diff options
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_ptp_hw.c')
| -rw-r--r-- | drivers/net/ethernet/intel/ice/ice_ptp_hw.c | 4391 |
1 files changed, 3488 insertions, 903 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_ptp_hw.c b/drivers/net/ethernet/intel/ice/ice_ptp_hw.c index a38614d21ea8..35680dbe4a7f 100644 --- a/drivers/net/ethernet/intel/ice/ice_ptp_hw.c +++ b/drivers/net/ethernet/intel/ice/ice_ptp_hw.c @@ -2,10 +2,134 @@ /* Copyright (C) 2021, Intel Corporation. */ #include <linux/delay.h> +#include <linux/iopoll.h> #include "ice_common.h" #include "ice_ptp_hw.h" #include "ice_ptp_consts.h" -#include "ice_cgu_regs.h" + +static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = { + DPLL_PIN_FREQUENCY_1PPS, + DPLL_PIN_FREQUENCY_10MHZ, +}; + +static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = { + DPLL_PIN_FREQUENCY_1PPS, +}; + +static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = { + DPLL_PIN_FREQUENCY_10MHZ, +}; + +static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = { + { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, }, + { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, }, + { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = { + { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, }, + { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, }, + { "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, }, + { "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, }, + { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = { + { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, }, + { "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, }, + { "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = { + { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = { + { "NONE", SI_REF0P, 0, 0 }, + { "NONE", SI_REF0N, 0, 0 }, + { "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 }, + { "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 }, + { "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "NONE", SI_REF2N, 0, 0 }, + { "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, +}; + +static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = { + { "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz }, + { "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, +}; + +static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = { + { "NONE", ZL_REF0P, 0, 0 }, + { "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 }, + { "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 }, + { "NONE", ZL_REF2P, 0, 0 }, + { "NONE", ZL_REF2N, 0, 0 }, + { "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "NONE", ZL_REF3N, 0, 0 }, + { "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 }, +}; + +static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = { + { "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz }, + { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "NONE", ZL_OUT5, 0, 0 }, +}; /* Low level functions for interacting with and managing the device clock used * for the Precision Time Protocol. @@ -25,7 +149,7 @@ * | 8 bit s | | 32 bits | * +---------------+ +---------------+ * - * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L + * The increment value is added to the GLTSYN_TIME_R and GLTSYN_TIME_L * registers every clock source tick. Depending on the specific device * configuration, the clock source frequency could be one of a number of * values. @@ -101,38 +225,119 @@ static u64 ice_ptp_read_src_incval(struct ice_hw *hw) } /** - * ice_ptp_src_cmd - Prepare source timer for a timer command - * @hw: pointer to HW structure + * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value + * @hw: pointer to HW struct * @cmd: Timer command * - * Prepare the source timer for an upcoming timer sync command. + * Return: the source timer command register value for the given PTP timer + * command. */ -static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw, + enum ice_ptp_tmr_cmd cmd) { - u32 cmd_val; - u8 tmr_idx; + u32 cmd_val, tmr_idx; + + switch (cmd) { + case ICE_PTP_INIT_TIME: + cmd_val = GLTSYN_CMD_INIT_TIME; + break; + case ICE_PTP_INIT_INCVAL: + cmd_val = GLTSYN_CMD_INIT_INCVAL; + break; + case ICE_PTP_ADJ_TIME: + cmd_val = GLTSYN_CMD_ADJ_TIME; + break; + case ICE_PTP_ADJ_TIME_AT_TIME: + cmd_val = GLTSYN_CMD_ADJ_INIT_TIME; + break; + case ICE_PTP_NOP: + case ICE_PTP_READ_TIME: + cmd_val = GLTSYN_CMD_READ_TIME; + break; + default: + dev_warn(ice_hw_to_dev(hw), + "Ignoring unrecognized timer command %u\n", cmd); + cmd_val = 0; + } tmr_idx = ice_get_ptp_src_clock_index(hw); - cmd_val = tmr_idx << SEL_CPK_SRC; + + return tmr_idx << SEL_CPK_SRC | cmd_val; +} + +/** + * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value + * @hw: pointer to HW struct + * @cmd: Timer command + * + * Note that some hardware families use a different command register value for + * the PHY ports, while other hardware families use the same register values + * as the source timer. + * + * Return: the PHY port timer command register value for the given PTP timer + * command. + */ +static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw, + enum ice_ptp_tmr_cmd cmd) +{ + u32 cmd_val, tmr_idx; + + /* Certain hardware families share the same register values for the + * port register and source timer register. + */ + switch (hw->mac_type) { + case ICE_MAC_E810: + case ICE_MAC_E830: + return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810; + default: + break; + } switch (cmd) { - case INIT_TIME: - cmd_val |= GLTSYN_CMD_INIT_TIME; + case ICE_PTP_INIT_TIME: + cmd_val = PHY_CMD_INIT_TIME; break; - case INIT_INCVAL: - cmd_val |= GLTSYN_CMD_INIT_INCVAL; + case ICE_PTP_INIT_INCVAL: + cmd_val = PHY_CMD_INIT_INCVAL; break; - case ADJ_TIME: - cmd_val |= GLTSYN_CMD_ADJ_TIME; + case ICE_PTP_ADJ_TIME: + cmd_val = PHY_CMD_ADJ_TIME; break; - case ADJ_TIME_AT_TIME: - cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME; + case ICE_PTP_ADJ_TIME_AT_TIME: + cmd_val = PHY_CMD_ADJ_TIME_AT_TIME; break; - case READ_TIME: - cmd_val |= GLTSYN_CMD_READ_TIME; + case ICE_PTP_READ_TIME: + cmd_val = PHY_CMD_READ_TIME; break; + case ICE_PTP_NOP: + cmd_val = 0; + break; + default: + dev_warn(ice_hw_to_dev(hw), + "Ignoring unrecognized timer command %u\n", cmd); + cmd_val = 0; } + tmr_idx = ice_get_ptp_src_clock_index(hw); + + return tmr_idx << SEL_PHY_SRC | cmd_val; +} + +/** + * ice_ptp_src_cmd - Prepare source timer for a timer command + * @hw: pointer to HW structure + * @cmd: Timer command + * + * Prepare the source timer for an upcoming timer sync command. + */ +void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd); + + if (!ice_is_primary(hw)) + hw = ice_get_primary_hw(pf); + wr32(hw, GLTSYN_CMD, cmd_val); } @@ -146,29 +351,1875 @@ static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) */ static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw) { + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + + if (!ice_is_primary(hw)) + hw = ice_get_primary_hw(pf); + + guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock); wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD); ice_flush(hw); } +/** + * ice_ptp_cfg_sync_delay - Configure PHC to PHY synchronization delay + * @hw: pointer to HW struct + * @delay: delay between PHC and PHY SYNC command execution in nanoseconds + */ +static void ice_ptp_cfg_sync_delay(const struct ice_hw *hw, u32 delay) +{ + wr32(hw, GLTSYN_SYNC_DLAY, delay); + ice_flush(hw); +} + +/* 56G PHY device functions + * + * The following functions operate on devices with the ETH 56G PHY. + */ + +/** + * ice_ptp_get_dest_dev_e825 - get destination PHY for given port number + * @hw: pointer to the HW struct + * @port: destination port + * + * Return: destination sideband queue PHY device. + */ +static enum ice_sbq_dev_id ice_ptp_get_dest_dev_e825(struct ice_hw *hw, + u8 port) +{ + u8 curr_phy, tgt_phy; + + tgt_phy = port >= hw->ptp.ports_per_phy; + curr_phy = hw->lane_num >= hw->ptp.ports_per_phy; + /* In the driver, lanes 4..7 are in fact 0..3 on a second PHY. + * On a single complex E825C, PHY 0 is always destination device phy_0 + * and PHY 1 is phy_0_peer. + * On dual complex E825C, device phy_0 points to PHY on a current + * complex and phy_0_peer to PHY on a different complex. + */ + if ((!ice_is_dual(hw) && tgt_phy == 1) || + (ice_is_dual(hw) && tgt_phy != curr_phy)) + return ice_sbq_dev_phy_0_peer; + else + return ice_sbq_dev_phy_0; +} + +/** + * ice_write_phy_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @port: destination port + * @addr: PHY register address + * @val: Value to write + * + * Return: 0 on success, other error codes when failed to write to PHY + */ +static int ice_write_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 val) +{ + struct ice_sbq_msg_input msg = { + .dest_dev = ice_ptp_get_dest_dev_e825(hw, port), + .opcode = ice_sbq_msg_wr, + .msg_addr_low = lower_16_bits(addr), + .msg_addr_high = upper_16_bits(addr), + .data = val + }; + int err; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) + ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n", + err); + + return err; +} + +/** + * ice_read_phy_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: destination port + * @addr: PHY register address + * @val: Value to write + * + * Return: 0 on success, other error codes when failed to read from PHY + */ +static int ice_read_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 *val) +{ + struct ice_sbq_msg_input msg = { + .dest_dev = ice_ptp_get_dest_dev_e825(hw, port), + .opcode = ice_sbq_msg_rd, + .msg_addr_low = lower_16_bits(addr), + .msg_addr_high = upper_16_bits(addr) + }; + int err; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) + ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n", + err); + else + *val = msg.data; + + return err; +} + +/** + * ice_phy_res_address_eth56g - Calculate a PHY port register address + * @hw: pointer to the HW struct + * @lane: Lane number to be written + * @res_type: resource type (register/memory) + * @offset: Offset from PHY port register base + * @addr: The result address + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + */ +static int ice_phy_res_address_eth56g(struct ice_hw *hw, u8 lane, + enum eth56g_res_type res_type, + u32 offset, + u32 *addr) +{ + if (res_type >= NUM_ETH56G_PHY_RES) + return -EINVAL; + + /* Lanes 4..7 are in fact 0..3 on a second PHY */ + lane %= hw->ptp.ports_per_phy; + *addr = eth56g_phy_res[res_type].base_addr + + lane * eth56g_phy_res[res_type].step + offset; + + return 0; +} + +/** + * ice_write_port_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to write + * @res_type: resource type (register/memory) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 val, enum eth56g_res_type res_type) +{ + u32 addr; + int err; + + if (port >= hw->ptp.num_lports) + return -EINVAL; + + err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr); + if (err) + return err; + + return ice_write_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_read_port_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to write + * @res_type: resource type (register/memory) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 *val, enum eth56g_res_type res_type) +{ + u32 addr; + int err; + + if (port >= hw->ptp.num_lports) + return -EINVAL; + + err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr); + if (err) + return err; + + return ice_read_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_write_ptp_reg_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be written + * @offset: Offset from PHY port register base + * @val: Value to write + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP); +} + +/** + * ice_write_mac_reg_eth56g - Write a MAC PHY port register + * parameter + * @hw: pointer to the HW struct + * @port: Port number to be written + * @offset: Offset from PHY port register base + * @val: Value to write + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC); +} + +/** + * ice_write_xpcs_reg_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be written + * @offset: Offset from PHY port register base + * @val: Value to write + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, + ETH56G_PHY_REG_XPCS); +} + +/** + * ice_read_ptp_reg_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP); +} + +/** + * ice_read_mac_reg_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC); +} + +/** + * ice_read_gpcs_reg_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS); +} + +/** + * ice_read_port_mem_eth56g - Read a PHY port memory location + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP); +} + +/** + * ice_write_port_mem_eth56g - Write a PHY port memory location + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP); +} + +/** + * ice_write_quad_ptp_reg_eth56g - Write a PHY quad register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to write + * + * Return: + * * %0 - success + * * %EIO - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u32 offset, u32 val) +{ + u32 addr; + + if (port >= hw->ptp.num_lports) + return -EIO; + + addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset; + + return ice_write_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_read_quad_ptp_reg_eth56g - Read a PHY quad register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to read + * + * Return: + * * %0 - success + * * %EIO - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u32 offset, u32 *val) +{ + u32 addr; + + if (port >= hw->ptp.num_lports) + return -EIO; + + addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset; + + return ice_read_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register + * @low_addr: the low address to check + * @high_addr: on return, contains the high address of the 64bit register + * + * Write the appropriate high register offset to use. + * + * Return: true if the provided low address is one of the known 64bit PHY values + * represented as two 32bit registers, false otherwise. + */ +static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr) +{ + switch (low_addr) { + case PHY_REG_TX_TIMER_INC_PRE_L: + *high_addr = PHY_REG_TX_TIMER_INC_PRE_U; + return true; + case PHY_REG_RX_TIMER_INC_PRE_L: + *high_addr = PHY_REG_RX_TIMER_INC_PRE_U; + return true; + case PHY_REG_TX_CAPTURE_L: + *high_addr = PHY_REG_TX_CAPTURE_U; + return true; + case PHY_REG_RX_CAPTURE_L: + *high_addr = PHY_REG_RX_CAPTURE_U; + return true; + case PHY_REG_TOTAL_TX_OFFSET_L: + *high_addr = PHY_REG_TOTAL_TX_OFFSET_U; + return true; + case PHY_REG_TOTAL_RX_OFFSET_L: + *high_addr = PHY_REG_TOTAL_RX_OFFSET_U; + return true; + case PHY_REG_TX_MEMORY_STATUS_L: + *high_addr = PHY_REG_TX_MEMORY_STATUS_U; + return true; + default: + return false; + } +} + +/** + * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register + * @low_addr: the low address to check + * @high_addr: on return, contains the high address of the 40bit value + * + * Write the appropriate high register offset to use. + * + * Return: true if the provided low address is one of the known 40bit PHY + * values split into two registers with the lower 8 bits in the low register and + * the upper 32 bits in the high register, false otherwise. + */ +static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr) +{ + switch (low_addr) { + case PHY_REG_TIMETUS_L: + *high_addr = PHY_REG_TIMETUS_U; + return true; + case PHY_PCS_REF_TUS_L: + *high_addr = PHY_PCS_REF_TUS_U; + return true; + case PHY_PCS_REF_INC_L: + *high_addr = PHY_PCS_REF_INC_U; + return true; + default: + return false; + } +} + +/** + * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: on return, the contents of the 64bit value from the PHY registers + * @res_type: resource type + * + * Check if the caller has specified a known 40 bit register offset and read + * the two registers associated with a 40bit value and return it in the val + * pointer. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to read from PHY + */ +static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr, + u64 *val, enum eth56g_res_type res_type) +{ + u16 high_addr; + u32 lo, hi; + int err; + + if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr)) + return -EINVAL; + + err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d", + high_addr, err); + return err; + } + + *val = ((u64)hi << 32) | lo; + + return 0; +} + +/** + * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: on return, the contents of the 64bit value from the PHY registers + * + * Check if the caller has specified a known 40 bit register offset and read + * the two registers associated with a 40bit value and return it in the val + * pointer. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to read from PHY + */ +static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr, + u64 *val) +{ + return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val, + ETH56G_PHY_REG_PTP); +} + +/** + * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY + * @hw: pointer to the HW struct + * @port: port to write to + * @low_addr: offset of the low register + * @val: 40b value to write + * @res_type: resource type + * + * Check if the caller has specified a known 40 bit register offset and write + * provided 40b value to the two associated registers by splitting it up into + * two chunks, the lower 8 bits and the upper 32 bits. + * + * Return: + * * %0 - success + * * %EINVAL - not a 40 bit register + * * %other - failed to write to PHY + */ +static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val, + enum eth56g_res_type res_type) +{ + u16 high_addr; + u32 lo, hi; + int err; + + if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr)) + return -EINVAL; + + lo = FIELD_GET(P_REG_40B_LOW_M, val); + hi = (u32)(val >> P_REG_40B_HIGH_S); + + err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", + high_addr, err); + return err; + } + + return 0; +} + +/** + * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY + * @hw: pointer to the HW struct + * @port: port to write to + * @low_addr: offset of the low register + * @val: 40b value to write + * + * Check if the caller has specified a known 40 bit register offset and write + * provided 40b value to the two associated registers by splitting it up into + * two chunks, the lower 8 bits and the upper 32 bits. + * + * Return: + * * %0 - success + * * %EINVAL - not a 40 bit register + * * %other - failed to write to PHY + */ +static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val) +{ + return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val, + ETH56G_PHY_REG_PTP); +} + +/** + * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: the contents of the 64bit value to write to PHY + * @res_type: resource type + * + * Check if the caller has specified a known 64 bit register offset and write + * the 64bit value to the two associated 32bit PHY registers. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to write to PHY + */ +static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val, + enum eth56g_res_type res_type) +{ + u16 high_addr; + u32 lo, hi; + int err; + + if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr)) + return -EINVAL; + + lo = lower_32_bits(val); + hi = upper_32_bits(val); + + err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", + high_addr, err); + return err; + } + + return 0; +} + +/** + * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: the contents of the 64bit value to write to PHY + * + * Check if the caller has specified a known 64 bit register offset and write + * the 64bit value to the two associated 32bit PHY registers. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to write to PHY + */ +static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val) +{ + return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val, + ETH56G_PHY_REG_PTP); +} + +/** + * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory + * @hw: pointer to the HW struct + * @port: the port to read from + * @idx: the timestamp index to read + * @tstamp: on return, the 40bit timestamp value + * + * Read a 40bit timestamp value out of the two associated entries in the + * port memory block of the internal PHYs of the 56G devices. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx, + u64 *tstamp) +{ + u16 lo_addr, hi_addr; + u32 lo, hi; + int err; + + lo_addr = (u16)PHY_TSTAMP_L(idx); + hi_addr = (u16)PHY_TSTAMP_U(idx); + + err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", + err); + return err; + } + + err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", + err); + return err; + } + + /* For 56G based internal PHYs, the timestamp is reported with the + * lower 8 bits in the low register, and the upper 32 bits in the high + * register. + */ + *tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) | + FIELD_PREP(PHY_40B_LOW_M, lo); + return 0; +} + +/** + * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block + * @hw: pointer to the HW struct + * @port: the quad to read from + * @idx: the timestamp index to reset + * + * Read and then forcibly clear the timestamp index to ensure the valid bit is + * cleared and the timestamp status bit is reset in the PHY port memory of + * internal PHYs of the 56G devices. + * + * To directly clear the contents of the timestamp block entirely, discarding + * all timestamp data at once, software should instead use + * ice_ptp_reset_ts_memory_quad_eth56g(). + * + * This function should only be called on an idx whose bit is set according to + * ice_get_phy_tx_tstamp_ready(). + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx) +{ + u64 unused_tstamp; + u16 lo_addr; + int err; + + /* Read the timestamp register to ensure the timestamp status bit is + * cleared. + */ + err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n", + port, idx, err); + } + + lo_addr = (u16)PHY_TSTAMP_L(idx); + + err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n", + port, idx, err); + return err; + } + + return 0; +} + +/** + * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block + * @hw: pointer to the HW struct + */ +static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw) +{ + unsigned int port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L, + 0); + ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U, + 0); + } +} + +/** + * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time + * @hw: pointer to the HW struct + * @port: port number + * @time: time to initialize the PHY port clocks to + * + * Write a new initial time value into registers of a specific PHY port. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port, + u64 time) +{ + int err; + + /* Tx case */ + err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L, + time); + if (err) + return err; + + /* Rx case */ + return ice_write_64b_ptp_reg_eth56g(hw, port, + PHY_REG_RX_TIMER_INC_PRE_L, time); +} + +/** + * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time + * @hw: pointer to the HW struct + * @time: Time to initialize the PHY port clocks to + * + * Program the PHY port registers with a new initial time value. The port + * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync + * command. The time value is the upper 32 bits of the PHY timer, usually in + * units of nominal nanoseconds. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time) +{ + u64 phy_time; + u8 port; + + /* The time represents the upper 32 bits of the PHY timer, so we need + * to shift to account for this when programming. + */ + phy_time = (u64)time << 32; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n", + port, err); + return err; + } + } + + return 0; +} + +/** + * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust + * @hw: pointer to HW struct + * @port: Port number to be programmed + * @time: time in cycles to adjust the port clocks + * + * Program the port for an atomic adjustment by writing the Tx and Rx timer + * registers. The atomic adjustment won't be completed until the driver issues + * an ICE_PTP_ADJ_TIME command. + * + * Note that time is not in units of nanoseconds. It is in clock time + * including the lower sub-nanosecond portion of the port timer. + * + * Negative adjustments are supported using 2s complement arithmetic. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time) +{ + u32 l_time, u_time; + int err; + + l_time = lower_32_bits(time); + u_time = upper_32_bits(time); + + /* Tx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L, + l_time); + if (err) + goto exit_err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U, + u_time); + if (err) + goto exit_err; + + /* Rx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L, + l_time); + if (err) + goto exit_err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U, + u_time); + if (err) + goto exit_err; + + return 0; + +exit_err: + ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n", + port, err); + return err; +} + +/** + * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment + * @hw: pointer to HW struct + * @adj: adjustment in nanoseconds + * + * Prepare the PHY ports for an atomic time adjustment by programming the PHY + * Tx and Rx port registers. The actual adjustment is completed by issuing an + * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj) +{ + s64 cycles; + u8 port; + + /* The port clock supports adjustment of the sub-nanosecond portion of + * the clock (lowest 32 bits). We shift the provided adjustment in + * nanoseconds by 32 to calculate the appropriate adjustment to program + * into the PHY ports. + */ + cycles = (s64)adj << 32; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles); + if (err) + return err; + } + + return 0; +} + +/** + * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment + * @hw: pointer to HW struct + * @incval: new increment value to prepare + * + * Prepare each of the PHY ports for a new increment value by programming the + * port's TIMETUS registers. The new increment value will be updated after + * issuing an ICE_PTP_INIT_INCVAL command. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval) +{ + u8 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, + incval); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n", + port, err); + return err; + } + } + + return 0; +} + +/** + * ice_ptp_read_port_capture_eth56g - Read a port's local time capture + * @hw: pointer to HW struct + * @port: Port number to read + * @tx_ts: on return, the Tx port time capture + * @rx_ts: on return, the Rx port time capture + * + * Read the port's Tx and Rx local time capture values. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port, + u64 *tx_ts, u64 *rx_ts) +{ + int err; + + /* Tx case */ + err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L, + tx_ts); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", + err); + return err; + } + + ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts); + + /* Rx case */ + err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L, + rx_ts); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", + err); + return err; + } + + ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts); + + return 0; +} + +/** + * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command + * @hw: pointer to HW struct + * @port: Port to which cmd has to be sent + * @cmd: Command to be sent to the port + * + * Prepare the requested port for an upcoming timer sync command. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port, + enum ice_ptp_tmr_cmd cmd) +{ + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); + int err; + + /* Tx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", + err); + return err; + } + + /* Rx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_phy_get_speed_eth56g - Get link speed based on PHY link type + * @li: pointer to link information struct + * + * Return: simplified ETH56G PHY speed + */ +static enum ice_eth56g_link_spd +ice_phy_get_speed_eth56g(struct ice_link_status *li) +{ + u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low, + li->phy_type_high); + + switch (speed) { + case ICE_AQ_LINK_SPEED_1000MB: + return ICE_ETH56G_LNK_SPD_1G; + case ICE_AQ_LINK_SPEED_2500MB: + return ICE_ETH56G_LNK_SPD_2_5G; + case ICE_AQ_LINK_SPEED_10GB: + return ICE_ETH56G_LNK_SPD_10G; + case ICE_AQ_LINK_SPEED_25GB: + return ICE_ETH56G_LNK_SPD_25G; + case ICE_AQ_LINK_SPEED_40GB: + return ICE_ETH56G_LNK_SPD_40G; + case ICE_AQ_LINK_SPEED_50GB: + switch (li->phy_type_low) { + case ICE_PHY_TYPE_LOW_50GBASE_SR: + case ICE_PHY_TYPE_LOW_50GBASE_FR: + case ICE_PHY_TYPE_LOW_50GBASE_LR: + case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: + case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: + case ICE_PHY_TYPE_LOW_50G_AUI1: + return ICE_ETH56G_LNK_SPD_50G; + default: + return ICE_ETH56G_LNK_SPD_50G2; + } + case ICE_AQ_LINK_SPEED_100GB: + if (li->phy_type_high || + li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2) + return ICE_ETH56G_LNK_SPD_100G2; + else + return ICE_ETH56G_LNK_SPD_100G; + default: + return ICE_ETH56G_LNK_SPD_1G; + } +} + +/** + * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle + * @hw: pointer to the HW struct + * @port: port to configure + * + * Configure the number of TUs for the PAR and PCS clocks used as part of the + * timestamp calibration process. + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port) +{ + u32 val; + int err; + + err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH, + ICE_ETH56G_NOMINAL_THRESH4); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d", + err); + return err; + } + + switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) { + case ICE_ETH56G_LNK_SPD_1G: + case ICE_ETH56G_LNK_SPD_2_5G: + err = ice_read_quad_ptp_reg_eth56g(hw, port, + PHY_GPCS_CONFIG_REG0, &val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d", + err); + return err; + } + + val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M; + val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M, + ICE_ETH56G_NOMINAL_TX_THRESH); + + err = ice_write_quad_ptp_reg_eth56g(hw, port, + PHY_GPCS_CONFIG_REG0, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d", + err); + return err; + } + break; + default: + break; + } + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L, + ICE_ETH56G_NOMINAL_PCS_REF_TUS); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d", + err); + return err; + } + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L, + ICE_ETH56G_NOMINAL_PCS_REF_INC); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d", + err); + return err; + } + + return 0; +} + +/** + * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings + * @hw: Pointer to the HW struct + * @port: Port to configure + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port) +{ + u8 quad_lane = port % ICE_PORTS_PER_QUAD; + u32 addr, val, peer_delay; + bool enable, sfd_ena; + int err; + + enable = hw->ptp.phy.eth56g.onestep_ena; + peer_delay = hw->ptp.phy.eth56g.peer_delay; + sfd_ena = hw->ptp.phy.eth56g.sfd_ena; + + addr = PHY_PTP_1STEP_CONFIG; + err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &val); + if (err) + return err; + + if (enable) + val |= BIT(quad_lane); + else + val &= ~BIT(quad_lane); + + val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M); + + err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val); + if (err) + return err; + + addr = PHY_PTP_1STEP_PEER_DELAY(quad_lane); + val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay); + if (peer_delay) + val |= PHY_PTP_1STEP_PD_ADD_PD_M; + val |= PHY_PTP_1STEP_PD_DLY_V_M; + err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val); + if (err) + return err; + + val &= ~PHY_PTP_1STEP_PD_DLY_V_M; + err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val); + if (err) + return err; + + addr = PHY_MAC_XIF_MODE; + err = ice_read_mac_reg_eth56g(hw, port, addr, &val); + if (err) + return err; + + val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M | + PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M); + + switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) { + case ICE_ETH56G_LNK_SPD_1G: + case ICE_ETH56G_LNK_SPD_2_5G: + val |= PHY_MAC_XIF_GMII_TS_SEL_M; + break; + default: + break; + } + + val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) | + FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) | + FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena); + + return ice_write_mac_reg_eth56g(hw, port, addr, val); +} + +/** + * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values + * @a: multiplier value + * @b: multiplicand value + * + * Return: result of multiplication + */ +static u32 mul_u32_u32_fx_q9(u32 a, u32 b) +{ + return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W); +} + +/** + * add_u32_u32_fx - Add two u32 fixed point values and discard overflow + * @a: first value + * @b: second value + * + * Return: result of addition + */ +static u32 add_u32_u32_fx(u32 a, u32 b) +{ + return lower_32_bits(((u64)a + b)); +} + +/** + * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value + * @hw: pointer to the HW struct + * @port: port to configure + * @bs: bitslip multiplier + * @fc: FC-FEC enabled + * @rs: RS-FEC enabled + * @spd: link speed + * + * Return: calculated bitslip value + */ +static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs, + bool fc, bool rs, + enum ice_eth56g_link_spd spd) +{ + u32 bitslip; + int err; + + if (!bs || rs) + return 0; + + if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G) { + err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP, + &bitslip); + } else { + u8 quad_lane = port % ICE_PORTS_PER_QUAD; + u32 addr; + + addr = PHY_REG_SD_BIT_SLIP(quad_lane); + err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &bitslip); + } + if (err) + return 0; + + if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) { + /* Bitslip register value of 0 corresponds to 10 so substitute + * it for calculations + */ + bitslip = 10; + } else if (spd == ICE_ETH56G_LNK_SPD_10G || + spd == ICE_ETH56G_LNK_SPD_25G) { + if (fc) + bitslip = bitslip * 2 + 32; + else + bitslip = (u32)((s32)bitslip * -1 + 20); + } + + bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W; + return mul_u32_u32_fx_q9(bitslip, bs); +} + +/** + * ice_ptp_calc_deskew_eth56g - Calculate deskew value + * @hw: pointer to the HW struct + * @port: port to configure + * @ds: deskew multiplier + * @rs: RS-FEC enabled + * @spd: link speed + * + * Return: calculated deskew value + */ +static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds, + bool rs, enum ice_eth56g_link_spd spd) +{ + u32 deskew_i, deskew_f; + int err; + + if (!ds) + return 0; + + read_poll_timeout(ice_read_ptp_reg_eth56g, err, + FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500, + 50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0, + &deskew_i); + if (err) + return err; + + deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i); + deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i); + + if (rs && spd == ICE_ETH56G_LNK_SPD_50G2) + ds = 0x633; /* 3.1 */ + else if (rs && spd == ICE_ETH56G_LNK_SPD_100G) + ds = 0x31b; /* 1.552 */ + + deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i); + /* Shift 3 fractional bits to the end of the integer part */ + deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W; + return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds); +} + +/** + * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values + * @hw: pointer to the HW struct + * @port: port to configure + * @spd: link speed + * @cfg: structure to store output values + * @fc: FC-FEC enabled + * @rs: RS-FEC enabled + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port, + enum ice_eth56g_link_spd spd, + const struct ice_eth56g_mac_reg_cfg *cfg, + bool fc, bool rs) +{ + u32 rx_offset, tx_offset, bs_ds; + bool onestep, sfd; + + onestep = hw->ptp.phy.eth56g.onestep_ena; + sfd = hw->ptp.phy.eth56g.sfd_ena; + bs_ds = cfg->rx_offset.bs_ds; + + if (fc) + rx_offset = cfg->rx_offset.fc; + else if (rs) + rx_offset = cfg->rx_offset.rs; + else + rx_offset = cfg->rx_offset.no_fec; + + rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes); + if (sfd) + rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd); + + if (spd < ICE_ETH56G_LNK_SPD_40G) + bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs, + spd); + else + bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd); + rx_offset = add_u32_u32_fx(rx_offset, bs_ds); + rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT | + ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC; + + if (fc) + tx_offset = cfg->tx_offset.fc; + else if (rs) + tx_offset = cfg->tx_offset.rs; + else + tx_offset = cfg->tx_offset.no_fec; + tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd + + cfg->tx_offset.onestep * onestep; + + ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset); + return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset); +} + +/** + * ice_phy_cfg_mac_eth56g - Configure MAC for PTP + * @hw: Pointer to the HW struct + * @port: Port to configure + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port) +{ + const struct ice_eth56g_mac_reg_cfg *cfg; + enum ice_eth56g_link_spd spd; + struct ice_link_status *li; + bool fc = false; + bool rs = false; + bool onestep; + u32 val; + int err; + + onestep = hw->ptp.phy.eth56g.onestep_ena; + li = &hw->port_info->phy.link_info; + spd = ice_phy_get_speed_eth56g(li); + if (!!(li->an_info & ICE_AQ_FEC_EN)) { + if (spd == ICE_ETH56G_LNK_SPD_10G) { + fc = true; + } else { + fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN); + rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN); + } + } + cfg = ð56g_mac_cfg[spd]; + + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0); + if (err) + return err; + + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0); + if (err) + return err; + + val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M, + cfg->tx_mode.def + rs * cfg->tx_mode.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) | + FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M, + cfg->tx_cw_dly.def + + onestep * cfg->tx_cw_dly.onestep) | + FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M, + cfg->rx_mode.def + rs * cfg->rx_mode.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M, + cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M, + cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk); + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val); + if (err) + return err; + + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME, + cfg->blktime); + if (err) + return err; + + err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs); + if (err) + return err; + + if (spd == ICE_ETH56G_LNK_SPD_25G && !rs) + val = 0; + else + val = cfg->mktime; + + return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val); +} + +/** + * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt + * @hw: pointer to the HW struct + * @port: the timestamp port + * @ena: enable or disable interrupt + * @threshold: interrupt threshold + * + * Configure TX timestamp interrupt for the specified port + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold) +{ + int err; + u32 val; + + err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val); + if (err) + return err; + + if (ena) { + val |= PHY_TS_INT_CONFIG_ENA_M; + val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M; + val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold); + } else { + val &= ~PHY_TS_INT_CONFIG_ENA_M; + } + + return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val); +} + +/** + * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time + * @hw: pointer to the HW struct + * @port: the PHY port to read + * @phy_time: on return, the 64bit PHY timer value + * @phc_time: on return, the lower 64bits of PHC time + * + * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY + * and PHC timer values. + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port, + u64 *phy_time, u64 *phc_time) +{ + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + u64 tx_time, rx_time; + u32 zo, lo; + u8 tmr_idx; + int err; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */ + ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); + + /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */ + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME); + if (err) + return err; + + /* Issue the sync to start the ICE_PTP_READ_TIME capture */ + ice_ptp_exec_tmr_cmd(hw); + + /* Read the captured PHC time from the shadow time registers */ + if (ice_is_primary(hw)) { + zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx)); + lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx)); + } else { + zo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_0(tmr_idx)); + lo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_L(tmr_idx)); + } + *phc_time = (u64)lo << 32 | zo; + + /* Read the captured PHY time from the PHY shadow registers */ + err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time); + if (err) + return err; + + /* If the PHY Tx and Rx timers don't match, log a warning message. + * Note that this should not happen in normal circumstances since the + * driver always programs them together. + */ + if (tx_time != rx_time) + dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n", + port, tx_time, rx_time); + + *phy_time = tx_time; + + return 0; +} + +/** + * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer + * @hw: pointer to the HW struct + * @port: the PHY port to synchronize + * + * Perform an adjustment to ensure that the PHY and PHC timers are in sync. + * This is done by issuing a ICE_PTP_READ_TIME command which triggers a + * simultaneous read of the PHY timer and PHC timer. Then we use the + * difference to calculate an appropriate 2s complement addition to add + * to the PHY timer in order to ensure it reads the same value as the + * primary PHC timer. + * + * Return: + * * %0 - success + * * %-EBUSY- failed to acquire PTP semaphore + * * %other - PHY read/write failed + */ +static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port) +{ + u64 phc_time, phy_time, difference; + int err; + + if (!ice_ptp_lock(hw)) { + ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n"); + return -EBUSY; + } + + err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time); + if (err) + goto err_unlock; + + /* Calculate the amount required to add to the port time in order for + * it to match the PHC time. + * + * Note that the port adjustment is done using 2s complement + * arithmetic. This is convenient since it means that we can simply + * calculate the difference between the PHC time and the port time, + * and it will be interpreted correctly. + */ + + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + difference = phc_time - phy_time; + + err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference); + if (err) + goto err_unlock; + + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME); + if (err) + goto err_unlock; + + /* Issue the sync to activate the time adjustment */ + ice_ptp_exec_tmr_cmd(hw); + + /* Re-capture the timer values to flush the command registers and + * verify that the time was properly adjusted. + */ + err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time); + if (err) + goto err_unlock; + + dev_info(ice_hw_to_dev(hw), + "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n", + port, phy_time, phc_time); + +err_unlock: + ice_ptp_unlock(hw); + return err; +} + +/** + * ice_stop_phy_timer_eth56g - Stop the PHY clock timer + * @hw: pointer to the HW struct + * @port: the PHY port to stop + * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS + * + * Stop the clock of a PHY port. This must be done as part of the flow to + * re-calibrate Tx and Rx timestamping offsets whenever the clock time is + * initialized or when link speed changes. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset) +{ + int err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0); + if (err) + return err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0); + if (err) + return err; + + ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port); + + return 0; +} + +/** + * ice_start_phy_timer_eth56g - Start the PHY clock timer + * @hw: pointer to the HW struct + * @port: the PHY port to start + * + * Start the clock of a PHY port. This must be done as part of the flow to + * re-calibrate Tx and Rx timestamping offsets whenever the clock time is + * initialized or when link speed changes. + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port) +{ + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + u32 lo, hi; + u64 incval; + u8 tmr_idx; + int err; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + err = ice_stop_phy_timer_eth56g(hw, port, false); + if (err) + return err; + + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + + err = ice_phy_cfg_parpcs_eth56g(hw, port); + if (err) + return err; + + err = ice_phy_cfg_ptp_1step_eth56g(hw, port); + if (err) + return err; + + err = ice_phy_cfg_mac_eth56g(hw, port); + if (err) + return err; + + if (ice_is_primary(hw)) { + lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); + hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); + } else { + lo = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_L(tmr_idx)); + hi = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_H(tmr_idx)); + } + incval = (u64)hi << 32 | lo; + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval); + if (err) + return err; + + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); + if (err) + return err; + + ice_ptp_exec_tmr_cmd(hw); + + err = ice_sync_phy_timer_eth56g(hw, port); + if (err) + return err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1); + if (err) + return err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1); + if (err) + return err; + + ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port); + + return 0; +} + +/** + * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status + * @hw: pointer to the HW struct + * @ts_status: the timestamp mask pointer + * + * Read the PHY Tx timestamp status mask indicating which ports have Tx + * timestamps available. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status) +{ + const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g; + u8 phy, mask; + u32 status; + + mask = (1 << hw->ptp.ports_per_phy) - 1; + *ts_status = 0; + + for (phy = 0; phy < params->num_phys; phy++) { + int err; + + err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status); + if (err) + return err; + + *ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy); + } + + ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status); + + return 0; +} + +/** + * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register + * @hw: pointer to the HW struct + * @port: the PHY port to read from + * @tstamp_ready: contents of the Tx memory status register + * + * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in + * the PHY are ready. A set bit means the corresponding timestamp is valid and + * ready to be captured from the PHY timestamp block. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port, + u64 *tstamp_ready) +{ + int err; + + err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L, + tstamp_ready); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n", + port, err); + return err; + } + + return 0; +} + +/** + * ice_ptp_init_phy_e825 - initialize PHY parameters + * @hw: pointer to the HW struct + */ +static void ice_ptp_init_phy_e825(struct ice_hw *hw) +{ + struct ice_ptp_hw *ptp = &hw->ptp; + struct ice_eth56g_params *params; + + params = &ptp->phy.eth56g; + params->onestep_ena = false; + params->peer_delay = 0; + params->sfd_ena = false; + params->num_phys = 2; + ptp->ports_per_phy = 4; + ptp->num_lports = params->num_phys * ptp->ports_per_phy; +} + /* E822 family functions * * The following functions operate on the E822 family of devices. */ /** - * ice_fill_phy_msg_e822 - Fill message data for a PHY register access + * ice_fill_phy_msg_e82x - Fill message data for a PHY register access + * @hw: pointer to the HW struct * @msg: the PHY message buffer to fill in * @port: the port to access * @offset: the register offset */ -static void -ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset) +static void ice_fill_phy_msg_e82x(struct ice_hw *hw, + struct ice_sbq_msg_input *msg, u8 port, + u16 offset) { - int phy_port, phy, quadtype; + int phy_port, quadtype; - phy_port = port % ICE_PORTS_PER_PHY; - phy = port / ICE_PORTS_PER_PHY; - quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE; + phy_port = port % hw->ptp.ports_per_phy; + quadtype = ICE_GET_QUAD_NUM(port) % + ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy); if (quadtype == 0) { msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port); @@ -178,16 +2229,11 @@ ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset) msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port); } - if (phy == 0) - msg->dest_dev = rmn_0; - else if (phy == 1) - msg->dest_dev = rmn_1; - else - msg->dest_dev = rmn_2; + msg->dest_dev = ice_sbq_dev_phy_0; } /** - * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register + * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register * @low_addr: the low address to check * @high_addr: on return, contains the high address of the 64bit register * @@ -195,7 +2241,7 @@ ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset) * represented as two 32bit registers. If it is, return the appropriate high * register offset to use. */ -static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr) +static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr) { switch (low_addr) { case P_REG_PAR_PCS_TX_OFFSET_L: @@ -240,7 +2286,7 @@ static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr) } /** - * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register + * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register * @low_addr: the low address to check * @high_addr: on return, contains the high address of the 40bit value * @@ -249,7 +2295,7 @@ static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr) * upper 32 bits in the high register. If it is, return the appropriate high * register offset to use. */ -static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr) +static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr) { switch (low_addr) { case P_REG_TIMETUS_L: @@ -285,7 +2331,7 @@ static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr) } /** - * ice_read_phy_reg_e822 - Read a PHY register + * ice_read_phy_reg_e82x - Read a PHY register * @hw: pointer to the HW struct * @port: PHY port to read from * @offset: PHY register offset to read @@ -293,16 +2339,16 @@ static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr) * * Read a PHY register for the given port over the device sideband queue. */ -int -ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val) +static int +ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; - ice_fill_phy_msg_e822(&msg, port, offset); + ice_fill_phy_msg_e82x(hw, &msg, port, offset); msg.opcode = ice_sbq_msg_rd; - err = ice_sbq_rw_reg(hw, &msg); + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); @@ -315,7 +2361,7 @@ ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val) } /** - * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers + * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers * @hw: pointer to the HW struct * @port: PHY port to read from * @low_addr: offset of the lower register to read from @@ -327,7 +2373,7 @@ ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val) * known to be two parts of a 64bit value. */ static int -ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) +ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) { u32 low, high; u16 high_addr; @@ -336,20 +2382,20 @@ ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) /* Only operate on registers known to be split into two 32bit * registers. */ - if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { + if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", low_addr); return -EINVAL; } - err = ice_read_phy_reg_e822(hw, port, low_addr, &low); + err = ice_read_phy_reg_e82x(hw, port, low_addr, &low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d", low_addr, err); return err; } - err = ice_read_phy_reg_e822(hw, port, high_addr, &high); + err = ice_read_phy_reg_e82x(hw, port, high_addr, &high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d", high_addr, err); @@ -362,7 +2408,7 @@ ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) } /** - * ice_write_phy_reg_e822 - Write a PHY register + * ice_write_phy_reg_e82x - Write a PHY register * @hw: pointer to the HW struct * @port: PHY port to write to * @offset: PHY register offset to write @@ -370,17 +2416,17 @@ ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) * * Write a PHY register for the given port over the device sideband queue. */ -int -ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val) +static int +ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; - ice_fill_phy_msg_e822(&msg, port, offset); + ice_fill_phy_msg_e82x(hw, &msg, port, offset); msg.opcode = ice_sbq_msg_wr; msg.data = val; - err = ice_sbq_rw_reg(hw, &msg); + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); @@ -391,7 +2437,7 @@ ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val) } /** - * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY + * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY * @hw: pointer to the HW struct * @port: port to write to * @low_addr: offset of the low register @@ -401,7 +2447,7 @@ ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val) * it up into two chunks, the lower 8 bits and the upper 32 bits. */ static int -ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) +ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) { u32 low, high; u16 high_addr; @@ -410,23 +2456,22 @@ ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) /* Only operate on registers known to be split into a lower 8 bit * register and an upper 32 bit register. */ - if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) { + if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n", low_addr); return -EINVAL; } - - low = (u32)(val & P_REG_40B_LOW_M); + low = FIELD_GET(P_REG_40B_LOW_M, val); high = (u32)(val >> P_REG_40B_HIGH_S); - err = ice_write_phy_reg_e822(hw, port, low_addr, low); + err = ice_write_phy_reg_e82x(hw, port, low_addr, low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", low_addr, err); return err; } - err = ice_write_phy_reg_e822(hw, port, high_addr, high); + err = ice_write_phy_reg_e82x(hw, port, high_addr, high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", high_addr, err); @@ -437,7 +2482,7 @@ ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) } /** - * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers + * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers * @hw: pointer to the HW struct * @port: PHY port to read from * @low_addr: offset of the lower register to read from @@ -449,7 +2494,7 @@ ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) * a 64bit value. */ static int -ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) +ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) { u32 low, high; u16 high_addr; @@ -458,7 +2503,7 @@ ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) /* Only operate on registers known to be split into two 32bit * registers. */ - if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { + if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", low_addr); return -EINVAL; @@ -467,14 +2512,14 @@ ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) low = lower_32_bits(val); high = upper_32_bits(val); - err = ice_write_phy_reg_e822(hw, port, low_addr, low); + err = ice_write_phy_reg_e82x(hw, port, low_addr, low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", low_addr, err); return err; } - err = ice_write_phy_reg_e822(hw, port, high_addr, high); + err = ice_write_phy_reg_e82x(hw, port, high_addr, high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", high_addr, err); @@ -485,32 +2530,43 @@ ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) } /** - * ice_fill_quad_msg_e822 - Fill message data for quad register access + * ice_fill_quad_msg_e82x - Fill message data for quad register access + * @hw: pointer to the HW struct * @msg: the PHY message buffer to fill in * @quad: the quad to access * @offset: the register offset * * Fill a message buffer for accessing a register in a quad shared between * multiple PHYs. + * + * Return: + * * %0 - OK + * * %-EINVAL - invalid quad number */ -static void -ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset) +static int ice_fill_quad_msg_e82x(struct ice_hw *hw, + struct ice_sbq_msg_input *msg, u8 quad, + u16 offset) { u32 addr; - msg->dest_dev = rmn_0; + if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports)) + return -EINVAL; + + msg->dest_dev = ice_sbq_dev_phy_0; - if ((quad % ICE_NUM_QUAD_TYPE) == 0) + if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy))) addr = Q_0_BASE + offset; else addr = Q_1_BASE + offset; msg->msg_addr_low = lower_16_bits(addr); msg->msg_addr_high = upper_16_bits(addr); + + return 0; } /** - * ice_read_quad_reg_e822 - Read a PHY quad register + * ice_read_quad_reg_e82x - Read a PHY quad register * @hw: pointer to the HW struct * @quad: quad to read from * @offset: quad register offset to read @@ -520,18 +2576,18 @@ ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset) * shared between multiple PHYs. */ int -ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) +ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; - if (quad >= ICE_MAX_QUAD) - return -EINVAL; + err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset); + if (err) + return err; - ice_fill_quad_msg_e822(&msg, quad, offset); msg.opcode = ice_sbq_msg_rd; - err = ice_sbq_rw_reg(hw, &msg); + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); @@ -544,7 +2600,7 @@ ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) } /** - * ice_write_quad_reg_e822 - Write a PHY quad register + * ice_write_quad_reg_e82x - Write a PHY quad register * @hw: pointer to the HW struct * @quad: quad to write to * @offset: quad register offset to write @@ -554,19 +2610,19 @@ ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) * shared between multiple PHYs. */ int -ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val) +ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; - if (quad >= ICE_MAX_QUAD) - return -EINVAL; + err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset); + if (err) + return err; - ice_fill_quad_msg_e822(&msg, quad, offset); msg.opcode = ice_sbq_msg_wr; msg.data = val; - err = ice_sbq_rw_reg(hw, &msg); + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); @@ -577,7 +2633,7 @@ ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val) } /** - * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block + * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * @idx: the timestamp index to read @@ -588,7 +2644,7 @@ ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val) * family of devices. */ static int -ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) +ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) { u16 lo_addr, hi_addr; u32 lo, hi; @@ -597,14 +2653,14 @@ ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); - err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo); + err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", err); return err; } - err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi); + err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", err); @@ -615,40 +2671,44 @@ ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) * lower 8 bits in the low register, and the upper 32 bits in the high * register. */ - *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M); + *tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) | + FIELD_PREP(PHY_40B_LOW_M, lo); return 0; } /** - * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block + * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * @idx: the timestamp index to reset * - * Clear a timestamp, resetting its valid bit, from the PHY quad block that is - * shared between the internal PHYs on the E822 devices. + * Read the timestamp out of the quad to clear its timestamp status bit from + * the PHY quad block that is shared between the internal PHYs of the E822 + * devices. + * + * Note that unlike E810, software cannot directly write to the quad memory + * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function + * to determine which timestamps are valid. Reading a timestamp auto-clears + * the valid bit. + * + * To directly clear the contents of the timestamp block entirely, discarding + * all timestamp data at once, software should instead use + * ice_ptp_reset_ts_memory_quad_e82x(). + * + * This function should only be called on an idx whose bit is set according to + * ice_get_phy_tx_tstamp_ready(). */ static int -ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx) +ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx) { - u16 lo_addr, hi_addr; + u64 unused_tstamp; int err; - lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); - hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); - - err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0); + err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp); if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", - err); - return err; - } - - err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0); - if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", - err); + ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n", + quad, idx, err); return err; } @@ -656,312 +2716,29 @@ ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx) } /** - * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block + * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * * Clear all timestamps from the PHY quad block that is shared between the * internal PHYs on the E822 devices. */ -void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad) +void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad) { - ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); - ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); + ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); + ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); } /** - * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks + * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks * @hw: pointer to the HW struct */ -static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw) +static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw) { unsigned int quad; - for (quad = 0; quad < ICE_MAX_QUAD; quad++) - ice_ptp_reset_ts_memory_quad_e822(hw, quad); -} - -/** - * ice_read_cgu_reg_e822 - Read a CGU register - * @hw: pointer to the HW struct - * @addr: Register address to read - * @val: storage for register value read - * - * Read the contents of a register of the Clock Generation Unit. Only - * applicable to E822 devices. - */ -static int -ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val) -{ - struct ice_sbq_msg_input cgu_msg; - int err; - - cgu_msg.opcode = ice_sbq_msg_rd; - cgu_msg.dest_dev = cgu; - cgu_msg.msg_addr_low = addr; - cgu_msg.msg_addr_high = 0x0; - - err = ice_sbq_rw_reg(hw, &cgu_msg); - if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n", - addr, err); - return err; - } - - *val = cgu_msg.data; - - return err; -} - -/** - * ice_write_cgu_reg_e822 - Write a CGU register - * @hw: pointer to the HW struct - * @addr: Register address to write - * @val: value to write into the register - * - * Write the specified value to a register of the Clock Generation Unit. Only - * applicable to E822 devices. - */ -static int -ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val) -{ - struct ice_sbq_msg_input cgu_msg; - int err; - - cgu_msg.opcode = ice_sbq_msg_wr; - cgu_msg.dest_dev = cgu; - cgu_msg.msg_addr_low = addr; - cgu_msg.msg_addr_high = 0x0; - cgu_msg.data = val; - - err = ice_sbq_rw_reg(hw, &cgu_msg); - if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n", - addr, err); - return err; - } - - return err; -} - -/** - * ice_clk_freq_str - Convert time_ref_freq to string - * @clk_freq: Clock frequency - * - * Convert the specified TIME_REF clock frequency to a string. - */ -static const char *ice_clk_freq_str(u8 clk_freq) -{ - switch ((enum ice_time_ref_freq)clk_freq) { - case ICE_TIME_REF_FREQ_25_000: - return "25 MHz"; - case ICE_TIME_REF_FREQ_122_880: - return "122.88 MHz"; - case ICE_TIME_REF_FREQ_125_000: - return "125 MHz"; - case ICE_TIME_REF_FREQ_153_600: - return "153.6 MHz"; - case ICE_TIME_REF_FREQ_156_250: - return "156.25 MHz"; - case ICE_TIME_REF_FREQ_245_760: - return "245.76 MHz"; - default: - return "Unknown"; - } -} - -/** - * ice_clk_src_str - Convert time_ref_src to string - * @clk_src: Clock source - * - * Convert the specified clock source to its string name. - */ -static const char *ice_clk_src_str(u8 clk_src) -{ - switch ((enum ice_clk_src)clk_src) { - case ICE_CLK_SRC_TCX0: - return "TCX0"; - case ICE_CLK_SRC_TIME_REF: - return "TIME_REF"; - default: - return "Unknown"; - } -} - -/** - * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit - * @hw: pointer to the HW struct - * @clk_freq: Clock frequency to program - * @clk_src: Clock source to select (TIME_REF, or TCX0) - * - * Configure the Clock Generation Unit with the desired clock frequency and - * time reference, enabling the PLL which drives the PTP hardware clock. - */ -static int -ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq, - enum ice_clk_src clk_src) -{ - union tspll_ro_bwm_lf bwm_lf; - union nac_cgu_dword19 dw19; - union nac_cgu_dword22 dw22; - union nac_cgu_dword24 dw24; - union nac_cgu_dword9 dw9; - int err; - - if (clk_freq >= NUM_ICE_TIME_REF_FREQ) { - dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n", - clk_freq); - return -EINVAL; - } - - if (clk_src >= NUM_ICE_CLK_SRC) { - dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n", - clk_src); - return -EINVAL; - } - - if (clk_src == ICE_CLK_SRC_TCX0 && - clk_freq != ICE_TIME_REF_FREQ_25_000) { - dev_warn(ice_hw_to_dev(hw), - "TCX0 only supports 25 MHz frequency\n"); - return -EINVAL; - } - - err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val); - if (err) - return err; - - err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); - if (err) - return err; - - err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); - if (err) - return err; - - /* Log the current clock configuration */ - ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", - dw24.field.ts_pll_enable ? "enabled" : "disabled", - ice_clk_src_str(dw24.field.time_ref_sel), - ice_clk_freq_str(dw9.field.time_ref_freq_sel), - bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); - - /* Disable the PLL before changing the clock source or frequency */ - if (dw24.field.ts_pll_enable) { - dw24.field.ts_pll_enable = 0; - - err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); - if (err) - return err; - } - - /* Set the frequency */ - dw9.field.time_ref_freq_sel = clk_freq; - err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val); - if (err) - return err; - - /* Configure the TS PLL feedback divisor */ - err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val); - if (err) - return err; - - dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div; - dw19.field.tspll_ndivratio = 1; - - err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val); - if (err) - return err; - - /* Configure the TS PLL post divisor */ - err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val); - if (err) - return err; - - dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div; - dw22.field.time1588clk_sel_div2 = 0; - - err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val); - if (err) - return err; - - /* Configure the TS PLL pre divisor and clock source */ - err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); - if (err) - return err; - - dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div; - dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div; - dw24.field.time_ref_sel = clk_src; - - err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); - if (err) - return err; - - /* Finally, enable the PLL */ - dw24.field.ts_pll_enable = 1; - - err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); - if (err) - return err; - - /* Wait to verify if the PLL locks */ - usleep_range(1000, 5000); - - err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); - if (err) - return err; - - if (!bwm_lf.field.plllock_true_lock_cri) { - dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n"); - return -EBUSY; - } - - /* Log the current clock configuration */ - ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", - dw24.field.ts_pll_enable ? "enabled" : "disabled", - ice_clk_src_str(dw24.field.time_ref_sel), - ice_clk_freq_str(dw9.field.time_ref_freq_sel), - bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); - - return 0; -} - -/** - * ice_init_cgu_e822 - Initialize CGU with settings from firmware - * @hw: pointer to the HW structure - * - * Initialize the Clock Generation Unit of the E822 device. - */ -static int ice_init_cgu_e822(struct ice_hw *hw) -{ - struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info; - union tspll_cntr_bist_settings cntr_bist; - int err; - - err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, - &cntr_bist.val); - if (err) - return err; - - /* Disable sticky lock detection so lock err reported is accurate */ - cntr_bist.field.i_plllock_sel_0 = 0; - cntr_bist.field.i_plllock_sel_1 = 0; - - err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, - cntr_bist.val); - if (err) - return err; - - /* Configure the CGU PLL using the parameters from the function - * capabilities. - */ - err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref, - (enum ice_clk_src)ts_info->clk_src); - if (err) - return err; - - return 0; + for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++) + ice_ptp_reset_ts_memory_quad_e82x(hw, quad); } /** @@ -974,10 +2751,10 @@ static int ice_ptp_set_vernier_wl(struct ice_hw *hw) { u8 port; - for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { + for (port = 0; port < hw->ptp.num_lports; port++) { int err; - err = ice_write_phy_reg_e822(hw, port, P_REG_WL, + err = ice_write_phy_reg_e82x(hw, port, P_REG_WL, PTP_VERNIER_WL); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n", @@ -990,45 +2767,38 @@ static int ice_ptp_set_vernier_wl(struct ice_hw *hw) } /** - * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization + * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization * @hw: pointer to HW struct * * Perform PHC initialization steps specific to E822 devices. */ -static int ice_ptp_init_phc_e822(struct ice_hw *hw) +static int ice_ptp_init_phc_e82x(struct ice_hw *hw) { - int err; - u32 regval; + u32 val; /* Enable reading switch and PHY registers over the sideband queue */ #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1) #define PF_SB_REM_DEV_CTL_PHY0 BIT(2) - regval = rd32(hw, PF_SB_REM_DEV_CTL); - regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ | - PF_SB_REM_DEV_CTL_PHY0); - wr32(hw, PF_SB_REM_DEV_CTL, regval); - - /* Initialize the Clock Generation Unit */ - err = ice_init_cgu_e822(hw); - if (err) - return err; + val = rd32(hw, PF_SB_REM_DEV_CTL); + val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0); + wr32(hw, PF_SB_REM_DEV_CTL, val); /* Set window length for all the ports */ return ice_ptp_set_vernier_wl(hw); } /** - * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time + * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time * @hw: pointer to the HW struct * @time: Time to initialize the PHY port clocks to * * Program the PHY port registers with a new initial time value. The port - * clock will be initialized once the driver issues an INIT_TIME sync + * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync * command. The time value is the upper 32 bits of the PHY timer, usually in * units of nominal nanoseconds. */ static int -ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time) +ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time) { u64 phy_time; u8 port; @@ -1039,16 +2809,16 @@ ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time) */ phy_time = (u64)time << 32; - for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { + for (port = 0; port < hw->ptp.num_lports; port++) { /* Tx case */ - err = ice_write_64b_phy_reg_e822(hw, port, + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L, phy_time); if (err) goto exit_err; /* Rx case */ - err = ice_write_64b_phy_reg_e822(hw, port, + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L, phy_time); if (err) @@ -1065,22 +2835,22 @@ exit_err: } /** - * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust + * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust * @hw: pointer to HW struct * @port: Port number to be programmed * @time: time in cycles to adjust the port Tx and Rx clocks * * Program the port for an atomic adjustment by writing the Tx and Rx timer * registers. The atomic adjustment won't be completed until the driver issues - * an ADJ_TIME command. + * an ICE_PTP_ADJ_TIME command. * * Note that time is not in units of nanoseconds. It is in clock time * including the lower sub-nanosecond portion of the port timer. * * Negative adjustments are supported using 2s complement arithmetic. */ -int -ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time) +static int +ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time) { u32 l_time, u_time; int err; @@ -1089,23 +2859,23 @@ ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time) u_time = upper_32_bits(time); /* Tx case */ - err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L, + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L, l_time); if (err) goto exit_err; - err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U, + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U, u_time); if (err) goto exit_err; /* Rx case */ - err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L, + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L, l_time); if (err) goto exit_err; - err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U, + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U, u_time); if (err) goto exit_err; @@ -1119,16 +2889,16 @@ exit_err: } /** - * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment + * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment * @hw: pointer to HW struct * @adj: adjustment in nanoseconds * * Prepare the PHY ports for an atomic time adjustment by programming the PHY * Tx and Rx port registers. The actual adjustment is completed by issuing an - * ADJ_TIME or ADJ_TIME_AT_TIME sync command. + * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command. */ static int -ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj) +ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj) { s64 cycles; u8 port; @@ -1142,10 +2912,10 @@ ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj) else cycles = -(((s64)-adj) << 32); - for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { + for (port = 0; port < hw->ptp.num_lports; port++) { int err; - err = ice_ptp_prep_port_adj_e822(hw, port, cycles); + err = ice_ptp_prep_port_adj_e82x(hw, port, cycles); if (err) return err; } @@ -1154,22 +2924,22 @@ ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj) } /** - * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment + * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment * @hw: pointer to HW struct * @incval: new increment value to prepare * * Prepare each of the PHY ports for a new increment value by programming the * port's TIMETUS registers. The new increment value will be updated after - * issuing an INIT_INCVAL command. + * issuing an ICE_PTP_INIT_INCVAL command. */ static int -ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval) +ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval) { int err; u8 port; - for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, + for (port = 0; port < hw->ptp.num_lports; port++) { + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval); if (err) goto exit_err; @@ -1201,7 +2971,7 @@ ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) int err; /* Tx case */ - err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts); + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", err); @@ -1212,7 +2982,7 @@ ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) (unsigned long long)*tx_ts); /* Rx case */ - err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts); + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", err); @@ -1226,7 +2996,7 @@ ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) } /** - * ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command + * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command * @hw: pointer to HW struct * @port: Port to which cmd has to be sent * @cmd: Command to be sent to the port @@ -1235,48 +3005,19 @@ ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) * * Note there is no equivalent of this operation on E810, as that device * always handles all external PHYs internally. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY */ -static int -ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd) +static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port, + enum ice_ptp_tmr_cmd cmd) { - u32 cmd_val, val; - u8 tmr_idx; + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); int err; - tmr_idx = ice_get_ptp_src_clock_index(hw); - cmd_val = tmr_idx << SEL_PHY_SRC; - switch (cmd) { - case INIT_TIME: - cmd_val |= PHY_CMD_INIT_TIME; - break; - case INIT_INCVAL: - cmd_val |= PHY_CMD_INIT_INCVAL; - break; - case ADJ_TIME: - cmd_val |= PHY_CMD_ADJ_TIME; - break; - case READ_TIME: - cmd_val |= PHY_CMD_READ_TIME; - break; - case ADJ_TIME_AT_TIME: - cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME; - break; - } - /* Tx case */ - /* Read, modify, write */ - err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val); - if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n", - err); - return err; - } - - /* Modify necessary bits only and perform write */ - val &= ~TS_CMD_MASK; - val |= cmd_val; - - err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", err); @@ -1284,19 +3025,8 @@ ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd) } /* Rx case */ - /* Read, modify, write */ - err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val); - if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n", - err); - return err; - } - - /* Modify necessary bits only and perform write */ - val &= ~TS_CMD_MASK; - val |= cmd_val; - - err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD, + val | TS_CMD_RX_TYPE); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", err); @@ -1306,30 +3036,6 @@ ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd) return 0; } -/** - * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command - * @hw: pointer to the HW struct - * @cmd: timer command to prepare - * - * Prepare all ports connected to this device for an upcoming timer sync - * command. - */ -static int -ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) -{ - u8 port; - - for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { - int err; - - err = ice_ptp_one_port_cmd(hw, port, cmd); - if (err) - return err; - } - - return 0; -} - /* E822 Vernier calibration functions * * The following functions are used as part of the vernier calibration of @@ -1338,7 +3044,7 @@ ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) */ /** - * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode + * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode * @hw: pointer to HW struct * @port: the port to read from * @link_out: if non-NULL, holds link speed on success @@ -1348,7 +3054,7 @@ ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) * algorithm. */ static int -ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port, +ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port, enum ice_ptp_link_spd *link_out, enum ice_ptp_fec_mode *fec_out) { @@ -1357,7 +3063,7 @@ ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port, u32 serdes; int err; - err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes); + err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n"); return err; @@ -1414,27 +3120,27 @@ ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port, } /** - * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp + * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp * @hw: pointer to HW struct * @port: to configure the quad for */ -static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) +static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; int err; u32 val; u8 quad; - err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL); + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n", err); return; } - quad = port / ICE_PORTS_PER_QUAD; + quad = ICE_GET_QUAD_NUM(port); - err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n", err); @@ -1446,7 +3152,7 @@ static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) else val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; - err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); + err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n", err); @@ -1455,7 +3161,7 @@ static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) } /** - * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822 + * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822 * @hw: pointer to the HW structure * @port: the port to configure * @@ -1500,12 +3206,12 @@ static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) * a divide by 390,625,000. This does lose some precision, but avoids * miscalculation due to arithmetic overflow. */ -static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) +static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port) { u64 cur_freq, clk_incval, tu_per_sec, uix; int err; - cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second divided by 256 */ @@ -1517,7 +3223,7 @@ static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) /* Program the 10Gb/40Gb conversion ratio */ uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000); - err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L, + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L, uix); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n", @@ -1528,7 +3234,7 @@ static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) /* Program the 25Gb/100Gb conversion ratio */ uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000); - err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L, + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L, uix); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n", @@ -1540,7 +3246,7 @@ static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) } /** - * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle + * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle * @hw: pointer to the HW struct * @port: port to configure * @@ -1582,18 +3288,18 @@ static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) * frequency is ~29 bits, so multiplying them together should fit within the * 64 bit arithmetic. */ -static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) +static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port) { u64 cur_freq, clk_incval, tu_per_sec, phy_tus; enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; int err; - err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode); if (err) return err; - cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per cycle of the PHC clock */ @@ -1613,7 +3319,7 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L, + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L, phy_tus); if (err) return err; @@ -1625,7 +3331,7 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L, + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L, phy_tus); if (err) return err; @@ -1637,7 +3343,7 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L, + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L, phy_tus); if (err) return err; @@ -1649,7 +3355,7 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L, + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L, phy_tus); if (err) return err; @@ -1661,7 +3367,7 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L, + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L, phy_tus); if (err) return err; @@ -1673,7 +3379,7 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L, + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L, phy_tus); if (err) return err; @@ -1685,7 +3391,7 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L, + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L, phy_tus); if (err) return err; @@ -1697,23 +3403,23 @@ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) else phy_tus = 0; - return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L, + return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L, phy_tus); } /** - * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port + * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port * @hw: pointer to the HW struct * @link_spd: the Link speed to calculate for * * Calculate the fixed offset due to known static latency data. */ static u64 -ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) +ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) { u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; - cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ @@ -1733,7 +3439,7 @@ ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) } /** - * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset + * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset * @hw: pointer to the HW struct * @port: the PHY port to configure * @@ -1755,7 +3461,7 @@ ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) * Returns zero on success, -EBUSY if the hardware vernier offset * calibration has not completed, or another error code on failure. */ -int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) +int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; @@ -1764,7 +3470,7 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) u32 reg; /* Nothing to do if we've already programmed the offset */ - err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, ®); + err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n", port, err); @@ -1774,7 +3480,7 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) if (reg) return 0; - err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, ®); + err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n", port, err); @@ -1784,11 +3490,11 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) if (!(reg & P_REG_TX_OV_STATUS_OV_M)) return -EBUSY; - err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode); if (err) return err; - total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd); + total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd); /* Read the first Vernier offset from the PHY register and add it to * the total offset. @@ -1799,7 +3505,7 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) link_spd == ICE_PTP_LNK_SPD_25G_RS || link_spd == ICE_PTP_LNK_SPD_40G || link_spd == ICE_PTP_LNK_SPD_50G) { - err = ice_read_64b_phy_reg_e822(hw, port, + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_PAR_PCS_TX_OFFSET_L, &val); if (err) @@ -1814,7 +3520,7 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) */ if (link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { - err = ice_read_64b_phy_reg_e822(hw, port, + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TIME_L, &val); if (err) @@ -1827,12 +3533,12 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) * PHY and indicate that the Tx offset is ready. After this, * timestamps will be enabled. */ - err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L, + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L, total_offset); if (err) return err; - err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1); + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1); if (err) return err; @@ -1843,7 +3549,7 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) } /** - * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx + * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx * @hw: pointer to the HW struct * @port: the PHY port to adjust for * @link_spd: the current link speed of the PHY @@ -1855,7 +3561,7 @@ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) * various delays caused when receiving a packet. */ static int -ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, +ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port, enum ice_ptp_link_spd link_spd, enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj) { @@ -1864,7 +3570,7 @@ ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, u32 val; int err; - err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val); + err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n", err); @@ -1873,7 +3579,7 @@ ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, pmd_align = (u8)val; - cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ @@ -1952,7 +3658,7 @@ ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, u64 cycle_adj; u8 rx_cycle; - err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT, + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n", @@ -1974,7 +3680,7 @@ ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, u64 cycle_adj; u8 rx_cycle; - err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT, + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n", @@ -2001,18 +3707,18 @@ ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, } /** - * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port + * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port * @hw: pointer to HW struct * @link_spd: The Link speed to calculate for * * Determine the fixed Rx latency for a given link speed. */ static u64 -ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) +ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) { u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; - cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ @@ -2032,7 +3738,7 @@ ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) } /** - * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset + * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset * @hw: pointer to the HW struct * @port: the PHY port to configure * @@ -2058,7 +3764,7 @@ ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) * Returns zero on success, -EBUSY if the hardware vernier offset * calibration has not completed, or another error code on failure. */ -int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) +int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; @@ -2067,7 +3773,7 @@ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) u32 reg; /* Nothing to do if we've already programmed the offset */ - err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, ®); + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n", port, err); @@ -2077,7 +3783,7 @@ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) if (reg) return 0; - err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, ®); + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n", port, err); @@ -2087,16 +3793,16 @@ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) if (!(reg & P_REG_RX_OV_STATUS_OV_M)) return -EBUSY; - err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode); if (err) return err; - total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd); + total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd); /* Read the first Vernier offset from the PHY register and add it to * the total offset. */ - err = ice_read_64b_phy_reg_e822(hw, port, + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_PAR_PCS_RX_OFFSET_L, &val); if (err) @@ -2111,7 +3817,7 @@ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) link_spd == ICE_PTP_LNK_SPD_50G || link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { - err = ice_read_64b_phy_reg_e822(hw, port, + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TIME_L, &val); if (err) @@ -2121,7 +3827,7 @@ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) } /* In addition, Rx must account for the PMD alignment */ - err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd); + err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd); if (err) return err; @@ -2137,12 +3843,12 @@ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) * PHY and indicate that the Rx offset is ready. After this, * timestamps will be enabled. */ - err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L, + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L, total_offset); if (err) return err; - err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1); + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1); if (err) return err; @@ -2153,17 +3859,51 @@ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) } /** - * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time + * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers + * @hw: pointer to the HW struct + * + * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted + * and received timestamps as invalid. + * + * Return: 0 on success, other error codes when failed to write to PHY + */ +int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw) +{ + u8 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0); + if (err) { + dev_warn(ice_hw_to_dev(hw), + "Failed to clear PHY TX_OFFSET_READY register\n"); + return err; + } + + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0); + if (err) { + dev_warn(ice_hw_to_dev(hw), + "Failed to clear PHY RX_OFFSET_READY register\n"); + return err; + } + } + + return 0; +} + +/** + * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time * @hw: pointer to the HW struct * @port: the PHY port to read * @phy_time: on return, the 64bit PHY timer value * @phc_time: on return, the lower 64bits of PHC time * - * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC - * timer values. + * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY + * and PHC timer values. */ static int -ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time, +ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time, u64 *phc_time) { u64 tx_time, rx_time; @@ -2173,15 +3913,15 @@ ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time, tmr_idx = ice_get_ptp_src_clock_index(hw); - /* Prepare the PHC timer for a READ_TIME capture command */ - ice_ptp_src_cmd(hw, READ_TIME); + /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */ + ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); - /* Prepare the PHY timer for a READ_TIME capture command */ - err = ice_ptp_one_port_cmd(hw, port, READ_TIME); + /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */ + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME); if (err) return err; - /* Issue the sync to start the READ_TIME capture */ + /* Issue the sync to start the ICE_PTP_READ_TIME capture */ ice_ptp_exec_tmr_cmd(hw); /* Read the captured PHC time from the shadow time registers */ @@ -2210,17 +3950,18 @@ ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time, } /** - * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer + * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer * @hw: pointer to the HW struct * @port: the PHY port to synchronize * * Perform an adjustment to ensure that the PHY and PHC timers are in sync. - * This is done by issuing a READ_TIME command which triggers a simultaneous - * read of the PHY timer and PHC timer. Then we use the difference to - * calculate an appropriate 2s complement addition to add to the PHY timer in - * order to ensure it reads the same value as the primary PHC timer. + * This is done by issuing a ICE_PTP_READ_TIME command which triggers a + * simultaneous read of the PHY timer and PHC timer. Then we use the + * difference to calculate an appropriate 2s complement addition to add + * to the PHY timer in order to ensure it reads the same value as the + * primary PHC timer. */ -static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port) +static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port) { u64 phc_time, phy_time, difference; int err; @@ -2230,7 +3971,7 @@ static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port) return -EBUSY; } - err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); + err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time); if (err) goto err_unlock; @@ -2244,21 +3985,24 @@ static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port) */ difference = phc_time - phy_time; - err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference); + err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference); if (err) goto err_unlock; - err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME); + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME); if (err) goto err_unlock; + /* Do not perform any action on the main timer */ + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + /* Issue the sync to activate the time adjustment */ ice_ptp_exec_tmr_cmd(hw); /* Re-capture the timer values to flush the command registers and * verify that the time was properly adjusted. */ - err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); + err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time); if (err) goto err_unlock; @@ -2277,7 +4021,7 @@ err_unlock: } /** - * ice_stop_phy_timer_e822 - Stop the PHY clock timer + * ice_stop_phy_timer_e82x - Stop the PHY clock timer * @hw: pointer to the HW struct * @port: the PHY port to stop * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS @@ -2287,36 +4031,36 @@ err_unlock: * initialized or when link speed changes. */ int -ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset) +ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset) { int err; u32 val; - err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0); + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0); if (err) return err; - err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0); + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0); if (err) return err; - err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); + err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val); if (err) return err; val &= ~P_REG_PS_START_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; val &= ~P_REG_PS_ENA_CLK_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; if (soft_reset) { val |= P_REG_PS_SFT_RESET_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; } @@ -2327,7 +4071,7 @@ ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset) } /** - * ice_start_phy_timer_e822 - Start the PHY clock timer + * ice_start_phy_timer_e82x - Start the PHY clock timer * @hw: pointer to the HW struct * @port: the PHY port to start * @@ -2337,7 +4081,7 @@ ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset) * * Hardware will take Vernier measurements on Tx or Rx of packets. */ -int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port) +int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port) { u32 lo, hi, val; u64 incval; @@ -2346,17 +4090,17 @@ int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port) tmr_idx = ice_get_ptp_src_clock_index(hw); - err = ice_stop_phy_timer_e822(hw, port, false); + err = ice_stop_phy_timer_e82x(hw, port, false); if (err) return err; - ice_phy_cfg_lane_e822(hw, port); + ice_phy_cfg_lane_e82x(hw, port); - err = ice_phy_cfg_uix_e822(hw, port); + err = ice_phy_cfg_uix_e82x(hw, port); if (err) return err; - err = ice_phy_cfg_parpcs_e822(hw, port); + err = ice_phy_cfg_parpcs_e82x(hw, port); if (err) return err; @@ -2364,54 +4108,57 @@ int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port) hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); incval = (u64)hi << 32 | lo; - err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval); + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval); if (err) return err; - err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); if (err) return err; + /* Do not perform any action on the main timer */ + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + ice_ptp_exec_tmr_cmd(hw); - err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); + err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val); if (err) return err; val |= P_REG_PS_SFT_RESET_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; val |= P_REG_PS_START_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; val &= ~P_REG_PS_SFT_RESET_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; - err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); if (err) return err; ice_ptp_exec_tmr_cmd(hw); val |= P_REG_PS_ENA_CLK_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; val |= P_REG_PS_LOAD_OFFSET_M; - err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); if (err) return err; ice_ptp_exec_tmr_cmd(hw); - err = ice_sync_phy_timer_e822(hw, port); + err = ice_sync_phy_timer_e82x(hw, port); if (err) return err; @@ -2421,7 +4168,7 @@ int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port) } /** - * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register + * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register * @hw: pointer to the HW struct * @quad: the timestamp quad to read from * @tstamp_ready: contents of the Tx memory status register @@ -2431,19 +4178,19 @@ int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port) * ready to be captured from the PHY timestamp block. */ static int -ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready) +ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready) { u32 hi, lo; int err; - err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi); + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n", quad, err); return err; } - err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo); + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n", quad, err); @@ -2455,6 +4202,47 @@ ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready) return 0; } +/** + * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt + * @hw: pointer to the HW struct + * @quad: the timestamp quad + * @ena: enable or disable interrupt + * @threshold: interrupt threshold + * + * Configure TX timestamp interrupt for the specified quad + * + * Return: 0 on success, other error codes when failed to read/write quad + */ + +int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold) +{ + int err; + u32 val; + + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); + if (err) + return err; + + val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; + if (ena) { + val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; + val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; + val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold); + } + + return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); +} + +/** + * ice_ptp_init_phy_e82x - initialize PHY parameters + * @ptp: pointer to the PTP HW struct + */ +static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp) +{ + ptp->num_lports = 8; + ptp->ports_per_phy = 8; +} + /* E810 functions * * The following functions operate on the E810 series devices which use @@ -2477,9 +4265,9 @@ static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val) msg.msg_addr_low = lower_16_bits(addr); msg.msg_addr_high = upper_16_bits(addr); msg.opcode = ice_sbq_msg_rd; - msg.dest_dev = rmn_0; + msg.dest_dev = ice_sbq_dev_phy_0; - err = ice_sbq_rw_reg(hw, &msg); + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); @@ -2507,10 +4295,10 @@ static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val) msg.msg_addr_low = lower_16_bits(addr); msg.msg_addr_high = upper_16_bits(addr); msg.opcode = ice_sbq_msg_wr; - msg.dest_dev = rmn_0; + msg.dest_dev = ice_sbq_dev_phy_0; msg.data = val; - err = ice_sbq_rw_reg(hw, &msg); + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); @@ -2534,33 +4322,46 @@ static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val) static int ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo) { + struct ice_e810_params *params = &hw->ptp.phy.e810; + unsigned long flags; u32 val; - u8 i; + int err; + + spin_lock_irqsave(¶ms->atqbal_wq.lock, flags); + + /* Wait for any pending in-progress low latency interrupt */ + err = wait_event_interruptible_locked_irq(params->atqbal_wq, + !(params->atqbal_flags & + ATQBAL_FLAGS_INTR_IN_PROGRESS)); + if (err) { + spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags); + return err; + } /* Write TS index to read to the PF register so the FW can read it */ - val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS; - wr32(hw, PF_SB_ATQBAL, val); + val = FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) | REG_LL_PROXY_H_EXEC; + wr32(hw, REG_LL_PROXY_H, val); /* Read the register repeatedly until the FW provides us the TS */ - for (i = TS_LL_READ_RETRIES; i > 0; i--) { - val = rd32(hw, PF_SB_ATQBAL); + err = read_poll_timeout_atomic(rd32, val, + !FIELD_GET(REG_LL_PROXY_H_EXEC, val), 10, + REG_LL_PROXY_H_TIMEOUT_US, false, hw, + REG_LL_PROXY_H); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n"); + spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags); + return err; + } - /* When the bit is cleared, the TS is ready in the register */ - if (!(FIELD_GET(TS_LL_READ_TS, val))) { - /* High 8 bit value of the TS is on the bits 16:23 */ - *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val); + /* High 8 bit value of the TS is on the bits 16:23 */ + *hi = FIELD_GET(REG_LL_PROXY_H_TS_HIGH, val); - /* Read the low 32 bit value and set the TS valid bit */ - *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID; - return 0; - } + /* Read the low 32 bit value and set the TS valid bit */ + *lo = rd32(hw, REG_LL_PROXY_L) | TS_VALID; - udelay(10); - } + spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags); - /* FW failed to provide the TS in time */ - ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n"); - return -EINVAL; + return 0; } /** @@ -2631,7 +4432,8 @@ ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp) /* For E810 devices, the timestamp is reported with the lower 32 bits * in the low register, and the upper 8 bits in the high register. */ - *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M); + *tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) | + FIELD_PREP(PHY_EXT_40B_LOW_M, lo); return 0; } @@ -2642,28 +4444,39 @@ ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp) * @lport: the lport to read from * @idx: the timestamp index to reset * - * Clear a timestamp, resetting its valid bit, from the timestamp block of the - * external PHY on the E810 device. + * Read the timestamp and then forcibly overwrite its value to clear the valid + * bit from the timestamp block of the external PHY on the E810 device. + * + * This function should only be called on an idx whose bit is set according to + * ice_get_phy_tx_tstamp_ready(). */ static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx) { u32 lo_addr, hi_addr; + u64 unused_tstamp; int err; + err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n", + lport, idx, err); + return err; + } + lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); err = ice_write_phy_reg_e810(hw, lo_addr, 0); if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", - err); + ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n", + lport, idx, err); return err; } err = ice_write_phy_reg_e810(hw, hi_addr, 0); if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", - err); + ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n", + lport, idx, err); return err; } @@ -2671,17 +4484,20 @@ static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx) } /** - * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY + * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization * @hw: pointer to HW struct * - * Enable the timesync PTP functionality for the external PHY connected to - * this function. + * Perform E810-specific PTP hardware clock initialization steps. + * + * Return: 0 on success, other error codes when failed to initialize TimeSync */ -int ice_ptp_init_phy_e810(struct ice_hw *hw) +static int ice_ptp_init_phc_e810(struct ice_hw *hw) { u8 tmr_idx; int err; + ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY); + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx), GLTSYN_ENA_TSYN_ENA_M); @@ -2693,28 +4509,13 @@ int ice_ptp_init_phy_e810(struct ice_hw *hw) } /** - * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization - * @hw: pointer to HW struct - * - * Perform E810-specific PTP hardware clock initialization steps. - */ -static int ice_ptp_init_phc_e810(struct ice_hw *hw) -{ - /* Ensure synchronization delay is zero */ - wr32(hw, GLTSYN_SYNC_DLAY, 0); - - /* Initialize the PHY */ - return ice_ptp_init_phy_e810(hw); -} - -/** * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time * @hw: Board private structure * @time: Time to initialize the PHY port clock to * * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the * initial clock time. The time will not actually be programmed until the - * driver issues an INIT_TIME command. + * driver issues an ICE_PTP_INIT_TIME command. * * The time value is the upper 32 bits of the PHY timer, usually in units of * nominal nanoseconds. @@ -2743,13 +4544,62 @@ static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time) } /** + * ice_ptp_prep_phy_adj_ll_e810 - Prep PHY ports for a time adjustment + * @hw: pointer to HW struct + * @adj: adjustment value to program + * + * Use the low latency firmware interface to program PHY time adjustment to + * all PHY ports. + * + * Return: 0 on success, -EBUSY on timeout + */ +static int ice_ptp_prep_phy_adj_ll_e810(struct ice_hw *hw, s32 adj) +{ + const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + struct ice_e810_params *params = &hw->ptp.phy.e810; + u32 val; + int err; + + spin_lock_irq(¶ms->atqbal_wq.lock); + + /* Wait for any pending in-progress low latency interrupt */ + err = wait_event_interruptible_locked_irq(params->atqbal_wq, + !(params->atqbal_flags & + ATQBAL_FLAGS_INTR_IN_PROGRESS)); + if (err) { + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + wr32(hw, REG_LL_PROXY_L, adj); + val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_ADJ) | + FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC; + wr32(hw, REG_LL_PROXY_H, val); + + /* Read the register repeatedly until the FW indicates completion */ + err = read_poll_timeout_atomic(rd32, val, + !FIELD_GET(REG_LL_PROXY_H_EXEC, val), + 10, REG_LL_PROXY_H_TIMEOUT_US, false, hw, + REG_LL_PROXY_H); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer adjustment using low latency interface\n"); + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + spin_unlock_irq(¶ms->atqbal_wq.lock); + + return 0; +} + +/** * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment * @hw: pointer to HW struct * @adj: adjustment value to program * * Prepare the PHY port for an atomic adjustment by programming the PHY * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment - * is completed by issuing an ADJ_TIME sync command. + * is completed by issuing an ICE_PTP_ADJ_TIME sync command. * * The adjustment value only contains the portion used for the upper 32bits of * the PHY timer, usually in units of nominal nanoseconds. Negative @@ -2760,6 +4610,9 @@ static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj) u8 tmr_idx; int err; + if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update) + return ice_ptp_prep_phy_adj_ll_e810(hw, adj); + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Adjustments are represented as signed 2's complement values in @@ -2783,13 +4636,63 @@ static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj) } /** + * ice_ptp_prep_phy_incval_ll_e810 - Prep PHY ports increment value change + * @hw: pointer to HW struct + * @incval: The new 40bit increment value to prepare + * + * Use the low latency firmware interface to program PHY time increment value + * for all PHY ports. + * + * Return: 0 on success, -EBUSY on timeout + */ +static int ice_ptp_prep_phy_incval_ll_e810(struct ice_hw *hw, u64 incval) +{ + const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + struct ice_e810_params *params = &hw->ptp.phy.e810; + u32 val; + int err; + + spin_lock_irq(¶ms->atqbal_wq.lock); + + /* Wait for any pending in-progress low latency interrupt */ + err = wait_event_interruptible_locked_irq(params->atqbal_wq, + !(params->atqbal_flags & + ATQBAL_FLAGS_INTR_IN_PROGRESS)); + if (err) { + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + wr32(hw, REG_LL_PROXY_L, lower_32_bits(incval)); + val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_FREQ) | + FIELD_PREP(REG_LL_PROXY_H_TS_HIGH, (u8)upper_32_bits(incval)) | + FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC; + wr32(hw, REG_LL_PROXY_H, val); + + /* Read the register repeatedly until the FW indicates completion */ + err = read_poll_timeout_atomic(rd32, val, + !FIELD_GET(REG_LL_PROXY_H_EXEC, val), + 10, REG_LL_PROXY_H_TIMEOUT_US, false, hw, + REG_LL_PROXY_H); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer increment using low latency interface\n"); + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + spin_unlock_irq(¶ms->atqbal_wq.lock); + + return 0; +} + +/** * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change * @hw: pointer to HW struct * @incval: The new 40bit increment value to prepare * * Prepare the PHY port for a new increment value by programming the PHY * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is - * completed by issuing an INIT_INCVAL command. + * completed by issuing an ICE_PTP_INIT_INCVAL command. */ static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) { @@ -2797,6 +4700,9 @@ static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) u8 tmr_idx; int err; + if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update) + return ice_ptp_prep_phy_incval_ll_e810(hw, incval); + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; low = lower_32_bits(incval); high = upper_32_bits(incval); @@ -2828,52 +4734,295 @@ static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) */ static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { - u32 cmd_val, val; - int err; + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); - switch (cmd) { - case INIT_TIME: - cmd_val = GLTSYN_CMD_INIT_TIME; - break; - case INIT_INCVAL: - cmd_val = GLTSYN_CMD_INIT_INCVAL; - break; - case ADJ_TIME: - cmd_val = GLTSYN_CMD_ADJ_TIME; - break; - case READ_TIME: - cmd_val = GLTSYN_CMD_READ_TIME; - break; - case ADJ_TIME_AT_TIME: - cmd_val = GLTSYN_CMD_ADJ_INIT_TIME; - break; + return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val); +} + +/** + * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register + * @hw: pointer to the HW struct + * @port: the PHY port to read + * @tstamp_ready: contents of the Tx memory status register + * + * E810 devices do not use a Tx memory status register. Instead simply + * indicate that all timestamps are currently ready. + */ +static int +ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready) +{ + *tstamp_ready = 0xFFFFFFFFFFFFFFFF; + return 0; +} + +/* E810 SMA functions + * + * The following functions operate specifically on E810 hardware and are used + * to access the extended GPIOs available. + */ + +/** + * ice_read_sma_ctrl + * @hw: pointer to the hw struct + * @data: pointer to data to be read from the GPIO controller + * + * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the + * PCA9575 expander, so only bits 3-7 in data are valid. + */ +int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data) +{ + int status; + u16 handle; + u8 i; + + status = ice_get_pca9575_handle(hw, &handle); + if (status) + return status; + + *data = 0; + + for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) { + bool pin; + + status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, + &pin, NULL); + if (status) + break; + *data |= (u8)(!pin) << i; } - /* Read, modify, write */ - err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val); - if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err); - return err; + return status; +} + +/** + * ice_write_sma_ctrl + * @hw: pointer to the hw struct + * @data: data to be written to the GPIO controller + * + * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1 + * of the PCA9575 expander, so only bits 3-7 in data are valid. + */ +int ice_write_sma_ctrl(struct ice_hw *hw, u8 data) +{ + int status; + u16 handle; + u8 i; + + status = ice_get_pca9575_handle(hw, &handle); + if (status) + return status; + + for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) { + bool pin; + + pin = !(data & (1 << i)); + status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, + pin, NULL); + if (status) + break; } - /* Modify necessary bits only and perform write */ - val &= ~TS_CMD_MASK_E810; - val |= cmd_val; + return status; +} - err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val); - if (err) { - ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err); - return err; +/** + * ice_ptp_read_sdp_ac - read SDP available connections section from NVM + * @hw: pointer to the HW struct + * @entries: returns the SDP available connections section from NVM + * @num_entries: returns the number of valid entries + * + * Return: 0 on success, negative error code if NVM read failed or section does + * not exist or is corrupted + */ +int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries) +{ + __le16 data; + u32 offset; + int err; + + err = ice_acquire_nvm(hw, ICE_RES_READ); + if (err) + goto exit; + + /* Read the offset of SDP_AC */ + offset = ICE_AQC_NVM_SDP_AC_PTR_OFFSET; + err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true, + NULL); + if (err) + goto exit; + + /* Check if section exist */ + offset = FIELD_GET(ICE_AQC_NVM_SDP_AC_PTR_M, le16_to_cpu(data)); + if (offset == ICE_AQC_NVM_SDP_AC_PTR_INVAL) { + err = -EINVAL; + goto exit; } - return 0; + if (offset & ICE_AQC_NVM_SDP_AC_PTR_TYPE_M) { + offset &= ICE_AQC_NVM_SDP_AC_PTR_M; + offset *= ICE_AQC_NVM_SECTOR_UNIT; + } else { + offset *= sizeof(data); + } + + /* Skip reading section length and read the number of valid entries */ + offset += sizeof(data); + err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true, + NULL); + if (err) + goto exit; + *num_entries = le16_to_cpu(data); + + /* Read SDP configuration section */ + offset += sizeof(data); + err = ice_aq_read_nvm(hw, 0, offset, *num_entries * sizeof(data), + entries, false, true, NULL); + +exit: + if (err) + dev_dbg(ice_hw_to_dev(hw), "Failed to configure SDP connection section\n"); + ice_release_nvm(hw); + return err; +} + +/** + * ice_ptp_init_phy_e810 - initialize PHY parameters + * @ptp: pointer to the PTP HW struct + */ +static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp) +{ + ptp->num_lports = 8; + ptp->ports_per_phy = 4; + + init_waitqueue_head(&ptp->phy.e810.atqbal_wq); +} + +/* E830 functions + * + * The following functions operate on the E830 series devices. + * + */ + +/** + * ice_ptp_init_phc_e830 - Perform E830 specific PHC initialization + * @hw: pointer to HW struct + * + * Perform E830-specific PTP hardware clock initialization steps. + */ +static void ice_ptp_init_phc_e830(const struct ice_hw *hw) +{ + ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY); +} + +/** + * ice_ptp_write_direct_incval_e830 - Prep PHY port increment value change + * @hw: pointer to HW struct + * @incval: The new 40bit increment value to prepare + * + * Prepare the PHY port for a new increment value by programming the PHC + * GLTSYN_INCVAL_L and GLTSYN_INCVAL_H registers. The actual change is + * completed by FW automatically. + */ +static void ice_ptp_write_direct_incval_e830(const struct ice_hw *hw, + u64 incval) +{ + u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + wr32(hw, GLTSYN_INCVAL_L(tmr_idx), lower_32_bits(incval)); + wr32(hw, GLTSYN_INCVAL_H(tmr_idx), upper_32_bits(incval)); +} + +/** + * ice_ptp_write_direct_phc_time_e830 - Prepare PHY port with initial time + * @hw: Board private structure + * @time: Time to initialize the PHY port clock to + * + * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the + * initial clock time. The time will not actually be programmed until the + * driver issues an ICE_PTP_INIT_TIME command. + * + * The time value is the upper 32 bits of the PHY timer, usually in units of + * nominal nanoseconds. + */ +static void ice_ptp_write_direct_phc_time_e830(const struct ice_hw *hw, + u64 time) +{ + u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + wr32(hw, GLTSYN_TIME_0(tmr_idx), 0); + wr32(hw, GLTSYN_TIME_L(tmr_idx), lower_32_bits(time)); + wr32(hw, GLTSYN_TIME_H(tmr_idx), upper_32_bits(time)); +} + +/** + * ice_ptp_port_cmd_e830 - Prepare all external PHYs for a timer command + * @hw: pointer to HW struct + * @cmd: Command to be sent to the port + * + * Prepare the external PHYs connected to this device for a timer sync + * command. + * + * Return: 0 on success, negative error code when PHY write failed + */ +static int ice_ptp_port_cmd_e830(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); + + return ice_write_phy_reg_e810(hw, E830_ETH_GLTSYN_CMD, val); +} + +/** + * ice_read_phy_tstamp_e830 - Read a PHY timestamp out of the external PHY + * @hw: pointer to the HW struct + * @idx: the timestamp index to read + * @tstamp: on return, the 40bit timestamp value + * + * Read a 40bit timestamp value out of the timestamp block of the external PHY + * on the E830 device. + */ +static void ice_read_phy_tstamp_e830(const struct ice_hw *hw, u8 idx, + u64 *tstamp) +{ + u32 hi, lo; + + hi = rd32(hw, E830_PRTTSYN_TXTIME_H(idx)); + lo = rd32(hw, E830_PRTTSYN_TXTIME_L(idx)); + + /* For E830 devices, the timestamp is reported with the lower 32 bits + * in the low register, and the upper 8 bits in the high register. + */ + *tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) | + FIELD_PREP(PHY_EXT_40B_LOW_M, lo); +} + +/** + * ice_get_phy_tx_tstamp_ready_e830 - Read Tx memory status register + * @hw: pointer to the HW struct + * @port: the PHY port to read + * @tstamp_ready: contents of the Tx memory status register + */ +static void ice_get_phy_tx_tstamp_ready_e830(const struct ice_hw *hw, u8 port, + u64 *tstamp_ready) +{ + *tstamp_ready = rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_H); + *tstamp_ready <<= 32; + *tstamp_ready |= rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_L); +} + +/** + * ice_ptp_init_phy_e830 - initialize PHY parameters + * @ptp: pointer to the PTP HW struct + */ +static void ice_ptp_init_phy_e830(struct ice_ptp_hw *ptp) +{ + ptp->num_lports = 8; + ptp->ports_per_phy = 4; } /* Device agnostic functions * - * The following functions implement shared behavior common to both E822 and - * E810 devices, possibly calling a device specific implementation where - * necessary. + * The following functions implement shared behavior common to all devices, + * possibly calling a device specific implementation where necessary. */ /** @@ -2926,6 +5075,139 @@ void ice_ptp_unlock(struct ice_hw *hw) } /** + * ice_ptp_init_hw - Initialize hw based on device type + * @hw: pointer to the HW structure + * + * Determine the PHY model for the device, and initialize hw + * for use by other functions. + */ +void ice_ptp_init_hw(struct ice_hw *hw) +{ + struct ice_ptp_hw *ptp = &hw->ptp; + + switch (hw->mac_type) { + case ICE_MAC_E810: + ice_ptp_init_phy_e810(ptp); + break; + case ICE_MAC_E830: + ice_ptp_init_phy_e830(ptp); + break; + case ICE_MAC_GENERIC: + ice_ptp_init_phy_e82x(ptp); + break; + case ICE_MAC_GENERIC_3K_E825: + ice_ptp_init_phy_e825(hw); + break; + default: + return; + } +} + +/** + * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command + * @hw: pointer to HW struct + * @port: Port to which cmd has to be sent + * @cmd: Command to be sent to the port + * + * Prepare one port for the upcoming timer sync command. Do not use this for + * programming only a single port, instead use ice_ptp_one_port_cmd() to + * ensure non-modified ports get properly initialized to ICE_PTP_NOP. + * + * Return: + * * %0 - success + * %-EBUSY - PHY type not supported + * * %other - failed to write port command + */ +static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port, + enum ice_ptp_tmr_cmd cmd) +{ + switch (hw->mac_type) { + case ICE_MAC_GENERIC: + return ice_ptp_write_port_cmd_e82x(hw, port, cmd); + case ICE_MAC_GENERIC_3K_E825: + return ice_ptp_write_port_cmd_eth56g(hw, port, cmd); + default: + return -EOPNOTSUPP; + } +} + +/** + * ice_ptp_one_port_cmd - Program one PHY port for a timer command + * @hw: pointer to HW struct + * @configured_port: the port that should execute the command + * @configured_cmd: the command to be executed on the configured port + * + * Prepare one port for executing a timer command, while preparing all other + * ports to ICE_PTP_NOP. This allows executing a command on a single port + * while ensuring all other ports do not execute stale commands. + * + * Return: + * * %0 - success + * * %other - failed to write port command + */ +int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port, + enum ice_ptp_tmr_cmd configured_cmd) +{ + u32 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + /* Program the configured port with the configured command, + * program all other ports with ICE_PTP_NOP. + */ + if (port == configured_port) + err = ice_ptp_write_port_cmd(hw, port, configured_cmd); + else + err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP); + + if (err) + return err; + } + + return 0; +} + +/** + * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command + * @hw: pointer to HW struct + * @cmd: the timer command to setup + * + * Prepare all PHY ports on this device for the requested timer command. For + * some families this can be done in one shot, but for other families each + * port must be configured individually. + * + * Return: + * * %0 - success + * * %other - failed to write port command + */ +static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + u32 port; + + /* PHY models which can program all ports simultaneously */ + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_ptp_port_cmd_e810(hw, cmd); + case ICE_MAC_E830: + return ice_ptp_port_cmd_e830(hw, cmd); + default: + break; + } + + /* PHY models which require programming each port separately */ + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_ptp_write_port_cmd(hw, port, cmd); + if (err) + return err; + } + + return 0; +} + +/** * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command * @hw: pointer to HW struct * @cmd: the command to issue @@ -2943,10 +5225,7 @@ static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) ice_ptp_src_cmd(hw, cmd); /* Next, prepare the ports */ - if (ice_is_e810(hw)) - err = ice_ptp_port_cmd_e810(hw, cmd); - else - err = ice_ptp_port_cmd_e822(hw, cmd); + err = ice_ptp_port_cmd(hw, cmd); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n", cmd, err); @@ -2982,20 +5261,37 @@ int ice_ptp_init_time(struct ice_hw *hw, u64 time) tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Source timers */ + /* For E830 we don't need to use shadow registers, its automatic */ + if (hw->mac_type == ICE_MAC_E830) { + ice_ptp_write_direct_phc_time_e830(hw, time); + return 0; + } + wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time)); wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time)); wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0); /* PHY timers */ /* Fill Rx and Tx ports and send msg to PHY */ - if (ice_is_e810(hw)) + switch (hw->mac_type) { + case ICE_MAC_E810: err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF); - else - err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF); + break; + case ICE_MAC_GENERIC: + err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF); + break; + case ICE_MAC_GENERIC_3K_E825: + err = ice_ptp_prep_phy_time_eth56g(hw, + (u32)(time & 0xFFFFFFFF)); + break; + default: + err = -EOPNOTSUPP; + } + if (err) return err; - return ice_ptp_tmr_cmd(hw, INIT_TIME); + return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME); } /** @@ -3008,8 +5304,8 @@ int ice_ptp_init_time(struct ice_hw *hw, u64 time) * * 1) Write the increment value to the source timer shadow registers * 2) Write the increment value to the PHY timer shadow registers - * 3) Issue an INIT_INCVAL timer command to synchronously switch both the - * source and port timers to the new increment value at the next clock + * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both + * the source and port timers to the new increment value at the next clock * cycle. */ int ice_ptp_write_incval(struct ice_hw *hw, u64 incval) @@ -3019,18 +5315,34 @@ int ice_ptp_write_incval(struct ice_hw *hw, u64 incval) tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + /* For E830 we don't need to use shadow registers, its automatic */ + if (hw->mac_type == ICE_MAC_E830) { + ice_ptp_write_direct_incval_e830(hw, incval); + return 0; + } + /* Shadow Adjust */ wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval)); wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval)); - if (ice_is_e810(hw)) + switch (hw->mac_type) { + case ICE_MAC_E810: err = ice_ptp_prep_phy_incval_e810(hw, incval); - else - err = ice_ptp_prep_phy_incval_e822(hw, incval); + break; + case ICE_MAC_GENERIC: + err = ice_ptp_prep_phy_incval_e82x(hw, incval); + break; + case ICE_MAC_GENERIC_3K_E825: + err = ice_ptp_prep_phy_incval_eth56g(hw, incval); + break; + default: + err = -EOPNOTSUPP; + } + if (err) return err; - return ice_ptp_tmr_cmd(hw, INIT_INCVAL); + return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL); } /** @@ -3064,8 +5376,8 @@ int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval) * * 1) Write the adjustment to the source timer shadow registers * 2) Write the adjustment to the PHY timer shadow registers - * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to - * both the source and port timers at the next clock cycle. + * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the + * adjustment to both the source and port timers at the next clock cycle. */ int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) { @@ -3075,21 +5387,34 @@ int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Write the desired clock adjustment into the GLTSYN_SHADJ register. - * For an ADJ_TIME command, this set of registers represents the value - * to add to the clock time. It supports subtraction by interpreting - * the value as a 2's complement integer. + * For an ICE_PTP_ADJ_TIME command, this set of registers represents + * the value to add to the clock time. It supports subtraction by + * interpreting the value as a 2's complement integer. */ wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0); wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj); - if (ice_is_e810(hw)) + switch (hw->mac_type) { + case ICE_MAC_E810: err = ice_ptp_prep_phy_adj_e810(hw, adj); - else - err = ice_ptp_prep_phy_adj_e822(hw, adj); + break; + case ICE_MAC_E830: + /* E830 sync PHYs automatically after setting GLTSYN_SHADJ */ + return 0; + case ICE_MAC_GENERIC: + err = ice_ptp_prep_phy_adj_e82x(hw, adj); + break; + case ICE_MAC_GENERIC_3K_E825: + err = ice_ptp_prep_phy_adj_eth56g(hw, adj); + break; + default: + err = -EOPNOTSUPP; + } + if (err) return err; - return ice_ptp_tmr_cmd(hw, ADJ_TIME); + return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME); } /** @@ -3105,10 +5430,19 @@ int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) */ int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp) { - if (ice_is_e810(hw)) + switch (hw->mac_type) { + case ICE_MAC_E810: return ice_read_phy_tstamp_e810(hw, block, idx, tstamp); - else - return ice_read_phy_tstamp_e822(hw, block, idx, tstamp); + case ICE_MAC_E830: + ice_read_phy_tstamp_e830(hw, idx, tstamp); + return 0; + case ICE_MAC_GENERIC: + return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp); + case ICE_MAC_GENERIC_3K_E825: + return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp); + default: + return -EOPNOTSUPP; + } } /** @@ -3117,267 +5451,518 @@ int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp) * @block: the block to read from * @idx: the timestamp index to reset * - * Clear a timestamp, resetting its valid bit, from the timestamp block. For - * E822 devices, the block is the quad to clear from. For E810 devices, the - * block is the logical port to clear from. + * Clear a timestamp from the timestamp block, discarding its value without + * returning it. This resets the memory status bit for the timestamp index + * allowing it to be reused for another timestamp in the future. + * + * For E822 devices, the block number is the PHY quad to clear from. For E810 + * devices, the block number is the logical port to clear from. + * + * This function must only be called on a timestamp index whose valid bit is + * set according to ice_get_phy_tx_tstamp_ready(). */ int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx) { - if (ice_is_e810(hw)) + switch (hw->mac_type) { + case ICE_MAC_E810: return ice_clear_phy_tstamp_e810(hw, block, idx); - else - return ice_clear_phy_tstamp_e822(hw, block, idx); -} - -/** - * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register - * @hw: pointer to the HW struct - * @port: the PHY port to read - * @tstamp_ready: contents of the Tx memory status register - * - * E810 devices do not use a Tx memory status register. Instead simply - * indicate that all timestamps are currently ready. - */ -static int -ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready) -{ - *tstamp_ready = 0xFFFFFFFFFFFFFFFF; - return 0; + case ICE_MAC_GENERIC: + return ice_clear_phy_tstamp_e82x(hw, block, idx); + case ICE_MAC_GENERIC_3K_E825: + return ice_clear_ptp_tstamp_eth56g(hw, block, idx); + default: + return -EOPNOTSUPP; + } } -/* E810T SMA functions - * - * The following functions operate specifically on E810T hardware and are used - * to access the extended GPIOs available. - */ - /** - * ice_get_pca9575_handle + * ice_get_pf_c827_idx - find and return the C827 index for the current pf * @hw: pointer to the hw struct - * @pca9575_handle: GPIO controller's handle - * - * Find and return the GPIO controller's handle in the netlist. - * When found - the value will be cached in the hw structure and following calls - * will return cached value + * @idx: index of the found C827 PHY + * Return: + * * 0 - success + * * negative - failure */ -static int -ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle) +static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx) { - struct ice_aqc_get_link_topo *cmd; - struct ice_aq_desc desc; + struct ice_aqc_get_link_topo cmd; + u8 node_part_number; + u16 node_handle; int status; - u8 idx; + u8 ctx; + + if (hw->mac_type != ICE_MAC_E810) + return -ENODEV; - /* If handle was read previously return cached value */ - if (hw->io_expander_handle) { - *pca9575_handle = hw->io_expander_handle; + if (hw->device_id != ICE_DEV_ID_E810C_QSFP) { + *idx = C827_0; return 0; } - /* If handle was not detected read it from the netlist */ - cmd = &desc.params.get_link_topo; - ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); + memset(&cmd, 0, sizeof(cmd)); - /* Set node type to GPIO controller */ - cmd->addr.topo_params.node_type_ctx = - (ICE_AQC_LINK_TOPO_NODE_TYPE_M & - ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL); + ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S; + ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S; + cmd.addr.topo_params.node_type_ctx = ctx; -#define SW_PCA9575_SFP_TOPO_IDX 2 -#define SW_PCA9575_QSFP_TOPO_IDX 1 + status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number, + &node_handle); + if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827) + return -ENOENT; - /* Check if the SW IO expander controlling SMA exists in the netlist. */ - if (hw->device_id == ICE_DEV_ID_E810C_SFP) - idx = SW_PCA9575_SFP_TOPO_IDX; - else if (hw->device_id == ICE_DEV_ID_E810C_QSFP) - idx = SW_PCA9575_QSFP_TOPO_IDX; + if (node_handle == E810C_QSFP_C827_0_HANDLE) + *idx = C827_0; + else if (node_handle == E810C_QSFP_C827_1_HANDLE) + *idx = C827_1; else - return -EOPNOTSUPP; - - cmd->addr.topo_params.index = idx; - - status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); - if (status) - return -EOPNOTSUPP; - - /* Verify if we found the right IO expander type */ - if (desc.params.get_link_topo.node_part_num != - ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575) - return -EOPNOTSUPP; - - /* If present save the handle and return it */ - hw->io_expander_handle = - le16_to_cpu(desc.params.get_link_topo.addr.handle); - *pca9575_handle = hw->io_expander_handle; + return -EIO; return 0; } /** - * ice_read_sma_ctrl_e810t - * @hw: pointer to the hw struct - * @data: pointer to data to be read from the GPIO controller + * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks + * @hw: pointer to the HW struct + */ +void ice_ptp_reset_ts_memory(struct ice_hw *hw) +{ + switch (hw->mac_type) { + case ICE_MAC_GENERIC: + ice_ptp_reset_ts_memory_e82x(hw); + break; + case ICE_MAC_GENERIC_3K_E825: + ice_ptp_reset_ts_memory_eth56g(hw); + break; + case ICE_MAC_E810: + default: + return; + } +} + +/** + * ice_ptp_init_phc - Initialize PTP hardware clock + * @hw: pointer to the HW struct * - * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the - * PCA9575 expander, so only bits 3-7 in data are valid. + * Perform the steps required to initialize the PTP hardware clock. */ -int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data) +int ice_ptp_init_phc(struct ice_hw *hw) { - int status; - u16 handle; - u8 i; + u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned; - status = ice_get_pca9575_handle(hw, &handle); - if (status) - return status; + /* Enable source clocks */ + wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); - *data = 0; + /* Clear event err indications for auxiliary pins */ + (void)rd32(hw, GLTSYN_STAT(src_idx)); - for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { - bool pin; + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_ptp_init_phc_e810(hw); + case ICE_MAC_E830: + ice_ptp_init_phc_e830(hw); + return 0; + case ICE_MAC_GENERIC: + return ice_ptp_init_phc_e82x(hw); + case ICE_MAC_GENERIC_3K_E825: + return 0; + default: + return -EOPNOTSUPP; + } +} - status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, - &pin, NULL); - if (status) - break; - *data |= (u8)(!pin) << i; +/** + * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication + * @hw: pointer to the HW struct + * @block: the timestamp block to check + * @tstamp_ready: storage for the PHY Tx memory status information + * + * Check the PHY for Tx timestamp memory status. This reports a 64 bit value + * which indicates which timestamps in the block may be captured. A set bit + * means the timestamp can be read. An unset bit means the timestamp is not + * ready and software should avoid reading the register. + */ +int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready) +{ + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_get_phy_tx_tstamp_ready_e810(hw, block, + tstamp_ready); + case ICE_MAC_E830: + ice_get_phy_tx_tstamp_ready_e830(hw, block, tstamp_ready); + return 0; + case ICE_MAC_GENERIC: + return ice_get_phy_tx_tstamp_ready_e82x(hw, block, + tstamp_ready); + case ICE_MAC_GENERIC_3K_E825: + return ice_get_phy_tx_tstamp_ready_eth56g(hw, block, + tstamp_ready); + default: + return -EOPNOTSUPP; } +} - return status; +/** + * ice_cgu_get_pin_desc_e823 - get pin description array + * @hw: pointer to the hw struct + * @input: if request is done against input or output pin + * @size: number of inputs/outputs + * + * Return: pointer to pin description array associated to given hw. + */ +static const struct ice_cgu_pin_desc * +ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size) +{ + static const struct ice_cgu_pin_desc *t; + + if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) { + if (input) { + t = ice_e823_zl_cgu_inputs; + *size = ARRAY_SIZE(ice_e823_zl_cgu_inputs); + } else { + t = ice_e823_zl_cgu_outputs; + *size = ARRAY_SIZE(ice_e823_zl_cgu_outputs); + } + } else if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) { + if (input) { + t = ice_e823_si_cgu_inputs; + *size = ARRAY_SIZE(ice_e823_si_cgu_inputs); + } else { + t = ice_e823_si_cgu_outputs; + *size = ARRAY_SIZE(ice_e823_si_cgu_outputs); + } + } else { + t = NULL; + *size = 0; + } + + return t; } /** - * ice_write_sma_ctrl_e810t + * ice_cgu_get_pin_desc - get pin description array * @hw: pointer to the hw struct - * @data: data to be written to the GPIO controller + * @input: if request is done against input or output pins + * @size: size of array returned by function * - * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1 - * of the PCA9575 expander, so only bits 3-7 in data are valid. + * Return: pointer to pin description array associated to given hw. */ -int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data) +static const struct ice_cgu_pin_desc * +ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size) { - int status; - u16 handle; - u8 i; + const struct ice_cgu_pin_desc *t = NULL; + + switch (hw->device_id) { + case ICE_DEV_ID_E810C_SFP: + if (input) { + t = ice_e810t_sfp_cgu_inputs; + *size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs); + } else { + t = ice_e810t_sfp_cgu_outputs; + *size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs); + } + break; + case ICE_DEV_ID_E810C_QSFP: + if (input) { + t = ice_e810t_qsfp_cgu_inputs; + *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs); + } else { + t = ice_e810t_qsfp_cgu_outputs; + *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs); + } + break; + case ICE_DEV_ID_E823L_10G_BASE_T: + case ICE_DEV_ID_E823L_1GBE: + case ICE_DEV_ID_E823L_BACKPLANE: + case ICE_DEV_ID_E823L_QSFP: + case ICE_DEV_ID_E823L_SFP: + case ICE_DEV_ID_E823C_10G_BASE_T: + case ICE_DEV_ID_E823C_BACKPLANE: + case ICE_DEV_ID_E823C_QSFP: + case ICE_DEV_ID_E823C_SFP: + case ICE_DEV_ID_E823C_SGMII: + t = ice_cgu_get_pin_desc_e823(hw, input, size); + break; + default: + break; + } - status = ice_get_pca9575_handle(hw, &handle); - if (status) - return status; + return t; +} - for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { - bool pin; +/** + * ice_cgu_get_num_pins - get pin description array size + * @hw: pointer to the hw struct + * @input: if request is done against input or output pins + * + * Return: size of pin description array for given hw. + */ +int ice_cgu_get_num_pins(struct ice_hw *hw, bool input) +{ + const struct ice_cgu_pin_desc *t; + int size; - pin = !(data & (1 << i)); - status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, - pin, NULL); - if (status) - break; - } + t = ice_cgu_get_pin_desc(hw, input, &size); + if (t) + return size; - return status; + return 0; } /** - * ice_read_pca9575_reg_e810t + * ice_cgu_get_pin_type - get pin's type * @hw: pointer to the hw struct - * @offset: GPIO controller register offset - * @data: pointer to data to be read from the GPIO controller + * @pin: pin index + * @input: if request is done against input or output pin * - * Read the register from the GPIO controller + * Return: type of a pin. */ -int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data) +enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input) { - struct ice_aqc_link_topo_addr link_topo; - __le16 addr; - u16 handle; - int err; + const struct ice_cgu_pin_desc *t; + int t_size; - memset(&link_topo, 0, sizeof(link_topo)); + t = ice_cgu_get_pin_desc(hw, input, &t_size); - err = ice_get_pca9575_handle(hw, &handle); - if (err) - return err; + if (!t) + return 0; - link_topo.handle = cpu_to_le16(handle); - link_topo.topo_params.node_type_ctx = - FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, - ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED); + if (pin >= t_size) + return 0; - addr = cpu_to_le16((u16)offset); + return t[pin].type; +} - return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL); +/** + * ice_cgu_get_pin_freq_supp - get pin's supported frequency + * @hw: pointer to the hw struct + * @pin: pin index + * @input: if request is done against input or output pin + * @num: output number of supported frequencies + * + * Get frequency supported number and array of supported frequencies. + * + * Return: array of supported frequencies for given pin. + */ +struct dpll_pin_frequency * +ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num) +{ + const struct ice_cgu_pin_desc *t; + int t_size; + + *num = 0; + t = ice_cgu_get_pin_desc(hw, input, &t_size); + if (!t) + return NULL; + if (pin >= t_size) + return NULL; + *num = t[pin].freq_supp_num; + + return t[pin].freq_supp; } /** - * ice_is_pca9575_present + * ice_cgu_get_pin_name - get pin's name * @hw: pointer to the hw struct + * @pin: pin index + * @input: if request is done against input or output pin * - * Check if the SW IO expander is present in the netlist + * Return: + * * null terminated char array with name + * * NULL in case of failure */ -bool ice_is_pca9575_present(struct ice_hw *hw) +const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input) { - u16 handle = 0; - int status; + const struct ice_cgu_pin_desc *t; + int t_size; - if (!ice_is_e810t(hw)) - return false; + t = ice_cgu_get_pin_desc(hw, input, &t_size); - status = ice_get_pca9575_handle(hw, &handle); + if (!t) + return NULL; + + if (pin >= t_size) + return NULL; - return !status && handle; + return t[pin].name; } /** - * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks - * @hw: pointer to the HW struct + * ice_get_cgu_state - get the state of the DPLL + * @hw: pointer to the hw struct + * @dpll_idx: Index of internal DPLL unit + * @last_dpll_state: last known state of DPLL + * @pin: pointer to a buffer for returning currently active pin + * @ref_state: reference clock state + * @eec_mode: eec mode of the DPLL + * @phase_offset: pointer to a buffer for returning phase offset + * @dpll_state: state of the DPLL (output) + * + * This function will read the state of the DPLL(dpll_idx). Non-null + * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to + * retrieve currently active pin, state, mode and phase_offset respectively. + * + * Return: state of the DPLL */ -void ice_ptp_reset_ts_memory(struct ice_hw *hw) +int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx, + enum dpll_lock_status last_dpll_state, u8 *pin, + u8 *ref_state, u8 *eec_mode, s64 *phase_offset, + enum dpll_lock_status *dpll_state) { - if (ice_is_e810(hw)) - return; + u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config; + s64 hw_phase_offset; + int status; + + status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state, + &hw_dpll_state, &hw_config, + &hw_phase_offset, &hw_eec_mode); + if (status) + return status; + + if (pin) + /* current ref pin in dpll_state_refsel_status_X register */ + *pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL; + if (phase_offset) + *phase_offset = hw_phase_offset; + if (ref_state) + *ref_state = hw_ref_state; + if (eec_mode) + *eec_mode = hw_eec_mode; + if (!dpll_state) + return 0; + + /* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ + * it would never return to FREERUN. This aligns to ITU-T G.781 + * Recommendation. We cannot report HOLDOVER as HO memory is cleared + * while switching to another reference. + * Only for situations where previous state was either: "LOCKED without + * HO_ACQ" or "HOLDOVER" we actually back to FREERUN. + */ + if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) { + if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY) + *dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ; + else + *dpll_state = DPLL_LOCK_STATUS_LOCKED; + } else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ || + last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) { + *dpll_state = DPLL_LOCK_STATUS_HOLDOVER; + } else { + *dpll_state = DPLL_LOCK_STATUS_UNLOCKED; + } - ice_ptp_reset_ts_memory_e822(hw); + return 0; } /** - * ice_ptp_init_phc - Initialize PTP hardware clock - * @hw: pointer to the HW struct + * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins + * @hw: pointer to the hw struct + * @base_idx: returns index of first recovered clock pin on device + * @pin_num: returns number of recovered clock pins available on device * - * Perform the steps required to initialize the PTP hardware clock. + * Based on hw provide caller info about recovery clock pins available on the + * board. + * + * Return: + * * 0 - success, information is valid + * * negative - failure, information is not valid */ -int ice_ptp_init_phc(struct ice_hw *hw) +int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num) { - u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned; - - /* Enable source clocks */ - wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); + u8 phy_idx; + int ret; + + switch (hw->device_id) { + case ICE_DEV_ID_E810C_SFP: + case ICE_DEV_ID_E810C_QSFP: + + ret = ice_get_pf_c827_idx(hw, &phy_idx); + if (ret) + return ret; + *base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN); + *pin_num = ICE_E810_RCLK_PINS_NUM; + ret = 0; + break; + case ICE_DEV_ID_E823L_10G_BASE_T: + case ICE_DEV_ID_E823L_1GBE: + case ICE_DEV_ID_E823L_BACKPLANE: + case ICE_DEV_ID_E823L_QSFP: + case ICE_DEV_ID_E823L_SFP: + case ICE_DEV_ID_E823C_10G_BASE_T: + case ICE_DEV_ID_E823C_BACKPLANE: + case ICE_DEV_ID_E823C_QSFP: + case ICE_DEV_ID_E823C_SFP: + case ICE_DEV_ID_E823C_SGMII: + *pin_num = ICE_E82X_RCLK_PINS_NUM; + ret = 0; + if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) + *base_idx = ZL_REF1P; + else if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) + *base_idx = SI_REF1P; + else + ret = -ENODEV; - /* Clear event err indications for auxiliary pins */ - (void)rd32(hw, GLTSYN_STAT(src_idx)); + break; + default: + ret = -ENODEV; + break; + } - if (ice_is_e810(hw)) - return ice_ptp_init_phc_e810(hw); - else - return ice_ptp_init_phc_e822(hw); + return ret; } /** - * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication - * @hw: pointer to the HW struct - * @block: the timestamp block to check - * @tstamp_ready: storage for the PHY Tx memory status information + * ice_cgu_get_output_pin_state_caps - get output pin state capabilities + * @hw: pointer to the hw struct + * @pin_id: id of a pin + * @caps: capabilities to modify * - * Check the PHY for Tx timestamp memory status. This reports a 64 bit value - * which indicates which timestamps in the block may be captured. A set bit - * means the timestamp can be read. An unset bit means the timestamp is not - * ready and software should avoid reading the register. + * Return: + * * 0 - success, state capabilities were modified + * * negative - failure, capabilities were not modified */ -int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready) +int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id, + unsigned long *caps) { - if (ice_is_e810(hw)) - return ice_get_phy_tx_tstamp_ready_e810(hw, block, - tstamp_ready); + bool can_change = true; + + switch (hw->device_id) { + case ICE_DEV_ID_E810C_SFP: + if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3) + can_change = false; + break; + case ICE_DEV_ID_E810C_QSFP: + if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4) + can_change = false; + break; + case ICE_DEV_ID_E823L_10G_BASE_T: + case ICE_DEV_ID_E823L_1GBE: + case ICE_DEV_ID_E823L_BACKPLANE: + case ICE_DEV_ID_E823L_QSFP: + case ICE_DEV_ID_E823L_SFP: + case ICE_DEV_ID_E823C_10G_BASE_T: + case ICE_DEV_ID_E823C_BACKPLANE: + case ICE_DEV_ID_E823C_QSFP: + case ICE_DEV_ID_E823C_SFP: + case ICE_DEV_ID_E823C_SGMII: + if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 && + pin_id == ZL_OUT2) + can_change = false; + else if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 && + pin_id == SI_OUT1) + can_change = false; + break; + default: + return -EINVAL; + } + if (can_change) + *caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE; else - return ice_get_phy_tx_tstamp_ready_e822(hw, block, - tstamp_ready); + *caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE; + + return 0; } |
