diff options
Diffstat (limited to 'drivers/net/ethernet/marvell/octeontx2/af/ptp.c')
| -rw-r--r-- | drivers/net/ethernet/marvell/octeontx2/af/ptp.c | 545 |
1 files changed, 467 insertions, 78 deletions
diff --git a/drivers/net/ethernet/marvell/octeontx2/af/ptp.c b/drivers/net/ethernet/marvell/octeontx2/af/ptp.c index 1ee37853f338..66749b3649c1 100644 --- a/drivers/net/ethernet/marvell/octeontx2/af/ptp.c +++ b/drivers/net/ethernet/marvell/octeontx2/af/ptp.c @@ -1,16 +1,19 @@ // SPDX-License-Identifier: GPL-2.0 /* Marvell PTP driver * - * Copyright (C) 2020 Marvell International Ltd. + * Copyright (C) 2020 Marvell. + * */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/module.h> #include <linux/pci.h> +#include <linux/hrtimer.h> +#include <linux/ktime.h> -#include "ptp.h" #include "mbox.h" +#include "ptp.h" #include "rvu.h" #define DRV_NAME "Marvell PTP Driver" @@ -19,78 +22,222 @@ #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100 #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200 #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300 -#define PCI_SUBSYS_DEVID_OCTX2_LOKI_PTP 0xB400 +#define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400 #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500 +#define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600 +#define PCI_DEVID_OCTEONTX2_RST 0xA085 +#define PCI_DEVID_CN10K_PTP 0xA09E #define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900 #define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00 #define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00 -#define PCI_DEVID_OCTEONTX2_RST 0xA085 #define PCI_PTP_BAR_NO 0 -#define PCI_RST_BAR_NO 0 #define PTP_CLOCK_CFG 0xF00ULL #define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0) +#define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1) +#define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2) +#define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9) +#define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8) +#define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10) +#define PTP_CLOCK_CFG_ATOMIC_OP_MASK GENMASK_ULL(28, 26) +#define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30) +#define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31) + +#define PTP_PPS_HI_INCR 0xF60ULL +#define PTP_PPS_LO_INCR 0xF68ULL +#define PTP_PPS_THRESH_LO 0xF50ULL +#define PTP_PPS_THRESH_HI 0xF58ULL + #define PTP_CLOCK_LO 0xF08ULL #define PTP_CLOCK_HI 0xF10ULL #define PTP_CLOCK_COMP 0xF18ULL +#define PTP_TIMESTAMP 0xF20ULL +#define PTP_CLOCK_SEC 0xFD0ULL +#define PTP_SEC_ROLLOVER 0xFD8ULL +/* Atomic update related CSRs */ +#define PTP_FRNS_TIMESTAMP 0xFE0ULL +#define PTP_NXT_ROLLOVER_SET 0xFE8ULL +#define PTP_CURR_ROLLOVER_SET 0xFF0ULL +#define PTP_NANO_TIMESTAMP 0xFF8ULL +#define PTP_SEC_TIMESTAMP 0x1000ULL + +#define CYCLE_MULT 1000 + +#define is_rev_A0(ptp) (((ptp)->pdev->revision & 0x0F) == 0x0) +#define is_rev_A1(ptp) (((ptp)->pdev->revision & 0x0F) == 0x1) + +/* PTP atomic update operation type */ +enum atomic_opcode { + ATOMIC_SET = 1, + ATOMIC_INC = 3, + ATOMIC_DEC = 4 +}; -#define RST_BOOT 0x1600ULL -#define RST_MUL_BITS GENMASK_ULL(38, 33) -#define CLOCK_BASE_RATE 50000000ULL +static struct ptp *first_ptp_block; +static const struct pci_device_id ptp_id_table[]; -static u64 get_clock_rate(void) +static bool is_ptp_dev_cnf10ka(struct ptp *ptp) { - u64 cfg, ret = CLOCK_BASE_RATE * 16; - struct pci_dev *pdev; - void __iomem *base; + return ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP; +} + +static bool is_ptp_dev_cn10ka(struct ptp *ptp) +{ + return ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP; +} + +static bool cn10k_ptp_errata(struct ptp *ptp) +{ + if ((is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) && + (is_rev_A0(ptp) || is_rev_A1(ptp))) + return true; + + return false; +} + +static bool is_tstmp_atomic_update_supported(struct rvu *rvu) +{ + struct ptp *ptp = rvu->ptp; - /* To get the input clock frequency with which PTP co-processor - * block is running the base frequency(50 MHz) needs to be multiplied - * with multiplier bits present in RST_BOOT register of RESET block. - * Hence below code gets the multiplier bits from the RESET PCI - * device present in the system. + if (is_rvu_otx2(rvu)) + return false; + + /* On older silicon variants of CN10K, atomic update feature + * is not available. */ - pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, - PCI_DEVID_OCTEONTX2_RST, NULL); - if (!pdev) - goto error; + if ((is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) && + (is_rev_A0(ptp) || is_rev_A1(ptp))) + return false; - base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO); - if (!base) - goto error_put_pdev; + return true; +} - cfg = readq(base + RST_BOOT); - ret = CLOCK_BASE_RATE * FIELD_GET(RST_MUL_BITS, cfg); +static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer) +{ + struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer); + ktime_t curr_ts = ktime_get(); + ktime_t delta_ns, period_ns; + u64 ptp_clock_hi; - iounmap(base); + /* calculate the elapsed time since last restart */ + delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts)); -error_put_pdev: - pci_dev_put(pdev); + /* if the ptp clock value has crossed 0.5 seconds, + * its too late to update pps threshold value, so + * update threshold after 1 second. + */ + ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); + if (ptp_clock_hi > 500000000) { + period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi)); + } else { + writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI); + period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns)); + } -error: - return ret; + hrtimer_forward_now(hrtimer, period_ns); + ptp->last_ts = curr_ts; + + return HRTIMER_RESTART; } -struct ptp *ptp_get(void) +static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns) { - struct pci_dev *pdev; - struct ptp *ptp; + ktime_t period_ns; + + period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns)); + hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL); + ptp->last_ts = ktime_get(); +} + +static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp) +{ + u64 sec, sec1, nsec; + unsigned long flags; + + spin_lock_irqsave(&ptp->ptp_lock, flags); + sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; + nsec = readq(ptp->reg_base + PTP_CLOCK_HI); + sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; + /* check nsec rollover */ + if (sec1 > sec) { + nsec = readq(ptp->reg_base + PTP_CLOCK_HI); + sec = sec1; + } + spin_unlock_irqrestore(&ptp->ptp_lock, flags); + + return sec * NSEC_PER_SEC + nsec; +} + +static u64 read_ptp_tstmp_nsec(struct ptp *ptp) +{ + return readq(ptp->reg_base + PTP_CLOCK_HI); +} - /* If the PTP pci device is found on the system and ptp - * driver is bound to it then the PTP pci device is returned - * to the caller(rvu driver). +static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq) +{ + u64 comp, adj = 0, cycles_per_sec, ns_drift = 0; + u32 ptp_clock_nsec, cycle_time; + int cycle; + + /* Errata: + * Issue #1: At the time of 1 sec rollover of the nano-second counter, + * the nano-second counter is set to 0. However, it should be set to + * (existing counter_value - 10^9). + * + * Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF. + * It should roll over at 0x3B9A_CA00. */ - pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, - PCI_DEVID_OCTEONTX2_PTP, NULL); - if (!pdev) - return ERR_PTR(-ENODEV); - ptp = pci_get_drvdata(pdev); + /* calculate ptp_clock_comp value */ + comp = ((u64)1000000000ULL << 32) / ptp_clock_freq; + /* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */ + cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq; + /* cycles per sec */ + cycles_per_sec = ptp_clock_freq; + + /* check whether ptp nanosecond counter rolls over early */ + cycle = cycles_per_sec - 1; + ptp_clock_nsec = (cycle * comp) >> 32; + while (ptp_clock_nsec < NSEC_PER_SEC) { + if (ptp_clock_nsec == 0x3B9AC9FF) + goto calc_adj_comp; + cycle++; + ptp_clock_nsec = (cycle * comp) >> 32; + } + /* compute nanoseconds lost per second when nsec counter rolls over */ + ns_drift = ptp_clock_nsec - NSEC_PER_SEC; + /* calculate ptp_clock_comp adjustment */ + if (ns_drift > 0) { + adj = comp * ns_drift; + adj = adj / 1000000000ULL; + } + /* speed up the ptp clock to account for nanoseconds lost */ + comp += adj; + return comp; + +calc_adj_comp: + /* slow down the ptp clock to not rollover early */ + adj = comp * cycle_time; + adj = adj / 1000000000ULL; + adj = adj / CYCLE_MULT; + comp -= adj; + + return comp; +} + +struct ptp *ptp_get(void) +{ + struct ptp *ptp = first_ptp_block; + + /* Check PTP block is present in hardware */ + if (!pci_dev_present(ptp_id_table)) + return ERR_PTR(-ENODEV); + /* Check driver is bound to PTP block */ if (!ptp) ptp = ERR_PTR(-EPROBE_DEFER); - if (IS_ERR(ptp)) - pci_dev_put(pdev); + else if (!IS_ERR(ptp)) + pci_dev_get(ptp->pdev); return ptp; } @@ -103,11 +250,70 @@ void ptp_put(struct ptp *ptp) pci_dev_put(ptp->pdev); } +static void ptp_atomic_update(struct ptp *ptp, u64 timestamp) +{ + u64 regval, curr_rollover_set, nxt_rollover_set; + + /* First setup NSECs and SECs */ + writeq(timestamp, ptp->reg_base + PTP_NANO_TIMESTAMP); + writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP); + writeq(timestamp / NSEC_PER_SEC, + ptp->reg_base + PTP_SEC_TIMESTAMP); + + nxt_rollover_set = roundup(timestamp, NSEC_PER_SEC); + curr_rollover_set = nxt_rollover_set - NSEC_PER_SEC; + writeq(nxt_rollover_set, ptp->reg_base + PTP_NXT_ROLLOVER_SET); + writeq(curr_rollover_set, ptp->reg_base + PTP_CURR_ROLLOVER_SET); + + /* Now, initiate atomic update */ + regval = readq(ptp->reg_base + PTP_CLOCK_CFG); + regval &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK; + regval |= (ATOMIC_SET << 26); + writeq(regval, ptp->reg_base + PTP_CLOCK_CFG); +} + +static void ptp_atomic_adjtime(struct ptp *ptp, s64 delta) +{ + bool neg_adj = false, atomic_inc_dec = false; + u64 regval, ptp_clock_hi; + + if (delta < 0) { + delta = -delta; + neg_adj = true; + } + + /* use atomic inc/dec when delta < 1 second */ + if (delta < NSEC_PER_SEC) + atomic_inc_dec = true; + + if (!atomic_inc_dec) { + ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); + if (neg_adj) { + if (ptp_clock_hi > delta) + ptp_clock_hi -= delta; + else + ptp_clock_hi = delta - ptp_clock_hi; + } else { + ptp_clock_hi += delta; + } + ptp_atomic_update(ptp, ptp_clock_hi); + } else { + writeq(delta, ptp->reg_base + PTP_NANO_TIMESTAMP); + writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP); + + /* initiate atomic inc/dec */ + regval = readq(ptp->reg_base + PTP_CLOCK_CFG); + regval &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK; + regval |= neg_adj ? (ATOMIC_DEC << 26) : (ATOMIC_INC << 26); + writeq(regval, ptp->reg_base + PTP_CLOCK_CFG); + } +} + static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) { bool neg_adj = false; - u64 comp; - u64 adj; + u32 freq, freq_adj; + u64 comp, adj; s64 ppb; if (scaled_ppm < 0) { @@ -129,15 +335,22 @@ static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) * where tbase is the basic compensation value calculated * initialy in the probe function. */ - comp = ((u64)1000000000ull << 32) / ptp->clock_rate; /* convert scaled_ppm to ppb */ ppb = 1 + scaled_ppm; ppb *= 125; ppb >>= 13; - adj = comp * ppb; - adj = div_u64(adj, 1000000000ull); - comp = neg_adj ? comp - adj : comp + adj; + if (cn10k_ptp_errata(ptp)) { + /* calculate the new frequency based on ppb */ + freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL; + freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj; + comp = ptp_calc_adjusted_comp(freq); + } else { + comp = ((u64)1000000000ull << 32) / ptp->clock_rate; + adj = comp * ppb; + adj = div_u64(adj, 1000000000ull); + comp = neg_adj ? comp - adj : comp + adj; + } writeq(comp, ptp->reg_base + PTP_CLOCK_COMP); return 0; @@ -146,7 +359,157 @@ static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) static int ptp_get_clock(struct ptp *ptp, u64 *clk) { /* Return the current PTP clock */ - *clk = readq(ptp->reg_base + PTP_CLOCK_HI); + *clk = ptp->read_ptp_tstmp(ptp); + + return 0; +} + +void ptp_start(struct rvu *rvu, u64 sclk, u32 ext_clk_freq, u32 extts) +{ + struct ptp *ptp = rvu->ptp; + struct pci_dev *pdev; + u64 clock_comp; + u64 clock_cfg; + + if (!ptp) + return; + + pdev = ptp->pdev; + + if (!sclk) { + dev_err(&pdev->dev, "PTP input clock cannot be zero\n"); + return; + } + + /* sclk is in MHz */ + ptp->clock_rate = sclk * 1000000; + + /* Program the seconds rollover value to 1 second */ + if (is_tstmp_atomic_update_supported(rvu)) { + writeq(0, ptp->reg_base + PTP_NANO_TIMESTAMP); + writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP); + writeq(0, ptp->reg_base + PTP_SEC_TIMESTAMP); + writeq(0, ptp->reg_base + PTP_CURR_ROLLOVER_SET); + writeq(0x3b9aca00, ptp->reg_base + PTP_NXT_ROLLOVER_SET); + writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER); + } + + /* Enable PTP clock */ + clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); + + if (ext_clk_freq) { + ptp->clock_rate = ext_clk_freq; + /* Set GPIO as PTP clock source */ + clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK; + clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN; + } + + if (extts) { + clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE; + /* Set GPIO as timestamping source */ + clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK; + clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN; + } + + clock_cfg |= PTP_CLOCK_CFG_PTP_EN; + writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); + clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); + clock_cfg &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK; + clock_cfg |= (ATOMIC_SET << 26); + writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); + + if (cn10k_ptp_errata(ptp)) + clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate); + else + clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; + + /* Initial compensation value to start the nanosecs counter */ + writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); +} + +static int ptp_get_tstmp(struct ptp *ptp, u64 *clk) +{ + u64 timestamp; + + if (is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) { + timestamp = readq(ptp->reg_base + PTP_TIMESTAMP); + *clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF); + } else { + *clk = readq(ptp->reg_base + PTP_TIMESTAMP); + } + + return 0; +} + +static int ptp_set_thresh(struct ptp *ptp, u64 thresh) +{ + if (!cn10k_ptp_errata(ptp)) + writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI); + + return 0; +} + +static int ptp_config_hrtimer(struct ptp *ptp, int on) +{ + u64 ptp_clock_hi; + + if (on) { + ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); + ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi); + } else { + if (hrtimer_active(&ptp->hrtimer)) + hrtimer_cancel(&ptp->hrtimer); + } + + return 0; +} + +static int ptp_pps_on(struct ptp *ptp, int on, u64 period) +{ + u64 clock_cfg; + + clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); + if (on) { + if (cn10k_ptp_errata(ptp) && period != NSEC_PER_SEC) { + dev_err(&ptp->pdev->dev, "Supports max period value as 1 second\n"); + return -EINVAL; + } + + if (period > (8 * NSEC_PER_SEC)) { + dev_err(&ptp->pdev->dev, "Supports max period as 8 seconds\n"); + return -EINVAL; + } + + clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV; + writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); + + writeq(0, ptp->reg_base + PTP_PPS_THRESH_HI); + writeq(0, ptp->reg_base + PTP_PPS_THRESH_LO); + + /* Configure high/low phase time */ + period = period / 2; + writeq(((u64)period << 32), ptp->reg_base + PTP_PPS_HI_INCR); + writeq(((u64)period << 32), ptp->reg_base + PTP_PPS_LO_INCR); + } else { + clock_cfg &= ~(PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV); + writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); + } + + if (on && cn10k_ptp_errata(ptp)) { + /* The ptp_clock_hi rollsover to zero once clock cycle before it + * reaches one second boundary. so, program the pps_lo_incr in + * such a way that the pps threshold value comparison at one + * second boundary will succeed and pps edge changes. After each + * one second boundary, the hrtimer handler will be invoked and + * reprograms the pps threshold value. + */ + ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate; + writeq((0x1dcd6500ULL - ptp->clock_period) << 32, + ptp->reg_base + PTP_PPS_LO_INCR); + } + + if (cn10k_ptp_errata(ptp)) + ptp_config_hrtimer(ptp, on); return 0; } @@ -154,13 +517,10 @@ static int ptp_get_clock(struct ptp *ptp, u64 *clk) static int ptp_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { - struct device *dev = &pdev->dev; struct ptp *ptp; - u64 clock_comp; - u64 clock_cfg; int err; - ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL); + ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); if (!ptp) { err = -ENOMEM; goto error; @@ -178,33 +538,34 @@ static int ptp_probe(struct pci_dev *pdev, ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; - ptp->clock_rate = get_clock_rate(); - - /* Enable PTP clock */ - clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); - clock_cfg |= PTP_CLOCK_CFG_PTP_EN; - writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); - - clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; - /* Initial compensation value to start the nanosecs counter */ - writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); - pci_set_drvdata(pdev, ptp); + if (!first_ptp_block) + first_ptp_block = ptp; + + spin_lock_init(&ptp->ptp_lock); + if (cn10k_ptp_errata(ptp)) { + ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec; + hrtimer_setup(&ptp->hrtimer, ptp_reset_thresh, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + } else { + ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec; + } return 0; error_free: - devm_kfree(dev, ptp); + kfree(ptp); error: /* For `ptp_get()` we need to differentiate between the case * when the core has not tried to probe this device and the case when - * the probe failed. In the later case we pretend that the - * initialization was successful and keep the error in + * the probe failed. In the later case we keep the error in * `dev->driver_data`. */ pci_set_drvdata(pdev, ERR_PTR(err)); - return 0; + if (!first_ptp_block) + first_ptp_block = ERR_PTR(err); + + return err; } static void ptp_remove(struct pci_dev *pdev) @@ -215,10 +576,14 @@ static void ptp_remove(struct pci_dev *pdev) if (IS_ERR_OR_NULL(ptp)) return; + if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer)) + hrtimer_cancel(&ptp->hrtimer); + /* Disable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); + kfree(ptp); } static const struct pci_device_id ptp_id_table[] = { @@ -233,19 +598,14 @@ static const struct pci_device_id ptp_id_table[] = { PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, - PCI_SUBSYS_DEVID_OCTX2_LOKI_PTP) }, + PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, - PCI_SUBSYS_DEVID_CN10K_A_PTP) }, - { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, - PCI_VENDOR_ID_CAVIUM, - PCI_SUBSYS_DEVID_CNF10K_A_PTP) }, - { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, - PCI_VENDOR_ID_CAVIUM, - PCI_SUBSYS_DEVID_CNF10K_B_PTP) }, + PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) }, + { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) }, { 0, } }; @@ -278,6 +638,21 @@ int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, case PTP_OP_GET_CLOCK: err = ptp_get_clock(rvu->ptp, &rsp->clk); break; + case PTP_OP_GET_TSTMP: + err = ptp_get_tstmp(rvu->ptp, &rsp->clk); + break; + case PTP_OP_SET_THRESH: + err = ptp_set_thresh(rvu->ptp, req->thresh); + break; + case PTP_OP_PPS_ON: + err = ptp_pps_on(rvu->ptp, req->pps_on, req->period); + break; + case PTP_OP_ADJTIME: + ptp_atomic_adjtime(rvu->ptp, req->delta); + break; + case PTP_OP_SET_CLOCK: + ptp_atomic_update(rvu->ptp, (u64)req->clk); + break; default: err = -EINVAL; break; @@ -285,3 +660,17 @@ int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, return err; } + +int rvu_mbox_handler_ptp_get_cap(struct rvu *rvu, struct msg_req *req, + struct ptp_get_cap_rsp *rsp) +{ + if (!rvu->ptp) + return -ENODEV; + + if (is_tstmp_atomic_update_supported(rvu)) + rsp->cap |= PTP_CAP_HW_ATOMIC_UPDATE; + else + rsp->cap &= ~BIT_ULL_MASK(0); + + return 0; +} |
