summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c')
-rw-r--r--drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c1210
1 files changed, 911 insertions, 299 deletions
diff --git a/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c b/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c
index 331987d6815c..6885d2343c48 100644
--- a/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c
+++ b/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c
@@ -1,32 +1,9 @@
-/*******************************************************************************
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright(c) 1999 - 2018 Intel Corporation. */
- Intel 10 Gigabit PCI Express Linux driver
- Copyright(c) 1999 - 2013 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
#include "ixgbe.h"
-#include <linux/export.h>
#include <linux/ptp_classify.h>
+#include <linux/clocksource.h>
/*
* The 82599 and the X540 do not have true 64bit nanosecond scale
@@ -93,104 +70,304 @@
#define IXGBE_INCVAL_SHIFT_82599 7
#define IXGBE_INCPER_SHIFT_82599 24
-#define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL
#define IXGBE_OVERFLOW_PERIOD (HZ * 30)
-#define IXGBE_PTP_TX_TIMEOUT (HZ * 15)
+#define IXGBE_PTP_TX_TIMEOUT (HZ)
-#ifndef NSECS_PER_SEC
-#define NSECS_PER_SEC 1000000000ULL
-#endif
+/* We use our own definitions instead of NSEC_PER_SEC because we want to mark
+ * the value as a ULL to force precision when bit shifting.
+ */
+#define NS_PER_SEC 1000000000ULL
+#define NS_PER_HALF_SEC 500000000ULL
+
+/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
+ * which contain measurements of seconds and nanoseconds respectively. This
+ * matches the standard linux representation of time in the kernel. In addition,
+ * the X550 also has a SYSTIMER register which represents residue, or
+ * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
+ * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
+ * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
+ * high bit representing whether the adjustent is positive or negative. Every
+ * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
+ * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
+ * X550's clock for purposes of SYSTIME generation is constant and not dependent
+ * on the link speed.
+ *
+ * SYSTIMEH SYSTIMEL SYSTIMER
+ * +--------------+ +--------------+ +-------------+
+ * X550 | 32 | | 32 | | 32 |
+ * *--------------+ +--------------+ +-------------+
+ * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
+ *
+ * This results in a full 96 bits to represent the clock, with 32 bits for
+ * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
+ * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
+ * underflow of adjustments.
+ *
+ * The 32 bits of seconds for the X550 overflows every
+ * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
+ *
+ * In order to adjust the clock frequency for the X550, the TIMINCA register is
+ * provided. This register represents a + or minus nearly 0.5 ns adjustment to
+ * the base frequency. It is measured in 2^-32 ns units, with the high bit being
+ * the sign bit. This register enables software to calculate frequency
+ * adjustments and apply them directly to the clock rate.
+ *
+ * The math for converting scaled_ppm into TIMINCA values is fairly
+ * straightforward.
+ *
+ * TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
+ *
+ * To avoid overflow, we simply use mul_u64_u64_div_u64.
+ *
+ * This assumes that scaled_ppm is never high enough to create a value bigger
+ * than TIMINCA's 31 bits can store. This is ensured by the stack, and is
+ * measured in parts per billion. Calculating this value is also simple.
+ * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
+ *
+ * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
+ * 12.5 nanoseconds. This means that the Max ppb is 39999999
+ * Note: We subtract one in order to ensure no overflow, because the TIMINCA
+ * register can only hold slightly under 0.5 nanoseconds.
+ *
+ * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
+ * into 2^-32 units, which is
+ *
+ * 12.5 * 2^32 = C80000000
+ *
+ * Some revisions of hardware have a faster base frequency than the registers
+ * were defined for. To fix this, we use a timecounter structure with the
+ * proper mult and shift to convert the cycles into nanoseconds of time.
+ */
+#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
+#define IXGBE_E610_BASE_PERIOD 0x333333333ULL
+#define INCVALUE_MASK 0x7FFFFFFF
+#define ISGN 0x80000000
/**
- * ixgbe_ptp_setup_sdp
- * @hw: the hardware private structure
+ * ixgbe_ptp_setup_sdp_X540
+ * @adapter: private adapter structure
*
* this function enables or disables the clock out feature on SDP0 for
- * the X540 device. It will create a 1second periodic output that can
+ * the X540 device. It will create a 1 second periodic output that can
* be used as the PPS (via an interrupt).
*
- * It calculates when the systime will be on an exact second, and then
- * aligns the start of the PPS signal to that value. The shift is
- * necessary because it can change based on the link speed.
+ * It calculates when the system time will be on an exact second, and then
+ * aligns the start of the PPS signal to that value.
+ *
+ * This works by using the cycle counter shift and mult values in reverse, and
+ * assumes that the values we're shifting will not overflow.
*/
-static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
+static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
{
+ struct cyclecounter *cc = &adapter->hw_cc;
struct ixgbe_hw *hw = &adapter->hw;
- int shift = adapter->cc.shift;
u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
+ u64 ns = 0, clock_edge = 0, clock_period;
+ unsigned long flags;
+
+ /* disable the pin first */
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
+ IXGBE_WRITE_FLUSH(hw);
+
+ if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
+ return;
+
+ esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
+
+ /* enable the SDP0 pin as output, and connected to the
+ * native function for Timesync (ClockOut)
+ */
+ esdp |= IXGBE_ESDP_SDP0_DIR |
+ IXGBE_ESDP_SDP0_NATIVE;
+
+ /* enable the Clock Out feature on SDP0, and allow
+ * interrupts to occur when the pin changes
+ */
+ tsauxc = (IXGBE_TSAUXC_EN_CLK |
+ IXGBE_TSAUXC_SYNCLK |
+ IXGBE_TSAUXC_SDP0_INT);
+
+ /* Determine the clock time period to use. This assumes that the
+ * cycle counter shift is small enough to avoid overflow.
+ */
+ clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
+ clktiml = (u32)(clock_period);
+ clktimh = (u32)(clock_period >> 32);
+
+ /* Read the current clock time, and save the cycle counter value */
+ spin_lock_irqsave(&adapter->tmreg_lock, flags);
+ ns = timecounter_read(&adapter->hw_tc);
+ clock_edge = adapter->hw_tc.cycle_last;
+ spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
+
+ /* Figure out how many seconds to add in order to round up */
+ div_u64_rem(ns, NS_PER_SEC, &rem);
+
+ /* Figure out how many nanoseconds to add to round the clock edge up
+ * to the next full second
+ */
+ rem = (NS_PER_SEC - rem);
+
+ /* Adjust the clock edge to align with the next full second. */
+ clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
+ trgttiml = (u32)clock_edge;
+ trgttimh = (u32)(clock_edge >> 32);
+
+ IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
+ IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
+ IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
+ IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
+
+ IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
+
+ IXGBE_WRITE_FLUSH(hw);
+}
+
+/**
+ * ixgbe_ptp_setup_sdp_X550
+ * @adapter: private adapter structure
+ *
+ * Enable or disable a clock output signal on SDP 0 for X550 hardware.
+ *
+ * Use the target time feature to align the output signal on the next full
+ * second.
+ *
+ * This works by using the cycle counter shift and mult values in reverse, and
+ * assumes that the values we're shifting will not overflow.
+ */
+static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
+{
+ u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
+ struct cyclecounter *cc = &adapter->hw_cc;
+ struct ixgbe_hw *hw = &adapter->hw;
u64 ns = 0, clock_edge = 0;
+ struct timespec64 ts;
+ unsigned long flags;
- if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
- (hw->mac.type == ixgbe_mac_X540)) {
+ /* disable the pin first */
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
+ IXGBE_WRITE_FLUSH(hw);
- /* disable the pin first */
- IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
- IXGBE_WRITE_FLUSH(hw);
+ if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
+ return;
- esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
+ esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
- /*
- * enable the SDP0 pin as output, and connected to the
- * native function for Timesync (ClockOut)
- */
- esdp |= (IXGBE_ESDP_SDP0_DIR |
- IXGBE_ESDP_SDP0_NATIVE);
+ /* enable the SDP0 pin as output, and connected to the
+ * native function for Timesync (ClockOut)
+ */
+ esdp |= IXGBE_ESDP_SDP0_DIR |
+ IXGBE_ESDP_SDP0_NATIVE;
- /*
- * enable the Clock Out feature on SDP0, and allow
- * interrupts to occur when the pin changes
- */
- tsauxc = (IXGBE_TSAUXC_EN_CLK |
- IXGBE_TSAUXC_SYNCLK |
- IXGBE_TSAUXC_SDP0_INT);
+ /* enable the Clock Out feature on SDP0, and use Target Time 0 to
+ * enable generation of interrupts on the clock change.
+ */
+#define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
+ tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
+ IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
+ IXGBE_TSAUXC_DIS_TS_CLEAR);
- /* clock period (or pulse length) */
- clktiml = (u32)(NSECS_PER_SEC << shift);
- clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
+ tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
+ IXGBE_TSSDP_TS_SDP0_CLK0);
- /*
- * Account for the cyclecounter wrap-around value by
- * using the converted ns value of the current time to
- * check for when the next aligned second would occur.
- */
- clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
- clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
- ns = timecounter_cyc2time(&adapter->tc, clock_edge);
+ /* Determine the clock time period to use. This assumes that the
+ * cycle counter shift is small enough to avoid overflowing a 32bit
+ * value.
+ */
+ freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult);
- div_u64_rem(ns, NSECS_PER_SEC, &rem);
- clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
+ /* Read the current clock time, and save the cycle counter value */
+ spin_lock_irqsave(&adapter->tmreg_lock, flags);
+ ns = timecounter_read(&adapter->hw_tc);
+ clock_edge = adapter->hw_tc.cycle_last;
+ spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
- /* specify the initial clock start time */
- trgttiml = (u32)clock_edge;
- trgttimh = (u32)(clock_edge >> 32);
+ /* Figure out how far past the next second we are */
+ div_u64_rem(ns, NS_PER_SEC, &rem);
- IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
- IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
- IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
- IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
+ /* Figure out how many nanoseconds to add to round the clock edge up
+ * to the next full second
+ */
+ rem = (NS_PER_SEC - rem);
- IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
- IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
- } else {
- IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
- }
+ /* Adjust the clock edge to align with the next full second. */
+ clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
+
+ /* X550 hardware stores the time in 32bits of 'billions of cycles' and
+ * 32bits of 'cycles'. There's no guarantee that cycles represents
+ * nanoseconds. However, we can use the math from a timespec64 to
+ * convert into the hardware representation.
+ *
+ * See ixgbe_ptp_read_X550() for more details.
+ */
+ ts = ns_to_timespec64(clock_edge);
+ trgttiml = (u32)ts.tv_nsec;
+ trgttimh = (u32)ts.tv_sec;
+
+ IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
+ IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
+ IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
+
+ IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
+ IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
IXGBE_WRITE_FLUSH(hw);
}
/**
- * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
+ * ixgbe_ptp_read_X550 - read cycle counter value
+ * @cc: cyclecounter structure
+ *
+ * This function reads SYSTIME registers. It is called by the cyclecounter
+ * structure to convert from internal representation into nanoseconds. We need
+ * this for X550 since some skews do not have expected clock frequency and
+ * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
+ * "cycles", rather than seconds and nanoseconds.
+ */
+static u64 ixgbe_ptp_read_X550(struct cyclecounter *cc)
+{
+ struct ixgbe_adapter *adapter =
+ container_of(cc, struct ixgbe_adapter, hw_cc);
+ struct ixgbe_hw *hw = &adapter->hw;
+ struct timespec64 ts;
+
+ /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
+ * Some revisions of hardware run at a higher frequency and so the
+ * cycles are not guaranteed to be nanoseconds. The timespec64 created
+ * here is used for its math/conversions but does not necessarily
+ * represent nominal time.
+ *
+ * It should be noted that this cyclecounter will overflow at a
+ * non-bitmask field since we have to convert our billions of cycles
+ * into an actual cycles count. This results in some possible weird
+ * situations at high cycle counter stamps. However given that 32 bits
+ * of "seconds" is ~138 years this isn't a problem. Even at the
+ * increased frequency of some revisions, this is still ~103 years.
+ * Since the SYSTIME values start at 0 and we never write them, it is
+ * highly unlikely for the cyclecounter to overflow in practice.
+ */
+ IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
+ ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
+ ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
+
+ return (u64)timespec64_to_ns(&ts);
+}
+
+/**
+ * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
* @cc: the cyclecounter structure
*
* this function reads the cyclecounter registers and is called by the
* cyclecounter structure used to construct a ns counter from the
* arbitrary fixed point registers
*/
-static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
+static u64 ixgbe_ptp_read_82599(struct cyclecounter *cc)
{
struct ixgbe_adapter *adapter =
- container_of(cc, struct ixgbe_adapter, cc);
+ container_of(cc, struct ixgbe_adapter, hw_cc);
struct ixgbe_hw *hw = &adapter->hw;
u64 stamp = 0;
@@ -201,44 +378,99 @@ static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
}
/**
- * ixgbe_ptp_adjfreq
+ * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
+ * @adapter: private adapter structure
+ * @hwtstamp: stack timestamp structure
+ * @timestamp: unsigned 64bit system time value
+ *
+ * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
+ * which can be used by the stack's ptp functions.
+ *
+ * The lock is used to protect consistency of the cyclecounter and the SYSTIME
+ * registers. However, it does not need to protect against the Rx or Tx
+ * timestamp registers, as there can't be a new timestamp until the old one is
+ * unlatched by reading.
+ *
+ * In addition to the timestamp in hardware, some controllers need a software
+ * overflow cyclecounter, and this function takes this into account as well.
+ **/
+static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
+ struct skb_shared_hwtstamps *hwtstamp,
+ u64 timestamp)
+{
+ unsigned long flags;
+ struct timespec64 systime;
+ u64 ns;
+
+ memset(hwtstamp, 0, sizeof(*hwtstamp));
+
+ switch (adapter->hw.mac.type) {
+ /* X550 and later hardware supposedly represent time using a seconds
+ * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
+ * to convert the timestamp into cycles before it can be fed to the
+ * cyclecounter. We need an actual cyclecounter because some revisions
+ * of hardware run at a higher frequency and thus the counter does
+ * not represent seconds/nanoseconds. Instead it can be thought of as
+ * cycles and billions of cycles.
+ */
+ case ixgbe_mac_X550:
+ case ixgbe_mac_X550EM_x:
+ case ixgbe_mac_x550em_a:
+ case ixgbe_mac_e610:
+ /* Upper 32 bits represent billions of cycles, lower 32 bits
+ * represent cycles. However, we use timespec64_to_ns for the
+ * correct math even though the units haven't been corrected
+ * yet.
+ */
+ systime.tv_sec = timestamp >> 32;
+ systime.tv_nsec = timestamp & 0xFFFFFFFF;
+
+ timestamp = timespec64_to_ns(&systime);
+ break;
+ default:
+ break;
+ }
+
+ spin_lock_irqsave(&adapter->tmreg_lock, flags);
+ ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
+ spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
+
+ hwtstamp->hwtstamp = ns_to_ktime(ns);
+}
+
+/**
+ * ixgbe_ptp_adjfine_82599
* @ptp: the ptp clock structure
- * @ppb: parts per billion adjustment from base
+ * @scaled_ppm: scaled parts per million adjustment from base
+ *
+ * Adjust the frequency of the ptp cycle counter by the
+ * indicated scaled_ppm from the base frequency.
*
- * adjust the frequency of the ptp cycle counter by the
- * indicated ppb from the base frequency.
+ * Scaled parts per million is ppm with a 16-bit binary fractional field.
*/
-static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
+static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
struct ixgbe_hw *hw = &adapter->hw;
- u64 freq;
- u32 diff, incval;
- int neg_adj = 0;
-
- if (ppb < 0) {
- neg_adj = 1;
- ppb = -ppb;
- }
+ u64 incval;
smp_mb();
- incval = ACCESS_ONCE(adapter->base_incval);
-
- freq = incval;
- freq *= ppb;
- diff = div_u64(freq, 1000000000ULL);
-
- incval = neg_adj ? (incval - diff) : (incval + diff);
+ incval = READ_ONCE(adapter->base_incval);
+ incval = adjust_by_scaled_ppm(incval, scaled_ppm);
switch (hw->mac.type) {
case ixgbe_mac_X540:
- IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
+ if (incval > 0xFFFFFFFFULL)
+ e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
+ IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
break;
case ixgbe_mac_82599EB:
+ if (incval > 0x00FFFFFFULL)
+ e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
- (1 << IXGBE_INCPER_SHIFT_82599) |
- incval);
+ BIT(IXGBE_INCPER_SHIFT_82599) |
+ ((u32)incval & 0x00FFFFFFUL));
break;
default:
break;
@@ -248,6 +480,42 @@ static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
}
/**
+ * ixgbe_ptp_adjfine_X550
+ * @ptp: the ptp clock structure
+ * @scaled_ppm: scaled parts per million adjustment from base
+ *
+ * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
+ * from base frequency.
+ *
+ * Scaled parts per million is ppm with a 16-bit binary fractional field.
+ */
+static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
+{
+ struct ixgbe_adapter *adapter =
+ container_of(ptp, struct ixgbe_adapter, ptp_caps);
+ struct ixgbe_hw *hw = &adapter->hw;
+ u64 rate, base;
+ bool neg_adj;
+ u32 inca;
+
+ base = hw->mac.type == ixgbe_mac_e610 ? IXGBE_E610_BASE_PERIOD :
+ IXGBE_X550_BASE_PERIOD;
+ neg_adj = diff_by_scaled_ppm(base, scaled_ppm, &rate);
+
+ /* warn if rate is too large */
+ if (rate >= INCVALUE_MASK)
+ e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
+
+ inca = rate & INCVALUE_MASK;
+ if (neg_adj)
+ inca |= ISGN;
+
+ IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
+
+ return 0;
+}
+
+/**
* ixgbe_ptp_adjtime
* @ptp: the ptp clock structure
* @delta: offset to adjust the cycle counter by
@@ -259,47 +527,68 @@ static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
unsigned long flags;
- u64 now;
spin_lock_irqsave(&adapter->tmreg_lock, flags);
-
- now = timecounter_read(&adapter->tc);
- now += delta;
-
- /* reset the timecounter */
- timecounter_init(&adapter->tc,
- &adapter->cc,
- now);
-
+ timecounter_adjtime(&adapter->hw_tc, delta);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
- ixgbe_ptp_setup_sdp(adapter);
+ if (adapter->ptp_setup_sdp)
+ adapter->ptp_setup_sdp(adapter);
return 0;
}
/**
- * ixgbe_ptp_gettime
+ * ixgbe_ptp_gettimex
* @ptp: the ptp clock structure
- * @ts: timespec structure to hold the current time value
+ * @ts: timespec to hold the PHC timestamp
+ * @sts: structure to hold the system time before and after reading the PHC
*
* read the timecounter and return the correct value on ns,
* after converting it into a struct timespec.
*/
-static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
+static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
+ struct timespec64 *ts,
+ struct ptp_system_timestamp *sts)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
- u64 ns;
- u32 remainder;
+ struct ixgbe_hw *hw = &adapter->hw;
unsigned long flags;
+ u64 ns, stamp;
spin_lock_irqsave(&adapter->tmreg_lock, flags);
- ns = timecounter_read(&adapter->tc);
+
+ switch (adapter->hw.mac.type) {
+ case ixgbe_mac_X550:
+ case ixgbe_mac_X550EM_x:
+ case ixgbe_mac_x550em_a:
+ case ixgbe_mac_e610:
+ /* Upper 32 bits represent billions of cycles, lower 32 bits
+ * represent cycles. However, we use timespec64_to_ns for the
+ * correct math even though the units haven't been corrected
+ * yet.
+ */
+ ptp_read_system_prets(sts);
+ IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
+ ptp_read_system_postts(sts);
+ ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
+ ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
+ stamp = timespec64_to_ns(ts);
+ break;
+ default:
+ ptp_read_system_prets(sts);
+ stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
+ ptp_read_system_postts(sts);
+ stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
+ break;
+ }
+
+ ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
+
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
- ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
- ts->tv_nsec = remainder;
+ *ts = ns_to_timespec64(ns);
return 0;
}
@@ -313,27 +602,25 @@ static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
* wall timer value.
*/
static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
- const struct timespec *ts)
+ const struct timespec64 *ts)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
- u64 ns;
unsigned long flags;
-
- ns = ts->tv_sec * 1000000000ULL;
- ns += ts->tv_nsec;
+ u64 ns = timespec64_to_ns(ts);
/* reset the timecounter */
spin_lock_irqsave(&adapter->tmreg_lock, flags);
- timecounter_init(&adapter->tc, &adapter->cc, ns);
+ timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
- ixgbe_ptp_setup_sdp(adapter);
+ if (adapter->ptp_setup_sdp)
+ adapter->ptp_setup_sdp(adapter);
return 0;
}
/**
- * ixgbe_ptp_enable
+ * ixgbe_ptp_feature_enable
* @ptp: the ptp clock structure
* @rq: the requested feature to change
* @on: whether to enable or disable the feature
@@ -341,8 +628,8 @@ static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
* enable (or disable) ancillary features of the phc subsystem.
* our driver only supports the PPS feature on the X540
*/
-static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
- struct ptp_clock_request *rq, int on)
+static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
+ struct ptp_clock_request *rq, int on)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
@@ -353,33 +640,26 @@ static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
* event when the clock SDP triggers. Clear mask when PPS is
* disabled
*/
- if (rq->type == PTP_CLK_REQ_PPS) {
- switch (adapter->hw.mac.type) {
- case ixgbe_mac_X540:
- if (on)
- adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
- else
- adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
-
- ixgbe_ptp_setup_sdp(adapter);
- return 0;
- default:
- break;
- }
- }
+ if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
+ return -EOPNOTSUPP;
- return -ENOTSUPP;
+ if (on)
+ adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
+ else
+ adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
+
+ adapter->ptp_setup_sdp(adapter);
+ return 0;
}
/**
* ixgbe_ptp_check_pps_event
* @adapter: the private adapter structure
- * @eicr: the interrupt cause register value
*
* This function is called by the interrupt routine when checking for
* interrupts. It will check and handle a pps event.
*/
-void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
+void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct ptp_clock_event event;
@@ -414,10 +694,14 @@ void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
{
bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
IXGBE_OVERFLOW_PERIOD);
- struct timespec ts;
+ unsigned long flags;
if (timeout) {
- ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
+ /* Update the timecounter */
+ spin_lock_irqsave(&adapter->tmreg_lock, flags);
+ timecounter_read(&adapter->hw_tc);
+ spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
+
adapter->last_overflow_check = jiffies;
}
}
@@ -434,8 +718,8 @@ void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
- struct ixgbe_ring *rx_ring;
u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
+ struct ixgbe_ring *rx_ring;
unsigned long rx_event;
int n;
@@ -456,11 +740,59 @@ void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
}
/* only need to read the high RXSTMP register to clear the lock */
- if (time_is_before_jiffies(rx_event + 5*HZ)) {
+ if (time_is_before_jiffies(rx_event + 5 * HZ)) {
IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
adapter->last_rx_ptp_check = jiffies;
- e_warn(drv, "clearing RX Timestamp hang");
+ adapter->rx_hwtstamp_cleared++;
+ e_warn(drv, "clearing RX Timestamp hang\n");
+ }
+}
+
+/**
+ * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
+ * @adapter: the private adapter structure
+ *
+ * This function should be called whenever the state related to a Tx timestamp
+ * needs to be cleared. This helps ensure that all related bits are reset for
+ * the next Tx timestamp event.
+ */
+static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
+{
+ struct ixgbe_hw *hw = &adapter->hw;
+
+ IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
+ if (adapter->ptp_tx_skb) {
+ dev_kfree_skb_any(adapter->ptp_tx_skb);
+ adapter->ptp_tx_skb = NULL;
+ }
+ clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
+}
+
+/**
+ * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
+ * @adapter: private network adapter structure
+ */
+void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
+{
+ bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
+ IXGBE_PTP_TX_TIMEOUT);
+
+ if (!adapter->ptp_tx_skb)
+ return;
+
+ if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
+ return;
+
+ /* If we haven't received a timestamp within the timeout, it is
+ * reasonable to assume that it will never occur, so we can unlock the
+ * timestamp bit when this occurs.
+ */
+ if (timeout) {
+ cancel_work_sync(&adapter->ptp_tx_work);
+ ixgbe_ptp_clear_tx_timestamp(adapter);
+ adapter->tx_hwtstamp_timeouts++;
+ e_warn(drv, "clearing Tx timestamp hang\n");
}
}
@@ -474,24 +806,26 @@ void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
*/
static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
{
+ struct sk_buff *skb = adapter->ptp_tx_skb;
struct ixgbe_hw *hw = &adapter->hw;
struct skb_shared_hwtstamps shhwtstamps;
- u64 regval = 0, ns;
- unsigned long flags;
+ u64 regval = 0;
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
+ ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
- spin_lock_irqsave(&adapter->tmreg_lock, flags);
- ns = timecounter_cyc2time(&adapter->tc, regval);
- spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
-
- memset(&shhwtstamps, 0, sizeof(shhwtstamps));
- shhwtstamps.hwtstamp = ns_to_ktime(ns);
- skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
-
- dev_kfree_skb_any(adapter->ptp_tx_skb);
+ /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
+ * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
+ * well behaved applications from attempting to timestamp again prior
+ * to the lock bit being clear.
+ */
adapter->ptp_tx_skb = NULL;
+ clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
+
+ /* Notify the stack and then free the skb after we've unlocked */
+ skb_tstamp_tx(skb, &shhwtstamps);
+ dev_kfree_skb_any(skb);
}
/**
@@ -499,7 +833,7 @@ static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
* @work: pointer to the work struct
*
* This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
- * timestamp has been taken for the current skb. It is necesary, because the
+ * timestamp has been taken for the current skb. It is necessary, because the
* descriptor's "done" bit does not correlate with the timestamp event.
*/
static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
@@ -511,27 +845,60 @@ static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
IXGBE_PTP_TX_TIMEOUT);
u32 tsynctxctl;
- /* we have to have a valid skb */
- if (!adapter->ptp_tx_skb)
- return;
-
- if (timeout) {
- dev_kfree_skb_any(adapter->ptp_tx_skb);
- adapter->ptp_tx_skb = NULL;
- e_warn(drv, "clearing Tx Timestamp hang");
+ /* we have to have a valid skb to poll for a timestamp */
+ if (!adapter->ptp_tx_skb) {
+ ixgbe_ptp_clear_tx_timestamp(adapter);
return;
}
+ /* stop polling once we have a valid timestamp */
tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
- if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
+ if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
ixgbe_ptp_tx_hwtstamp(adapter);
- else
+ return;
+ }
+
+ if (timeout) {
+ ixgbe_ptp_clear_tx_timestamp(adapter);
+ adapter->tx_hwtstamp_timeouts++;
+ e_warn(drv, "clearing Tx Timestamp hang\n");
+ } else {
/* reschedule to keep checking if it's not available yet */
schedule_work(&adapter->ptp_tx_work);
+ }
}
/**
- * __ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
+ * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
+ * @q_vector: structure containing interrupt and ring information
+ * @skb: the packet
+ *
+ * This function will be called by the Rx routine of the timestamp for this
+ * packet is stored in the buffer. The value is stored in little endian format
+ * starting at the end of the packet data.
+ */
+void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
+ struct sk_buff *skb)
+{
+ __le64 regval;
+
+ /* copy the bits out of the skb, and then trim the skb length */
+ skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
+ IXGBE_TS_HDR_LEN);
+ __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
+
+ /* The timestamp is recorded in little endian format, and is stored at
+ * the end of the packet.
+ *
+ * DWORD: N N + 1 N + 2
+ * Field: End of Packet SYSTIMH SYSTIML
+ */
+ ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
+ le64_to_cpu(regval));
+}
+
+/**
+ * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
* @q_vector: structure containing interrupt and ring information
* @skb: particular skb to send timestamp with
*
@@ -539,15 +906,13 @@ static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
* value, then store that result into the shhwtstamps structure which
* is passed up the network stack
*/
-void __ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
- struct sk_buff *skb)
+void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
+ struct sk_buff *skb)
{
struct ixgbe_adapter *adapter;
struct ixgbe_hw *hw;
- struct skb_shared_hwtstamps *shhwtstamps;
- u64 regval = 0, ns;
+ u64 regval = 0;
u32 tsyncrxctl;
- unsigned long flags;
/* we cannot process timestamps on a ring without a q_vector */
if (!q_vector || !q_vector->adapter)
@@ -556,10 +921,10 @@ void __ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
adapter = q_vector->adapter;
hw = &adapter->hw;
- /*
- * Read the tsyncrxctl register afterwards in order to prevent taking an
+ /* Read the tsyncrxctl register afterwards in order to prevent taking an
* I/O hit on every packet.
*/
+
tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
return;
@@ -567,23 +932,35 @@ void __ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
+ ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
+}
- spin_lock_irqsave(&adapter->tmreg_lock, flags);
- ns = timecounter_cyc2time(&adapter->tc, regval);
- spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
+/**
+ * ixgbe_ptp_hwtstamp_get - get current hardware timestamping configuration
+ * @netdev: pointer to net device structure
+ * @config: timestamping configuration structure
+ *
+ * This function returns the current timestamping settings. Rather than
+ * attempt to deconstruct registers to fill in the values, simply keep a copy
+ * of the old settings around, and return a copy when requested.
+ */
+int ixgbe_ptp_hwtstamp_get(struct net_device *netdev,
+ struct kernel_hwtstamp_config *config)
+{
+ struct ixgbe_adapter *adapter = ixgbe_from_netdev(netdev);
- shhwtstamps = skb_hwtstamps(skb);
- shhwtstamps->hwtstamp = ns_to_ktime(ns);
+ *config = adapter->tstamp_config;
+
+ return 0;
}
/**
- * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
- * @adapter: pointer to adapter struct
- * @ifreq: ioctl data
- * @cmd: particular ioctl requested
+ * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
+ * @adapter: the private ixgbe adapter structure
+ * @config: the hwtstamp configuration requested
*
* Outgoing time stamping can be enabled and disabled. Play nice and
- * disable it when requested, although it shouldn't case any overhead
+ * disable it when requested, although it shouldn't cause any overhead
* when no packet needs it. At most one packet in the queue may be
* marked for time stamping, otherwise it would be impossible to tell
* for sure to which packet the hardware time stamp belongs.
@@ -598,46 +975,49 @@ void __ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
* packets, regardless of the type specified in the register, only use V2
* Event mode. This more accurately tells the user what the hardware is going
* to do anyways.
+ *
+ * Note: this may modify the hwtstamp configuration towards a more general
+ * mode, if required to support the specifically requested mode.
*/
-int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
- struct ifreq *ifr, int cmd)
+static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
+ struct kernel_hwtstamp_config *config)
{
struct ixgbe_hw *hw = &adapter->hw;
- struct hwtstamp_config config;
u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
+ u32 aflags = adapter->flags;
bool is_l2 = false;
u32 regval;
- if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
- return -EFAULT;
-
- /* reserved for future extensions */
- if (config.flags)
- return -EINVAL;
-
- switch (config.tx_type) {
+ switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
tsync_tx_ctl = 0;
+ break;
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
- switch (config.rx_filter) {
+ switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
tsync_rx_ctl = 0;
tsync_rx_mtrl = 0;
+ aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
+ aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
+ aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
@@ -650,10 +1030,23 @@ int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
is_l2 = true;
- config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
+ config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
+ aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
+ case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
+ /* The X550 controller is capable of timestamping all packets,
+ * which allows it to accept any filter.
+ */
+ if (hw->mac.type >= ixgbe_mac_X550) {
+ tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
+ config->rx_filter = HWTSTAMP_FILTER_ALL;
+ aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
+ break;
+ }
+ fallthrough;
default:
/*
* register RXMTRL must be set in order to do V1 packets,
@@ -661,16 +1054,46 @@ int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
* Delay_Req messages and hardware does not support
* timestamping all packets => return error
*/
- config.rx_filter = HWTSTAMP_FILTER_NONE;
+ config->rx_filter = HWTSTAMP_FILTER_NONE;
return -ERANGE;
}
if (hw->mac.type == ixgbe_mac_82598EB) {
+ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
if (tsync_rx_ctl | tsync_tx_ctl)
return -ERANGE;
return 0;
}
+ /* Per-packet timestamping only works if the filter is set to all
+ * packets. Since this is desired, always timestamp all packets as long
+ * as any Rx filter was configured.
+ */
+ switch (hw->mac.type) {
+ case ixgbe_mac_X550:
+ case ixgbe_mac_X550EM_x:
+ case ixgbe_mac_x550em_a:
+ case ixgbe_mac_e610:
+ /* enable timestamping all packets only if at least some
+ * packets were requested. Otherwise, play nice and disable
+ * timestamping
+ */
+ if (config->rx_filter == HWTSTAMP_FILTER_NONE)
+ break;
+
+ tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
+ IXGBE_TSYNCRXCTL_TYPE_ALL |
+ IXGBE_TSYNCRXCTL_TSIP_UT_EN;
+ config->rx_filter = HWTSTAMP_FILTER_ALL;
+ aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
+ aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
+ is_l2 = true;
+ break;
+ default:
+ break;
+ }
+
/* define ethertype filter for timestamping L2 packets */
if (is_l2)
IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
@@ -680,7 +1103,6 @@ int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
else
IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
-
/* enable/disable TX */
regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
@@ -698,31 +1120,45 @@ int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
IXGBE_WRITE_FLUSH(hw);
+ /* configure adapter flags only when HW is actually configured */
+ adapter->flags = aflags;
+
/* clear TX/RX time stamp registers, just to be sure */
- regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
- regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
+ ixgbe_ptp_clear_tx_timestamp(adapter);
+ IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
- return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
- -EFAULT : 0;
+ return 0;
}
/**
- * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
- * @adapter: pointer to the adapter structure
+ * ixgbe_ptp_hwtstamp_set - user entry point for timestamp mode
+ * @netdev: pointer to net device structure
+ * @config: timestamping configuration structure
+ * @extack: netlink extended ack structure for error reporting
*
- * This function should be called to set the proper values for the TIMINCA
- * register and tell the cyclecounter structure what the tick rate of SYSTIME
- * is. It does not directly modify SYSTIME registers or the timecounter
- * structure. It should be called whenever a new TIMINCA value is necessary,
- * such as during initialization or when the link speed changes.
+ * Set hardware to requested mode. If unsupported, return an error with no
+ * changes. Otherwise, store the mode for future reference.
*/
-void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
+int ixgbe_ptp_hwtstamp_set(struct net_device *netdev,
+ struct kernel_hwtstamp_config *config,
+ struct netlink_ext_ack *extack)
{
- struct ixgbe_hw *hw = &adapter->hw;
- u32 incval = 0;
- u32 shift = 0;
- unsigned long flags;
+ struct ixgbe_adapter *adapter = ixgbe_from_netdev(netdev);
+ int err;
+
+ err = ixgbe_ptp_set_timestamp_mode(adapter, config);
+ if (err)
+ return err;
+
+ /* save these settings for future reference */
+ adapter->tstamp_config = *config;
+
+ return 0;
+}
+static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
+ u32 *shift, u32 *incval)
+{
/**
* Scale the NIC cycle counter by a large factor so that
* relatively small corrections to the frequency can be added
@@ -739,36 +1175,87 @@ void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
*/
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_100_FULL:
- incval = IXGBE_INCVAL_100;
- shift = IXGBE_INCVAL_SHIFT_100;
+ *shift = IXGBE_INCVAL_SHIFT_100;
+ *incval = IXGBE_INCVAL_100;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
- incval = IXGBE_INCVAL_1GB;
- shift = IXGBE_INCVAL_SHIFT_1GB;
+ *shift = IXGBE_INCVAL_SHIFT_1GB;
+ *incval = IXGBE_INCVAL_1GB;
break;
case IXGBE_LINK_SPEED_10GB_FULL:
default:
- incval = IXGBE_INCVAL_10GB;
- shift = IXGBE_INCVAL_SHIFT_10GB;
+ *shift = IXGBE_INCVAL_SHIFT_10GB;
+ *incval = IXGBE_INCVAL_10GB;
break;
}
+}
- /**
- * Modify the calculated values to fit within the correct
- * number of bits specified by the hardware. The 82599 doesn't
- * have the same space as the X540, so bitshift the calculated
- * values to fit.
+/**
+ * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
+ * @adapter: pointer to the adapter structure
+ *
+ * This function should be called to set the proper values for the TIMINCA
+ * register and tell the cyclecounter structure what the tick rate of SYSTIME
+ * is. It does not directly modify SYSTIME registers or the timecounter
+ * structure. It should be called whenever a new TIMINCA value is necessary,
+ * such as during initialization or when the link speed changes.
+ */
+void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
+{
+ struct ixgbe_hw *hw = &adapter->hw;
+ struct cyclecounter cc;
+ unsigned long flags;
+ u32 incval = 0;
+ u32 fuse0 = 0;
+
+ /* For some of the boards below this mask is technically incorrect.
+ * The timestamp mask overflows at approximately 61bits. However the
+ * particular hardware does not overflow on an even bitmask value.
+ * Instead, it overflows due to conversion of upper 32bits billions of
+ * cycles. Timecounters are not really intended for this purpose so
+ * they do not properly function if the overflow point isn't 2^N-1.
+ * However, the actual SYSTIME values in question take ~138 years to
+ * overflow. In practice this means they won't actually overflow. A
+ * proper fix to this problem would require modification of the
+ * timecounter delta calculations.
*/
+ cc.mask = CLOCKSOURCE_MASK(64);
+ cc.mult = 1;
+ cc.shift = 0;
+
switch (hw->mac.type) {
+ case ixgbe_mac_X550EM_x:
+ /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
+ * designed to represent seconds and nanoseconds when this is
+ * the case. However, some revisions of hardware have a 400Mhz
+ * clock and we have to compensate for this frequency
+ * variation using corrected mult and shift values.
+ */
+ fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
+ if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
+ cc.mult = 3;
+ cc.shift = 2;
+ }
+ fallthrough;
+ case ixgbe_mac_x550em_a:
+ case ixgbe_mac_X550:
+ case ixgbe_mac_e610:
+ cc.read = ixgbe_ptp_read_X550;
+ break;
case ixgbe_mac_X540:
+ cc.read = ixgbe_ptp_read_82599;
+
+ ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
break;
case ixgbe_mac_82599EB:
+ cc.read = ixgbe_ptp_read_82599;
+
+ ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
incval >>= IXGBE_INCVAL_SHIFT_82599;
- shift -= IXGBE_INCVAL_SHIFT_82599;
+ cc.shift -= IXGBE_INCVAL_SHIFT_82599;
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
- (1 << IXGBE_INCPER_SHIFT_82599) |
- incval);
+ BIT(IXGBE_INCPER_SHIFT_82599) | incval);
break;
default:
/* other devices aren't supported */
@@ -776,141 +1263,266 @@ void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
}
/* update the base incval used to calculate frequency adjustment */
- ACCESS_ONCE(adapter->base_incval) = incval;
+ WRITE_ONCE(adapter->base_incval, incval);
smp_mb();
/* need lock to prevent incorrect read while modifying cyclecounter */
spin_lock_irqsave(&adapter->tmreg_lock, flags);
+ memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
+ spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
+}
- memset(&adapter->cc, 0, sizeof(adapter->cc));
- adapter->cc.read = ixgbe_ptp_read;
- adapter->cc.mask = CLOCKSOURCE_MASK(64);
- adapter->cc.shift = shift;
- adapter->cc.mult = 1;
+/**
+ * ixgbe_ptp_init_systime - Initialize SYSTIME registers
+ * @adapter: the ixgbe private board structure
+ *
+ * Initialize and start the SYSTIME registers.
+ */
+static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
+{
+ struct ixgbe_hw *hw = &adapter->hw;
+ u32 tsauxc;
- spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
+ switch (hw->mac.type) {
+ case ixgbe_mac_X550EM_x:
+ case ixgbe_mac_x550em_a:
+ case ixgbe_mac_X550:
+ case ixgbe_mac_e610:
+ tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
+
+ /* Reset SYSTIME registers to 0 */
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
+
+ /* Reset interrupt settings */
+ IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
+ IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
+
+ /* Activate the SYSTIME counter */
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
+ tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
+ break;
+ case ixgbe_mac_X540:
+ case ixgbe_mac_82599EB:
+ /* Reset SYSTIME registers to 0 */
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
+ break;
+ default:
+ /* Other devices aren't supported */
+ return;
+ }
+
+ IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_ptp_reset
* @adapter: the ixgbe private board structure
*
- * When the MAC resets, all timesync features are reset. This function should be
- * called to re-enable the PTP clock structure. It will re-init the timecounter
- * structure based on the kernel time as well as setup the cycle counter data.
+ * When the MAC resets, all the hardware bits for timesync are reset. This
+ * function is used to re-enable the device for PTP based on current settings.
+ * We do lose the current clock time, so just reset the cyclecounter to the
+ * system real clock time.
+ *
+ * This function will maintain hwtstamp_config settings, and resets the SDP
+ * output if it was enabled.
*/
void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
unsigned long flags;
- /* set SYSTIME registers to 0 just in case */
- IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
- IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
- IXGBE_WRITE_FLUSH(hw);
+ /* reset the hardware timestamping mode */
+ ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
+
+ /* 82598 does not support PTP */
+ if (hw->mac.type == ixgbe_mac_82598EB)
+ return;
ixgbe_ptp_start_cyclecounter(adapter);
- spin_lock_irqsave(&adapter->tmreg_lock, flags);
+ ixgbe_ptp_init_systime(adapter);
- /* reset the ns time counter */
- timecounter_init(&adapter->tc, &adapter->cc,
+ spin_lock_irqsave(&adapter->tmreg_lock, flags);
+ timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
ktime_to_ns(ktime_get_real()));
-
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
- /*
- * Now that the shift has been calculated and the systime
+ adapter->last_overflow_check = jiffies;
+
+ /* Now that the shift has been calculated and the systime
* registers reset, (re-)enable the Clock out feature
*/
- ixgbe_ptp_setup_sdp(adapter);
+ if (adapter->ptp_setup_sdp)
+ adapter->ptp_setup_sdp(adapter);
}
/**
- * ixgbe_ptp_init
+ * ixgbe_ptp_create_clock
* @adapter: the ixgbe private adapter structure
*
- * This function performs the required steps for enabling ptp
- * support. If ptp support has already been loaded it simply calls the
- * cyclecounter init routine and exits.
+ * This function performs setup of the user entry point function table and
+ * initializes the PTP clock device, which is used to access the clock-like
+ * features of the PTP core. It will be called by ixgbe_ptp_init, and may
+ * reuse a previously initialized clock (such as during a suspend/resume
+ * cycle).
*/
-void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
+static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
+ long err;
+
+ /* do nothing if we already have a clock device */
+ if (!IS_ERR_OR_NULL(adapter->ptp_clock))
+ return 0;
switch (adapter->hw.mac.type) {
case ixgbe_mac_X540:
- snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
+ snprintf(adapter->ptp_caps.name,
+ sizeof(adapter->ptp_caps.name),
+ "%s", netdev->name);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 250000000;
adapter->ptp_caps.n_alarm = 0;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.n_per_out = 0;
adapter->ptp_caps.pps = 1;
- adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
+ adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
- adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
- adapter->ptp_caps.settime = ixgbe_ptp_settime;
- adapter->ptp_caps.enable = ixgbe_ptp_enable;
+ adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
+ adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
+ adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
+ adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
break;
case ixgbe_mac_82599EB:
- snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
+ snprintf(adapter->ptp_caps.name,
+ sizeof(adapter->ptp_caps.name),
+ "%s", netdev->name);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 250000000;
adapter->ptp_caps.n_alarm = 0;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.n_per_out = 0;
adapter->ptp_caps.pps = 0;
- adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
+ adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
- adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
- adapter->ptp_caps.settime = ixgbe_ptp_settime;
- adapter->ptp_caps.enable = ixgbe_ptp_enable;
+ adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
+ adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
+ adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
+ break;
+ case ixgbe_mac_X550:
+ case ixgbe_mac_X550EM_x:
+ case ixgbe_mac_x550em_a:
+ case ixgbe_mac_e610:
+ snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
+ adapter->ptp_caps.owner = THIS_MODULE;
+ adapter->ptp_caps.max_adj = 30000000;
+ adapter->ptp_caps.n_alarm = 0;
+ adapter->ptp_caps.n_ext_ts = 0;
+ adapter->ptp_caps.n_per_out = 0;
+ adapter->ptp_caps.pps = 1;
+ adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
+ adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
+ adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
+ adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
+ adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
+ adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
break;
default:
adapter->ptp_clock = NULL;
- return;
+ adapter->ptp_setup_sdp = NULL;
+ return -EOPNOTSUPP;
}
- spin_lock_init(&adapter->tmreg_lock);
- INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
-
adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
&adapter->pdev->dev);
if (IS_ERR(adapter->ptp_clock)) {
+ err = PTR_ERR(adapter->ptp_clock);
adapter->ptp_clock = NULL;
e_dev_err("ptp_clock_register failed\n");
- } else
+ return err;
+ } else if (adapter->ptp_clock)
e_dev_info("registered PHC device on %s\n", netdev->name);
+ /* set default timestamp mode to disabled here. We do this in
+ * create_clock instead of init, because we don't want to override the
+ * previous settings during a resume cycle.
+ */
+ adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
+ adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
+
+ return 0;
+}
+
+/**
+ * ixgbe_ptp_init
+ * @adapter: the ixgbe private adapter structure
+ *
+ * This function performs the required steps for enabling PTP
+ * support. If PTP support has already been loaded it simply calls the
+ * cyclecounter init routine and exits.
+ */
+void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
+{
+ /* initialize the spin lock first since we can't control when a user
+ * will call the entry functions once we have initialized the clock
+ * device
+ */
+ spin_lock_init(&adapter->tmreg_lock);
+
+ /* obtain a PTP device, or re-use an existing device */
+ if (ixgbe_ptp_create_clock(adapter))
+ return;
+
+ /* we have a clock so we can initialize work now */
+ INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
+
+ /* reset the PTP related hardware bits */
ixgbe_ptp_reset(adapter);
- /* set the flag that PTP has been enabled */
- adapter->flags2 |= IXGBE_FLAG2_PTP_ENABLED;
+ /* enter the IXGBE_PTP_RUNNING state */
+ set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
return;
}
/**
- * ixgbe_ptp_stop - disable ptp device and stop the overflow check
+ * ixgbe_ptp_suspend - stop PTP work items
* @adapter: pointer to adapter struct
*
- * this function stops the ptp support, and cancels the delayed work.
+ * this function suspends PTP activity, and prevents more PTP work from being
+ * generated, but does not destroy the PTP clock device.
*/
-void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
+void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
{
- /* stop the overflow check task */
- adapter->flags2 &= ~(IXGBE_FLAG2_PTP_ENABLED |
- IXGBE_FLAG2_PTP_PPS_ENABLED);
+ /* Leave the IXGBE_PTP_RUNNING state. */
+ if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
+ return;
- ixgbe_ptp_setup_sdp(adapter);
+ adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
+ if (adapter->ptp_setup_sdp)
+ adapter->ptp_setup_sdp(adapter);
+ /* ensure that we cancel any pending PTP Tx work item in progress */
cancel_work_sync(&adapter->ptp_tx_work);
- if (adapter->ptp_tx_skb) {
- dev_kfree_skb_any(adapter->ptp_tx_skb);
- adapter->ptp_tx_skb = NULL;
- }
+ ixgbe_ptp_clear_tx_timestamp(adapter);
+}
+
+/**
+ * ixgbe_ptp_stop - close the PTP device
+ * @adapter: pointer to adapter struct
+ *
+ * completely destroy the PTP device, should only be called when the device is
+ * being fully closed.
+ */
+void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
+{
+ /* first, suspend PTP activity */
+ ixgbe_ptp_suspend(adapter);
+ /* disable the PTP clock device */
if (adapter->ptp_clock) {
ptp_clock_unregister(adapter->ptp_clock);
adapter->ptp_clock = NULL;