diff options
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_ptp_hw.c')
| -rw-r--r-- | drivers/net/ethernet/intel/ice/ice_ptp_hw.c | 5968 |
1 files changed, 5968 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_ptp_hw.c b/drivers/net/ethernet/intel/ice/ice_ptp_hw.c new file mode 100644 index 000000000000..35680dbe4a7f --- /dev/null +++ b/drivers/net/ethernet/intel/ice/ice_ptp_hw.c @@ -0,0 +1,5968 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (C) 2021, Intel Corporation. */ + +#include <linux/delay.h> +#include <linux/iopoll.h> +#include "ice_common.h" +#include "ice_ptp_hw.h" +#include "ice_ptp_consts.h" + +static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = { + DPLL_PIN_FREQUENCY_1PPS, + DPLL_PIN_FREQUENCY_10MHZ, +}; + +static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = { + DPLL_PIN_FREQUENCY_1PPS, +}; + +static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = { + DPLL_PIN_FREQUENCY_10MHZ, +}; + +static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = { + { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, }, + { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, }, + { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = { + { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, }, + { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, }, + { "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, }, + { "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, }, + { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = { + { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, }, + { "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, }, + { "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = { + { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, +}; + +static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = { + { "NONE", SI_REF0P, 0, 0 }, + { "NONE", SI_REF0N, 0, 0 }, + { "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 }, + { "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 }, + { "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "NONE", SI_REF2N, 0, 0 }, + { "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, +}; + +static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = { + { "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz }, + { "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, +}; + +static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = { + { "NONE", ZL_REF0P, 0, 0 }, + { "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 }, + { "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 }, + { "NONE", ZL_REF2P, 0, 0 }, + { "NONE", ZL_REF2N, 0, 0 }, + { "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "NONE", ZL_REF3N, 0, 0 }, + { "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 }, +}; + +static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = { + { "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, + { "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz }, + { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, + { "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT, + ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, + { "NONE", ZL_OUT5, 0, 0 }, +}; + +/* Low level functions for interacting with and managing the device clock used + * for the Precision Time Protocol. + * + * The ice hardware represents the current time using three registers: + * + * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R + * +---------------+ +---------------+ +---------------+ + * | 32 bits | | 32 bits | | 32 bits | + * +---------------+ +---------------+ +---------------+ + * + * The registers are incremented every clock tick using a 40bit increment + * value defined over two registers: + * + * GLTSYN_INCVAL_H GLTSYN_INCVAL_L + * +---------------+ +---------------+ + * | 8 bit s | | 32 bits | + * +---------------+ +---------------+ + * + * The increment value is added to the GLTSYN_TIME_R and GLTSYN_TIME_L + * registers every clock source tick. Depending on the specific device + * configuration, the clock source frequency could be one of a number of + * values. + * + * For E810 devices, the increment frequency is 812.5 MHz + * + * For E822 devices the clock can be derived from different sources, and the + * increment has an effective frequency of one of the following: + * - 823.4375 MHz + * - 783.36 MHz + * - 796.875 MHz + * - 816 MHz + * - 830.078125 MHz + * - 783.36 MHz + * + * The hardware captures timestamps in the PHY for incoming packets, and for + * outgoing packets on request. To support this, the PHY maintains a timer + * that matches the lower 64 bits of the global source timer. + * + * In order to ensure that the PHY timers and the source timer are equivalent, + * shadow registers are used to prepare the desired initial values. A special + * sync command is issued to trigger copying from the shadow registers into + * the appropriate source and PHY registers simultaneously. + * + * The driver supports devices which have different PHYs with subtly different + * mechanisms to program and control the timers. We divide the devices into + * families named after the first major device, E810 and similar devices, and + * E822 and similar devices. + * + * - E822 based devices have additional support for fine grained Vernier + * calibration which requires significant setup + * - The layout of timestamp data in the PHY register blocks is different + * - The way timer synchronization commands are issued is different. + * + * To support this, very low level functions have an e810 or e822 suffix + * indicating what type of device they work on. Higher level abstractions for + * tasks that can be done on both devices do not have the suffix and will + * correctly look up the appropriate low level function when running. + * + * Functions which only make sense on a single device family may not have + * a suitable generic implementation + */ + +/** + * ice_get_ptp_src_clock_index - determine source clock index + * @hw: pointer to HW struct + * + * Determine the source clock index currently in use, based on device + * capabilities reported during initialization. + */ +u8 ice_get_ptp_src_clock_index(struct ice_hw *hw) +{ + return hw->func_caps.ts_func_info.tmr_index_assoc; +} + +/** + * ice_ptp_read_src_incval - Read source timer increment value + * @hw: pointer to HW struct + * + * Read the increment value of the source timer and return it. + */ +static u64 ice_ptp_read_src_incval(struct ice_hw *hw) +{ + u32 lo, hi; + u8 tmr_idx; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); + hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); + + return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo; +} + +/** + * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value + * @hw: pointer to HW struct + * @cmd: Timer command + * + * Return: the source timer command register value for the given PTP timer + * command. + */ +static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw, + enum ice_ptp_tmr_cmd cmd) +{ + u32 cmd_val, tmr_idx; + + switch (cmd) { + case ICE_PTP_INIT_TIME: + cmd_val = GLTSYN_CMD_INIT_TIME; + break; + case ICE_PTP_INIT_INCVAL: + cmd_val = GLTSYN_CMD_INIT_INCVAL; + break; + case ICE_PTP_ADJ_TIME: + cmd_val = GLTSYN_CMD_ADJ_TIME; + break; + case ICE_PTP_ADJ_TIME_AT_TIME: + cmd_val = GLTSYN_CMD_ADJ_INIT_TIME; + break; + case ICE_PTP_NOP: + case ICE_PTP_READ_TIME: + cmd_val = GLTSYN_CMD_READ_TIME; + break; + default: + dev_warn(ice_hw_to_dev(hw), + "Ignoring unrecognized timer command %u\n", cmd); + cmd_val = 0; + } + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + return tmr_idx << SEL_CPK_SRC | cmd_val; +} + +/** + * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value + * @hw: pointer to HW struct + * @cmd: Timer command + * + * Note that some hardware families use a different command register value for + * the PHY ports, while other hardware families use the same register values + * as the source timer. + * + * Return: the PHY port timer command register value for the given PTP timer + * command. + */ +static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw, + enum ice_ptp_tmr_cmd cmd) +{ + u32 cmd_val, tmr_idx; + + /* Certain hardware families share the same register values for the + * port register and source timer register. + */ + switch (hw->mac_type) { + case ICE_MAC_E810: + case ICE_MAC_E830: + return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810; + default: + break; + } + + switch (cmd) { + case ICE_PTP_INIT_TIME: + cmd_val = PHY_CMD_INIT_TIME; + break; + case ICE_PTP_INIT_INCVAL: + cmd_val = PHY_CMD_INIT_INCVAL; + break; + case ICE_PTP_ADJ_TIME: + cmd_val = PHY_CMD_ADJ_TIME; + break; + case ICE_PTP_ADJ_TIME_AT_TIME: + cmd_val = PHY_CMD_ADJ_TIME_AT_TIME; + break; + case ICE_PTP_READ_TIME: + cmd_val = PHY_CMD_READ_TIME; + break; + case ICE_PTP_NOP: + cmd_val = 0; + break; + default: + dev_warn(ice_hw_to_dev(hw), + "Ignoring unrecognized timer command %u\n", cmd); + cmd_val = 0; + } + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + return tmr_idx << SEL_PHY_SRC | cmd_val; +} + +/** + * ice_ptp_src_cmd - Prepare source timer for a timer command + * @hw: pointer to HW structure + * @cmd: Timer command + * + * Prepare the source timer for an upcoming timer sync command. + */ +void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd); + + if (!ice_is_primary(hw)) + hw = ice_get_primary_hw(pf); + + wr32(hw, GLTSYN_CMD, cmd_val); +} + +/** + * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands + * @hw: pointer to HW struct + * + * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the + * write immediately. This triggers the hardware to begin executing all of the + * source and PHY timer commands synchronously. + */ +static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw) +{ + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + + if (!ice_is_primary(hw)) + hw = ice_get_primary_hw(pf); + + guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock); + wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD); + ice_flush(hw); +} + +/** + * ice_ptp_cfg_sync_delay - Configure PHC to PHY synchronization delay + * @hw: pointer to HW struct + * @delay: delay between PHC and PHY SYNC command execution in nanoseconds + */ +static void ice_ptp_cfg_sync_delay(const struct ice_hw *hw, u32 delay) +{ + wr32(hw, GLTSYN_SYNC_DLAY, delay); + ice_flush(hw); +} + +/* 56G PHY device functions + * + * The following functions operate on devices with the ETH 56G PHY. + */ + +/** + * ice_ptp_get_dest_dev_e825 - get destination PHY for given port number + * @hw: pointer to the HW struct + * @port: destination port + * + * Return: destination sideband queue PHY device. + */ +static enum ice_sbq_dev_id ice_ptp_get_dest_dev_e825(struct ice_hw *hw, + u8 port) +{ + u8 curr_phy, tgt_phy; + + tgt_phy = port >= hw->ptp.ports_per_phy; + curr_phy = hw->lane_num >= hw->ptp.ports_per_phy; + /* In the driver, lanes 4..7 are in fact 0..3 on a second PHY. + * On a single complex E825C, PHY 0 is always destination device phy_0 + * and PHY 1 is phy_0_peer. + * On dual complex E825C, device phy_0 points to PHY on a current + * complex and phy_0_peer to PHY on a different complex. + */ + if ((!ice_is_dual(hw) && tgt_phy == 1) || + (ice_is_dual(hw) && tgt_phy != curr_phy)) + return ice_sbq_dev_phy_0_peer; + else + return ice_sbq_dev_phy_0; +} + +/** + * ice_write_phy_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @port: destination port + * @addr: PHY register address + * @val: Value to write + * + * Return: 0 on success, other error codes when failed to write to PHY + */ +static int ice_write_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 val) +{ + struct ice_sbq_msg_input msg = { + .dest_dev = ice_ptp_get_dest_dev_e825(hw, port), + .opcode = ice_sbq_msg_wr, + .msg_addr_low = lower_16_bits(addr), + .msg_addr_high = upper_16_bits(addr), + .data = val + }; + int err; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) + ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n", + err); + + return err; +} + +/** + * ice_read_phy_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: destination port + * @addr: PHY register address + * @val: Value to write + * + * Return: 0 on success, other error codes when failed to read from PHY + */ +static int ice_read_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 *val) +{ + struct ice_sbq_msg_input msg = { + .dest_dev = ice_ptp_get_dest_dev_e825(hw, port), + .opcode = ice_sbq_msg_rd, + .msg_addr_low = lower_16_bits(addr), + .msg_addr_high = upper_16_bits(addr) + }; + int err; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) + ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n", + err); + else + *val = msg.data; + + return err; +} + +/** + * ice_phy_res_address_eth56g - Calculate a PHY port register address + * @hw: pointer to the HW struct + * @lane: Lane number to be written + * @res_type: resource type (register/memory) + * @offset: Offset from PHY port register base + * @addr: The result address + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + */ +static int ice_phy_res_address_eth56g(struct ice_hw *hw, u8 lane, + enum eth56g_res_type res_type, + u32 offset, + u32 *addr) +{ + if (res_type >= NUM_ETH56G_PHY_RES) + return -EINVAL; + + /* Lanes 4..7 are in fact 0..3 on a second PHY */ + lane %= hw->ptp.ports_per_phy; + *addr = eth56g_phy_res[res_type].base_addr + + lane * eth56g_phy_res[res_type].step + offset; + + return 0; +} + +/** + * ice_write_port_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to write + * @res_type: resource type (register/memory) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 val, enum eth56g_res_type res_type) +{ + u32 addr; + int err; + + if (port >= hw->ptp.num_lports) + return -EINVAL; + + err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr); + if (err) + return err; + + return ice_write_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_read_port_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to write + * @res_type: resource type (register/memory) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 *val, enum eth56g_res_type res_type) +{ + u32 addr; + int err; + + if (port >= hw->ptp.num_lports) + return -EINVAL; + + err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr); + if (err) + return err; + + return ice_read_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_write_ptp_reg_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be written + * @offset: Offset from PHY port register base + * @val: Value to write + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP); +} + +/** + * ice_write_mac_reg_eth56g - Write a MAC PHY port register + * parameter + * @hw: pointer to the HW struct + * @port: Port number to be written + * @offset: Offset from PHY port register base + * @val: Value to write + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC); +} + +/** + * ice_write_xpcs_reg_eth56g - Write a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be written + * @offset: Offset from PHY port register base + * @val: Value to write + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, + ETH56G_PHY_REG_XPCS); +} + +/** + * ice_read_ptp_reg_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP); +} + +/** + * ice_read_mac_reg_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC); +} + +/** + * ice_read_gpcs_reg_eth56g - Read a PHY port register + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS); +} + +/** + * ice_read_port_mem_eth56g - Read a PHY port memory location + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 *val) +{ + return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP); +} + +/** + * ice_write_port_mem_eth56g - Write a PHY port memory location + * @hw: pointer to the HW struct + * @port: Port number to be read + * @offset: Offset from PHY port register base + * @val: Pointer to the value to read (out param) + * + * Return: + * * %0 - success + * * %EINVAL - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset, + u32 val) +{ + return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP); +} + +/** + * ice_write_quad_ptp_reg_eth56g - Write a PHY quad register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to write + * + * Return: + * * %0 - success + * * %EIO - invalid port number or resource type + * * %other - failed to write to PHY + */ +static int ice_write_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u32 offset, u32 val) +{ + u32 addr; + + if (port >= hw->ptp.num_lports) + return -EIO; + + addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset; + + return ice_write_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_read_quad_ptp_reg_eth56g - Read a PHY quad register + * @hw: pointer to the HW struct + * @offset: PHY register offset + * @port: Port number + * @val: Value to read + * + * Return: + * * %0 - success + * * %EIO - invalid port number or resource type + * * %other - failed to read from PHY + */ +static int ice_read_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u32 offset, u32 *val) +{ + u32 addr; + + if (port >= hw->ptp.num_lports) + return -EIO; + + addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset; + + return ice_read_phy_eth56g(hw, port, addr, val); +} + +/** + * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register + * @low_addr: the low address to check + * @high_addr: on return, contains the high address of the 64bit register + * + * Write the appropriate high register offset to use. + * + * Return: true if the provided low address is one of the known 64bit PHY values + * represented as two 32bit registers, false otherwise. + */ +static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr) +{ + switch (low_addr) { + case PHY_REG_TX_TIMER_INC_PRE_L: + *high_addr = PHY_REG_TX_TIMER_INC_PRE_U; + return true; + case PHY_REG_RX_TIMER_INC_PRE_L: + *high_addr = PHY_REG_RX_TIMER_INC_PRE_U; + return true; + case PHY_REG_TX_CAPTURE_L: + *high_addr = PHY_REG_TX_CAPTURE_U; + return true; + case PHY_REG_RX_CAPTURE_L: + *high_addr = PHY_REG_RX_CAPTURE_U; + return true; + case PHY_REG_TOTAL_TX_OFFSET_L: + *high_addr = PHY_REG_TOTAL_TX_OFFSET_U; + return true; + case PHY_REG_TOTAL_RX_OFFSET_L: + *high_addr = PHY_REG_TOTAL_RX_OFFSET_U; + return true; + case PHY_REG_TX_MEMORY_STATUS_L: + *high_addr = PHY_REG_TX_MEMORY_STATUS_U; + return true; + default: + return false; + } +} + +/** + * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register + * @low_addr: the low address to check + * @high_addr: on return, contains the high address of the 40bit value + * + * Write the appropriate high register offset to use. + * + * Return: true if the provided low address is one of the known 40bit PHY + * values split into two registers with the lower 8 bits in the low register and + * the upper 32 bits in the high register, false otherwise. + */ +static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr) +{ + switch (low_addr) { + case PHY_REG_TIMETUS_L: + *high_addr = PHY_REG_TIMETUS_U; + return true; + case PHY_PCS_REF_TUS_L: + *high_addr = PHY_PCS_REF_TUS_U; + return true; + case PHY_PCS_REF_INC_L: + *high_addr = PHY_PCS_REF_INC_U; + return true; + default: + return false; + } +} + +/** + * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: on return, the contents of the 64bit value from the PHY registers + * @res_type: resource type + * + * Check if the caller has specified a known 40 bit register offset and read + * the two registers associated with a 40bit value and return it in the val + * pointer. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to read from PHY + */ +static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr, + u64 *val, enum eth56g_res_type res_type) +{ + u16 high_addr; + u32 lo, hi; + int err; + + if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr)) + return -EINVAL; + + err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d", + high_addr, err); + return err; + } + + *val = ((u64)hi << 32) | lo; + + return 0; +} + +/** + * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: on return, the contents of the 64bit value from the PHY registers + * + * Check if the caller has specified a known 40 bit register offset and read + * the two registers associated with a 40bit value and return it in the val + * pointer. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to read from PHY + */ +static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr, + u64 *val) +{ + return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val, + ETH56G_PHY_REG_PTP); +} + +/** + * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY + * @hw: pointer to the HW struct + * @port: port to write to + * @low_addr: offset of the low register + * @val: 40b value to write + * @res_type: resource type + * + * Check if the caller has specified a known 40 bit register offset and write + * provided 40b value to the two associated registers by splitting it up into + * two chunks, the lower 8 bits and the upper 32 bits. + * + * Return: + * * %0 - success + * * %EINVAL - not a 40 bit register + * * %other - failed to write to PHY + */ +static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val, + enum eth56g_res_type res_type) +{ + u16 high_addr; + u32 lo, hi; + int err; + + if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr)) + return -EINVAL; + + lo = FIELD_GET(P_REG_40B_LOW_M, val); + hi = (u32)(val >> P_REG_40B_HIGH_S); + + err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", + high_addr, err); + return err; + } + + return 0; +} + +/** + * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY + * @hw: pointer to the HW struct + * @port: port to write to + * @low_addr: offset of the low register + * @val: 40b value to write + * + * Check if the caller has specified a known 40 bit register offset and write + * provided 40b value to the two associated registers by splitting it up into + * two chunks, the lower 8 bits and the upper 32 bits. + * + * Return: + * * %0 - success + * * %EINVAL - not a 40 bit register + * * %other - failed to write to PHY + */ +static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val) +{ + return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val, + ETH56G_PHY_REG_PTP); +} + +/** + * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: the contents of the 64bit value to write to PHY + * @res_type: resource type + * + * Check if the caller has specified a known 64 bit register offset and write + * the 64bit value to the two associated 32bit PHY registers. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to write to PHY + */ +static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val, + enum eth56g_res_type res_type) +{ + u16 high_addr; + u32 lo, hi; + int err; + + if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr)) + return -EINVAL; + + lo = lower_32_bits(val); + hi = upper_32_bits(val); + + err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", + high_addr, err); + return err; + } + + return 0; +} + +/** + * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: the contents of the 64bit value to write to PHY + * + * Check if the caller has specified a known 64 bit register offset and write + * the 64bit value to the two associated 32bit PHY registers. + * + * Return: + * * %0 - success + * * %EINVAL - not a 64 bit register + * * %other - failed to write to PHY + */ +static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, + u16 low_addr, u64 val) +{ + return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val, + ETH56G_PHY_REG_PTP); +} + +/** + * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory + * @hw: pointer to the HW struct + * @port: the port to read from + * @idx: the timestamp index to read + * @tstamp: on return, the 40bit timestamp value + * + * Read a 40bit timestamp value out of the two associated entries in the + * port memory block of the internal PHYs of the 56G devices. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx, + u64 *tstamp) +{ + u16 lo_addr, hi_addr; + u32 lo, hi; + int err; + + lo_addr = (u16)PHY_TSTAMP_L(idx); + hi_addr = (u16)PHY_TSTAMP_U(idx); + + err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", + err); + return err; + } + + err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", + err); + return err; + } + + /* For 56G based internal PHYs, the timestamp is reported with the + * lower 8 bits in the low register, and the upper 32 bits in the high + * register. + */ + *tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) | + FIELD_PREP(PHY_40B_LOW_M, lo); + return 0; +} + +/** + * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block + * @hw: pointer to the HW struct + * @port: the quad to read from + * @idx: the timestamp index to reset + * + * Read and then forcibly clear the timestamp index to ensure the valid bit is + * cleared and the timestamp status bit is reset in the PHY port memory of + * internal PHYs of the 56G devices. + * + * To directly clear the contents of the timestamp block entirely, discarding + * all timestamp data at once, software should instead use + * ice_ptp_reset_ts_memory_quad_eth56g(). + * + * This function should only be called on an idx whose bit is set according to + * ice_get_phy_tx_tstamp_ready(). + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx) +{ + u64 unused_tstamp; + u16 lo_addr; + int err; + + /* Read the timestamp register to ensure the timestamp status bit is + * cleared. + */ + err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n", + port, idx, err); + } + + lo_addr = (u16)PHY_TSTAMP_L(idx); + + err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n", + port, idx, err); + return err; + } + + return 0; +} + +/** + * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block + * @hw: pointer to the HW struct + */ +static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw) +{ + unsigned int port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L, + 0); + ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U, + 0); + } +} + +/** + * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time + * @hw: pointer to the HW struct + * @port: port number + * @time: time to initialize the PHY port clocks to + * + * Write a new initial time value into registers of a specific PHY port. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port, + u64 time) +{ + int err; + + /* Tx case */ + err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L, + time); + if (err) + return err; + + /* Rx case */ + return ice_write_64b_ptp_reg_eth56g(hw, port, + PHY_REG_RX_TIMER_INC_PRE_L, time); +} + +/** + * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time + * @hw: pointer to the HW struct + * @time: Time to initialize the PHY port clocks to + * + * Program the PHY port registers with a new initial time value. The port + * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync + * command. The time value is the upper 32 bits of the PHY timer, usually in + * units of nominal nanoseconds. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time) +{ + u64 phy_time; + u8 port; + + /* The time represents the upper 32 bits of the PHY timer, so we need + * to shift to account for this when programming. + */ + phy_time = (u64)time << 32; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n", + port, err); + return err; + } + } + + return 0; +} + +/** + * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust + * @hw: pointer to HW struct + * @port: Port number to be programmed + * @time: time in cycles to adjust the port clocks + * + * Program the port for an atomic adjustment by writing the Tx and Rx timer + * registers. The atomic adjustment won't be completed until the driver issues + * an ICE_PTP_ADJ_TIME command. + * + * Note that time is not in units of nanoseconds. It is in clock time + * including the lower sub-nanosecond portion of the port timer. + * + * Negative adjustments are supported using 2s complement arithmetic. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time) +{ + u32 l_time, u_time; + int err; + + l_time = lower_32_bits(time); + u_time = upper_32_bits(time); + + /* Tx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L, + l_time); + if (err) + goto exit_err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U, + u_time); + if (err) + goto exit_err; + + /* Rx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L, + l_time); + if (err) + goto exit_err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U, + u_time); + if (err) + goto exit_err; + + return 0; + +exit_err: + ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n", + port, err); + return err; +} + +/** + * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment + * @hw: pointer to HW struct + * @adj: adjustment in nanoseconds + * + * Prepare the PHY ports for an atomic time adjustment by programming the PHY + * Tx and Rx port registers. The actual adjustment is completed by issuing an + * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj) +{ + s64 cycles; + u8 port; + + /* The port clock supports adjustment of the sub-nanosecond portion of + * the clock (lowest 32 bits). We shift the provided adjustment in + * nanoseconds by 32 to calculate the appropriate adjustment to program + * into the PHY ports. + */ + cycles = (s64)adj << 32; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles); + if (err) + return err; + } + + return 0; +} + +/** + * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment + * @hw: pointer to HW struct + * @incval: new increment value to prepare + * + * Prepare each of the PHY ports for a new increment value by programming the + * port's TIMETUS registers. The new increment value will be updated after + * issuing an ICE_PTP_INIT_INCVAL command. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval) +{ + u8 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, + incval); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n", + port, err); + return err; + } + } + + return 0; +} + +/** + * ice_ptp_read_port_capture_eth56g - Read a port's local time capture + * @hw: pointer to HW struct + * @port: Port number to read + * @tx_ts: on return, the Tx port time capture + * @rx_ts: on return, the Rx port time capture + * + * Read the port's Tx and Rx local time capture values. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port, + u64 *tx_ts, u64 *rx_ts) +{ + int err; + + /* Tx case */ + err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L, + tx_ts); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", + err); + return err; + } + + ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts); + + /* Rx case */ + err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L, + rx_ts); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", + err); + return err; + } + + ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts); + + return 0; +} + +/** + * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command + * @hw: pointer to HW struct + * @port: Port to which cmd has to be sent + * @cmd: Command to be sent to the port + * + * Prepare the requested port for an upcoming timer sync command. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port, + enum ice_ptp_tmr_cmd cmd) +{ + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); + int err; + + /* Tx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", + err); + return err; + } + + /* Rx case */ + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_phy_get_speed_eth56g - Get link speed based on PHY link type + * @li: pointer to link information struct + * + * Return: simplified ETH56G PHY speed + */ +static enum ice_eth56g_link_spd +ice_phy_get_speed_eth56g(struct ice_link_status *li) +{ + u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low, + li->phy_type_high); + + switch (speed) { + case ICE_AQ_LINK_SPEED_1000MB: + return ICE_ETH56G_LNK_SPD_1G; + case ICE_AQ_LINK_SPEED_2500MB: + return ICE_ETH56G_LNK_SPD_2_5G; + case ICE_AQ_LINK_SPEED_10GB: + return ICE_ETH56G_LNK_SPD_10G; + case ICE_AQ_LINK_SPEED_25GB: + return ICE_ETH56G_LNK_SPD_25G; + case ICE_AQ_LINK_SPEED_40GB: + return ICE_ETH56G_LNK_SPD_40G; + case ICE_AQ_LINK_SPEED_50GB: + switch (li->phy_type_low) { + case ICE_PHY_TYPE_LOW_50GBASE_SR: + case ICE_PHY_TYPE_LOW_50GBASE_FR: + case ICE_PHY_TYPE_LOW_50GBASE_LR: + case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: + case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: + case ICE_PHY_TYPE_LOW_50G_AUI1: + return ICE_ETH56G_LNK_SPD_50G; + default: + return ICE_ETH56G_LNK_SPD_50G2; + } + case ICE_AQ_LINK_SPEED_100GB: + if (li->phy_type_high || + li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2) + return ICE_ETH56G_LNK_SPD_100G2; + else + return ICE_ETH56G_LNK_SPD_100G; + default: + return ICE_ETH56G_LNK_SPD_1G; + } +} + +/** + * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle + * @hw: pointer to the HW struct + * @port: port to configure + * + * Configure the number of TUs for the PAR and PCS clocks used as part of the + * timestamp calibration process. + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port) +{ + u32 val; + int err; + + err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH, + ICE_ETH56G_NOMINAL_THRESH4); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d", + err); + return err; + } + + switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) { + case ICE_ETH56G_LNK_SPD_1G: + case ICE_ETH56G_LNK_SPD_2_5G: + err = ice_read_quad_ptp_reg_eth56g(hw, port, + PHY_GPCS_CONFIG_REG0, &val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d", + err); + return err; + } + + val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M; + val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M, + ICE_ETH56G_NOMINAL_TX_THRESH); + + err = ice_write_quad_ptp_reg_eth56g(hw, port, + PHY_GPCS_CONFIG_REG0, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d", + err); + return err; + } + break; + default: + break; + } + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L, + ICE_ETH56G_NOMINAL_PCS_REF_TUS); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d", + err); + return err; + } + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L, + ICE_ETH56G_NOMINAL_PCS_REF_INC); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d", + err); + return err; + } + + return 0; +} + +/** + * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings + * @hw: Pointer to the HW struct + * @port: Port to configure + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port) +{ + u8 quad_lane = port % ICE_PORTS_PER_QUAD; + u32 addr, val, peer_delay; + bool enable, sfd_ena; + int err; + + enable = hw->ptp.phy.eth56g.onestep_ena; + peer_delay = hw->ptp.phy.eth56g.peer_delay; + sfd_ena = hw->ptp.phy.eth56g.sfd_ena; + + addr = PHY_PTP_1STEP_CONFIG; + err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &val); + if (err) + return err; + + if (enable) + val |= BIT(quad_lane); + else + val &= ~BIT(quad_lane); + + val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M); + + err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val); + if (err) + return err; + + addr = PHY_PTP_1STEP_PEER_DELAY(quad_lane); + val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay); + if (peer_delay) + val |= PHY_PTP_1STEP_PD_ADD_PD_M; + val |= PHY_PTP_1STEP_PD_DLY_V_M; + err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val); + if (err) + return err; + + val &= ~PHY_PTP_1STEP_PD_DLY_V_M; + err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val); + if (err) + return err; + + addr = PHY_MAC_XIF_MODE; + err = ice_read_mac_reg_eth56g(hw, port, addr, &val); + if (err) + return err; + + val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M | + PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M); + + switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) { + case ICE_ETH56G_LNK_SPD_1G: + case ICE_ETH56G_LNK_SPD_2_5G: + val |= PHY_MAC_XIF_GMII_TS_SEL_M; + break; + default: + break; + } + + val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) | + FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) | + FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena); + + return ice_write_mac_reg_eth56g(hw, port, addr, val); +} + +/** + * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values + * @a: multiplier value + * @b: multiplicand value + * + * Return: result of multiplication + */ +static u32 mul_u32_u32_fx_q9(u32 a, u32 b) +{ + return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W); +} + +/** + * add_u32_u32_fx - Add two u32 fixed point values and discard overflow + * @a: first value + * @b: second value + * + * Return: result of addition + */ +static u32 add_u32_u32_fx(u32 a, u32 b) +{ + return lower_32_bits(((u64)a + b)); +} + +/** + * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value + * @hw: pointer to the HW struct + * @port: port to configure + * @bs: bitslip multiplier + * @fc: FC-FEC enabled + * @rs: RS-FEC enabled + * @spd: link speed + * + * Return: calculated bitslip value + */ +static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs, + bool fc, bool rs, + enum ice_eth56g_link_spd spd) +{ + u32 bitslip; + int err; + + if (!bs || rs) + return 0; + + if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G) { + err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP, + &bitslip); + } else { + u8 quad_lane = port % ICE_PORTS_PER_QUAD; + u32 addr; + + addr = PHY_REG_SD_BIT_SLIP(quad_lane); + err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &bitslip); + } + if (err) + return 0; + + if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) { + /* Bitslip register value of 0 corresponds to 10 so substitute + * it for calculations + */ + bitslip = 10; + } else if (spd == ICE_ETH56G_LNK_SPD_10G || + spd == ICE_ETH56G_LNK_SPD_25G) { + if (fc) + bitslip = bitslip * 2 + 32; + else + bitslip = (u32)((s32)bitslip * -1 + 20); + } + + bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W; + return mul_u32_u32_fx_q9(bitslip, bs); +} + +/** + * ice_ptp_calc_deskew_eth56g - Calculate deskew value + * @hw: pointer to the HW struct + * @port: port to configure + * @ds: deskew multiplier + * @rs: RS-FEC enabled + * @spd: link speed + * + * Return: calculated deskew value + */ +static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds, + bool rs, enum ice_eth56g_link_spd spd) +{ + u32 deskew_i, deskew_f; + int err; + + if (!ds) + return 0; + + read_poll_timeout(ice_read_ptp_reg_eth56g, err, + FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500, + 50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0, + &deskew_i); + if (err) + return err; + + deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i); + deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i); + + if (rs && spd == ICE_ETH56G_LNK_SPD_50G2) + ds = 0x633; /* 3.1 */ + else if (rs && spd == ICE_ETH56G_LNK_SPD_100G) + ds = 0x31b; /* 1.552 */ + + deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i); + /* Shift 3 fractional bits to the end of the integer part */ + deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W; + return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds); +} + +/** + * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values + * @hw: pointer to the HW struct + * @port: port to configure + * @spd: link speed + * @cfg: structure to store output values + * @fc: FC-FEC enabled + * @rs: RS-FEC enabled + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port, + enum ice_eth56g_link_spd spd, + const struct ice_eth56g_mac_reg_cfg *cfg, + bool fc, bool rs) +{ + u32 rx_offset, tx_offset, bs_ds; + bool onestep, sfd; + + onestep = hw->ptp.phy.eth56g.onestep_ena; + sfd = hw->ptp.phy.eth56g.sfd_ena; + bs_ds = cfg->rx_offset.bs_ds; + + if (fc) + rx_offset = cfg->rx_offset.fc; + else if (rs) + rx_offset = cfg->rx_offset.rs; + else + rx_offset = cfg->rx_offset.no_fec; + + rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes); + if (sfd) + rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd); + + if (spd < ICE_ETH56G_LNK_SPD_40G) + bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs, + spd); + else + bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd); + rx_offset = add_u32_u32_fx(rx_offset, bs_ds); + rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT | + ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC; + + if (fc) + tx_offset = cfg->tx_offset.fc; + else if (rs) + tx_offset = cfg->tx_offset.rs; + else + tx_offset = cfg->tx_offset.no_fec; + tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd + + cfg->tx_offset.onestep * onestep; + + ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset); + return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset); +} + +/** + * ice_phy_cfg_mac_eth56g - Configure MAC for PTP + * @hw: Pointer to the HW struct + * @port: Port to configure + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port) +{ + const struct ice_eth56g_mac_reg_cfg *cfg; + enum ice_eth56g_link_spd spd; + struct ice_link_status *li; + bool fc = false; + bool rs = false; + bool onestep; + u32 val; + int err; + + onestep = hw->ptp.phy.eth56g.onestep_ena; + li = &hw->port_info->phy.link_info; + spd = ice_phy_get_speed_eth56g(li); + if (!!(li->an_info & ICE_AQ_FEC_EN)) { + if (spd == ICE_ETH56G_LNK_SPD_10G) { + fc = true; + } else { + fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN); + rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN); + } + } + cfg = ð56g_mac_cfg[spd]; + + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0); + if (err) + return err; + + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0); + if (err) + return err; + + val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M, + cfg->tx_mode.def + rs * cfg->tx_mode.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) | + FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M, + cfg->tx_cw_dly.def + + onestep * cfg->tx_cw_dly.onestep) | + FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M, + cfg->rx_mode.def + rs * cfg->rx_mode.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M, + cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M, + cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) | + FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk); + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val); + if (err) + return err; + + err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME, + cfg->blktime); + if (err) + return err; + + err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs); + if (err) + return err; + + if (spd == ICE_ETH56G_LNK_SPD_25G && !rs) + val = 0; + else + val = cfg->mktime; + + return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val); +} + +/** + * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt + * @hw: pointer to the HW struct + * @port: the timestamp port + * @ena: enable or disable interrupt + * @threshold: interrupt threshold + * + * Configure TX timestamp interrupt for the specified port + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold) +{ + int err; + u32 val; + + err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val); + if (err) + return err; + + if (ena) { + val |= PHY_TS_INT_CONFIG_ENA_M; + val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M; + val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold); + } else { + val &= ~PHY_TS_INT_CONFIG_ENA_M; + } + + return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val); +} + +/** + * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time + * @hw: pointer to the HW struct + * @port: the PHY port to read + * @phy_time: on return, the 64bit PHY timer value + * @phc_time: on return, the lower 64bits of PHC time + * + * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY + * and PHC timer values. + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port, + u64 *phy_time, u64 *phc_time) +{ + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + u64 tx_time, rx_time; + u32 zo, lo; + u8 tmr_idx; + int err; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */ + ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); + + /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */ + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME); + if (err) + return err; + + /* Issue the sync to start the ICE_PTP_READ_TIME capture */ + ice_ptp_exec_tmr_cmd(hw); + + /* Read the captured PHC time from the shadow time registers */ + if (ice_is_primary(hw)) { + zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx)); + lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx)); + } else { + zo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_0(tmr_idx)); + lo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_L(tmr_idx)); + } + *phc_time = (u64)lo << 32 | zo; + + /* Read the captured PHY time from the PHY shadow registers */ + err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time); + if (err) + return err; + + /* If the PHY Tx and Rx timers don't match, log a warning message. + * Note that this should not happen in normal circumstances since the + * driver always programs them together. + */ + if (tx_time != rx_time) + dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n", + port, tx_time, rx_time); + + *phy_time = tx_time; + + return 0; +} + +/** + * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer + * @hw: pointer to the HW struct + * @port: the PHY port to synchronize + * + * Perform an adjustment to ensure that the PHY and PHC timers are in sync. + * This is done by issuing a ICE_PTP_READ_TIME command which triggers a + * simultaneous read of the PHY timer and PHC timer. Then we use the + * difference to calculate an appropriate 2s complement addition to add + * to the PHY timer in order to ensure it reads the same value as the + * primary PHC timer. + * + * Return: + * * %0 - success + * * %-EBUSY- failed to acquire PTP semaphore + * * %other - PHY read/write failed + */ +static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port) +{ + u64 phc_time, phy_time, difference; + int err; + + if (!ice_ptp_lock(hw)) { + ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n"); + return -EBUSY; + } + + err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time); + if (err) + goto err_unlock; + + /* Calculate the amount required to add to the port time in order for + * it to match the PHC time. + * + * Note that the port adjustment is done using 2s complement + * arithmetic. This is convenient since it means that we can simply + * calculate the difference between the PHC time and the port time, + * and it will be interpreted correctly. + */ + + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + difference = phc_time - phy_time; + + err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference); + if (err) + goto err_unlock; + + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME); + if (err) + goto err_unlock; + + /* Issue the sync to activate the time adjustment */ + ice_ptp_exec_tmr_cmd(hw); + + /* Re-capture the timer values to flush the command registers and + * verify that the time was properly adjusted. + */ + err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time); + if (err) + goto err_unlock; + + dev_info(ice_hw_to_dev(hw), + "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n", + port, phy_time, phc_time); + +err_unlock: + ice_ptp_unlock(hw); + return err; +} + +/** + * ice_stop_phy_timer_eth56g - Stop the PHY clock timer + * @hw: pointer to the HW struct + * @port: the PHY port to stop + * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS + * + * Stop the clock of a PHY port. This must be done as part of the flow to + * re-calibrate Tx and Rx timestamping offsets whenever the clock time is + * initialized or when link speed changes. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset) +{ + int err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0); + if (err) + return err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0); + if (err) + return err; + + ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port); + + return 0; +} + +/** + * ice_start_phy_timer_eth56g - Start the PHY clock timer + * @hw: pointer to the HW struct + * @port: the PHY port to start + * + * Start the clock of a PHY port. This must be done as part of the flow to + * re-calibrate Tx and Rx timestamping offsets whenever the clock time is + * initialized or when link speed changes. + * + * Return: + * * %0 - success + * * %other - PHY read/write failed + */ +int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port) +{ + struct ice_pf *pf = container_of(hw, struct ice_pf, hw); + u32 lo, hi; + u64 incval; + u8 tmr_idx; + int err; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + err = ice_stop_phy_timer_eth56g(hw, port, false); + if (err) + return err; + + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + + err = ice_phy_cfg_parpcs_eth56g(hw, port); + if (err) + return err; + + err = ice_phy_cfg_ptp_1step_eth56g(hw, port); + if (err) + return err; + + err = ice_phy_cfg_mac_eth56g(hw, port); + if (err) + return err; + + if (ice_is_primary(hw)) { + lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); + hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); + } else { + lo = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_L(tmr_idx)); + hi = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_H(tmr_idx)); + } + incval = (u64)hi << 32 | lo; + + err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval); + if (err) + return err; + + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); + if (err) + return err; + + ice_ptp_exec_tmr_cmd(hw); + + err = ice_sync_phy_timer_eth56g(hw, port); + if (err) + return err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1); + if (err) + return err; + + err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1); + if (err) + return err; + + ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port); + + return 0; +} + +/** + * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status + * @hw: pointer to the HW struct + * @ts_status: the timestamp mask pointer + * + * Read the PHY Tx timestamp status mask indicating which ports have Tx + * timestamps available. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status) +{ + const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g; + u8 phy, mask; + u32 status; + + mask = (1 << hw->ptp.ports_per_phy) - 1; + *ts_status = 0; + + for (phy = 0; phy < params->num_phys; phy++) { + int err; + + err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status); + if (err) + return err; + + *ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy); + } + + ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status); + + return 0; +} + +/** + * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register + * @hw: pointer to the HW struct + * @port: the PHY port to read from + * @tstamp_ready: contents of the Tx memory status register + * + * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in + * the PHY are ready. A set bit means the corresponding timestamp is valid and + * ready to be captured from the PHY timestamp block. + * + * Return: + * * %0 - success + * * %other - failed to read from PHY + */ +static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port, + u64 *tstamp_ready) +{ + int err; + + err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L, + tstamp_ready); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n", + port, err); + return err; + } + + return 0; +} + +/** + * ice_ptp_init_phy_e825 - initialize PHY parameters + * @hw: pointer to the HW struct + */ +static void ice_ptp_init_phy_e825(struct ice_hw *hw) +{ + struct ice_ptp_hw *ptp = &hw->ptp; + struct ice_eth56g_params *params; + + params = &ptp->phy.eth56g; + params->onestep_ena = false; + params->peer_delay = 0; + params->sfd_ena = false; + params->num_phys = 2; + ptp->ports_per_phy = 4; + ptp->num_lports = params->num_phys * ptp->ports_per_phy; +} + +/* E822 family functions + * + * The following functions operate on the E822 family of devices. + */ + +/** + * ice_fill_phy_msg_e82x - Fill message data for a PHY register access + * @hw: pointer to the HW struct + * @msg: the PHY message buffer to fill in + * @port: the port to access + * @offset: the register offset + */ +static void ice_fill_phy_msg_e82x(struct ice_hw *hw, + struct ice_sbq_msg_input *msg, u8 port, + u16 offset) +{ + int phy_port, quadtype; + + phy_port = port % hw->ptp.ports_per_phy; + quadtype = ICE_GET_QUAD_NUM(port) % + ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy); + + if (quadtype == 0) { + msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port); + msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port); + } else { + msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port); + msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port); + } + + msg->dest_dev = ice_sbq_dev_phy_0; +} + +/** + * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register + * @low_addr: the low address to check + * @high_addr: on return, contains the high address of the 64bit register + * + * Checks if the provided low address is one of the known 64bit PHY values + * represented as two 32bit registers. If it is, return the appropriate high + * register offset to use. + */ +static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr) +{ + switch (low_addr) { + case P_REG_PAR_PCS_TX_OFFSET_L: + *high_addr = P_REG_PAR_PCS_TX_OFFSET_U; + return true; + case P_REG_PAR_PCS_RX_OFFSET_L: + *high_addr = P_REG_PAR_PCS_RX_OFFSET_U; + return true; + case P_REG_PAR_TX_TIME_L: + *high_addr = P_REG_PAR_TX_TIME_U; + return true; + case P_REG_PAR_RX_TIME_L: + *high_addr = P_REG_PAR_RX_TIME_U; + return true; + case P_REG_TOTAL_TX_OFFSET_L: + *high_addr = P_REG_TOTAL_TX_OFFSET_U; + return true; + case P_REG_TOTAL_RX_OFFSET_L: + *high_addr = P_REG_TOTAL_RX_OFFSET_U; + return true; + case P_REG_UIX66_10G_40G_L: + *high_addr = P_REG_UIX66_10G_40G_U; + return true; + case P_REG_UIX66_25G_100G_L: + *high_addr = P_REG_UIX66_25G_100G_U; + return true; + case P_REG_TX_CAPTURE_L: + *high_addr = P_REG_TX_CAPTURE_U; + return true; + case P_REG_RX_CAPTURE_L: + *high_addr = P_REG_RX_CAPTURE_U; + return true; + case P_REG_TX_TIMER_INC_PRE_L: + *high_addr = P_REG_TX_TIMER_INC_PRE_U; + return true; + case P_REG_RX_TIMER_INC_PRE_L: + *high_addr = P_REG_RX_TIMER_INC_PRE_U; + return true; + default: + return false; + } +} + +/** + * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register + * @low_addr: the low address to check + * @high_addr: on return, contains the high address of the 40bit value + * + * Checks if the provided low address is one of the known 40bit PHY values + * split into two registers with the lower 8 bits in the low register and the + * upper 32 bits in the high register. If it is, return the appropriate high + * register offset to use. + */ +static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr) +{ + switch (low_addr) { + case P_REG_TIMETUS_L: + *high_addr = P_REG_TIMETUS_U; + return true; + case P_REG_PAR_RX_TUS_L: + *high_addr = P_REG_PAR_RX_TUS_U; + return true; + case P_REG_PAR_TX_TUS_L: + *high_addr = P_REG_PAR_TX_TUS_U; + return true; + case P_REG_PCS_RX_TUS_L: + *high_addr = P_REG_PCS_RX_TUS_U; + return true; + case P_REG_PCS_TX_TUS_L: + *high_addr = P_REG_PCS_TX_TUS_U; + return true; + case P_REG_DESK_PAR_RX_TUS_L: + *high_addr = P_REG_DESK_PAR_RX_TUS_U; + return true; + case P_REG_DESK_PAR_TX_TUS_L: + *high_addr = P_REG_DESK_PAR_TX_TUS_U; + return true; + case P_REG_DESK_PCS_RX_TUS_L: + *high_addr = P_REG_DESK_PCS_RX_TUS_U; + return true; + case P_REG_DESK_PCS_TX_TUS_L: + *high_addr = P_REG_DESK_PCS_TX_TUS_U; + return true; + default: + return false; + } +} + +/** + * ice_read_phy_reg_e82x - Read a PHY register + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @offset: PHY register offset to read + * @val: on return, the contents read from the PHY + * + * Read a PHY register for the given port over the device sideband queue. + */ +static int +ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val) +{ + struct ice_sbq_msg_input msg = {0}; + int err; + + ice_fill_phy_msg_e82x(hw, &msg, port, offset); + msg.opcode = ice_sbq_msg_rd; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", + err); + return err; + } + + *val = msg.data; + + return 0; +} + +/** + * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: on return, the contents of the 64bit value from the PHY registers + * + * Reads the two registers associated with a 64bit value and returns it in the + * val pointer. The offset always specifies the lower register offset to use. + * The high offset is looked up. This function only operates on registers + * known to be two parts of a 64bit value. + */ +static int +ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) +{ + u32 low, high; + u16 high_addr; + int err; + + /* Only operate on registers known to be split into two 32bit + * registers. + */ + if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) { + ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", + low_addr); + return -EINVAL; + } + + err = ice_read_phy_reg_e82x(hw, port, low_addr, &low); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_read_phy_reg_e82x(hw, port, high_addr, &high); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d", + high_addr, err); + return err; + } + + *val = (u64)high << 32 | low; + + return 0; +} + +/** + * ice_write_phy_reg_e82x - Write a PHY register + * @hw: pointer to the HW struct + * @port: PHY port to write to + * @offset: PHY register offset to write + * @val: The value to write to the register + * + * Write a PHY register for the given port over the device sideband queue. + */ +static int +ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val) +{ + struct ice_sbq_msg_input msg = {0}; + int err; + + ice_fill_phy_msg_e82x(hw, &msg, port, offset); + msg.opcode = ice_sbq_msg_wr; + msg.data = val; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY + * @hw: pointer to the HW struct + * @port: port to write to + * @low_addr: offset of the low register + * @val: 40b value to write + * + * Write the provided 40b value to the two associated registers by splitting + * it up into two chunks, the lower 8 bits and the upper 32 bits. + */ +static int +ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) +{ + u32 low, high; + u16 high_addr; + int err; + + /* Only operate on registers known to be split into a lower 8 bit + * register and an upper 32 bit register. + */ + if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) { + ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n", + low_addr); + return -EINVAL; + } + low = FIELD_GET(P_REG_40B_LOW_M, val); + high = (u32)(val >> P_REG_40B_HIGH_S); + + err = ice_write_phy_reg_e82x(hw, port, low_addr, low); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_write_phy_reg_e82x(hw, port, high_addr, high); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", + high_addr, err); + return err; + } + + return 0; +} + +/** + * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers + * @hw: pointer to the HW struct + * @port: PHY port to read from + * @low_addr: offset of the lower register to read from + * @val: the contents of the 64bit value to write to PHY + * + * Write the 64bit value to the two associated 32bit PHY registers. The offset + * is always specified as the lower register, and the high address is looked + * up. This function only operates on registers known to be two parts of + * a 64bit value. + */ +static int +ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) +{ + u32 low, high; + u16 high_addr; + int err; + + /* Only operate on registers known to be split into two 32bit + * registers. + */ + if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) { + ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", + low_addr); + return -EINVAL; + } + + low = lower_32_bits(val); + high = upper_32_bits(val); + + err = ice_write_phy_reg_e82x(hw, port, low_addr, low); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", + low_addr, err); + return err; + } + + err = ice_write_phy_reg_e82x(hw, port, high_addr, high); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", + high_addr, err); + return err; + } + + return 0; +} + +/** + * ice_fill_quad_msg_e82x - Fill message data for quad register access + * @hw: pointer to the HW struct + * @msg: the PHY message buffer to fill in + * @quad: the quad to access + * @offset: the register offset + * + * Fill a message buffer for accessing a register in a quad shared between + * multiple PHYs. + * + * Return: + * * %0 - OK + * * %-EINVAL - invalid quad number + */ +static int ice_fill_quad_msg_e82x(struct ice_hw *hw, + struct ice_sbq_msg_input *msg, u8 quad, + u16 offset) +{ + u32 addr; + + if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports)) + return -EINVAL; + + msg->dest_dev = ice_sbq_dev_phy_0; + + if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy))) + addr = Q_0_BASE + offset; + else + addr = Q_1_BASE + offset; + + msg->msg_addr_low = lower_16_bits(addr); + msg->msg_addr_high = upper_16_bits(addr); + + return 0; +} + +/** + * ice_read_quad_reg_e82x - Read a PHY quad register + * @hw: pointer to the HW struct + * @quad: quad to read from + * @offset: quad register offset to read + * @val: on return, the contents read from the quad + * + * Read a quad register over the device sideband queue. Quad registers are + * shared between multiple PHYs. + */ +int +ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) +{ + struct ice_sbq_msg_input msg = {0}; + int err; + + err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset); + if (err) + return err; + + msg.opcode = ice_sbq_msg_rd; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", + err); + return err; + } + + *val = msg.data; + + return 0; +} + +/** + * ice_write_quad_reg_e82x - Write a PHY quad register + * @hw: pointer to the HW struct + * @quad: quad to write to + * @offset: quad register offset to write + * @val: The value to write to the register + * + * Write a quad register over the device sideband queue. Quad registers are + * shared between multiple PHYs. + */ +int +ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val) +{ + struct ice_sbq_msg_input msg = {0}; + int err; + + err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset); + if (err) + return err; + + msg.opcode = ice_sbq_msg_wr; + msg.data = val; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block + * @hw: pointer to the HW struct + * @quad: the quad to read from + * @idx: the timestamp index to read + * @tstamp: on return, the 40bit timestamp value + * + * Read a 40bit timestamp value out of the two associated registers in the + * quad memory block that is shared between the internal PHYs of the E822 + * family of devices. + */ +static int +ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) +{ + u16 lo_addr, hi_addr; + u32 lo, hi; + int err; + + lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); + hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); + + err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", + err); + return err; + } + + err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", + err); + return err; + } + + /* For E822 based internal PHYs, the timestamp is reported with the + * lower 8 bits in the low register, and the upper 32 bits in the high + * register. + */ + *tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) | + FIELD_PREP(PHY_40B_LOW_M, lo); + + return 0; +} + +/** + * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block + * @hw: pointer to the HW struct + * @quad: the quad to read from + * @idx: the timestamp index to reset + * + * Read the timestamp out of the quad to clear its timestamp status bit from + * the PHY quad block that is shared between the internal PHYs of the E822 + * devices. + * + * Note that unlike E810, software cannot directly write to the quad memory + * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function + * to determine which timestamps are valid. Reading a timestamp auto-clears + * the valid bit. + * + * To directly clear the contents of the timestamp block entirely, discarding + * all timestamp data at once, software should instead use + * ice_ptp_reset_ts_memory_quad_e82x(). + * + * This function should only be called on an idx whose bit is set according to + * ice_get_phy_tx_tstamp_ready(). + */ +static int +ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx) +{ + u64 unused_tstamp; + int err; + + err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n", + quad, idx, err); + return err; + } + + return 0; +} + +/** + * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block + * @hw: pointer to the HW struct + * @quad: the quad to read from + * + * Clear all timestamps from the PHY quad block that is shared between the + * internal PHYs on the E822 devices. + */ +void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad) +{ + ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); + ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); +} + +/** + * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks + * @hw: pointer to the HW struct + */ +static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw) +{ + unsigned int quad; + + for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++) + ice_ptp_reset_ts_memory_quad_e82x(hw, quad); +} + +/** + * ice_ptp_set_vernier_wl - Set the window length for vernier calibration + * @hw: pointer to the HW struct + * + * Set the window length used for the vernier port calibration process. + */ +static int ice_ptp_set_vernier_wl(struct ice_hw *hw) +{ + u8 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_WL, + PTP_VERNIER_WL); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n", + port, err); + return err; + } + } + + return 0; +} + +/** + * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization + * @hw: pointer to HW struct + * + * Perform PHC initialization steps specific to E822 devices. + */ +static int ice_ptp_init_phc_e82x(struct ice_hw *hw) +{ + u32 val; + + /* Enable reading switch and PHY registers over the sideband queue */ +#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1) +#define PF_SB_REM_DEV_CTL_PHY0 BIT(2) + val = rd32(hw, PF_SB_REM_DEV_CTL); + val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0); + wr32(hw, PF_SB_REM_DEV_CTL, val); + + /* Set window length for all the ports */ + return ice_ptp_set_vernier_wl(hw); +} + +/** + * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time + * @hw: pointer to the HW struct + * @time: Time to initialize the PHY port clocks to + * + * Program the PHY port registers with a new initial time value. The port + * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync + * command. The time value is the upper 32 bits of the PHY timer, usually in + * units of nominal nanoseconds. + */ +static int +ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time) +{ + u64 phy_time; + u8 port; + int err; + + /* The time represents the upper 32 bits of the PHY timer, so we need + * to shift to account for this when programming. + */ + phy_time = (u64)time << 32; + + for (port = 0; port < hw->ptp.num_lports; port++) { + /* Tx case */ + err = ice_write_64b_phy_reg_e82x(hw, port, + P_REG_TX_TIMER_INC_PRE_L, + phy_time); + if (err) + goto exit_err; + + /* Rx case */ + err = ice_write_64b_phy_reg_e82x(hw, port, + P_REG_RX_TIMER_INC_PRE_L, + phy_time); + if (err) + goto exit_err; + } + + return 0; + +exit_err: + ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n", + port, err); + + return err; +} + +/** + * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust + * @hw: pointer to HW struct + * @port: Port number to be programmed + * @time: time in cycles to adjust the port Tx and Rx clocks + * + * Program the port for an atomic adjustment by writing the Tx and Rx timer + * registers. The atomic adjustment won't be completed until the driver issues + * an ICE_PTP_ADJ_TIME command. + * + * Note that time is not in units of nanoseconds. It is in clock time + * including the lower sub-nanosecond portion of the port timer. + * + * Negative adjustments are supported using 2s complement arithmetic. + */ +static int +ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time) +{ + u32 l_time, u_time; + int err; + + l_time = lower_32_bits(time); + u_time = upper_32_bits(time); + + /* Tx case */ + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L, + l_time); + if (err) + goto exit_err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U, + u_time); + if (err) + goto exit_err; + + /* Rx case */ + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L, + l_time); + if (err) + goto exit_err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U, + u_time); + if (err) + goto exit_err; + + return 0; + +exit_err: + ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n", + port, err); + return err; +} + +/** + * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment + * @hw: pointer to HW struct + * @adj: adjustment in nanoseconds + * + * Prepare the PHY ports for an atomic time adjustment by programming the PHY + * Tx and Rx port registers. The actual adjustment is completed by issuing an + * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command. + */ +static int +ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj) +{ + s64 cycles; + u8 port; + + /* The port clock supports adjustment of the sub-nanosecond portion of + * the clock. We shift the provided adjustment in nanoseconds to + * calculate the appropriate adjustment to program into the PHY ports. + */ + if (adj > 0) + cycles = (s64)adj << 32; + else + cycles = -(((s64)-adj) << 32); + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_ptp_prep_port_adj_e82x(hw, port, cycles); + if (err) + return err; + } + + return 0; +} + +/** + * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment + * @hw: pointer to HW struct + * @incval: new increment value to prepare + * + * Prepare each of the PHY ports for a new increment value by programming the + * port's TIMETUS registers. The new increment value will be updated after + * issuing an ICE_PTP_INIT_INCVAL command. + */ +static int +ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval) +{ + int err; + u8 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, + incval); + if (err) + goto exit_err; + } + + return 0; + +exit_err: + ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n", + port, err); + + return err; +} + +/** + * ice_ptp_read_port_capture - Read a port's local time capture + * @hw: pointer to HW struct + * @port: Port number to read + * @tx_ts: on return, the Tx port time capture + * @rx_ts: on return, the Rx port time capture + * + * Read the port's Tx and Rx local time capture values. + * + * Note this has no equivalent for the E810 devices. + */ +static int +ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) +{ + int err; + + /* Tx case */ + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", + err); + return err; + } + + ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n", + (unsigned long long)*tx_ts); + + /* Rx case */ + err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", + err); + return err; + } + + ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n", + (unsigned long long)*rx_ts); + + return 0; +} + +/** + * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command + * @hw: pointer to HW struct + * @port: Port to which cmd has to be sent + * @cmd: Command to be sent to the port + * + * Prepare the requested port for an upcoming timer sync command. + * + * Note there is no equivalent of this operation on E810, as that device + * always handles all external PHYs internally. + * + * Return: + * * %0 - success + * * %other - failed to write to PHY + */ +static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port, + enum ice_ptp_tmr_cmd cmd) +{ + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); + int err; + + /* Tx case */ + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", + err); + return err; + } + + /* Rx case */ + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD, + val | TS_CMD_RX_TYPE); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", + err); + return err; + } + + return 0; +} + +/* E822 Vernier calibration functions + * + * The following functions are used as part of the vernier calibration of + * a port. This calibration increases the precision of the timestamps on the + * port. + */ + +/** + * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode + * @hw: pointer to HW struct + * @port: the port to read from + * @link_out: if non-NULL, holds link speed on success + * @fec_out: if non-NULL, holds FEC algorithm on success + * + * Read the serdes data for the PHY port and extract the link speed and FEC + * algorithm. + */ +static int +ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port, + enum ice_ptp_link_spd *link_out, + enum ice_ptp_fec_mode *fec_out) +{ + enum ice_ptp_link_spd link; + enum ice_ptp_fec_mode fec; + u32 serdes; + int err; + + err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n"); + return err; + } + + /* Determine the FEC algorithm */ + fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes); + + serdes &= P_REG_LINK_SPEED_SERDES_M; + + /* Determine the link speed */ + if (fec == ICE_PTP_FEC_MODE_RS_FEC) { + switch (serdes) { + case ICE_PTP_SERDES_25G: + link = ICE_PTP_LNK_SPD_25G_RS; + break; + case ICE_PTP_SERDES_50G: + link = ICE_PTP_LNK_SPD_50G_RS; + break; + case ICE_PTP_SERDES_100G: + link = ICE_PTP_LNK_SPD_100G_RS; + break; + default: + return -EIO; + } + } else { + switch (serdes) { + case ICE_PTP_SERDES_1G: + link = ICE_PTP_LNK_SPD_1G; + break; + case ICE_PTP_SERDES_10G: + link = ICE_PTP_LNK_SPD_10G; + break; + case ICE_PTP_SERDES_25G: + link = ICE_PTP_LNK_SPD_25G; + break; + case ICE_PTP_SERDES_40G: + link = ICE_PTP_LNK_SPD_40G; + break; + case ICE_PTP_SERDES_50G: + link = ICE_PTP_LNK_SPD_50G; + break; + default: + return -EIO; + } + } + + if (link_out) + *link_out = link; + if (fec_out) + *fec_out = fec; + + return 0; +} + +/** + * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp + * @hw: pointer to HW struct + * @port: to configure the quad for + */ +static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port) +{ + enum ice_ptp_link_spd link_spd; + int err; + u32 val; + u8 quad; + + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n", + err); + return; + } + + quad = ICE_GET_QUAD_NUM(port); + + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n", + err); + return; + } + + if (link_spd >= ICE_PTP_LNK_SPD_40G) + val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; + else + val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; + + err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n", + err); + return; + } +} + +/** + * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822 + * @hw: pointer to the HW structure + * @port: the port to configure + * + * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC + * hardware clock time units (TUs). That is, determine the number of TUs per + * serdes unit interval, and program the UIX registers with this conversion. + * + * This conversion is used as part of the calibration process when determining + * the additional error of a timestamp vs the real time of transmission or + * receipt of the packet. + * + * Hardware uses the number of TUs per 66 UIs, written to the UIX registers + * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks. + * + * To calculate the conversion ratio, we use the following facts: + * + * a) the clock frequency in Hz (cycles per second) + * b) the number of TUs per cycle (the increment value of the clock) + * c) 1 second per 1 billion nanoseconds + * d) the duration of 66 UIs in nanoseconds + * + * Given these facts, we can use the following table to work out what ratios + * to multiply in order to get the number of TUs per 66 UIs: + * + * cycles | 1 second | incval (TUs) | nanoseconds + * -------+--------------+--------------+------------- + * second | 1 billion ns | cycle | 66 UIs + * + * To perform the multiplication using integers without too much loss of + * precision, we can take use the following equation: + * + * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion) + * + * We scale up to using 6600 UI instead of 66 in order to avoid fractional + * nanosecond UIs (66 UI at 10G/40G is 6.4 ns) + * + * The increment value has a maximum expected range of about 34 bits, while + * the frequency value is about 29 bits. Multiplying these values shouldn't + * overflow the 64 bits. However, we must then further multiply them again by + * the Serdes unit interval duration. To avoid overflow here, we split the + * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and + * a divide by 390,625,000. This does lose some precision, but avoids + * miscalculation due to arithmetic overflow. + */ +static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port) +{ + u64 cur_freq, clk_incval, tu_per_sec, uix; + int err; + + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); + clk_incval = ice_ptp_read_src_incval(hw); + + /* Calculate TUs per second divided by 256 */ + tu_per_sec = (cur_freq * clk_incval) >> 8; + +#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */ +#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */ + + /* Program the 10Gb/40Gb conversion ratio */ + uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000); + + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L, + uix); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n", + err); + return err; + } + + /* Program the 25Gb/100Gb conversion ratio */ + uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000); + + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L, + uix); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle + * @hw: pointer to the HW struct + * @port: port to configure + * + * Configure the number of TUs for the PAR and PCS clocks used as part of the + * timestamp calibration process. This depends on the link speed, as the PHY + * uses different markers depending on the speed. + * + * 1Gb/10Gb/25Gb: + * - Tx/Rx PAR/PCS markers + * + * 25Gb RS: + * - Tx/Rx Reed Solomon gearbox PAR/PCS markers + * + * 40Gb/50Gb: + * - Tx/Rx PAR/PCS markers + * - Rx Deskew PAR/PCS markers + * + * 50G RS and 100GB RS: + * - Tx/Rx Reed Solomon gearbox PAR/PCS markers + * - Rx Deskew PAR/PCS markers + * - Tx PAR/PCS markers + * + * To calculate the conversion, we use the PHC clock frequency (cycles per + * second), the increment value (TUs per cycle), and the related PHY clock + * frequency to calculate the TUs per unit of the PHY link clock. The + * following table shows how the units convert: + * + * cycles | TUs | second + * -------+-------+-------- + * second | cycle | cycles + * + * For each conversion register, look up the appropriate frequency from the + * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program + * this to the appropriate register, preparing hardware to perform timestamp + * calibration to calculate the total Tx or Rx offset to adjust the timestamp + * in order to calibrate for the internal PHY delays. + * + * Note that the increment value ranges up to ~34 bits, and the clock + * frequency is ~29 bits, so multiplying them together should fit within the + * 64 bit arithmetic. + */ +static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port) +{ + u64 cur_freq, clk_incval, tu_per_sec, phy_tus; + enum ice_ptp_link_spd link_spd; + enum ice_ptp_fec_mode fec_mode; + int err; + + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode); + if (err) + return err; + + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); + clk_incval = ice_ptp_read_src_incval(hw); + + /* Calculate TUs per cycle of the PHC clock */ + tu_per_sec = cur_freq * clk_incval; + + /* For each PHY conversion register, look up the appropriate link + * speed frequency and determine the TUs per that clock's cycle time. + * Split this into a high and low value and then program the + * appropriate register. If that link speed does not use the + * associated register, write zeros to clear it instead. + */ + + /* P_REG_PAR_TX_TUS */ + if (e822_vernier[link_spd].tx_par_clk) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].tx_par_clk); + else + phy_tus = 0; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L, + phy_tus); + if (err) + return err; + + /* P_REG_PAR_RX_TUS */ + if (e822_vernier[link_spd].rx_par_clk) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].rx_par_clk); + else + phy_tus = 0; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L, + phy_tus); + if (err) + return err; + + /* P_REG_PCS_TX_TUS */ + if (e822_vernier[link_spd].tx_pcs_clk) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].tx_pcs_clk); + else + phy_tus = 0; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L, + phy_tus); + if (err) + return err; + + /* P_REG_PCS_RX_TUS */ + if (e822_vernier[link_spd].rx_pcs_clk) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].rx_pcs_clk); + else + phy_tus = 0; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L, + phy_tus); + if (err) + return err; + + /* P_REG_DESK_PAR_TX_TUS */ + if (e822_vernier[link_spd].tx_desk_rsgb_par) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].tx_desk_rsgb_par); + else + phy_tus = 0; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L, + phy_tus); + if (err) + return err; + + /* P_REG_DESK_PAR_RX_TUS */ + if (e822_vernier[link_spd].rx_desk_rsgb_par) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].rx_desk_rsgb_par); + else + phy_tus = 0; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L, + phy_tus); + if (err) + return err; + + /* P_REG_DESK_PCS_TX_TUS */ + if (e822_vernier[link_spd].tx_desk_rsgb_pcs) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].tx_desk_rsgb_pcs); + else + phy_tus = 0; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L, + phy_tus); + if (err) + return err; + + /* P_REG_DESK_PCS_RX_TUS */ + if (e822_vernier[link_spd].rx_desk_rsgb_pcs) + phy_tus = div_u64(tu_per_sec, + e822_vernier[link_spd].rx_desk_rsgb_pcs); + else + phy_tus = 0; + + return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L, + phy_tus); +} + +/** + * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port + * @hw: pointer to the HW struct + * @link_spd: the Link speed to calculate for + * + * Calculate the fixed offset due to known static latency data. + */ +static u64 +ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) +{ + u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; + + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); + clk_incval = ice_ptp_read_src_incval(hw); + + /* Calculate TUs per second */ + tu_per_sec = cur_freq * clk_incval; + + /* Calculate number of TUs to add for the fixed Tx latency. Since the + * latency measurement is in 1/100th of a nanosecond, we need to + * multiply by tu_per_sec and then divide by 1e11. This calculation + * overflows 64 bit integer arithmetic, so break it up into two + * divisions by 1e4 first then by 1e7. + */ + fixed_offset = div_u64(tu_per_sec, 10000); + fixed_offset *= e822_vernier[link_spd].tx_fixed_delay; + fixed_offset = div_u64(fixed_offset, 10000000); + + return fixed_offset; +} + +/** + * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset + * @hw: pointer to the HW struct + * @port: the PHY port to configure + * + * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to + * adjust Tx timestamps by. This is calculated by combining some known static + * latency along with the Vernier offset computations done by hardware. + * + * This function will not return successfully until the Tx offset calculations + * have been completed, which requires waiting until at least one packet has + * been transmitted by the device. It is safe to call this function + * periodically until calibration succeeds, as it will only program the offset + * once. + * + * To avoid overflow, when calculating the offset based on the known static + * latency values, we use measurements in 1/100th of a nanosecond, and divide + * the TUs per second up front. This avoids overflow while allowing + * calculation of the adjustment using integer arithmetic. + * + * Returns zero on success, -EBUSY if the hardware vernier offset + * calibration has not completed, or another error code on failure. + */ +int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port) +{ + enum ice_ptp_link_spd link_spd; + enum ice_ptp_fec_mode fec_mode; + u64 total_offset, val; + int err; + u32 reg; + + /* Nothing to do if we've already programmed the offset */ + err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, ®); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n", + port, err); + return err; + } + + if (reg) + return 0; + + err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, ®); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n", + port, err); + return err; + } + + if (!(reg & P_REG_TX_OV_STATUS_OV_M)) + return -EBUSY; + + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode); + if (err) + return err; + + total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd); + + /* Read the first Vernier offset from the PHY register and add it to + * the total offset. + */ + if (link_spd == ICE_PTP_LNK_SPD_1G || + link_spd == ICE_PTP_LNK_SPD_10G || + link_spd == ICE_PTP_LNK_SPD_25G || + link_spd == ICE_PTP_LNK_SPD_25G_RS || + link_spd == ICE_PTP_LNK_SPD_40G || + link_spd == ICE_PTP_LNK_SPD_50G) { + err = ice_read_64b_phy_reg_e82x(hw, port, + P_REG_PAR_PCS_TX_OFFSET_L, + &val); + if (err) + return err; + + total_offset += val; + } + + /* For Tx, we only need to use the second Vernier offset for + * multi-lane link speeds with RS-FEC. The lanes will always be + * aligned. + */ + if (link_spd == ICE_PTP_LNK_SPD_50G_RS || + link_spd == ICE_PTP_LNK_SPD_100G_RS) { + err = ice_read_64b_phy_reg_e82x(hw, port, + P_REG_PAR_TX_TIME_L, + &val); + if (err) + return err; + + total_offset += val; + } + + /* Now that the total offset has been calculated, program it to the + * PHY and indicate that the Tx offset is ready. After this, + * timestamps will be enabled. + */ + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L, + total_offset); + if (err) + return err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1); + if (err) + return err; + + dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n", + port); + + return 0; +} + +/** + * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx + * @hw: pointer to the HW struct + * @port: the PHY port to adjust for + * @link_spd: the current link speed of the PHY + * @fec_mode: the current FEC mode of the PHY + * @pmd_adj: on return, the amount to adjust the Rx total offset by + * + * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY. + * This varies by link speed and FEC mode. The value calculated accounts for + * various delays caused when receiving a packet. + */ +static int +ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port, + enum ice_ptp_link_spd link_spd, + enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj) +{ + u64 cur_freq, clk_incval, tu_per_sec, mult, adj; + u8 pmd_align; + u32 val; + int err; + + err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n", + err); + return err; + } + + pmd_align = (u8)val; + + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); + clk_incval = ice_ptp_read_src_incval(hw); + + /* Calculate TUs per second */ + tu_per_sec = cur_freq * clk_incval; + + /* The PMD alignment adjustment measurement depends on the link speed, + * and whether FEC is enabled. For each link speed, the alignment + * adjustment is calculated by dividing a value by the length of + * a Time Unit in nanoseconds. + * + * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8 + * 10G: align == 65 ? 0 : (align * 0.1 * 32/33) + * 10G w/FEC: align * 0.1 * 32/33 + * 25G: align == 65 ? 0 : (align * 0.4 * 32/33) + * 25G w/FEC: align * 0.4 * 32/33 + * 40G: align == 65 ? 0 : (align * 0.1 * 32/33) + * 40G w/FEC: align * 0.1 * 32/33 + * 50G: align == 65 ? 0 : (align * 0.4 * 32/33) + * 50G w/FEC: align * 0.8 * 32/33 + * + * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33. + * + * To allow for calculating this value using integer arithmetic, we + * instead start with the number of TUs per second, (inverse of the + * length of a Time Unit in nanoseconds), multiply by a value based + * on the PMD alignment register, and then divide by the right value + * calculated based on the table above. To avoid integer overflow this + * division is broken up into a step of dividing by 125 first. + */ + if (link_spd == ICE_PTP_LNK_SPD_1G) { + if (pmd_align == 4) + mult = 10; + else + mult = (pmd_align + 6) % 10; + } else if (link_spd == ICE_PTP_LNK_SPD_10G || + link_spd == ICE_PTP_LNK_SPD_25G || + link_spd == ICE_PTP_LNK_SPD_40G || + link_spd == ICE_PTP_LNK_SPD_50G) { + /* If Clause 74 FEC, always calculate PMD adjust */ + if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74) + mult = pmd_align; + else + mult = 0; + } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS || + link_spd == ICE_PTP_LNK_SPD_50G_RS || + link_spd == ICE_PTP_LNK_SPD_100G_RS) { + if (pmd_align < 17) + mult = pmd_align + 40; + else + mult = pmd_align; + } else { + ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n", + link_spd); + mult = 0; + } + + /* In some cases, there's no need to adjust for the PMD alignment */ + if (!mult) { + *pmd_adj = 0; + return 0; + } + + /* Calculate the adjustment by multiplying TUs per second by the + * appropriate multiplier and divisor. To avoid overflow, we first + * divide by 125, and then handle remaining divisor based on the link + * speed pmd_adj_divisor value. + */ + adj = div_u64(tu_per_sec, 125); + adj *= mult; + adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor); + + /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx + * cycle count is necessary. + */ + if (link_spd == ICE_PTP_LNK_SPD_25G_RS) { + u64 cycle_adj; + u8 rx_cycle; + + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT, + &val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n", + err); + return err; + } + + rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M; + if (rx_cycle) { + mult = (4 - rx_cycle) * 40; + + cycle_adj = div_u64(tu_per_sec, 125); + cycle_adj *= mult; + cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); + + adj += cycle_adj; + } + } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) { + u64 cycle_adj; + u8 rx_cycle; + + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT, + &val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n", + err); + return err; + } + + rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M; + if (rx_cycle) { + mult = rx_cycle * 40; + + cycle_adj = div_u64(tu_per_sec, 125); + cycle_adj *= mult; + cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); + + adj += cycle_adj; + } + } + + /* Return the calculated adjustment */ + *pmd_adj = adj; + + return 0; +} + +/** + * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port + * @hw: pointer to HW struct + * @link_spd: The Link speed to calculate for + * + * Determine the fixed Rx latency for a given link speed. + */ +static u64 +ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) +{ + u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; + + cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw)); + clk_incval = ice_ptp_read_src_incval(hw); + + /* Calculate TUs per second */ + tu_per_sec = cur_freq * clk_incval; + + /* Calculate number of TUs to add for the fixed Rx latency. Since the + * latency measurement is in 1/100th of a nanosecond, we need to + * multiply by tu_per_sec and then divide by 1e11. This calculation + * overflows 64 bit integer arithmetic, so break it up into two + * divisions by 1e4 first then by 1e7. + */ + fixed_offset = div_u64(tu_per_sec, 10000); + fixed_offset *= e822_vernier[link_spd].rx_fixed_delay; + fixed_offset = div_u64(fixed_offset, 10000000); + + return fixed_offset; +} + +/** + * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset + * @hw: pointer to the HW struct + * @port: the PHY port to configure + * + * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to + * adjust Rx timestamps by. This combines calculations from the Vernier offset + * measurements taken in hardware with some data about known fixed delay as + * well as adjusting for multi-lane alignment delay. + * + * This function will not return successfully until the Rx offset calculations + * have been completed, which requires waiting until at least one packet has + * been received by the device. It is safe to call this function periodically + * until calibration succeeds, as it will only program the offset once. + * + * This function must be called only after the offset registers are valid, + * i.e. after the Vernier calibration wait has passed, to ensure that the PHY + * has measured the offset. + * + * To avoid overflow, when calculating the offset based on the known static + * latency values, we use measurements in 1/100th of a nanosecond, and divide + * the TUs per second up front. This avoids overflow while allowing + * calculation of the adjustment using integer arithmetic. + * + * Returns zero on success, -EBUSY if the hardware vernier offset + * calibration has not completed, or another error code on failure. + */ +int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port) +{ + enum ice_ptp_link_spd link_spd; + enum ice_ptp_fec_mode fec_mode; + u64 total_offset, pmd, val; + int err; + u32 reg; + + /* Nothing to do if we've already programmed the offset */ + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, ®); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n", + port, err); + return err; + } + + if (reg) + return 0; + + err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, ®); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n", + port, err); + return err; + } + + if (!(reg & P_REG_RX_OV_STATUS_OV_M)) + return -EBUSY; + + err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode); + if (err) + return err; + + total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd); + + /* Read the first Vernier offset from the PHY register and add it to + * the total offset. + */ + err = ice_read_64b_phy_reg_e82x(hw, port, + P_REG_PAR_PCS_RX_OFFSET_L, + &val); + if (err) + return err; + + total_offset += val; + + /* For Rx, all multi-lane link speeds include a second Vernier + * calibration, because the lanes might not be aligned. + */ + if (link_spd == ICE_PTP_LNK_SPD_40G || + link_spd == ICE_PTP_LNK_SPD_50G || + link_spd == ICE_PTP_LNK_SPD_50G_RS || + link_spd == ICE_PTP_LNK_SPD_100G_RS) { + err = ice_read_64b_phy_reg_e82x(hw, port, + P_REG_PAR_RX_TIME_L, + &val); + if (err) + return err; + + total_offset += val; + } + + /* In addition, Rx must account for the PMD alignment */ + err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd); + if (err) + return err; + + /* For RS-FEC, this adjustment adds delay, but for other modes, it + * subtracts delay. + */ + if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC) + total_offset += pmd; + else + total_offset -= pmd; + + /* Now that the total offset has been calculated, program it to the + * PHY and indicate that the Rx offset is ready. After this, + * timestamps will be enabled. + */ + err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L, + total_offset); + if (err) + return err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1); + if (err) + return err; + + dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n", + port); + + return 0; +} + +/** + * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers + * @hw: pointer to the HW struct + * + * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted + * and received timestamps as invalid. + * + * Return: 0 on success, other error codes when failed to write to PHY + */ +int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw) +{ + u8 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0); + if (err) { + dev_warn(ice_hw_to_dev(hw), + "Failed to clear PHY TX_OFFSET_READY register\n"); + return err; + } + + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0); + if (err) { + dev_warn(ice_hw_to_dev(hw), + "Failed to clear PHY RX_OFFSET_READY register\n"); + return err; + } + } + + return 0; +} + +/** + * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time + * @hw: pointer to the HW struct + * @port: the PHY port to read + * @phy_time: on return, the 64bit PHY timer value + * @phc_time: on return, the lower 64bits of PHC time + * + * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY + * and PHC timer values. + */ +static int +ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time, + u64 *phc_time) +{ + u64 tx_time, rx_time; + u32 zo, lo; + u8 tmr_idx; + int err; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */ + ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); + + /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */ + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME); + if (err) + return err; + + /* Issue the sync to start the ICE_PTP_READ_TIME capture */ + ice_ptp_exec_tmr_cmd(hw); + + /* Read the captured PHC time from the shadow time registers */ + zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx)); + lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx)); + *phc_time = (u64)lo << 32 | zo; + + /* Read the captured PHY time from the PHY shadow registers */ + err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time); + if (err) + return err; + + /* If the PHY Tx and Rx timers don't match, log a warning message. + * Note that this should not happen in normal circumstances since the + * driver always programs them together. + */ + if (tx_time != rx_time) + dev_warn(ice_hw_to_dev(hw), + "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n", + port, (unsigned long long)tx_time, + (unsigned long long)rx_time); + + *phy_time = tx_time; + + return 0; +} + +/** + * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer + * @hw: pointer to the HW struct + * @port: the PHY port to synchronize + * + * Perform an adjustment to ensure that the PHY and PHC timers are in sync. + * This is done by issuing a ICE_PTP_READ_TIME command which triggers a + * simultaneous read of the PHY timer and PHC timer. Then we use the + * difference to calculate an appropriate 2s complement addition to add + * to the PHY timer in order to ensure it reads the same value as the + * primary PHC timer. + */ +static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port) +{ + u64 phc_time, phy_time, difference; + int err; + + if (!ice_ptp_lock(hw)) { + ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n"); + return -EBUSY; + } + + err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time); + if (err) + goto err_unlock; + + /* Calculate the amount required to add to the port time in order for + * it to match the PHC time. + * + * Note that the port adjustment is done using 2s complement + * arithmetic. This is convenient since it means that we can simply + * calculate the difference between the PHC time and the port time, + * and it will be interpreted correctly. + */ + difference = phc_time - phy_time; + + err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference); + if (err) + goto err_unlock; + + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME); + if (err) + goto err_unlock; + + /* Do not perform any action on the main timer */ + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + + /* Issue the sync to activate the time adjustment */ + ice_ptp_exec_tmr_cmd(hw); + + /* Re-capture the timer values to flush the command registers and + * verify that the time was properly adjusted. + */ + err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time); + if (err) + goto err_unlock; + + dev_info(ice_hw_to_dev(hw), + "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n", + port, (unsigned long long)phy_time, + (unsigned long long)phc_time); + + ice_ptp_unlock(hw); + + return 0; + +err_unlock: + ice_ptp_unlock(hw); + return err; +} + +/** + * ice_stop_phy_timer_e82x - Stop the PHY clock timer + * @hw: pointer to the HW struct + * @port: the PHY port to stop + * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS + * + * Stop the clock of a PHY port. This must be done as part of the flow to + * re-calibrate Tx and Rx timestamping offsets whenever the clock time is + * initialized or when link speed changes. + */ +int +ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset) +{ + int err; + u32 val; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0); + if (err) + return err; + + err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0); + if (err) + return err; + + err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val); + if (err) + return err; + + val &= ~P_REG_PS_START_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + + val &= ~P_REG_PS_ENA_CLK_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + + if (soft_reset) { + val |= P_REG_PS_SFT_RESET_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + } + + ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port); + + return 0; +} + +/** + * ice_start_phy_timer_e82x - Start the PHY clock timer + * @hw: pointer to the HW struct + * @port: the PHY port to start + * + * Start the clock of a PHY port. This must be done as part of the flow to + * re-calibrate Tx and Rx timestamping offsets whenever the clock time is + * initialized or when link speed changes. + * + * Hardware will take Vernier measurements on Tx or Rx of packets. + */ +int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port) +{ + u32 lo, hi, val; + u64 incval; + u8 tmr_idx; + int err; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + + err = ice_stop_phy_timer_e82x(hw, port, false); + if (err) + return err; + + ice_phy_cfg_lane_e82x(hw, port); + + err = ice_phy_cfg_uix_e82x(hw, port); + if (err) + return err; + + err = ice_phy_cfg_parpcs_e82x(hw, port); + if (err) + return err; + + lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); + hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); + incval = (u64)hi << 32 | lo; + + err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval); + if (err) + return err; + + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); + if (err) + return err; + + /* Do not perform any action on the main timer */ + ice_ptp_src_cmd(hw, ICE_PTP_NOP); + + ice_ptp_exec_tmr_cmd(hw); + + err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val); + if (err) + return err; + + val |= P_REG_PS_SFT_RESET_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + + val |= P_REG_PS_START_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + + val &= ~P_REG_PS_SFT_RESET_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + + err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); + if (err) + return err; + + ice_ptp_exec_tmr_cmd(hw); + + val |= P_REG_PS_ENA_CLK_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + + val |= P_REG_PS_LOAD_OFFSET_M; + err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val); + if (err) + return err; + + ice_ptp_exec_tmr_cmd(hw); + + err = ice_sync_phy_timer_e82x(hw, port); + if (err) + return err; + + ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port); + + return 0; +} + +/** + * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register + * @hw: pointer to the HW struct + * @quad: the timestamp quad to read from + * @tstamp_ready: contents of the Tx memory status register + * + * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in + * the PHY are ready. A set bit means the corresponding timestamp is valid and + * ready to be captured from the PHY timestamp block. + */ +static int +ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready) +{ + u32 hi, lo; + int err; + + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n", + quad, err); + return err; + } + + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n", + quad, err); + return err; + } + + *tstamp_ready = (u64)hi << 32 | (u64)lo; + + return 0; +} + +/** + * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt + * @hw: pointer to the HW struct + * @quad: the timestamp quad + * @ena: enable or disable interrupt + * @threshold: interrupt threshold + * + * Configure TX timestamp interrupt for the specified quad + * + * Return: 0 on success, other error codes when failed to read/write quad + */ + +int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold) +{ + int err; + u32 val; + + err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); + if (err) + return err; + + val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; + if (ena) { + val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; + val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; + val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold); + } + + return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); +} + +/** + * ice_ptp_init_phy_e82x - initialize PHY parameters + * @ptp: pointer to the PTP HW struct + */ +static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp) +{ + ptp->num_lports = 8; + ptp->ports_per_phy = 8; +} + +/* E810 functions + * + * The following functions operate on the E810 series devices which use + * a separate external PHY. + */ + +/** + * ice_read_phy_reg_e810 - Read register from external PHY on E810 + * @hw: pointer to the HW struct + * @addr: the address to read from + * @val: On return, the value read from the PHY + * + * Read a register from the external PHY on the E810 device. + */ +static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val) +{ + struct ice_sbq_msg_input msg = {0}; + int err; + + msg.msg_addr_low = lower_16_bits(addr); + msg.msg_addr_high = upper_16_bits(addr); + msg.opcode = ice_sbq_msg_rd; + msg.dest_dev = ice_sbq_dev_phy_0; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", + err); + return err; + } + + *val = msg.data; + + return 0; +} + +/** + * ice_write_phy_reg_e810 - Write register on external PHY on E810 + * @hw: pointer to the HW struct + * @addr: the address to writem to + * @val: the value to write to the PHY + * + * Write a value to a register of the external PHY on the E810 device. + */ +static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val) +{ + struct ice_sbq_msg_input msg = {0}; + int err; + + msg.msg_addr_low = lower_16_bits(addr); + msg.msg_addr_high = upper_16_bits(addr); + msg.opcode = ice_sbq_msg_wr; + msg.dest_dev = ice_sbq_dev_phy_0; + msg.data = val; + + err = ice_sbq_rw_reg(hw, &msg, LIBIE_AQ_FLAG_RD); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW + * @hw: pointer to the HW struct + * @idx: the timestamp index to read + * @hi: 8 bit timestamp high value + * @lo: 32 bit timestamp low value + * + * Read a 8bit timestamp high value and 32 bit timestamp low value out of the + * timestamp block of the external PHY on the E810 device using the low latency + * timestamp read. + */ +static int +ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo) +{ + struct ice_e810_params *params = &hw->ptp.phy.e810; + unsigned long flags; + u32 val; + int err; + + spin_lock_irqsave(¶ms->atqbal_wq.lock, flags); + + /* Wait for any pending in-progress low latency interrupt */ + err = wait_event_interruptible_locked_irq(params->atqbal_wq, + !(params->atqbal_flags & + ATQBAL_FLAGS_INTR_IN_PROGRESS)); + if (err) { + spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags); + return err; + } + + /* Write TS index to read to the PF register so the FW can read it */ + val = FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) | REG_LL_PROXY_H_EXEC; + wr32(hw, REG_LL_PROXY_H, val); + + /* Read the register repeatedly until the FW provides us the TS */ + err = read_poll_timeout_atomic(rd32, val, + !FIELD_GET(REG_LL_PROXY_H_EXEC, val), 10, + REG_LL_PROXY_H_TIMEOUT_US, false, hw, + REG_LL_PROXY_H); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n"); + spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags); + return err; + } + + /* High 8 bit value of the TS is on the bits 16:23 */ + *hi = FIELD_GET(REG_LL_PROXY_H_TS_HIGH, val); + + /* Read the low 32 bit value and set the TS valid bit */ + *lo = rd32(hw, REG_LL_PROXY_L) | TS_VALID; + + spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags); + + return 0; +} + +/** + * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq + * @hw: pointer to the HW struct + * @lport: the lport to read from + * @idx: the timestamp index to read + * @hi: 8 bit timestamp high value + * @lo: 32 bit timestamp low value + * + * Read a 8bit timestamp high value and 32 bit timestamp low value out of the + * timestamp block of the external PHY on the E810 device using sideband queue. + */ +static int +ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi, + u32 *lo) +{ + u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); + u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); + u32 lo_val, hi_val; + int err; + + err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", + err); + return err; + } + + err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", + err); + return err; + } + + *lo = lo_val; + *hi = (u8)hi_val; + + return 0; +} + +/** + * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY + * @hw: pointer to the HW struct + * @lport: the lport to read from + * @idx: the timestamp index to read + * @tstamp: on return, the 40bit timestamp value + * + * Read a 40bit timestamp value out of the timestamp block of the external PHY + * on the E810 device. + */ +static int +ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp) +{ + u32 lo = 0; + u8 hi = 0; + int err; + + if (hw->dev_caps.ts_dev_info.ts_ll_read) + err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo); + else + err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo); + + if (err) + return err; + + /* For E810 devices, the timestamp is reported with the lower 32 bits + * in the low register, and the upper 8 bits in the high register. + */ + *tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) | + FIELD_PREP(PHY_EXT_40B_LOW_M, lo); + + return 0; +} + +/** + * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY + * @hw: pointer to the HW struct + * @lport: the lport to read from + * @idx: the timestamp index to reset + * + * Read the timestamp and then forcibly overwrite its value to clear the valid + * bit from the timestamp block of the external PHY on the E810 device. + * + * This function should only be called on an idx whose bit is set according to + * ice_get_phy_tx_tstamp_ready(). + */ +static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx) +{ + u32 lo_addr, hi_addr; + u64 unused_tstamp; + int err; + + err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n", + lport, idx, err); + return err; + } + + lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); + hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); + + err = ice_write_phy_reg_e810(hw, lo_addr, 0); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n", + lport, idx, err); + return err; + } + + err = ice_write_phy_reg_e810(hw, hi_addr, 0); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n", + lport, idx, err); + return err; + } + + return 0; +} + +/** + * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization + * @hw: pointer to HW struct + * + * Perform E810-specific PTP hardware clock initialization steps. + * + * Return: 0 on success, other error codes when failed to initialize TimeSync + */ +static int ice_ptp_init_phc_e810(struct ice_hw *hw) +{ + u8 tmr_idx; + int err; + + ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY); + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx), + GLTSYN_ENA_TSYN_ENA_M); + if (err) + ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n", + err); + + return err; +} + +/** + * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time + * @hw: Board private structure + * @time: Time to initialize the PHY port clock to + * + * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the + * initial clock time. The time will not actually be programmed until the + * driver issues an ICE_PTP_INIT_TIME command. + * + * The time value is the upper 32 bits of the PHY timer, usually in units of + * nominal nanoseconds. + */ +static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time) +{ + u8 tmr_idx; + int err; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n", + err); + return err; + } + + err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_ptp_prep_phy_adj_ll_e810 - Prep PHY ports for a time adjustment + * @hw: pointer to HW struct + * @adj: adjustment value to program + * + * Use the low latency firmware interface to program PHY time adjustment to + * all PHY ports. + * + * Return: 0 on success, -EBUSY on timeout + */ +static int ice_ptp_prep_phy_adj_ll_e810(struct ice_hw *hw, s32 adj) +{ + const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + struct ice_e810_params *params = &hw->ptp.phy.e810; + u32 val; + int err; + + spin_lock_irq(¶ms->atqbal_wq.lock); + + /* Wait for any pending in-progress low latency interrupt */ + err = wait_event_interruptible_locked_irq(params->atqbal_wq, + !(params->atqbal_flags & + ATQBAL_FLAGS_INTR_IN_PROGRESS)); + if (err) { + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + wr32(hw, REG_LL_PROXY_L, adj); + val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_ADJ) | + FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC; + wr32(hw, REG_LL_PROXY_H, val); + + /* Read the register repeatedly until the FW indicates completion */ + err = read_poll_timeout_atomic(rd32, val, + !FIELD_GET(REG_LL_PROXY_H_EXEC, val), + 10, REG_LL_PROXY_H_TIMEOUT_US, false, hw, + REG_LL_PROXY_H); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer adjustment using low latency interface\n"); + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + spin_unlock_irq(¶ms->atqbal_wq.lock); + + return 0; +} + +/** + * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment + * @hw: pointer to HW struct + * @adj: adjustment value to program + * + * Prepare the PHY port for an atomic adjustment by programming the PHY + * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment + * is completed by issuing an ICE_PTP_ADJ_TIME sync command. + * + * The adjustment value only contains the portion used for the upper 32bits of + * the PHY timer, usually in units of nominal nanoseconds. Negative + * adjustments are supported using 2s complement arithmetic. + */ +static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj) +{ + u8 tmr_idx; + int err; + + if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update) + return ice_ptp_prep_phy_adj_ll_e810(hw, adj); + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + /* Adjustments are represented as signed 2's complement values in + * nanoseconds. Sub-nanosecond adjustment is not supported. + */ + err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n", + err); + return err; + } + + err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_ptp_prep_phy_incval_ll_e810 - Prep PHY ports increment value change + * @hw: pointer to HW struct + * @incval: The new 40bit increment value to prepare + * + * Use the low latency firmware interface to program PHY time increment value + * for all PHY ports. + * + * Return: 0 on success, -EBUSY on timeout + */ +static int ice_ptp_prep_phy_incval_ll_e810(struct ice_hw *hw, u64 incval) +{ + const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + struct ice_e810_params *params = &hw->ptp.phy.e810; + u32 val; + int err; + + spin_lock_irq(¶ms->atqbal_wq.lock); + + /* Wait for any pending in-progress low latency interrupt */ + err = wait_event_interruptible_locked_irq(params->atqbal_wq, + !(params->atqbal_flags & + ATQBAL_FLAGS_INTR_IN_PROGRESS)); + if (err) { + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + wr32(hw, REG_LL_PROXY_L, lower_32_bits(incval)); + val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_FREQ) | + FIELD_PREP(REG_LL_PROXY_H_TS_HIGH, (u8)upper_32_bits(incval)) | + FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC; + wr32(hw, REG_LL_PROXY_H, val); + + /* Read the register repeatedly until the FW indicates completion */ + err = read_poll_timeout_atomic(rd32, val, + !FIELD_GET(REG_LL_PROXY_H_EXEC, val), + 10, REG_LL_PROXY_H_TIMEOUT_US, false, hw, + REG_LL_PROXY_H); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer increment using low latency interface\n"); + spin_unlock_irq(¶ms->atqbal_wq.lock); + return err; + } + + spin_unlock_irq(¶ms->atqbal_wq.lock); + + return 0; +} + +/** + * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change + * @hw: pointer to HW struct + * @incval: The new 40bit increment value to prepare + * + * Prepare the PHY port for a new increment value by programming the PHY + * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is + * completed by issuing an ICE_PTP_INIT_INCVAL command. + */ +static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) +{ + u32 high, low; + u8 tmr_idx; + int err; + + if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update) + return ice_ptp_prep_phy_incval_ll_e810(hw, incval); + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + low = lower_32_bits(incval); + high = upper_32_bits(incval); + + err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n", + err); + return err; + } + + err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n", + err); + return err; + } + + return 0; +} + +/** + * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command + * @hw: pointer to HW struct + * @cmd: Command to be sent to the port + * + * Prepare the external PHYs connected to this device for a timer sync + * command. + */ +static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); + + return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val); +} + +/** + * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register + * @hw: pointer to the HW struct + * @port: the PHY port to read + * @tstamp_ready: contents of the Tx memory status register + * + * E810 devices do not use a Tx memory status register. Instead simply + * indicate that all timestamps are currently ready. + */ +static int +ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready) +{ + *tstamp_ready = 0xFFFFFFFFFFFFFFFF; + return 0; +} + +/* E810 SMA functions + * + * The following functions operate specifically on E810 hardware and are used + * to access the extended GPIOs available. + */ + +/** + * ice_read_sma_ctrl + * @hw: pointer to the hw struct + * @data: pointer to data to be read from the GPIO controller + * + * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the + * PCA9575 expander, so only bits 3-7 in data are valid. + */ +int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data) +{ + int status; + u16 handle; + u8 i; + + status = ice_get_pca9575_handle(hw, &handle); + if (status) + return status; + + *data = 0; + + for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) { + bool pin; + + status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, + &pin, NULL); + if (status) + break; + *data |= (u8)(!pin) << i; + } + + return status; +} + +/** + * ice_write_sma_ctrl + * @hw: pointer to the hw struct + * @data: data to be written to the GPIO controller + * + * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1 + * of the PCA9575 expander, so only bits 3-7 in data are valid. + */ +int ice_write_sma_ctrl(struct ice_hw *hw, u8 data) +{ + int status; + u16 handle; + u8 i; + + status = ice_get_pca9575_handle(hw, &handle); + if (status) + return status; + + for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) { + bool pin; + + pin = !(data & (1 << i)); + status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, + pin, NULL); + if (status) + break; + } + + return status; +} + +/** + * ice_ptp_read_sdp_ac - read SDP available connections section from NVM + * @hw: pointer to the HW struct + * @entries: returns the SDP available connections section from NVM + * @num_entries: returns the number of valid entries + * + * Return: 0 on success, negative error code if NVM read failed or section does + * not exist or is corrupted + */ +int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries) +{ + __le16 data; + u32 offset; + int err; + + err = ice_acquire_nvm(hw, ICE_RES_READ); + if (err) + goto exit; + + /* Read the offset of SDP_AC */ + offset = ICE_AQC_NVM_SDP_AC_PTR_OFFSET; + err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true, + NULL); + if (err) + goto exit; + + /* Check if section exist */ + offset = FIELD_GET(ICE_AQC_NVM_SDP_AC_PTR_M, le16_to_cpu(data)); + if (offset == ICE_AQC_NVM_SDP_AC_PTR_INVAL) { + err = -EINVAL; + goto exit; + } + + if (offset & ICE_AQC_NVM_SDP_AC_PTR_TYPE_M) { + offset &= ICE_AQC_NVM_SDP_AC_PTR_M; + offset *= ICE_AQC_NVM_SECTOR_UNIT; + } else { + offset *= sizeof(data); + } + + /* Skip reading section length and read the number of valid entries */ + offset += sizeof(data); + err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true, + NULL); + if (err) + goto exit; + *num_entries = le16_to_cpu(data); + + /* Read SDP configuration section */ + offset += sizeof(data); + err = ice_aq_read_nvm(hw, 0, offset, *num_entries * sizeof(data), + entries, false, true, NULL); + +exit: + if (err) + dev_dbg(ice_hw_to_dev(hw), "Failed to configure SDP connection section\n"); + ice_release_nvm(hw); + return err; +} + +/** + * ice_ptp_init_phy_e810 - initialize PHY parameters + * @ptp: pointer to the PTP HW struct + */ +static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp) +{ + ptp->num_lports = 8; + ptp->ports_per_phy = 4; + + init_waitqueue_head(&ptp->phy.e810.atqbal_wq); +} + +/* E830 functions + * + * The following functions operate on the E830 series devices. + * + */ + +/** + * ice_ptp_init_phc_e830 - Perform E830 specific PHC initialization + * @hw: pointer to HW struct + * + * Perform E830-specific PTP hardware clock initialization steps. + */ +static void ice_ptp_init_phc_e830(const struct ice_hw *hw) +{ + ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY); +} + +/** + * ice_ptp_write_direct_incval_e830 - Prep PHY port increment value change + * @hw: pointer to HW struct + * @incval: The new 40bit increment value to prepare + * + * Prepare the PHY port for a new increment value by programming the PHC + * GLTSYN_INCVAL_L and GLTSYN_INCVAL_H registers. The actual change is + * completed by FW automatically. + */ +static void ice_ptp_write_direct_incval_e830(const struct ice_hw *hw, + u64 incval) +{ + u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + wr32(hw, GLTSYN_INCVAL_L(tmr_idx), lower_32_bits(incval)); + wr32(hw, GLTSYN_INCVAL_H(tmr_idx), upper_32_bits(incval)); +} + +/** + * ice_ptp_write_direct_phc_time_e830 - Prepare PHY port with initial time + * @hw: Board private structure + * @time: Time to initialize the PHY port clock to + * + * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the + * initial clock time. The time will not actually be programmed until the + * driver issues an ICE_PTP_INIT_TIME command. + * + * The time value is the upper 32 bits of the PHY timer, usually in units of + * nominal nanoseconds. + */ +static void ice_ptp_write_direct_phc_time_e830(const struct ice_hw *hw, + u64 time) +{ + u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + wr32(hw, GLTSYN_TIME_0(tmr_idx), 0); + wr32(hw, GLTSYN_TIME_L(tmr_idx), lower_32_bits(time)); + wr32(hw, GLTSYN_TIME_H(tmr_idx), upper_32_bits(time)); +} + +/** + * ice_ptp_port_cmd_e830 - Prepare all external PHYs for a timer command + * @hw: pointer to HW struct + * @cmd: Command to be sent to the port + * + * Prepare the external PHYs connected to this device for a timer sync + * command. + * + * Return: 0 on success, negative error code when PHY write failed + */ +static int ice_ptp_port_cmd_e830(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd); + + return ice_write_phy_reg_e810(hw, E830_ETH_GLTSYN_CMD, val); +} + +/** + * ice_read_phy_tstamp_e830 - Read a PHY timestamp out of the external PHY + * @hw: pointer to the HW struct + * @idx: the timestamp index to read + * @tstamp: on return, the 40bit timestamp value + * + * Read a 40bit timestamp value out of the timestamp block of the external PHY + * on the E830 device. + */ +static void ice_read_phy_tstamp_e830(const struct ice_hw *hw, u8 idx, + u64 *tstamp) +{ + u32 hi, lo; + + hi = rd32(hw, E830_PRTTSYN_TXTIME_H(idx)); + lo = rd32(hw, E830_PRTTSYN_TXTIME_L(idx)); + + /* For E830 devices, the timestamp is reported with the lower 32 bits + * in the low register, and the upper 8 bits in the high register. + */ + *tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) | + FIELD_PREP(PHY_EXT_40B_LOW_M, lo); +} + +/** + * ice_get_phy_tx_tstamp_ready_e830 - Read Tx memory status register + * @hw: pointer to the HW struct + * @port: the PHY port to read + * @tstamp_ready: contents of the Tx memory status register + */ +static void ice_get_phy_tx_tstamp_ready_e830(const struct ice_hw *hw, u8 port, + u64 *tstamp_ready) +{ + *tstamp_ready = rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_H); + *tstamp_ready <<= 32; + *tstamp_ready |= rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_L); +} + +/** + * ice_ptp_init_phy_e830 - initialize PHY parameters + * @ptp: pointer to the PTP HW struct + */ +static void ice_ptp_init_phy_e830(struct ice_ptp_hw *ptp) +{ + ptp->num_lports = 8; + ptp->ports_per_phy = 4; +} + +/* Device agnostic functions + * + * The following functions implement shared behavior common to all devices, + * possibly calling a device specific implementation where necessary. + */ + +/** + * ice_ptp_lock - Acquire PTP global semaphore register lock + * @hw: pointer to the HW struct + * + * Acquire the global PTP hardware semaphore lock. Returns true if the lock + * was acquired, false otherwise. + * + * The PFTSYN_SEM register sets the busy bit on read, returning the previous + * value. If software sees the busy bit cleared, this means that this function + * acquired the lock (and the busy bit is now set). If software sees the busy + * bit set, it means that another function acquired the lock. + * + * Software must clear the busy bit with a write to release the lock for other + * functions when done. + */ +bool ice_ptp_lock(struct ice_hw *hw) +{ + u32 hw_lock; + int i; + +#define MAX_TRIES 15 + + for (i = 0; i < MAX_TRIES; i++) { + hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); + hw_lock = hw_lock & PFTSYN_SEM_BUSY_M; + if (hw_lock) { + /* Somebody is holding the lock */ + usleep_range(5000, 6000); + continue; + } + + break; + } + + return !hw_lock; +} + +/** + * ice_ptp_unlock - Release PTP global semaphore register lock + * @hw: pointer to the HW struct + * + * Release the global PTP hardware semaphore lock. This is done by writing to + * the PFTSYN_SEM register. + */ +void ice_ptp_unlock(struct ice_hw *hw) +{ + wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0); +} + +/** + * ice_ptp_init_hw - Initialize hw based on device type + * @hw: pointer to the HW structure + * + * Determine the PHY model for the device, and initialize hw + * for use by other functions. + */ +void ice_ptp_init_hw(struct ice_hw *hw) +{ + struct ice_ptp_hw *ptp = &hw->ptp; + + switch (hw->mac_type) { + case ICE_MAC_E810: + ice_ptp_init_phy_e810(ptp); + break; + case ICE_MAC_E830: + ice_ptp_init_phy_e830(ptp); + break; + case ICE_MAC_GENERIC: + ice_ptp_init_phy_e82x(ptp); + break; + case ICE_MAC_GENERIC_3K_E825: + ice_ptp_init_phy_e825(hw); + break; + default: + return; + } +} + +/** + * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command + * @hw: pointer to HW struct + * @port: Port to which cmd has to be sent + * @cmd: Command to be sent to the port + * + * Prepare one port for the upcoming timer sync command. Do not use this for + * programming only a single port, instead use ice_ptp_one_port_cmd() to + * ensure non-modified ports get properly initialized to ICE_PTP_NOP. + * + * Return: + * * %0 - success + * %-EBUSY - PHY type not supported + * * %other - failed to write port command + */ +static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port, + enum ice_ptp_tmr_cmd cmd) +{ + switch (hw->mac_type) { + case ICE_MAC_GENERIC: + return ice_ptp_write_port_cmd_e82x(hw, port, cmd); + case ICE_MAC_GENERIC_3K_E825: + return ice_ptp_write_port_cmd_eth56g(hw, port, cmd); + default: + return -EOPNOTSUPP; + } +} + +/** + * ice_ptp_one_port_cmd - Program one PHY port for a timer command + * @hw: pointer to HW struct + * @configured_port: the port that should execute the command + * @configured_cmd: the command to be executed on the configured port + * + * Prepare one port for executing a timer command, while preparing all other + * ports to ICE_PTP_NOP. This allows executing a command on a single port + * while ensuring all other ports do not execute stale commands. + * + * Return: + * * %0 - success + * * %other - failed to write port command + */ +int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port, + enum ice_ptp_tmr_cmd configured_cmd) +{ + u32 port; + + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + /* Program the configured port with the configured command, + * program all other ports with ICE_PTP_NOP. + */ + if (port == configured_port) + err = ice_ptp_write_port_cmd(hw, port, configured_cmd); + else + err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP); + + if (err) + return err; + } + + return 0; +} + +/** + * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command + * @hw: pointer to HW struct + * @cmd: the timer command to setup + * + * Prepare all PHY ports on this device for the requested timer command. For + * some families this can be done in one shot, but for other families each + * port must be configured individually. + * + * Return: + * * %0 - success + * * %other - failed to write port command + */ +static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + u32 port; + + /* PHY models which can program all ports simultaneously */ + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_ptp_port_cmd_e810(hw, cmd); + case ICE_MAC_E830: + return ice_ptp_port_cmd_e830(hw, cmd); + default: + break; + } + + /* PHY models which require programming each port separately */ + for (port = 0; port < hw->ptp.num_lports; port++) { + int err; + + err = ice_ptp_write_port_cmd(hw, port, cmd); + if (err) + return err; + } + + return 0; +} + +/** + * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command + * @hw: pointer to HW struct + * @cmd: the command to issue + * + * Prepare the source timer and PHY timers and then trigger the requested + * command. This causes the shadow registers previously written in preparation + * for the command to be synchronously applied to both the source and PHY + * timers. + */ +static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) +{ + int err; + + /* First, prepare the source timer */ + ice_ptp_src_cmd(hw, cmd); + + /* Next, prepare the ports */ + err = ice_ptp_port_cmd(hw, cmd); + if (err) { + ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n", + cmd, err); + return err; + } + + /* Write the sync command register to drive both source and PHY timer + * commands synchronously + */ + ice_ptp_exec_tmr_cmd(hw); + + return 0; +} + +/** + * ice_ptp_init_time - Initialize device time to provided value + * @hw: pointer to HW struct + * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H) + * + * Initialize the device to the specified time provided. This requires a three + * step process: + * + * 1) write the new init time to the source timer shadow registers + * 2) write the new init time to the PHY timer shadow registers + * 3) issue an init_time timer command to synchronously switch both the source + * and port timers to the new init time value at the next clock cycle. + */ +int ice_ptp_init_time(struct ice_hw *hw, u64 time) +{ + u8 tmr_idx; + int err; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + /* Source timers */ + /* For E830 we don't need to use shadow registers, its automatic */ + if (hw->mac_type == ICE_MAC_E830) { + ice_ptp_write_direct_phc_time_e830(hw, time); + return 0; + } + + wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time)); + wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time)); + wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0); + + /* PHY timers */ + /* Fill Rx and Tx ports and send msg to PHY */ + switch (hw->mac_type) { + case ICE_MAC_E810: + err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF); + break; + case ICE_MAC_GENERIC: + err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF); + break; + case ICE_MAC_GENERIC_3K_E825: + err = ice_ptp_prep_phy_time_eth56g(hw, + (u32)(time & 0xFFFFFFFF)); + break; + default: + err = -EOPNOTSUPP; + } + + if (err) + return err; + + return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME); +} + +/** + * ice_ptp_write_incval - Program PHC with new increment value + * @hw: pointer to HW struct + * @incval: Source timer increment value per clock cycle + * + * Program the PHC with a new increment value. This requires a three-step + * process: + * + * 1) Write the increment value to the source timer shadow registers + * 2) Write the increment value to the PHY timer shadow registers + * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both + * the source and port timers to the new increment value at the next clock + * cycle. + */ +int ice_ptp_write_incval(struct ice_hw *hw, u64 incval) +{ + u8 tmr_idx; + int err; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + /* For E830 we don't need to use shadow registers, its automatic */ + if (hw->mac_type == ICE_MAC_E830) { + ice_ptp_write_direct_incval_e830(hw, incval); + return 0; + } + + /* Shadow Adjust */ + wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval)); + wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval)); + + switch (hw->mac_type) { + case ICE_MAC_E810: + err = ice_ptp_prep_phy_incval_e810(hw, incval); + break; + case ICE_MAC_GENERIC: + err = ice_ptp_prep_phy_incval_e82x(hw, incval); + break; + case ICE_MAC_GENERIC_3K_E825: + err = ice_ptp_prep_phy_incval_eth56g(hw, incval); + break; + default: + err = -EOPNOTSUPP; + } + + if (err) + return err; + + return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL); +} + +/** + * ice_ptp_write_incval_locked - Program new incval while holding semaphore + * @hw: pointer to HW struct + * @incval: Source timer increment value per clock cycle + * + * Program a new PHC incval while holding the PTP semaphore. + */ +int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval) +{ + int err; + + if (!ice_ptp_lock(hw)) + return -EBUSY; + + err = ice_ptp_write_incval(hw, incval); + + ice_ptp_unlock(hw); + + return err; +} + +/** + * ice_ptp_adj_clock - Adjust PHC clock time atomically + * @hw: pointer to HW struct + * @adj: Adjustment in nanoseconds + * + * Perform an atomic adjustment of the PHC time by the specified number of + * nanoseconds. This requires a three-step process: + * + * 1) Write the adjustment to the source timer shadow registers + * 2) Write the adjustment to the PHY timer shadow registers + * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the + * adjustment to both the source and port timers at the next clock cycle. + */ +int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) +{ + u8 tmr_idx; + int err; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + /* Write the desired clock adjustment into the GLTSYN_SHADJ register. + * For an ICE_PTP_ADJ_TIME command, this set of registers represents + * the value to add to the clock time. It supports subtraction by + * interpreting the value as a 2's complement integer. + */ + wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0); + wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj); + + switch (hw->mac_type) { + case ICE_MAC_E810: + err = ice_ptp_prep_phy_adj_e810(hw, adj); + break; + case ICE_MAC_E830: + /* E830 sync PHYs automatically after setting GLTSYN_SHADJ */ + return 0; + case ICE_MAC_GENERIC: + err = ice_ptp_prep_phy_adj_e82x(hw, adj); + break; + case ICE_MAC_GENERIC_3K_E825: + err = ice_ptp_prep_phy_adj_eth56g(hw, adj); + break; + default: + err = -EOPNOTSUPP; + } + + if (err) + return err; + + return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME); +} + +/** + * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block + * @hw: pointer to the HW struct + * @block: the block to read from + * @idx: the timestamp index to read + * @tstamp: on return, the 40bit timestamp value + * + * Read a 40bit timestamp value out of the timestamp block. For E822 devices, + * the block is the quad to read from. For E810 devices, the block is the + * logical port to read from. + */ +int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp) +{ + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_read_phy_tstamp_e810(hw, block, idx, tstamp); + case ICE_MAC_E830: + ice_read_phy_tstamp_e830(hw, idx, tstamp); + return 0; + case ICE_MAC_GENERIC: + return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp); + case ICE_MAC_GENERIC_3K_E825: + return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp); + default: + return -EOPNOTSUPP; + } +} + +/** + * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block + * @hw: pointer to the HW struct + * @block: the block to read from + * @idx: the timestamp index to reset + * + * Clear a timestamp from the timestamp block, discarding its value without + * returning it. This resets the memory status bit for the timestamp index + * allowing it to be reused for another timestamp in the future. + * + * For E822 devices, the block number is the PHY quad to clear from. For E810 + * devices, the block number is the logical port to clear from. + * + * This function must only be called on a timestamp index whose valid bit is + * set according to ice_get_phy_tx_tstamp_ready(). + */ +int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx) +{ + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_clear_phy_tstamp_e810(hw, block, idx); + case ICE_MAC_GENERIC: + return ice_clear_phy_tstamp_e82x(hw, block, idx); + case ICE_MAC_GENERIC_3K_E825: + return ice_clear_ptp_tstamp_eth56g(hw, block, idx); + default: + return -EOPNOTSUPP; + } +} + +/** + * ice_get_pf_c827_idx - find and return the C827 index for the current pf + * @hw: pointer to the hw struct + * @idx: index of the found C827 PHY + * Return: + * * 0 - success + * * negative - failure + */ +static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx) +{ + struct ice_aqc_get_link_topo cmd; + u8 node_part_number; + u16 node_handle; + int status; + u8 ctx; + + if (hw->mac_type != ICE_MAC_E810) + return -ENODEV; + + if (hw->device_id != ICE_DEV_ID_E810C_QSFP) { + *idx = C827_0; + return 0; + } + + memset(&cmd, 0, sizeof(cmd)); + + ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S; + ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S; + cmd.addr.topo_params.node_type_ctx = ctx; + + status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number, + &node_handle); + if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827) + return -ENOENT; + + if (node_handle == E810C_QSFP_C827_0_HANDLE) + *idx = C827_0; + else if (node_handle == E810C_QSFP_C827_1_HANDLE) + *idx = C827_1; + else + return -EIO; + + return 0; +} + +/** + * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks + * @hw: pointer to the HW struct + */ +void ice_ptp_reset_ts_memory(struct ice_hw *hw) +{ + switch (hw->mac_type) { + case ICE_MAC_GENERIC: + ice_ptp_reset_ts_memory_e82x(hw); + break; + case ICE_MAC_GENERIC_3K_E825: + ice_ptp_reset_ts_memory_eth56g(hw); + break; + case ICE_MAC_E810: + default: + return; + } +} + +/** + * ice_ptp_init_phc - Initialize PTP hardware clock + * @hw: pointer to the HW struct + * + * Perform the steps required to initialize the PTP hardware clock. + */ +int ice_ptp_init_phc(struct ice_hw *hw) +{ + u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + /* Enable source clocks */ + wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); + + /* Clear event err indications for auxiliary pins */ + (void)rd32(hw, GLTSYN_STAT(src_idx)); + + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_ptp_init_phc_e810(hw); + case ICE_MAC_E830: + ice_ptp_init_phc_e830(hw); + return 0; + case ICE_MAC_GENERIC: + return ice_ptp_init_phc_e82x(hw); + case ICE_MAC_GENERIC_3K_E825: + return 0; + default: + return -EOPNOTSUPP; + } +} + +/** + * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication + * @hw: pointer to the HW struct + * @block: the timestamp block to check + * @tstamp_ready: storage for the PHY Tx memory status information + * + * Check the PHY for Tx timestamp memory status. This reports a 64 bit value + * which indicates which timestamps in the block may be captured. A set bit + * means the timestamp can be read. An unset bit means the timestamp is not + * ready and software should avoid reading the register. + */ +int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready) +{ + switch (hw->mac_type) { + case ICE_MAC_E810: + return ice_get_phy_tx_tstamp_ready_e810(hw, block, + tstamp_ready); + case ICE_MAC_E830: + ice_get_phy_tx_tstamp_ready_e830(hw, block, tstamp_ready); + return 0; + case ICE_MAC_GENERIC: + return ice_get_phy_tx_tstamp_ready_e82x(hw, block, + tstamp_ready); + case ICE_MAC_GENERIC_3K_E825: + return ice_get_phy_tx_tstamp_ready_eth56g(hw, block, + tstamp_ready); + default: + return -EOPNOTSUPP; + } +} + +/** + * ice_cgu_get_pin_desc_e823 - get pin description array + * @hw: pointer to the hw struct + * @input: if request is done against input or output pin + * @size: number of inputs/outputs + * + * Return: pointer to pin description array associated to given hw. + */ +static const struct ice_cgu_pin_desc * +ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size) +{ + static const struct ice_cgu_pin_desc *t; + + if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) { + if (input) { + t = ice_e823_zl_cgu_inputs; + *size = ARRAY_SIZE(ice_e823_zl_cgu_inputs); + } else { + t = ice_e823_zl_cgu_outputs; + *size = ARRAY_SIZE(ice_e823_zl_cgu_outputs); + } + } else if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) { + if (input) { + t = ice_e823_si_cgu_inputs; + *size = ARRAY_SIZE(ice_e823_si_cgu_inputs); + } else { + t = ice_e823_si_cgu_outputs; + *size = ARRAY_SIZE(ice_e823_si_cgu_outputs); + } + } else { + t = NULL; + *size = 0; + } + + return t; +} + +/** + * ice_cgu_get_pin_desc - get pin description array + * @hw: pointer to the hw struct + * @input: if request is done against input or output pins + * @size: size of array returned by function + * + * Return: pointer to pin description array associated to given hw. + */ +static const struct ice_cgu_pin_desc * +ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size) +{ + const struct ice_cgu_pin_desc *t = NULL; + + switch (hw->device_id) { + case ICE_DEV_ID_E810C_SFP: + if (input) { + t = ice_e810t_sfp_cgu_inputs; + *size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs); + } else { + t = ice_e810t_sfp_cgu_outputs; + *size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs); + } + break; + case ICE_DEV_ID_E810C_QSFP: + if (input) { + t = ice_e810t_qsfp_cgu_inputs; + *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs); + } else { + t = ice_e810t_qsfp_cgu_outputs; + *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs); + } + break; + case ICE_DEV_ID_E823L_10G_BASE_T: + case ICE_DEV_ID_E823L_1GBE: + case ICE_DEV_ID_E823L_BACKPLANE: + case ICE_DEV_ID_E823L_QSFP: + case ICE_DEV_ID_E823L_SFP: + case ICE_DEV_ID_E823C_10G_BASE_T: + case ICE_DEV_ID_E823C_BACKPLANE: + case ICE_DEV_ID_E823C_QSFP: + case ICE_DEV_ID_E823C_SFP: + case ICE_DEV_ID_E823C_SGMII: + t = ice_cgu_get_pin_desc_e823(hw, input, size); + break; + default: + break; + } + + return t; +} + +/** + * ice_cgu_get_num_pins - get pin description array size + * @hw: pointer to the hw struct + * @input: if request is done against input or output pins + * + * Return: size of pin description array for given hw. + */ +int ice_cgu_get_num_pins(struct ice_hw *hw, bool input) +{ + const struct ice_cgu_pin_desc *t; + int size; + + t = ice_cgu_get_pin_desc(hw, input, &size); + if (t) + return size; + + return 0; +} + +/** + * ice_cgu_get_pin_type - get pin's type + * @hw: pointer to the hw struct + * @pin: pin index + * @input: if request is done against input or output pin + * + * Return: type of a pin. + */ +enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input) +{ + const struct ice_cgu_pin_desc *t; + int t_size; + + t = ice_cgu_get_pin_desc(hw, input, &t_size); + + if (!t) + return 0; + + if (pin >= t_size) + return 0; + + return t[pin].type; +} + +/** + * ice_cgu_get_pin_freq_supp - get pin's supported frequency + * @hw: pointer to the hw struct + * @pin: pin index + * @input: if request is done against input or output pin + * @num: output number of supported frequencies + * + * Get frequency supported number and array of supported frequencies. + * + * Return: array of supported frequencies for given pin. + */ +struct dpll_pin_frequency * +ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num) +{ + const struct ice_cgu_pin_desc *t; + int t_size; + + *num = 0; + t = ice_cgu_get_pin_desc(hw, input, &t_size); + if (!t) + return NULL; + if (pin >= t_size) + return NULL; + *num = t[pin].freq_supp_num; + + return t[pin].freq_supp; +} + +/** + * ice_cgu_get_pin_name - get pin's name + * @hw: pointer to the hw struct + * @pin: pin index + * @input: if request is done against input or output pin + * + * Return: + * * null terminated char array with name + * * NULL in case of failure + */ +const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input) +{ + const struct ice_cgu_pin_desc *t; + int t_size; + + t = ice_cgu_get_pin_desc(hw, input, &t_size); + + if (!t) + return NULL; + + if (pin >= t_size) + return NULL; + + return t[pin].name; +} + +/** + * ice_get_cgu_state - get the state of the DPLL + * @hw: pointer to the hw struct + * @dpll_idx: Index of internal DPLL unit + * @last_dpll_state: last known state of DPLL + * @pin: pointer to a buffer for returning currently active pin + * @ref_state: reference clock state + * @eec_mode: eec mode of the DPLL + * @phase_offset: pointer to a buffer for returning phase offset + * @dpll_state: state of the DPLL (output) + * + * This function will read the state of the DPLL(dpll_idx). Non-null + * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to + * retrieve currently active pin, state, mode and phase_offset respectively. + * + * Return: state of the DPLL + */ +int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx, + enum dpll_lock_status last_dpll_state, u8 *pin, + u8 *ref_state, u8 *eec_mode, s64 *phase_offset, + enum dpll_lock_status *dpll_state) +{ + u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config; + s64 hw_phase_offset; + int status; + + status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state, + &hw_dpll_state, &hw_config, + &hw_phase_offset, &hw_eec_mode); + if (status) + return status; + + if (pin) + /* current ref pin in dpll_state_refsel_status_X register */ + *pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL; + if (phase_offset) + *phase_offset = hw_phase_offset; + if (ref_state) + *ref_state = hw_ref_state; + if (eec_mode) + *eec_mode = hw_eec_mode; + if (!dpll_state) + return 0; + + /* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ + * it would never return to FREERUN. This aligns to ITU-T G.781 + * Recommendation. We cannot report HOLDOVER as HO memory is cleared + * while switching to another reference. + * Only for situations where previous state was either: "LOCKED without + * HO_ACQ" or "HOLDOVER" we actually back to FREERUN. + */ + if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) { + if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY) + *dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ; + else + *dpll_state = DPLL_LOCK_STATUS_LOCKED; + } else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ || + last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) { + *dpll_state = DPLL_LOCK_STATUS_HOLDOVER; + } else { + *dpll_state = DPLL_LOCK_STATUS_UNLOCKED; + } + + return 0; +} + +/** + * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins + * @hw: pointer to the hw struct + * @base_idx: returns index of first recovered clock pin on device + * @pin_num: returns number of recovered clock pins available on device + * + * Based on hw provide caller info about recovery clock pins available on the + * board. + * + * Return: + * * 0 - success, information is valid + * * negative - failure, information is not valid + */ +int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num) +{ + u8 phy_idx; + int ret; + + switch (hw->device_id) { + case ICE_DEV_ID_E810C_SFP: + case ICE_DEV_ID_E810C_QSFP: + + ret = ice_get_pf_c827_idx(hw, &phy_idx); + if (ret) + return ret; + *base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN); + *pin_num = ICE_E810_RCLK_PINS_NUM; + ret = 0; + break; + case ICE_DEV_ID_E823L_10G_BASE_T: + case ICE_DEV_ID_E823L_1GBE: + case ICE_DEV_ID_E823L_BACKPLANE: + case ICE_DEV_ID_E823L_QSFP: + case ICE_DEV_ID_E823L_SFP: + case ICE_DEV_ID_E823C_10G_BASE_T: + case ICE_DEV_ID_E823C_BACKPLANE: + case ICE_DEV_ID_E823C_QSFP: + case ICE_DEV_ID_E823C_SFP: + case ICE_DEV_ID_E823C_SGMII: + *pin_num = ICE_E82X_RCLK_PINS_NUM; + ret = 0; + if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) + *base_idx = ZL_REF1P; + else if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) + *base_idx = SI_REF1P; + else + ret = -ENODEV; + + break; + default: + ret = -ENODEV; + break; + } + + return ret; +} + +/** + * ice_cgu_get_output_pin_state_caps - get output pin state capabilities + * @hw: pointer to the hw struct + * @pin_id: id of a pin + * @caps: capabilities to modify + * + * Return: + * * 0 - success, state capabilities were modified + * * negative - failure, capabilities were not modified + */ +int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id, + unsigned long *caps) +{ + bool can_change = true; + + switch (hw->device_id) { + case ICE_DEV_ID_E810C_SFP: + if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3) + can_change = false; + break; + case ICE_DEV_ID_E810C_QSFP: + if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4) + can_change = false; + break; + case ICE_DEV_ID_E823L_10G_BASE_T: + case ICE_DEV_ID_E823L_1GBE: + case ICE_DEV_ID_E823L_BACKPLANE: + case ICE_DEV_ID_E823L_QSFP: + case ICE_DEV_ID_E823L_SFP: + case ICE_DEV_ID_E823C_10G_BASE_T: + case ICE_DEV_ID_E823C_BACKPLANE: + case ICE_DEV_ID_E823C_QSFP: + case ICE_DEV_ID_E823C_SFP: + case ICE_DEV_ID_E823C_SGMII: + if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 && + pin_id == ZL_OUT2) + can_change = false; + else if (hw->cgu_part_number == + ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 && + pin_id == SI_OUT1) + can_change = false; + break; + default: + return -EINVAL; + } + if (can_change) + *caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE; + else + *caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE; + + return 0; +} |
