summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/marvell/octeontx2/af/ptp.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/marvell/octeontx2/af/ptp.c')
-rw-r--r--drivers/net/ethernet/marvell/octeontx2/af/ptp.c545
1 files changed, 467 insertions, 78 deletions
diff --git a/drivers/net/ethernet/marvell/octeontx2/af/ptp.c b/drivers/net/ethernet/marvell/octeontx2/af/ptp.c
index 1ee37853f338..66749b3649c1 100644
--- a/drivers/net/ethernet/marvell/octeontx2/af/ptp.c
+++ b/drivers/net/ethernet/marvell/octeontx2/af/ptp.c
@@ -1,16 +1,19 @@
// SPDX-License-Identifier: GPL-2.0
/* Marvell PTP driver
*
- * Copyright (C) 2020 Marvell International Ltd.
+ * Copyright (C) 2020 Marvell.
+ *
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>
+#include <linux/hrtimer.h>
+#include <linux/ktime.h>
-#include "ptp.h"
#include "mbox.h"
+#include "ptp.h"
#include "rvu.h"
#define DRV_NAME "Marvell PTP Driver"
@@ -19,78 +22,222 @@
#define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100
#define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200
#define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300
-#define PCI_SUBSYS_DEVID_OCTX2_LOKI_PTP 0xB400
+#define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400
#define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500
+#define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600
+#define PCI_DEVID_OCTEONTX2_RST 0xA085
+#define PCI_DEVID_CN10K_PTP 0xA09E
#define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900
#define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00
#define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00
-#define PCI_DEVID_OCTEONTX2_RST 0xA085
#define PCI_PTP_BAR_NO 0
-#define PCI_RST_BAR_NO 0
#define PTP_CLOCK_CFG 0xF00ULL
#define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0)
+#define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1)
+#define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2)
+#define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9)
+#define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8)
+#define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10)
+#define PTP_CLOCK_CFG_ATOMIC_OP_MASK GENMASK_ULL(28, 26)
+#define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30)
+#define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31)
+
+#define PTP_PPS_HI_INCR 0xF60ULL
+#define PTP_PPS_LO_INCR 0xF68ULL
+#define PTP_PPS_THRESH_LO 0xF50ULL
+#define PTP_PPS_THRESH_HI 0xF58ULL
+
#define PTP_CLOCK_LO 0xF08ULL
#define PTP_CLOCK_HI 0xF10ULL
#define PTP_CLOCK_COMP 0xF18ULL
+#define PTP_TIMESTAMP 0xF20ULL
+#define PTP_CLOCK_SEC 0xFD0ULL
+#define PTP_SEC_ROLLOVER 0xFD8ULL
+/* Atomic update related CSRs */
+#define PTP_FRNS_TIMESTAMP 0xFE0ULL
+#define PTP_NXT_ROLLOVER_SET 0xFE8ULL
+#define PTP_CURR_ROLLOVER_SET 0xFF0ULL
+#define PTP_NANO_TIMESTAMP 0xFF8ULL
+#define PTP_SEC_TIMESTAMP 0x1000ULL
+
+#define CYCLE_MULT 1000
+
+#define is_rev_A0(ptp) (((ptp)->pdev->revision & 0x0F) == 0x0)
+#define is_rev_A1(ptp) (((ptp)->pdev->revision & 0x0F) == 0x1)
+
+/* PTP atomic update operation type */
+enum atomic_opcode {
+ ATOMIC_SET = 1,
+ ATOMIC_INC = 3,
+ ATOMIC_DEC = 4
+};
-#define RST_BOOT 0x1600ULL
-#define RST_MUL_BITS GENMASK_ULL(38, 33)
-#define CLOCK_BASE_RATE 50000000ULL
+static struct ptp *first_ptp_block;
+static const struct pci_device_id ptp_id_table[];
-static u64 get_clock_rate(void)
+static bool is_ptp_dev_cnf10ka(struct ptp *ptp)
{
- u64 cfg, ret = CLOCK_BASE_RATE * 16;
- struct pci_dev *pdev;
- void __iomem *base;
+ return ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP;
+}
+
+static bool is_ptp_dev_cn10ka(struct ptp *ptp)
+{
+ return ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP;
+}
+
+static bool cn10k_ptp_errata(struct ptp *ptp)
+{
+ if ((is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) &&
+ (is_rev_A0(ptp) || is_rev_A1(ptp)))
+ return true;
+
+ return false;
+}
+
+static bool is_tstmp_atomic_update_supported(struct rvu *rvu)
+{
+ struct ptp *ptp = rvu->ptp;
- /* To get the input clock frequency with which PTP co-processor
- * block is running the base frequency(50 MHz) needs to be multiplied
- * with multiplier bits present in RST_BOOT register of RESET block.
- * Hence below code gets the multiplier bits from the RESET PCI
- * device present in the system.
+ if (is_rvu_otx2(rvu))
+ return false;
+
+ /* On older silicon variants of CN10K, atomic update feature
+ * is not available.
*/
- pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
- PCI_DEVID_OCTEONTX2_RST, NULL);
- if (!pdev)
- goto error;
+ if ((is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) &&
+ (is_rev_A0(ptp) || is_rev_A1(ptp)))
+ return false;
- base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO);
- if (!base)
- goto error_put_pdev;
+ return true;
+}
- cfg = readq(base + RST_BOOT);
- ret = CLOCK_BASE_RATE * FIELD_GET(RST_MUL_BITS, cfg);
+static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer)
+{
+ struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer);
+ ktime_t curr_ts = ktime_get();
+ ktime_t delta_ns, period_ns;
+ u64 ptp_clock_hi;
- iounmap(base);
+ /* calculate the elapsed time since last restart */
+ delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts));
-error_put_pdev:
- pci_dev_put(pdev);
+ /* if the ptp clock value has crossed 0.5 seconds,
+ * its too late to update pps threshold value, so
+ * update threshold after 1 second.
+ */
+ ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
+ if (ptp_clock_hi > 500000000) {
+ period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi));
+ } else {
+ writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI);
+ period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns));
+ }
-error:
- return ret;
+ hrtimer_forward_now(hrtimer, period_ns);
+ ptp->last_ts = curr_ts;
+
+ return HRTIMER_RESTART;
}
-struct ptp *ptp_get(void)
+static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns)
{
- struct pci_dev *pdev;
- struct ptp *ptp;
+ ktime_t period_ns;
+
+ period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns));
+ hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL);
+ ptp->last_ts = ktime_get();
+}
+
+static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp)
+{
+ u64 sec, sec1, nsec;
+ unsigned long flags;
+
+ spin_lock_irqsave(&ptp->ptp_lock, flags);
+ sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
+ nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
+ sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
+ /* check nsec rollover */
+ if (sec1 > sec) {
+ nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
+ sec = sec1;
+ }
+ spin_unlock_irqrestore(&ptp->ptp_lock, flags);
+
+ return sec * NSEC_PER_SEC + nsec;
+}
+
+static u64 read_ptp_tstmp_nsec(struct ptp *ptp)
+{
+ return readq(ptp->reg_base + PTP_CLOCK_HI);
+}
- /* If the PTP pci device is found on the system and ptp
- * driver is bound to it then the PTP pci device is returned
- * to the caller(rvu driver).
+static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq)
+{
+ u64 comp, adj = 0, cycles_per_sec, ns_drift = 0;
+ u32 ptp_clock_nsec, cycle_time;
+ int cycle;
+
+ /* Errata:
+ * Issue #1: At the time of 1 sec rollover of the nano-second counter,
+ * the nano-second counter is set to 0. However, it should be set to
+ * (existing counter_value - 10^9).
+ *
+ * Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF.
+ * It should roll over at 0x3B9A_CA00.
*/
- pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
- PCI_DEVID_OCTEONTX2_PTP, NULL);
- if (!pdev)
- return ERR_PTR(-ENODEV);
- ptp = pci_get_drvdata(pdev);
+ /* calculate ptp_clock_comp value */
+ comp = ((u64)1000000000ULL << 32) / ptp_clock_freq;
+ /* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */
+ cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq;
+ /* cycles per sec */
+ cycles_per_sec = ptp_clock_freq;
+
+ /* check whether ptp nanosecond counter rolls over early */
+ cycle = cycles_per_sec - 1;
+ ptp_clock_nsec = (cycle * comp) >> 32;
+ while (ptp_clock_nsec < NSEC_PER_SEC) {
+ if (ptp_clock_nsec == 0x3B9AC9FF)
+ goto calc_adj_comp;
+ cycle++;
+ ptp_clock_nsec = (cycle * comp) >> 32;
+ }
+ /* compute nanoseconds lost per second when nsec counter rolls over */
+ ns_drift = ptp_clock_nsec - NSEC_PER_SEC;
+ /* calculate ptp_clock_comp adjustment */
+ if (ns_drift > 0) {
+ adj = comp * ns_drift;
+ adj = adj / 1000000000ULL;
+ }
+ /* speed up the ptp clock to account for nanoseconds lost */
+ comp += adj;
+ return comp;
+
+calc_adj_comp:
+ /* slow down the ptp clock to not rollover early */
+ adj = comp * cycle_time;
+ adj = adj / 1000000000ULL;
+ adj = adj / CYCLE_MULT;
+ comp -= adj;
+
+ return comp;
+}
+
+struct ptp *ptp_get(void)
+{
+ struct ptp *ptp = first_ptp_block;
+
+ /* Check PTP block is present in hardware */
+ if (!pci_dev_present(ptp_id_table))
+ return ERR_PTR(-ENODEV);
+ /* Check driver is bound to PTP block */
if (!ptp)
ptp = ERR_PTR(-EPROBE_DEFER);
- if (IS_ERR(ptp))
- pci_dev_put(pdev);
+ else if (!IS_ERR(ptp))
+ pci_dev_get(ptp->pdev);
return ptp;
}
@@ -103,11 +250,70 @@ void ptp_put(struct ptp *ptp)
pci_dev_put(ptp->pdev);
}
+static void ptp_atomic_update(struct ptp *ptp, u64 timestamp)
+{
+ u64 regval, curr_rollover_set, nxt_rollover_set;
+
+ /* First setup NSECs and SECs */
+ writeq(timestamp, ptp->reg_base + PTP_NANO_TIMESTAMP);
+ writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP);
+ writeq(timestamp / NSEC_PER_SEC,
+ ptp->reg_base + PTP_SEC_TIMESTAMP);
+
+ nxt_rollover_set = roundup(timestamp, NSEC_PER_SEC);
+ curr_rollover_set = nxt_rollover_set - NSEC_PER_SEC;
+ writeq(nxt_rollover_set, ptp->reg_base + PTP_NXT_ROLLOVER_SET);
+ writeq(curr_rollover_set, ptp->reg_base + PTP_CURR_ROLLOVER_SET);
+
+ /* Now, initiate atomic update */
+ regval = readq(ptp->reg_base + PTP_CLOCK_CFG);
+ regval &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK;
+ regval |= (ATOMIC_SET << 26);
+ writeq(regval, ptp->reg_base + PTP_CLOCK_CFG);
+}
+
+static void ptp_atomic_adjtime(struct ptp *ptp, s64 delta)
+{
+ bool neg_adj = false, atomic_inc_dec = false;
+ u64 regval, ptp_clock_hi;
+
+ if (delta < 0) {
+ delta = -delta;
+ neg_adj = true;
+ }
+
+ /* use atomic inc/dec when delta < 1 second */
+ if (delta < NSEC_PER_SEC)
+ atomic_inc_dec = true;
+
+ if (!atomic_inc_dec) {
+ ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
+ if (neg_adj) {
+ if (ptp_clock_hi > delta)
+ ptp_clock_hi -= delta;
+ else
+ ptp_clock_hi = delta - ptp_clock_hi;
+ } else {
+ ptp_clock_hi += delta;
+ }
+ ptp_atomic_update(ptp, ptp_clock_hi);
+ } else {
+ writeq(delta, ptp->reg_base + PTP_NANO_TIMESTAMP);
+ writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP);
+
+ /* initiate atomic inc/dec */
+ regval = readq(ptp->reg_base + PTP_CLOCK_CFG);
+ regval &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK;
+ regval |= neg_adj ? (ATOMIC_DEC << 26) : (ATOMIC_INC << 26);
+ writeq(regval, ptp->reg_base + PTP_CLOCK_CFG);
+ }
+}
+
static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
{
bool neg_adj = false;
- u64 comp;
- u64 adj;
+ u32 freq, freq_adj;
+ u64 comp, adj;
s64 ppb;
if (scaled_ppm < 0) {
@@ -129,15 +335,22 @@ static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
* where tbase is the basic compensation value calculated
* initialy in the probe function.
*/
- comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
/* convert scaled_ppm to ppb */
ppb = 1 + scaled_ppm;
ppb *= 125;
ppb >>= 13;
- adj = comp * ppb;
- adj = div_u64(adj, 1000000000ull);
- comp = neg_adj ? comp - adj : comp + adj;
+ if (cn10k_ptp_errata(ptp)) {
+ /* calculate the new frequency based on ppb */
+ freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL;
+ freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj;
+ comp = ptp_calc_adjusted_comp(freq);
+ } else {
+ comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
+ adj = comp * ppb;
+ adj = div_u64(adj, 1000000000ull);
+ comp = neg_adj ? comp - adj : comp + adj;
+ }
writeq(comp, ptp->reg_base + PTP_CLOCK_COMP);
return 0;
@@ -146,7 +359,157 @@ static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
static int ptp_get_clock(struct ptp *ptp, u64 *clk)
{
/* Return the current PTP clock */
- *clk = readq(ptp->reg_base + PTP_CLOCK_HI);
+ *clk = ptp->read_ptp_tstmp(ptp);
+
+ return 0;
+}
+
+void ptp_start(struct rvu *rvu, u64 sclk, u32 ext_clk_freq, u32 extts)
+{
+ struct ptp *ptp = rvu->ptp;
+ struct pci_dev *pdev;
+ u64 clock_comp;
+ u64 clock_cfg;
+
+ if (!ptp)
+ return;
+
+ pdev = ptp->pdev;
+
+ if (!sclk) {
+ dev_err(&pdev->dev, "PTP input clock cannot be zero\n");
+ return;
+ }
+
+ /* sclk is in MHz */
+ ptp->clock_rate = sclk * 1000000;
+
+ /* Program the seconds rollover value to 1 second */
+ if (is_tstmp_atomic_update_supported(rvu)) {
+ writeq(0, ptp->reg_base + PTP_NANO_TIMESTAMP);
+ writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP);
+ writeq(0, ptp->reg_base + PTP_SEC_TIMESTAMP);
+ writeq(0, ptp->reg_base + PTP_CURR_ROLLOVER_SET);
+ writeq(0x3b9aca00, ptp->reg_base + PTP_NXT_ROLLOVER_SET);
+ writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER);
+ }
+
+ /* Enable PTP clock */
+ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
+
+ if (ext_clk_freq) {
+ ptp->clock_rate = ext_clk_freq;
+ /* Set GPIO as PTP clock source */
+ clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK;
+ clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN;
+ }
+
+ if (extts) {
+ clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE;
+ /* Set GPIO as timestamping source */
+ clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK;
+ clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN;
+ }
+
+ clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
+ writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
+ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
+ clock_cfg &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK;
+ clock_cfg |= (ATOMIC_SET << 26);
+ writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
+
+ if (cn10k_ptp_errata(ptp))
+ clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate);
+ else
+ clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
+
+ /* Initial compensation value to start the nanosecs counter */
+ writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP);
+}
+
+static int ptp_get_tstmp(struct ptp *ptp, u64 *clk)
+{
+ u64 timestamp;
+
+ if (is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) {
+ timestamp = readq(ptp->reg_base + PTP_TIMESTAMP);
+ *clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF);
+ } else {
+ *clk = readq(ptp->reg_base + PTP_TIMESTAMP);
+ }
+
+ return 0;
+}
+
+static int ptp_set_thresh(struct ptp *ptp, u64 thresh)
+{
+ if (!cn10k_ptp_errata(ptp))
+ writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI);
+
+ return 0;
+}
+
+static int ptp_config_hrtimer(struct ptp *ptp, int on)
+{
+ u64 ptp_clock_hi;
+
+ if (on) {
+ ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
+ ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi);
+ } else {
+ if (hrtimer_active(&ptp->hrtimer))
+ hrtimer_cancel(&ptp->hrtimer);
+ }
+
+ return 0;
+}
+
+static int ptp_pps_on(struct ptp *ptp, int on, u64 period)
+{
+ u64 clock_cfg;
+
+ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
+ if (on) {
+ if (cn10k_ptp_errata(ptp) && period != NSEC_PER_SEC) {
+ dev_err(&ptp->pdev->dev, "Supports max period value as 1 second\n");
+ return -EINVAL;
+ }
+
+ if (period > (8 * NSEC_PER_SEC)) {
+ dev_err(&ptp->pdev->dev, "Supports max period as 8 seconds\n");
+ return -EINVAL;
+ }
+
+ clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV;
+ writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
+
+ writeq(0, ptp->reg_base + PTP_PPS_THRESH_HI);
+ writeq(0, ptp->reg_base + PTP_PPS_THRESH_LO);
+
+ /* Configure high/low phase time */
+ period = period / 2;
+ writeq(((u64)period << 32), ptp->reg_base + PTP_PPS_HI_INCR);
+ writeq(((u64)period << 32), ptp->reg_base + PTP_PPS_LO_INCR);
+ } else {
+ clock_cfg &= ~(PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV);
+ writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
+ }
+
+ if (on && cn10k_ptp_errata(ptp)) {
+ /* The ptp_clock_hi rollsover to zero once clock cycle before it
+ * reaches one second boundary. so, program the pps_lo_incr in
+ * such a way that the pps threshold value comparison at one
+ * second boundary will succeed and pps edge changes. After each
+ * one second boundary, the hrtimer handler will be invoked and
+ * reprograms the pps threshold value.
+ */
+ ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate;
+ writeq((0x1dcd6500ULL - ptp->clock_period) << 32,
+ ptp->reg_base + PTP_PPS_LO_INCR);
+ }
+
+ if (cn10k_ptp_errata(ptp))
+ ptp_config_hrtimer(ptp, on);
return 0;
}
@@ -154,13 +517,10 @@ static int ptp_get_clock(struct ptp *ptp, u64 *clk)
static int ptp_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
- struct device *dev = &pdev->dev;
struct ptp *ptp;
- u64 clock_comp;
- u64 clock_cfg;
int err;
- ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL);
+ ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
if (!ptp) {
err = -ENOMEM;
goto error;
@@ -178,33 +538,34 @@ static int ptp_probe(struct pci_dev *pdev,
ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
- ptp->clock_rate = get_clock_rate();
-
- /* Enable PTP clock */
- clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
- clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
- writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
-
- clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
- /* Initial compensation value to start the nanosecs counter */
- writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP);
-
pci_set_drvdata(pdev, ptp);
+ if (!first_ptp_block)
+ first_ptp_block = ptp;
+
+ spin_lock_init(&ptp->ptp_lock);
+ if (cn10k_ptp_errata(ptp)) {
+ ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec;
+ hrtimer_setup(&ptp->hrtimer, ptp_reset_thresh, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ } else {
+ ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec;
+ }
return 0;
error_free:
- devm_kfree(dev, ptp);
+ kfree(ptp);
error:
/* For `ptp_get()` we need to differentiate between the case
* when the core has not tried to probe this device and the case when
- * the probe failed. In the later case we pretend that the
- * initialization was successful and keep the error in
+ * the probe failed. In the later case we keep the error in
* `dev->driver_data`.
*/
pci_set_drvdata(pdev, ERR_PTR(err));
- return 0;
+ if (!first_ptp_block)
+ first_ptp_block = ERR_PTR(err);
+
+ return err;
}
static void ptp_remove(struct pci_dev *pdev)
@@ -215,10 +576,14 @@ static void ptp_remove(struct pci_dev *pdev)
if (IS_ERR_OR_NULL(ptp))
return;
+ if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer))
+ hrtimer_cancel(&ptp->hrtimer);
+
/* Disable PTP clock */
clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
+ kfree(ptp);
}
static const struct pci_device_id ptp_id_table[] = {
@@ -233,19 +598,14 @@ static const struct pci_device_id ptp_id_table[] = {
PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
- PCI_SUBSYS_DEVID_OCTX2_LOKI_PTP) },
+ PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
- PCI_SUBSYS_DEVID_CN10K_A_PTP) },
- { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
- PCI_VENDOR_ID_CAVIUM,
- PCI_SUBSYS_DEVID_CNF10K_A_PTP) },
- { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
- PCI_VENDOR_ID_CAVIUM,
- PCI_SUBSYS_DEVID_CNF10K_B_PTP) },
+ PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) },
+ { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) },
{ 0, }
};
@@ -278,6 +638,21 @@ int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req,
case PTP_OP_GET_CLOCK:
err = ptp_get_clock(rvu->ptp, &rsp->clk);
break;
+ case PTP_OP_GET_TSTMP:
+ err = ptp_get_tstmp(rvu->ptp, &rsp->clk);
+ break;
+ case PTP_OP_SET_THRESH:
+ err = ptp_set_thresh(rvu->ptp, req->thresh);
+ break;
+ case PTP_OP_PPS_ON:
+ err = ptp_pps_on(rvu->ptp, req->pps_on, req->period);
+ break;
+ case PTP_OP_ADJTIME:
+ ptp_atomic_adjtime(rvu->ptp, req->delta);
+ break;
+ case PTP_OP_SET_CLOCK:
+ ptp_atomic_update(rvu->ptp, (u64)req->clk);
+ break;
default:
err = -EINVAL;
break;
@@ -285,3 +660,17 @@ int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req,
return err;
}
+
+int rvu_mbox_handler_ptp_get_cap(struct rvu *rvu, struct msg_req *req,
+ struct ptp_get_cap_rsp *rsp)
+{
+ if (!rvu->ptp)
+ return -ENODEV;
+
+ if (is_tstmp_atomic_update_supported(rvu))
+ rsp->cap |= PTP_CAP_HW_ATOMIC_UPDATE;
+ else
+ rsp->cap &= ~BIT_ULL_MASK(0);
+
+ return 0;
+}