to be used by Fast Read x-y-z command. - */ - u32 settings_dword; - u32 settings_shift; - - /* The SPI protocol for this Fast Read x-y-z command. */ - enum spi_nor_protocol proto; -}; - -static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { - /* Fast Read 1-1-2 */ - { - SNOR_HWCAPS_READ_1_1_2, - BFPT_DWORD(1), BIT(16), /* Supported bit */ - BFPT_DWORD(4), 0, /* Settings */ - SNOR_PROTO_1_1_2, - }, - - /* Fast Read 1-2-2 */ - { - SNOR_HWCAPS_READ_1_2_2, - BFPT_DWORD(1), BIT(20), /* Supported bit */ - BFPT_DWORD(4), 16, /* Settings */ - SNOR_PROTO_1_2_2, - }, - - /* Fast Read 2-2-2 */ - { - SNOR_HWCAPS_READ_2_2_2, - BFPT_DWORD(5), BIT(0), /* Supported bit */ - BFPT_DWORD(6), 16, /* Settings */ - SNOR_PROTO_2_2_2, - }, - - /* Fast Read 1-1-4 */ - { - SNOR_HWCAPS_READ_1_1_4, - BFPT_DWORD(1), BIT(22), /* Supported bit */ - BFPT_DWORD(3), 16, /* Settings */ - SNOR_PROTO_1_1_4, - }, - - /* Fast Read 1-4-4 */ - { - SNOR_HWCAPS_READ_1_4_4, - BFPT_DWORD(1), BIT(21), /* Supported bit */ - BFPT_DWORD(3), 0, /* Settings */ - SNOR_PROTO_1_4_4, - }, - - /* Fast Read 4-4-4 */ - { - SNOR_HWCAPS_READ_4_4_4, - BFPT_DWORD(5), BIT(4), /* Supported bit */ - BFPT_DWORD(7), 16, /* Settings */ - SNOR_PROTO_4_4_4, - }, -}; - -struct sfdp_bfpt_erase { - /* - * The half-word at offset <shift> in DWORD <dwoard> encodes the - * op code and erase sector size to be used by Sector Erase commands. - */ - u32 dword; - u32 shift; -}; - -static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { - /* Erase Type 1 in DWORD8 bits[15:0] */ - {BFPT_DWORD(8), 0}, - - /* Erase Type 2 in DWORD8 bits[31:16] */ - {BFPT_DWORD(8), 16}, - - /* Erase Type 3 in DWORD9 bits[15:0] */ - {BFPT_DWORD(9), 0}, - - /* Erase Type 4 in DWORD9 bits[31:16] */ - {BFPT_DWORD(9), 16}, -}; - -/** - * spi_nor_set_erase_type() - set a SPI NOR erase type - * @erase: pointer to a structure that describes a SPI NOR erase type - * @size: the size of the sector/block erased by the erase type - * @opcode: the SPI command op code to erase the sector/block - */ -static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, - u32 size, u8 opcode) -{ - erase->size = size; - erase->opcode = opcode; - /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ - erase->size_shift = ffs(erase->size) - 1; - erase->size_mask = (1 << erase->size_shift) - 1; -} - -/** - * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT - * @erase: pointer to a structure that describes a SPI NOR erase type - * @size: the size of the sector/block erased by the erase type - * @opcode: the SPI command op code to erase the sector/block - * @i: erase type index as sorted in the Basic Flash Parameter Table - * - * The supported Erase Types will be sorted at init in ascending order, with - * the smallest Erase Type size being the first member in the erase_type array - * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in - * the Basic Flash Parameter Table since it will be used later on to - * synchronize with the supported Erase Types defined in SFDP optional tables. - */ -static void -spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, - u32 size, u8 opcode, u8 i) -{ - erase->idx = i; - spi_nor_set_erase_type(erase, size, opcode); -} - -/** - * spi_nor_map_cmp_erase_type() - compare the map's erase types by size - * @l: member in the left half of the map's erase_type array - * @r: member in the right half of the map's erase_type array - * - * Comparison function used in the sort() call to sort in ascending order the - * map's erase types, the smallest erase type size being the first member in the - * sorted erase_type array. - * - * Return: the result of @l->size - @r->size - */ -static int spi_nor_map_cmp_erase_type(const void *l, const void *r) -{ - const struct spi_nor_erase_type *left = l, *right = r; - - return left->size - right->size; -} - -/** - * spi_nor_sort_erase_mask() - sort erase mask - * @map: the erase map of the SPI NOR - * @erase_mask: the erase type mask to be sorted - * - * Replicate the sort done for the map's erase types in BFPT: sort the erase - * mask in ascending order with the smallest erase type size starting from - * BIT(0) in the sorted erase mask. - * - * Return: sorted erase mask. - */ -static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) -{ - struct spi_nor_erase_type *erase_type = map->erase_type; - int i; - u8 sorted_erase_mask = 0; - - if (!erase_mask) - return 0; - - /* Replicate the sort done for the map's erase types. */ - for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) - if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) - sorted_erase_mask |= BIT(i); - - return sorted_erase_mask; -} - -/** - * spi_nor_regions_sort_erase_types() - sort erase types in each region - * @map: the erase map of the SPI NOR - * - * Function assumes that the erase types defined in the erase map are already - * sorted in ascending order, with the smallest erase type size being the first - * member in the erase_type array. It replicates the sort done for the map's - * erase types. Each region's erase bitmask will indicate which erase types are - * supported from the sorted erase types defined in the erase map. - * Sort the all region's erase type at init in order to speed up the process of - * finding the best erase command at runtime. - */ -static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) -{ - struct spi_nor_erase_region *region = map->regions; - u8 region_erase_mask, sorted_erase_mask; - - while (region) { - region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; - - sorted_erase_mask = spi_nor_sort_erase_mask(map, - region_erase_mask); - - /* Overwrite erase mask. */ - region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | - sorted_erase_mask; - - region = spi_nor_region_next(region); - } -} - -/** - * spi_nor_init_uniform_erase_map() - Initialize uniform erase map - * @map: the erase map of the SPI NOR - * @erase_mask: bitmask encoding erase types that can erase the entire - * flash memory - * @flash_size: the spi nor flash memory size - */ -static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, - u8 erase_mask, u64 flash_size) -{ - /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */ - map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) | - SNOR_LAST_REGION; - map->uniform_region.size = flash_size; - map->regions = &map->uniform_region; - map->uniform_erase_type = erase_mask; -} - -static int -spi_nor_post_bfpt_fixups(struct spi_nor *nor, - const struct sfdp_parameter_header *bfpt_header, - const struct sfdp_bfpt *bfpt, - struct spi_nor_flash_parameter *params) -{ - if (nor->info->fixups && nor->info->fixups->post_bfpt) - return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt, - params); - - return 0; -} - -/** - * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. - * @nor: pointer to a 'struct spi_nor' - * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing - * the Basic Flash Parameter Table length and version - * @params: pointer to the 'struct spi_nor_flash_parameter' to be - * filled - * - * The Basic Flash Parameter Table is the main and only mandatory table as - * defined by the SFDP (JESD216) specification. - * It provides us with the total size (memory density) of the data array and - * the number of address bytes for Fast Read, Page Program and Sector Erase - * commands. - * For Fast READ commands, it also gives the number of mode clock cycles and - * wait states (regrouped in the number of dummy clock cycles) for each - * supported instruction op code. - * For Page Program, the page size is now available since JESD216 rev A, however - * the supported instruction op codes are still not provided. - * For Sector Erase commands, this table stores the supported instruction op - * codes and the associated sector sizes. - * Finally, the Quad Enable Requirements (QER) are also available since JESD216 - * rev A. The QER bits encode the manufacturer dependent procedure to be - * executed to set the Quad Enable (QE) bit in some internal register of the - * Quad SPI memory. Indeed the QE bit, when it exists, must be set before - * sending any Quad SPI command to the memory. Actually, setting the QE bit - * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 - * and IO3 hence enabling 4 (Quad) I/O lines. - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_parse_bfpt(struct spi_nor *nor, - const struct sfdp_parameter_header *bfpt_header, - struct spi_nor_flash_parameter *params) -{ - struct spi_nor_erase_map *map = &nor->erase_map; - struct spi_nor_erase_type *erase_type = map->erase_type; - struct sfdp_bfpt bfpt; - size_t len; - int i, cmd, err; - u32 addr; - u16 half; - u8 erase_mask; - - /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ - if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) - return -EINVAL; - - /* Read the Basic Flash Parameter Table. */ - len = min_t(size_t, sizeof(bfpt), - bfpt_header->length * sizeof(u32)); - addr = SFDP_PARAM_HEADER_PTP(bfpt_header); - memset(&bfpt, 0, sizeof(bfpt)); - err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); - if (err < 0) - return err; - - /* Fix endianness of the BFPT DWORDs. */ - for (i = 0; i < BFPT_DWORD_MAX; i++) - bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]); - - /* Number of address bytes. */ - switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { - case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: - nor->addr_width = 3; - break; - - case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: - nor->addr_width = 4; - break; - - default: - break; - } - - /* Flash Memory Density (in bits). */ - params->size = bfpt.dwords[BFPT_DWORD(2)]; - if (params->size & BIT(31)) { - params->size &= ~BIT(31); - - /* - * Prevent overflows on params->size. Anyway, a NOR of 2^64 - * bits is unlikely to exist so this error probably means - * the BFPT we are reading is corrupted/wrong. - */ - if (params->size > 63) - return -EINVAL; - - params->size = 1ULL << params->size; - } else { - params->size++; - } - params->size >>= 3; /* Convert to bytes. */ - - /* Fast Read settings. */ - for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { - const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; - struct spi_nor_read_command *read; - - if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { - params->hwcaps.mask &= ~rd->hwcaps; - continue; - } - - params->hwcaps.mask |= rd->hwcaps; - cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); - read = ¶ms->reads[cmd]; - half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; - spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); - } - - /* - * Sector Erase settings. Reinitialize the uniform erase map using the - * Erase Types defined in the bfpt table. - */ - erase_mask = 0; - memset(&nor->erase_map, 0, sizeof(nor->erase_map)); - for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { - const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; - u32 erasesize; - u8 opcode; - - half = bfpt.dwords[er->dword] >> er->shift; - erasesize = half & 0xff; - - /* erasesize == 0 means this Erase Type is not supported. */ - if (!erasesize) - continue; - - erasesize = 1U << erasesize; - opcode = (half >> 8) & 0xff; - erase_mask |= BIT(i); - spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, - opcode, i); - } - spi_nor_init_uniform_erase_map(map, erase_mask, params->size); - /* - * Sort all the map's Erase Types in ascending order with the smallest - * erase size being the first member in the erase_type array. - */ - sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), - spi_nor_map_cmp_erase_type, NULL); - /* - * Sort the erase types in the uniform region in order to update the - * uniform_erase_type bitmask. The bitmask will be used later on when - * selecting the uniform erase. - */ - spi_nor_regions_sort_erase_types(map); - map->uniform_erase_type = map->uniform_region.offset & - SNOR_ERASE_TYPE_MASK; - - /* Stop here if not JESD216 rev A or later. */ - if (bfpt_header->length < BFPT_DWORD_MAX) - return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, - params); - - /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ - params->page_size = bfpt.dwords[BFPT_DWORD(11)]; - params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK; - params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; - params->page_size = 1U << params->page_size; - - /* Quad Enable Requirements. */ - switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { - case BFPT_DWORD15_QER_NONE: - params->quad_enable = NULL; - break; - - case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: - case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: - params->quad_enable = spansion_no_read_cr_quad_enable; - break; - - case BFPT_DWORD15_QER_SR1_BIT6: - params->quad_enable = macronix_quad_enable; - break; - - case BFPT_DWORD15_QER_SR2_BIT7: - params->quad_enable = sr2_bit7_quad_enable; - break; - - case BFPT_DWORD15_QER_SR2_BIT1: - params->quad_enable = spansion_read_cr_quad_enable; - break; - - default: - return -EINVAL; - } - - return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params); -} - -#define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) -#define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) -#define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) -#define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) -#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) - -#define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) -#define SMPT_CMD_READ_DUMMY_SHIFT 16 -#define SMPT_CMD_READ_DUMMY(_cmd) \ - (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) -#define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL - -#define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) -#define SMPT_CMD_READ_DATA_SHIFT 24 -#define SMPT_CMD_READ_DATA(_cmd) \ - (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) - -#define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) -#define SMPT_CMD_OPCODE_SHIFT 8 -#define SMPT_CMD_OPCODE(_cmd) \ - (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) - -#define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) -#define SMPT_MAP_REGION_COUNT_SHIFT 16 -#define SMPT_MAP_REGION_COUNT(_header) \ - ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ - SMPT_MAP_REGION_COUNT_SHIFT) + 1) - -#define SMPT_MAP_ID_MASK GENMASK(15, 8) -#define SMPT_MAP_ID_SHIFT 8 -#define SMPT_MAP_ID(_header) \ - (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) - -#define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) -#define SMPT_MAP_REGION_SIZE_SHIFT 8 -#define SMPT_MAP_REGION_SIZE(_region) \ - (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ - SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) - -#define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) -#define SMPT_MAP_REGION_ERASE_TYPE(_region) \ - ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) - -#define SMPT_DESC_TYPE_MAP BIT(1) -#define SMPT_DESC_END BIT(0) - -/** - * spi_nor_smpt_addr_width() - return the address width used in the - * configuration detection command. - * @nor: pointer to a 'struct spi_nor' - * @settings: configuration detection command descriptor, dword1 - */ -static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings) -{ - switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { - case SMPT_CMD_ADDRESS_LEN_0: - return 0; - case SMPT_CMD_ADDRESS_LEN_3: - return 3; - case SMPT_CMD_ADDRESS_LEN_4: - return 4; - case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: - /* fall through */ - default: - return nor->addr_width; - } -} - -/** - * spi_nor_smpt_read_dummy() - return the configuration detection command read - * latency, in clock cycles. - * @nor: pointer to a 'struct spi_nor' - * @settings: configuration detection command descriptor, dword1 - * - * Return: the number of dummy cycles for an SMPT read - */ -static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) -{ - u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); - - if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) - return nor->read_dummy; - return read_dummy; -} - -/** - * spi_nor_get_map_in_use() - get the configuration map in use - * @nor: pointer to a 'struct spi_nor' - * @smpt: pointer to the sector map parameter table - * @smpt_len: sector map parameter table length - * - * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. - */ -static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, - u8 smpt_len) -{ - const u32 *ret; - u8 *buf; - u32 addr; - int err; - u8 i; - u8 addr_width, read_opcode, read_dummy; - u8 read_data_mask, map_id; - - /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ - buf = kmalloc(sizeof(*buf), GFP_KERNEL); - if (!buf) - return ERR_PTR(-ENOMEM); - - addr_width = nor->addr_width; - read_dummy = nor->read_dummy; - read_opcode = nor->read_opcode; - - map_id = 0; - /* Determine if there are any optional Detection Command Descriptors */ - for (i = 0; i < smpt_len; i += 2) { - if (smpt[i] & SMPT_DESC_TYPE_MAP) - break; - - read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); - nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]); - nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); - nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); - addr = smpt[i + 1]; - - err = spi_nor_read_raw(nor, addr, 1, buf); - if (err) { - ret = ERR_PTR(err); - goto out; - } - - /* - * Build an index value that is used to select the Sector Map - * Configuration that is currently in use. - */ - map_id = map_id << 1 | !!(*buf & read_data_mask); - } - - /* - * If command descriptors are provided, they always precede map - * descriptors in the table. There is no need to start the iteration - * over smpt array all over again. - * - * Find the matching configuration map. - */ - ret = ERR_PTR(-EINVAL); - while (i < smpt_len) { - if (SMPT_MAP_ID(smpt[i]) == map_id) { - ret = smpt + i; - break; - } - - /* - * If there are no more configuration map descriptors and no - * configuration ID matched the configuration identifier, the - * sector address map is unknown. - */ - if (smpt[i] & SMPT_DESC_END) - break; - - /* increment the table index to the next map */ - i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; - } - - /* fall through */ -out: - kfree(buf); - nor->addr_width = addr_width; - nor->read_dummy = read_dummy; - nor->read_opcode = read_opcode; - return ret; -} - -/** - * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid - * @region: pointer to a structure that describes a SPI NOR erase region - * @erase: pointer to a structure that describes a SPI NOR erase type - * @erase_type: erase type bitmask - */ -static void -spi_nor_region_check_overlay(struct spi_nor_erase_region *region, - const struct spi_nor_erase_type *erase, - const u8 erase_type) -{ - int i; - - for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { - if (!(erase_type & BIT(i))) - continue; - if (region->size & erase[i].size_mask) { - spi_nor_region_mark_overlay(region); - return; - } - } -} - -/** - * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map - * @nor: pointer to a 'struct spi_nor' - * @smpt: pointer to the sector map parameter table - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, - const u32 *smpt) -{ - struct spi_nor_erase_map *map = &nor->erase_map; - struct spi_nor_erase_type *erase = map->erase_type; - struct spi_nor_erase_region *region; - u64 offset; - u32 region_count; - int i, j; - u8 uniform_erase_type, save_uniform_erase_type; - u8 erase_type, regions_erase_type; - - region_count = SMPT_MAP_REGION_COUNT(*smpt); - /* - * The regions will be freed when the driver detaches from the - * device. - */ - region = devm_kcalloc(nor->dev, region_count, sizeof(*region), - GFP_KERNEL); - if (!region) - return -ENOMEM; - map->regions = region; - - uniform_erase_type = 0xff; - regions_erase_type = 0; - offset = 0; - /* Populate regions. */ - for (i = 0; i < region_count; i++) { - j = i + 1; /* index for the region dword */ - region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); - erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); - region[i].offset = offset | erase_type; - - spi_nor_region_check_overlay(®ion[i], erase, erase_type); - - /* - * Save the erase types that are supported in all regions and - * can erase the entire flash memory. - */ - uniform_erase_type &= erase_type; - - /* - * regions_erase_type mask will indicate all the erase types - * supported in this configuration map. - */ - regions_erase_type |= erase_type; - - offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + - region[i].size; - } - - save_uniform_erase_type = map->uniform_erase_type; - map->uniform_erase_type = spi_nor_sort_erase_mask(map, - uniform_erase_type); - - if (!regions_erase_type) { - /* - * Roll back to the previous uniform_erase_type mask, SMPT is - * broken. - */ - map->uniform_erase_type = save_uniform_erase_type; - return -EINVAL; - } - - /* - * BFPT advertises all the erase types supported by all the possible - * map configurations. Mask out the erase types that are not supported - * by the current map configuration. - */ - for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) - if (!(regions_erase_type & BIT(erase[i].idx))) - spi_nor_set_erase_type(&erase[i], 0, 0xFF); - - spi_nor_region_mark_end(®ion[i - 1]); - - return 0; -} - -/** - * spi_nor_parse_smpt() - parse Sector Map Parameter Table - * @nor: pointer to a 'struct spi_nor' - * @smpt_header: sector map parameter table header - * - * This table is optional, but when available, we parse it to identify the - * location and size of sectors within the main data array of the flash memory - * device and to identify which Erase Types are supported by each sector. - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_parse_smpt(struct spi_nor *nor, - const struct sfdp_parameter_header *smpt_header) -{ - const u32 *sector_map; - u32 *smpt; - size_t len; - u32 addr; - int i, ret; - - /* Read the Sector Map Parameter Table. */ - len = smpt_header->length * sizeof(*smpt); - smpt = kmalloc(len, GFP_KERNEL); - if (!smpt) - return -ENOMEM; - - addr = SFDP_PARAM_HEADER_PTP(smpt_header); - ret = spi_nor_read_sfdp(nor, addr, len, smpt); - if (ret) - goto out; - - /* Fix endianness of the SMPT DWORDs. */ - for (i = 0; i < smpt_header->length; i++) - smpt[i] = le32_to_cpu(smpt[i]); - - sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); - if (IS_ERR(sector_map)) { - ret = PTR_ERR(sector_map); - goto out; - } - - ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); - if (ret) - goto out; - - spi_nor_regions_sort_erase_types(&nor->erase_map); - /* fall through */ -out: - kfree(smpt); - return ret; -} - -#define SFDP_4BAIT_DWORD_MAX 2 - -struct sfdp_4bait { - /* The hardware capability. */ - u32 hwcaps; - - /* - * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether - * the associated 4-byte address op code is supported. - */ - u32 supported_bit; -}; - -/** - * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table - * @nor: pointer to a 'struct spi_nor'. - * @param_header: pointer to the 'struct sfdp_parameter_header' describing - * the 4-Byte Address Instruction Table length and version. - * @params: pointer to the 'struct spi_nor_flash_parameter' to be. - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_parse_4bait(struct spi_nor *nor, - const struct sfdp_parameter_header *param_header, - struct spi_nor_flash_parameter *params) -{ - static const struct sfdp_4bait reads[] = { - { SNOR_HWCAPS_READ, BIT(0) }, - { SNOR_HWCAPS_READ_FAST, BIT(1) }, - { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, - { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, - { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, - { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, - { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, - { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, - { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, - }; - static const struct sfdp_4bait programs[] = { - { SNOR_HWCAPS_PP, BIT(6) }, - { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, - { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, - }; - static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { - { 0u /* not used */, BIT(9) }, - { 0u /* not used */, BIT(10) }, - { 0u /* not used */, BIT(11) }, - { 0u /* not used */, BIT(12) }, - }; - struct spi_nor_pp_command *params_pp = params->page_programs; - struct spi_nor_erase_map *map = &nor->erase_map; - struct spi_nor_erase_type *erase_type = map->erase_type; - u32 *dwords; - size_t len; - u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; - int i, ret; - - if (param_header->major != SFDP_JESD216_MAJOR || - param_header->length < SFDP_4BAIT_DWORD_MAX) - return -EINVAL; - - /* Read the 4-byte Address Instruction Table. */ - len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; - - /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ - dwords = kmalloc(len, GFP_KERNEL); - if (!dwords) - return -ENOMEM; - - addr = SFDP_PARAM_HEADER_PTP(param_header); - ret = spi_nor_read_sfdp(nor, addr, len, dwords); - if (ret) - return ret; - - /* Fix endianness of the 4BAIT DWORDs. */ - for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++) - dwords[i] = le32_to_cpu(dwords[i]); - - /* - * Compute the subset of (Fast) Read commands for which the 4-byte - * version is supported. - */ - discard_hwcaps = 0; - read_hwcaps = 0; - for (i = 0; i < ARRAY_SIZE(reads); i++) { - const struct sfdp_4bait *read = &reads[i]; - - discard_hwcaps |= read->hwcaps; - if ((params->hwcaps.mask & read->hwcaps) && - (dwords[0] & read->supported_bit)) - read_hwcaps |= read->hwcaps; - } - - /* - * Compute the subset of Page Program commands for which the 4-byte - * version is supported. - */ - pp_hwcaps = 0; - for (i = 0; i < ARRAY_SIZE(programs); i++) { - const struct sfdp_4bait *program = &programs[i]; - - /* - * The 4 Byte Address Instruction (Optional) Table is the only - * SFDP table that indicates support for Page Program Commands. - * Bypass the params->hwcaps.mask and consider 4BAIT the biggest - * authority for specifying Page Program support. - */ - discard_hwcaps |= program->hwcaps; - if (dwords[0] & program->supported_bit) - pp_hwcaps |= program->hwcaps; - } - - /* - * Compute the subset of Sector Erase commands for which the 4-byte - * version is supported. - */ - erase_mask = 0; - for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { - const struct sfdp_4bait *erase = &erases[i]; - - if (dwords[0] & erase->supported_bit) - erase_mask |= BIT(i); - } - - /* Replicate the sort done for the map's erase types in BFPT. */ - erase_mask = spi_nor_sort_erase_mask(map, erase_mask); - - /* - * We need at least one 4-byte op code per read, program and erase - * operation; the .read(), .write() and .erase() hooks share the - * nor->addr_width value. - */ - if (!read_hwcaps || !pp_hwcaps || !erase_mask) - goto out; - - /* - * Discard all operations from the 4-byte instruction set which are - * not supported by this memory. - */ - params->hwcaps.mask &= ~discard_hwcaps; - params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); - - /* Use the 4-byte address instruction set. */ - for (i = 0; i < SNOR_CMD_READ_MAX; i++) { - struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; - - read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); - } - - /* 4BAIT is the only SFDP table that indicates page program support. */ - if (pp_hwcaps & SNOR_HWCAPS_PP) - spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], - SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); - if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) - spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], - SPINOR_OP_PP_1_1_4_4B, - SNOR_PROTO_1_1_4); - if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) - spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], - SPINOR_OP_PP_1_4_4_4B, - SNOR_PROTO_1_4_4); - - for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { - if (erase_mask & BIT(i)) - erase_type[i].opcode = (dwords[1] >> - erase_type[i].idx * 8) & 0xFF; - else - spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF); - } - - /* - * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() - * later because we already did the conversion to 4byte opcodes. Also, - * this latest function implements a legacy quirk for the erase size of - * Spansion memory. However this quirk is no longer needed with new - * SFDP compliant memories. - */ - nor->addr_width = 4; - nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; - - /* fall through */ -out: - kfree(dwords); - return ret; -} - -/** - * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. - * @nor: pointer to a 'struct spi_nor' - * @params: pointer to the 'struct spi_nor_flash_parameter' to be - * filled - * - * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 - * specification. This is a standard which tends to supported by almost all - * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at - * runtime the main parameters needed to perform basic SPI flash operations such - * as Fast Read, Page Program or Sector Erase commands. - * - * Return: 0 on success, -errno otherwise. - */ -static int spi_nor_parse_sfdp(struct spi_nor *nor, - struct spi_nor_flash_parameter *params) -{ - const struct sfdp_parameter_header *param_header, *bfpt_header; - struct sfdp_parameter_header *param_headers = NULL; - struct sfdp_header header; - struct device *dev = nor->dev; - size_t psize; - int i, err; - - /* Get the SFDP header. */ - err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); - if (err < 0) - return err; - - /* Check the SFDP header version. */ - if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || - header.major != SFDP_JESD216_MAJOR) - return -EINVAL; - - /* - * Verify that the first and only mandatory parameter header is a - * Basic Flash Parameter Table header as specified in JESD216. - */ - bfpt_header = &header.bfpt_header; - if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || - bfpt_header->major != SFDP_JESD216_MAJOR) - return -EINVAL; - - /* - * Allocate memory then read all parameter headers with a single - * Read SFDP command. These parameter headers will actually be parsed - * twice: a first time to get the latest revision of the basic flash - * parameter table, then a second time to handle the supported optional - * tables. - * Hence we read the parameter headers once for all to reduce the - * processing time. Also we use kmalloc() instead of devm_kmalloc() - * because we don't need to keep these parameter headers: the allocated - * memory is always released with kfree() before exiting this function. - */ - if (header.nph) { - psize = header.nph * sizeof(*param_headers); - - param_headers = kmalloc(psize, GFP_KERNEL); - if (!param_headers) - return -ENOMEM; - - err = spi_nor_read_sfdp(nor, sizeof(header), - psize, param_headers); - if (err < 0) { - dev_err(dev, "failed to read SFDP parameter headers\n"); - goto exit; - } - } - - /* - * Check other parameter headers to get the latest revision of - * the basic flash parameter table. - */ - for (i = 0; i < header.nph; i++) { - param_header = ¶m_headers[i]; - - if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && - param_header->major == SFDP_JESD216_MAJOR && - (param_header->minor > bfpt_header->minor || - (param_header->minor == bfpt_header->minor && - param_header->length > bfpt_header->length))) - bfpt_header = param_header; - } - - err = spi_nor_parse_bfpt(nor, bfpt_header, params); - if (err) - goto exit; - - /* Parse optional parameter tables. */ - for (i = 0; i < header.nph; i++) { - param_header = ¶m_headers[i]; - - switch (SFDP_PARAM_HEADER_ID(param_header)) { - case SFDP_SECTOR_MAP_ID: - err = spi_nor_parse_smpt(nor, param_header); - break; - - case SFDP_4BAIT_ID: - err = spi_nor_parse_4bait(nor, param_header, params); - break; - - default: - break; - } - - if (err) { - dev_warn(dev, "Failed to parse optional parameter table: %04x\n", - SFDP_PARAM_HEADER_ID(param_header)); - /* - * Let's not drop all information we extracted so far - * if optional table parsers fail. In case of failing, - * each optional parser is responsible to roll back to - * the previously known spi_nor data. - */ - err = 0; - } - } - -exit: - kfree(param_headers); - return err; -} - -static int spi_nor_init_params(struct spi_nor *nor, - struct spi_nor_flash_parameter *params) -{ - struct spi_nor_erase_map *map = &nor->erase_map; - const struct flash_info *info = nor->info; - u8 i, erase_mask; - - /* Set legacy flash parameters as default. */ - memset(params, 0, sizeof(*params)); - - /* Set SPI NOR sizes. */ - params->size = (u64)info->sector_size * info->n_sectors; - params->page_size = info->page_size; - - /* (Fast) Read settings. */ - params->hwcaps.mask |= SNOR_HWCAPS_READ; - spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], - 0, 0, SPINOR_OP_READ, - SNOR_PROTO_1_1_1); - - if (!(info->flags & SPI_NOR_NO_FR)) { - params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; - spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], - 0, 8, SPINOR_OP_READ_FAST, - SNOR_PROTO_1_1_1); - } - - if (info->flags & SPI_NOR_DUAL_READ) { - params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; - spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], - 0, 8, SPINOR_OP_READ_1_1_2, - SNOR_PROTO_1_1_2); - } - - if (info->flags & SPI_NOR_QUAD_READ) { - params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; - spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], - 0, 8, SPINOR_OP_READ_1_1_4, - SNOR_PROTO_1_1_4); - } - - /* Page Program settings. */ - params->hwcaps.mask |= SNOR_HWCAPS_PP; - spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], - SPINOR_OP_PP, SNOR_PROTO_1_1_1); - - /* - * Sector Erase settings. Sort Erase Types in ascending order, with the - * smallest erase size starting at BIT(0). - */ - erase_mask = 0; - i = 0; - if (info->flags & SECT_4K_PMC) { - erase_mask |= BIT(i); - spi_nor_set_erase_type(&map->erase_type[i], 4096u, - SPINOR_OP_BE_4K_PMC); - i++; - } else if (info->flags & SECT_4K) { - erase_mask |= BIT(i); - spi_nor_set_erase_type(&map->erase_type[i], 4096u, - SPINOR_OP_BE_4K); - i++; - } - erase_mask |= BIT(i); - spi_nor_set_erase_type(&map->erase_type[i], info->sector_size, - SPINOR_OP_SE); - spi_nor_init_uniform_erase_map(map, erase_mask, params->size); - - /* Select the procedure to set the Quad Enable bit. */ - if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD | - SNOR_HWCAPS_PP_QUAD)) { - switch (JEDEC_MFR(info)) { - case SNOR_MFR_MACRONIX: - params->quad_enable = macronix_quad_enable; - break; - - case SNOR_MFR_ST: - case SNOR_MFR_MICRON: - break; - - default: - /* Kept only for backward compatibility purpose. */ - params->quad_enable = spansion_quad_enable; - break; - } - - /* - * Some manufacturer like GigaDevice may use different - * bit to set QE on different memories, so the MFR can't - * indicate the quad_enable method for this case, we need - * set it in flash info list. - */ - if (info->quad_enable) - params->quad_enable = info->quad_enable; - } - - if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) && - !(info->flags & SPI_NOR_SKIP_SFDP)) { - struct spi_nor_flash_parameter sfdp_params; - struct spi_nor_erase_map prev_map; - - memcpy(&sfdp_params, params, sizeof(sfdp_params)); - memcpy(&prev_map, &nor->erase_map, sizeof(prev_map)); - - if (spi_nor_parse_sfdp(nor, &sfdp_params)) { - nor->addr_width = 0; - nor->flags &= ~SNOR_F_4B_OPCODES; - /* restore previous erase map */ - memcpy(&nor->erase_map, &prev_map, - sizeof(nor->erase_map)); - } else { - memcpy(params, &sfdp_params, sizeof(*params)); - } - } - - return 0; -} - -static int spi_nor_select_read(struct spi_nor *nor, - const struct spi_nor_flash_parameter *params, - u32 shared_hwcaps) -{ - int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; - const struct spi_nor_read_command *read; - - if (best_match < 0) - return -EINVAL; - - cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); - if (cmd < 0) - return -EINVAL; - - read = ¶ms->reads[cmd]; - nor->read_opcode = read->opcode; - nor->read_proto = read->proto; - - /* - * In the spi-nor framework, we don't need to make the difference - * between mode clock cycles and wait state clock cycles. - * Indeed, the value of the mode clock cycles is used by a QSPI - * flash memory to know whether it should enter or leave its 0-4-4 - * (Continuous Read / XIP) mode. - * eXecution In Place is out of the scope of the mtd sub-system. - * Hence we choose to merge both mode and wait state clock cycles - * into the so called dummy clock cycles. - */ - nor->read_dummy = read->num_mode_clocks + read->num_wait_states; - return 0; -} - -static int spi_nor_select_pp(struct spi_nor *nor, - const struct spi_nor_flash_parameter *params, - u32 shared_hwcaps) -{ - int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; - const struct spi_nor_pp_command *pp; - - if (best_match < 0) - return -EINVAL; - - cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); - if (cmd < 0) - return -EINVAL; - - pp = ¶ms->page_programs[cmd]; - nor->program_opcode = pp->opcode; - nor->write_proto = pp->proto; - return 0; -} - -/** - * spi_nor_select_uniform_erase() - select optimum uniform erase type - * @map: the erase map of the SPI NOR - * @wanted_size: the erase type size to search for. Contains the value of - * info->sector_size or of the "small sector" size in case - * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined. - * - * Once the optimum uniform sector erase command is found, disable all the - * other. - * - * Return: pointer to erase type on success, NULL otherwise. - */ -static const struct spi_nor_erase_type * -spi_nor_select_uniform_erase(struct spi_nor_erase_map *map, - const u32 wanted_size) -{ - const struct spi_nor_erase_type *tested_erase, *erase = NULL; - int i; - u8 uniform_erase_type = map->uniform_erase_type; - - for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { - if (!(uniform_erase_type & BIT(i))) - continue; - - tested_erase = &map->erase_type[i]; - - /* - * If the current erase size is the one, stop here: - * we have found the right uniform Sector Erase command. - */ - if (tested_erase->size == wanted_size) { - erase = tested_erase; - break; - } - - /* - * Otherwise, the current erase size is still a valid canditate. - * Select the biggest valid candidate. - */ - if (!erase && tested_erase->size) - erase = tested_erase; - /* keep iterating to find the wanted_size */ - } - - if (!erase) - return NULL; - - /* Disable all other Sector Erase commands. */ - map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK; - map->uniform_erase_type |= BIT(erase - map->erase_type); - return erase; -} - -static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size) -{ - struct spi_nor_erase_map *map = &nor->erase_map; - const struct spi_nor_erase_type *erase = NULL; - struct mtd_info *mtd = &nor->mtd; - int i; - - /* - * The previous implementation handling Sector Erase commands assumed - * that the SPI flash memory has an uniform layout then used only one - * of the supported erase sizes for all Sector Erase commands. - * So to be backward compatible, the new implementation also tries to - * manage the SPI flash memory as uniform with a single erase sector - * size, when possible. - */ -#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS - /* prefer "small sector" erase if possible */ - wanted_size = 4096u; -#endif - - if (spi_nor_has_uniform_erase(nor)) { - erase = spi_nor_select_uniform_erase(map, wanted_size); - if (!erase) - return -EINVAL; - nor->erase_opcode = erase->opcode; - mtd->erasesize = erase->size; - return 0; - } - - /* - * For non-uniform SPI flash memory, set mtd->erasesize to the - * maximum erase sector size. No need to set nor->erase_opcode. - */ - for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { - if (map->erase_type[i].size) { - erase = &map->erase_type[i]; - break; - } - } - - if (!erase) - return -EINVAL; - - mtd->erasesize = erase->size; - return 0; -} - -static int spi_nor_setup(struct spi_nor *nor, - const struct spi_nor_flash_parameter *params, - const struct spi_nor_hwcaps *hwcaps) -{ - u32 ignored_mask, shared_mask; - bool enable_quad_io; - int err; - - /* - * Keep only the hardware capabilities supported by both the SPI - * controller and the SPI flash memory. - */ - shared_mask = hwcaps->mask & params->hwcaps.mask; - - /* SPI n-n-n protocols are not supported yet. */ - ignored_mask = (SNOR_HWCAPS_READ_2_2_2 | - SNOR_HWCAPS_READ_4_4_4 | - SNOR_HWCAPS_READ_8_8_8 | - SNOR_HWCAPS_PP_4_4_4 | - SNOR_HWCAPS_PP_8_8_8); - if (shared_mask & ignored_mask) { - dev_dbg(nor->dev, - "SPI n-n-n protocols are not supported yet.\n"); - shared_mask &= ~ignored_mask; - } - - /* Select the (Fast) Read command. */ - err = spi_nor_select_read(nor, params, shared_mask); - if (err) { - dev_err(nor->dev, - "can't select read settings supported by both the SPI controller and memory.\n"); - return err; - } - - /* Select the Page Program command. */ - err = spi_nor_select_pp(nor, params, shared_mask); - if (err) { - dev_err(nor->dev, - "can't select write settings supported by both the SPI controller and memory.\n"); - return err; - } - - /* Select the Sector Erase command. */ - err = spi_nor_select_erase(nor, nor->info->sector_size); - if (err) { - dev_err(nor->dev, - "can't select erase settings supported by both the SPI controller and memory.\n"); - return err; - } - - /* Enable Quad I/O if needed. */ - enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 || - spi_nor_get_protocol_width(nor->write_proto) == 4); - if (enable_quad_io && params->quad_enable) - nor->quad_enable = params->quad_enable; - else - nor->quad_enable = NULL; - - return 0; -} - -static int spi_nor_init(struct spi_nor *nor) -{ - int err; - - /* - * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up - * with the software protection bits set - */ - if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL || - JEDEC_MFR(nor->info) == SNOR_MFR_INTEL || - JEDEC_MFR(nor->info) == SNOR_MFR_SST || - nor->info->flags & SPI_NOR_HAS_LOCK) { - write_enable(nor); - write_sr(nor, 0); - spi_nor_wait_till_ready(nor); - } - - if (nor->quad_enable) { - err = nor->quad_enable(nor); - if (err) { - dev_err(nor->dev, "quad mode not supported\n"); - return err; - } - } - - if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) { - /* - * If the RESET# pin isn't hooked up properly, or the system - * otherwise doesn't perform a reset command in the boot - * sequence, it's impossible to 100% protect against unexpected - * reboots (e.g., crashes). Warn the user (or hopefully, system - * designer) that this is bad. - */ - WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, - "enabling reset hack; may not recover from unexpected reboots\n"); - set_4byte(nor, true); - } - - return 0; -} - -/* mtd resume handler */ -static void spi_nor_resume(struct mtd_info *mtd) -{ - struct spi_nor *nor = mtd_to_spi_nor(mtd); - struct device *dev = nor->dev; - int ret; - - /* re-initialize the nor chip */ - ret = spi_nor_init(nor); - if (ret) - dev_err(dev, "resume() failed\n"); -} - -void spi_nor_restore(struct spi_nor *nor) -{ - /* restore the addressing mode */ - if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && - nor->flags & SNOR_F_BROKEN_RESET) - set_4byte(nor, false); -} -EXPORT_SYMBOL_GPL(spi_nor_restore); - -static const struct flash_info *spi_nor_match_id(const char *name) -{ - const struct flash_info *id = spi_nor_ids; - - while (id->name) { - if (!strcmp(name, id->name)) - return id; - id++; - } - return NULL; -} - -int spi_nor_scan(struct spi_nor *nor, const char *name, - const struct spi_nor_hwcaps *hwcaps) -{ - struct spi_nor_flash_parameter params; - const struct flash_info *info = NULL; - struct device *dev = nor->dev; - struct mtd_info *mtd = &nor->mtd; - struct device_node *np = spi_nor_get_flash_node(nor); - int ret; - int i; - - ret = spi_nor_check(nor); - if (ret) - return ret; - - /* Reset SPI protocol for all commands. */ - nor->reg_proto = SNOR_PROTO_1_1_1; - nor->read_proto = SNOR_PROTO_1_1_1; - nor->write_proto = SNOR_PROTO_1_1_1; - - if (name) - info = spi_nor_match_id(name); - /* Try to auto-detect if chip name wasn't specified or not found */ - if (!info) - info = spi_nor_read_id(nor); - if (IS_ERR_OR_NULL(info)) - return -ENOENT; - - /* - * If caller has specified name of flash model that can normally be - * detected using JEDEC, let's verify it. - */ - if (name && info->id_len) { - const struct flash_info *jinfo; - - jinfo = spi_nor_read_id(nor); - if (IS_ERR(jinfo)) { - return PTR_ERR(jinfo); - } else if (jinfo != info) { - /* - * JEDEC knows better, so overwrite platform ID. We - * can't trust partitions any longer, but we'll let - * mtd apply them anyway, since some partitions may be - * marked read-only, and we don't want to lose that - * information, even if it's not 100% accurate. - */ - dev_warn(dev, "found %s, expected %s\n", - jinfo->name, info->name); - info = jinfo; - } - } - - nor->info = info; - - mutex_init(&nor->lock); - - /* - * Make sure the XSR_RDY flag is set before calling - * spi_nor_wait_till_ready(). Xilinx S3AN share MFR - * with Atmel spi-nor - */ - if (info->flags & SPI_S3AN) - nor->flags |= SNOR_F_READY_XSR_RDY; - - /* Parse the Serial Flash Discoverable Parameters table. */ - ret = spi_nor_init_params(nor, ¶ms); - if (ret) - return ret; - - if (!mtd->name) - mtd->name = dev_name(dev); - mtd->priv = nor; - mtd->type = MTD_NORFLASH; - mtd->writesize = 1; - mtd->flags = MTD_CAP_NORFLASH; - mtd->size = params.size; - mtd->_erase = spi_nor_erase; - mtd->_read = spi_nor_read; - mtd->_resume = spi_nor_resume; - - /* NOR protection support for STmicro/Micron chips and similar */ - if (JEDEC_MFR(info) == SNOR_MFR_ST || - JEDEC_MFR(info) == SNOR_MFR_MICRON || - info->flags & SPI_NOR_HAS_LOCK) { - nor->flash_lock = stm_lock; - nor->flash_unlock = stm_unlock; - nor->flash_is_locked = stm_is_locked; - } - - if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) { - mtd->_lock = spi_nor_lock; - mtd->_unlock = spi_nor_unlock; - mtd->_is_locked = spi_nor_is_locked; - } - - /* sst nor chips use AAI word program */ - if (info->flags & SST_WRITE) - mtd->_write = sst_write; - else - mtd->_write = spi_nor_write; - - if (info->flags & USE_FSR) - nor->flags |= SNOR_F_USE_FSR; - if (info->flags & SPI_NOR_HAS_TB) - nor->flags |= SNOR_F_HAS_SR_TB; - if (info->flags & NO_CHIP_ERASE) - nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; - if (info->flags & USE_CLSR) - nor->flags |= SNOR_F_USE_CLSR; - - if (info->flags & SPI_NOR_NO_ERASE) - mtd->flags |= MTD_NO_ERASE; - - mtd->dev.parent = dev; - nor->page_size = params.page_size; - mtd->writebufsize = nor->page_size; - - if (np) { - /* If we were instantiated by DT, use it */ - if (of_property_read_bool(np, "m25p,fast-read")) - params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST; - else - params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; - } else { - /* If we weren't instantiated by DT, default to fast-read */ - params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST; - } - - if (of_property_read_bool(np, "broken-flash-reset")) - nor->flags |= SNOR_F_BROKEN_RESET; - - /* Some devices cannot do fast-read, no matter what DT tells us */ - if (info->flags & SPI_NOR_NO_FR) - params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; - - /* - * Configure the SPI memory: - * - select op codes for (Fast) Read, Page Program and Sector Erase. - * - set the number of dummy cycles (mode cycles + wait states). - * - set the SPI protocols for register and memory accesses. - * - set the Quad Enable bit if needed (required by SPI x-y-4 protos). - */ - ret = spi_nor_setup(nor, ¶ms, hwcaps); - if (ret) - return ret; - - if (nor->addr_width) { - /* already configured from SFDP */ - } else if (info->addr_width) { - nor->addr_width = info->addr_width; - } else if (mtd->size > 0x1000000) { - /* enable 4-byte addressing if the device exceeds 16MiB */ - nor->addr_width = 4; - } else { - nor->addr_width = 3; - } - - if (info->flags & SPI_NOR_4B_OPCODES || - (JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M)) - nor->flags |= SNOR_F_4B_OPCODES; - - if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES && - !(nor->flags & SNOR_F_HAS_4BAIT)) - spi_nor_set_4byte_opcodes(nor); - - if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { - dev_err(dev, "address width is too large: %u\n", - nor->addr_width); - return -EINVAL; - } - - if (info->flags & SPI_S3AN) { - ret = s3an_nor_scan(nor); - if (ret) - return ret; - } - - /* Send all the required SPI flash commands to initialize device */ - ret = spi_nor_init(nor); - if (ret) - return ret; - - dev_info(dev, "%s (%lld Kbytes)\n", info->name, - (long long)mtd->size >> 10); - - dev_dbg(dev, - "mtd .name = %s, .size = 0x%llx (%lldMiB), " - ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", - mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), - mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); - - if (mtd->numeraseregions) - for (i = 0; i < mtd->numeraseregions; i++) - dev_dbg(dev, - "mtd.eraseregions[%d] = { .offset = 0x%llx, " - ".erasesize = 0x%.8x (%uKiB), " - ".numblocks = %d }\n", - i, (long long)mtd->eraseregions[i].offset, - mtd->eraseregions[i].erasesize, - mtd->eraseregions[i].erasesize / 1024, - mtd->eraseregions[i].numblocks); - return 0; -} -EXPORT_SYMBOL_GPL(spi_nor_scan); - -MODULE_LICENSE("GPL v2"); -MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); -MODULE_AUTHOR("Mike Lavender"); -MODULE_DESCRIPTION("framework for SPI NOR"); |
