diff options
Diffstat (limited to 'drivers/net/ipa/gsi.c')
| -rw-r--r-- | drivers/net/ipa/gsi.c | 850 |
1 files changed, 486 insertions, 364 deletions
diff --git a/drivers/net/ipa/gsi.c b/drivers/net/ipa/gsi.c index bc981043cc80..4c3227e77898 100644 --- a/drivers/net/ipa/gsi.c +++ b/drivers/net/ipa/gsi.c @@ -1,27 +1,26 @@ // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. - * Copyright (C) 2018-2021 Linaro Ltd. + * Copyright (C) 2018-2024 Linaro Ltd. */ -#include <linux/types.h> #include <linux/bits.h> -#include <linux/bitfield.h> -#include <linux/mutex.h> -#include <linux/completion.h> -#include <linux/io.h> #include <linux/bug.h> +#include <linux/completion.h> #include <linux/interrupt.h> -#include <linux/platform_device.h> +#include <linux/mutex.h> #include <linux/netdevice.h> +#include <linux/platform_device.h> +#include <linux/types.h> #include "gsi.h" -#include "gsi_reg.h" #include "gsi_private.h" +#include "gsi_reg.h" #include "gsi_trans.h" -#include "ipa_gsi.h" #include "ipa_data.h" +#include "ipa_gsi.h" #include "ipa_version.h" +#include "reg.h" /** * DOC: The IPA Generic Software Interface @@ -56,9 +55,9 @@ * element can also contain an immediate command, requesting the IPA perform * actions other than data transfer. * - * Each TRE refers to a block of data--also located DRAM. After writing one - * or more TREs to a channel, the writer (either the IPA or an EE) writes a - * doorbell register to inform the receiving side how many elements have + * Each TRE refers to a block of data--also located in DRAM. After writing + * one or more TREs to a channel, the writer (either the IPA or an EE) writes + * a doorbell register to inform the receiving side how many elements have * been written. * * Each channel has a GSI "event ring" associated with it. An event ring @@ -162,12 +161,6 @@ static void gsi_validate_build(void) * ensure the elements themselves meet the requirement. */ BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); - - /* The channel element size must fit in this field */ - BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); - - /* The event ring element size must fit in this field */ - BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); } /* Return the channel id associated with a given channel */ @@ -182,21 +175,39 @@ static bool gsi_channel_initialized(struct gsi_channel *channel) return !!channel->gsi; } +/* Encode the channel protocol for the CH_C_CNTXT_0 register */ +static u32 ch_c_cntxt_0_type_encode(enum ipa_version version, + const struct reg *reg, + enum gsi_channel_type type) +{ + u32 val; + + val = reg_encode(reg, CHTYPE_PROTOCOL, type); + if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0) + return val; + + type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL)); + + return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type); +} + /* Update the GSI IRQ type register with the cached value */ static void gsi_irq_type_update(struct gsi *gsi, u32 val) { + const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK); + gsi->type_enabled_bitmap = val; - iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); + iowrite32(val, gsi->virt + reg_offset(reg)); } static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) { - gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id); } static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) { - gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id); } /* Event ring commands are performed one at a time. Their completion @@ -207,22 +218,29 @@ static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) { u32 val = BIT(evt_ring_id); + const struct reg *reg; /* There's a small chance that a previous command completed * after the interrupt was disabled, so make sure we have no * pending interrupts before we enable them. */ - iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); + reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); + iowrite32(~0, gsi->virt + reg_offset(reg)); - iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); + iowrite32(val, gsi->virt + reg_offset(reg)); gsi_irq_type_enable(gsi, GSI_EV_CTRL); } /* Disable event ring control interrupts */ static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) { + const struct reg *reg; + gsi_irq_type_disable(gsi, GSI_EV_CTRL); - iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + + reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); + iowrite32(0, gsi->virt + reg_offset(reg)); } /* Channel commands are performed one at a time. Their completion is @@ -233,32 +251,43 @@ static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) { u32 val = BIT(channel_id); + const struct reg *reg; /* There's a small chance that a previous command completed * after the interrupt was disabled, so make sure we have no * pending interrupts before we enable them. */ - iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); + reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); + iowrite32(~0, gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); + iowrite32(val, gsi->virt + reg_offset(reg)); - iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); gsi_irq_type_enable(gsi, GSI_CH_CTRL); } /* Disable channel control interrupts */ static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) { + const struct reg *reg; + gsi_irq_type_disable(gsi, GSI_CH_CTRL); - iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); + + reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); + iowrite32(0, gsi->virt + reg_offset(reg)); } static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) { bool enable_ieob = !gsi->ieob_enabled_bitmap; + const struct reg *reg; u32 val; gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); + + reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); val = gsi->ieob_enabled_bitmap; - iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + iowrite32(val, gsi->virt + reg_offset(reg)); /* Enable the interrupt type if this is the first channel enabled */ if (enable_ieob) @@ -267,6 +296,7 @@ static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) { + const struct reg *reg; u32 val; gsi->ieob_enabled_bitmap &= ~event_mask; @@ -275,8 +305,9 @@ static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) if (!gsi->ieob_enabled_bitmap) gsi_irq_type_disable(gsi, GSI_IEOB); + reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); val = gsi->ieob_enabled_bitmap; - iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + iowrite32(val, gsi->virt + reg_offset(reg)); } static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) @@ -287,34 +318,44 @@ static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) /* Enable all GSI_interrupt types */ static void gsi_irq_enable(struct gsi *gsi) { + const struct reg *reg; u32 val; /* Global interrupts include hardware error reports. Enable * that so we can at least report the error should it occur. */ - iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); - gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); + reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); + iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); + + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE); /* General GSI interrupts are reported to all EEs; if they occur * they are unrecoverable (without reset). A breakpoint interrupt * also exists, but we don't support that. We want to be notified * of errors so we can report them, even if they can't be handled. */ - val = BIT(BUS_ERROR); - val |= BIT(CMD_FIFO_OVRFLOW); - val |= BIT(MCS_STACK_OVRFLOW); - iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); - gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); + reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); + val = BUS_ERROR; + val |= CMD_FIFO_OVRFLOW; + val |= MCS_STACK_OVRFLOW; + iowrite32(val, gsi->virt + reg_offset(reg)); + + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL); } /* Disable all GSI interrupt types */ static void gsi_irq_disable(struct gsi *gsi) { + const struct reg *reg; + gsi_irq_type_update(gsi, 0); /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ - iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); - iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); + iowrite32(0, gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); + iowrite32(0, gsi->virt + reg_offset(reg)); } /* Return the virtual address associated with a ring index */ @@ -356,11 +397,12 @@ static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) static enum gsi_evt_ring_state gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) { + const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); u32 val; - val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id)); - return u32_get_bits(val, EV_CHSTATE_FMASK); + return reg_decode(reg, EV_CHSTATE, val); } /* Issue an event ring command and wait for it to complete */ @@ -368,16 +410,18 @@ static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, enum gsi_evt_cmd_opcode opcode) { struct device *dev = gsi->dev; + const struct reg *reg; bool timeout; u32 val; /* Enable the completion interrupt for the command */ gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); - val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); - val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); + reg = gsi_reg(gsi, EV_CH_CMD); + val = reg_encode(reg, EV_CHID, evt_ring_id); + val |= reg_encode(reg, EV_OPCODE, opcode); - timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val); + timeout = !gsi_command(gsi, reg_offset(reg), val); gsi_irq_ev_ctrl_disable(gsi); @@ -464,13 +508,16 @@ static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) /* Fetch the current state of a channel from hardware */ static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) { + const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0); u32 channel_id = gsi_channel_id(channel); - void __iomem *virt = channel->gsi->virt; + struct gsi *gsi = channel->gsi; + void __iomem *virt = gsi->virt; u32 val; - val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); + reg = gsi_reg(gsi, CH_C_CNTXT_0); + val = ioread32(virt + reg_n_offset(reg, channel_id)); - return u32_get_bits(val, CHSTATE_FMASK); + return reg_decode(reg, CHSTATE, val); } /* Issue a channel command and wait for it to complete */ @@ -480,15 +527,18 @@ gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) u32 channel_id = gsi_channel_id(channel); struct gsi *gsi = channel->gsi; struct device *dev = gsi->dev; + const struct reg *reg; bool timeout; u32 val; /* Enable the completion interrupt for the command */ gsi_irq_ch_ctrl_enable(gsi, channel_id); - val = u32_encode_bits(channel_id, CH_CHID_FMASK); - val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); - timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val); + reg = gsi_reg(gsi, CH_CMD); + val = reg_encode(reg, CH_CHID, channel_id); + val |= reg_encode(reg, CH_OPCODE, opcode); + + timeout = !gsi_command(gsi, reg_offset(reg), val); gsi_irq_ch_ctrl_disable(gsi); @@ -651,6 +701,7 @@ static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) */ static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) { + const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0); struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; u32 val; @@ -658,90 +709,99 @@ static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) /* Note: index *must* be used modulo the ring count here */ val = gsi_ring_addr(ring, (index - 1) % ring->count); - iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); } /* Program an event ring for use */ static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) { struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; - size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; + struct gsi_ring *ring = &evt_ring->ring; + const struct reg *reg; u32 val; + reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); /* We program all event rings as GPI type/protocol */ - val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); - val |= EV_INTYPE_FMASK; - val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); - iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI); + /* EV_EE field is 0 (GSI_EE_AP) */ + val |= reg_bit(reg, EV_INTYPE); + val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); + iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); - val = ev_r_length_encoded(gsi->version, size); - iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); + reg = gsi_reg(gsi, EV_CH_E_CNTXT_1); + val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE); + iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* The context 2 and 3 registers store the low-order and * high-order 32 bits of the address of the event ring, * respectively. */ - val = lower_32_bits(evt_ring->ring.addr); - iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); - val = upper_32_bits(evt_ring->ring.addr); - iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); + reg = gsi_reg(gsi, EV_CH_E_CNTXT_2); + val = lower_32_bits(ring->addr); + iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); + + reg = gsi_reg(gsi, EV_CH_E_CNTXT_3); + val = upper_32_bits(ring->addr); + iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* Enable interrupt moderation by setting the moderation delay */ - val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); - val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ - iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); + reg = gsi_reg(gsi, EV_CH_E_CNTXT_8); + val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT); + val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */ + /* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */ + iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); + + /* No MSI write data, and MSI high and low address is 0 */ + reg = gsi_reg(gsi, EV_CH_E_CNTXT_9); + iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); - /* No MSI write data, and MSI address high and low address is 0 */ - iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); - iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); - iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); + reg = gsi_reg(gsi, EV_CH_E_CNTXT_10); + iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); + + reg = gsi_reg(gsi, EV_CH_E_CNTXT_11); + iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* We don't need to get event read pointer updates */ - iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); - iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); + reg = gsi_reg(gsi, EV_CH_E_CNTXT_12); + iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); + + reg = gsi_reg(gsi, EV_CH_E_CNTXT_13); + iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); - /* Finally, tell the hardware we've completed event 0 (arbitrary) */ - gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); + /* Finally, tell the hardware our "last processed" event (arbitrary) */ + gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index); } /* Find the transaction whose completion indicates a channel is quiesced */ static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) { struct gsi_trans_info *trans_info = &channel->trans_info; - const struct list_head *list; + u32 pending_id = trans_info->pending_id; struct gsi_trans *trans; - - spin_lock_bh(&trans_info->spinlock); - - /* There is a small chance a TX transaction got allocated just - * before we disabled transmits, so check for that. - */ - if (channel->toward_ipa) { - list = &trans_info->alloc; - if (!list_empty(list)) - goto done; - list = &trans_info->pending; - if (!list_empty(list)) - goto done; + u16 trans_id; + + if (channel->toward_ipa && pending_id != trans_info->free_id) { + /* There is a small chance a TX transaction got allocated + * just before we disabled transmits, so check for that. + * The last allocated, committed, or pending transaction + * precedes the first free transaction. + */ + trans_id = trans_info->free_id - 1; + } else if (trans_info->polled_id != pending_id) { + /* Otherwise (TX or RX) we want to wait for anything that + * has completed, or has been polled but not released yet. + * + * The last completed or polled transaction precedes the + * first pending transaction. + */ + trans_id = pending_id - 1; + } else { + return NULL; } - /* Otherwise (TX or RX) we want to wait for anything that - * has completed, or has been polled but not released yet. - */ - list = &trans_info->complete; - if (!list_empty(list)) - goto done; - list = &trans_info->polled; - if (list_empty(list)) - list = NULL; -done: - trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL; - /* Caller will wait for this, so take a reference */ - if (trans) - refcount_inc(&trans->refcount); - - spin_unlock_bh(&trans_info->spinlock); + trans = &trans_info->trans[trans_id % channel->tre_count]; + refcount_inc(&trans->refcount); return trans; } @@ -767,42 +827,52 @@ static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) union gsi_channel_scratch scr = { }; struct gsi_channel_scratch_gpi *gpi; struct gsi *gsi = channel->gsi; + const struct reg *reg; u32 wrr_weight = 0; + u32 offset; u32 val; - /* Arbitrarily pick TRE 0 as the first channel element to use */ - channel->tre_ring.index = 0; + reg = gsi_reg(gsi, CH_C_CNTXT_0); /* We program all channels as GPI type/protocol */ - val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI); + val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI); if (channel->toward_ipa) - val |= CHTYPE_DIR_FMASK; - val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); - val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); - iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); - - val = r_length_encoded(gsi->version, size); - iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); + val |= reg_bit(reg, CHTYPE_DIR); + if (gsi->version < IPA_VERSION_5_0) + val |= reg_encode(reg, ERINDEX, channel->evt_ring_id); + val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); + + reg = gsi_reg(gsi, CH_C_CNTXT_1); + val = reg_encode(reg, CH_R_LENGTH, size); + if (gsi->version >= IPA_VERSION_5_0) + val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); /* The context 2 and 3 registers store the low-order and * high-order 32 bits of the address of the channel ring, * respectively. */ + reg = gsi_reg(gsi, CH_C_CNTXT_2); val = lower_32_bits(channel->tre_ring.addr); - iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); + + reg = gsi_reg(gsi, CH_C_CNTXT_3); val = upper_32_bits(channel->tre_ring.addr); - iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); + + reg = gsi_reg(gsi, CH_C_QOS); /* Command channel gets low weighted round-robin priority */ if (channel->command) - wrr_weight = field_max(WRR_WEIGHT_FMASK); - val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); + wrr_weight = reg_field_max(reg, WRR_WEIGHT); + val = reg_encode(reg, WRR_WEIGHT, wrr_weight); /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ /* No need to use the doorbell engine starting at IPA v4.0 */ if (gsi->version < IPA_VERSION_4_0 && doorbell) - val |= USE_DB_ENG_FMASK; + val |= reg_bit(reg, USE_DB_ENG); /* v4.0 introduces an escape buffer for prefetch. We use it * on all but the AP command channel. @@ -810,39 +880,43 @@ static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { /* If not otherwise set, prefetch buffers are used */ if (gsi->version < IPA_VERSION_4_5) - val |= USE_ESCAPE_BUF_ONLY_FMASK; + val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY); else - val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, - PREFETCH_MODE_FMASK); + val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY); } /* All channels set DB_IN_BYTES */ if (gsi->version >= IPA_VERSION_4_9) - val |= DB_IN_BYTES; + val |= reg_bit(reg, DB_IN_BYTES); - iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); /* Now update the scratch registers for GPI protocol */ gpi = &scr.gpi; - gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * + gpi->max_outstanding_tre = channel->trans_tre_max * GSI_RING_ELEMENT_SIZE; gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; + reg = gsi_reg(gsi, CH_C_SCRATCH_0); val = scr.data.word1; - iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); + reg = gsi_reg(gsi, CH_C_SCRATCH_1); val = scr.data.word2; - iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); + reg = gsi_reg(gsi, CH_C_SCRATCH_2); val = scr.data.word3; - iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); /* We must preserve the upper 16 bits of the last scratch register. * The next sequence assumes those bits remain unchanged between the * read and the write. */ - val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); + reg = gsi_reg(gsi, CH_C_SCRATCH_3); + offset = reg_n_offset(reg, channel_id); + val = ioread32(gsi->virt + offset); val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); - iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); + iowrite32(val, gsi->virt + offset); /* All done! */ } @@ -949,6 +1023,8 @@ void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) gsi_channel_reset_command(channel); + /* Hardware assumes this is 0 following reset */ + channel->tre_ring.index = 0; gsi_channel_program(channel, doorbell); gsi_channel_trans_cancel_pending(channel); @@ -991,84 +1067,79 @@ void gsi_resume(struct gsi *gsi) enable_irq(gsi->irq); } -/** - * gsi_channel_tx_queued() - Report queued TX transfers for a channel - * @channel: Channel for which to report - * - * Report to the network stack the number of bytes and transactions that - * have been queued to hardware since last call. This and the next function - * supply information used by the network stack for throttling. - * - * For each channel we track the number of transactions used and bytes of - * data those transactions represent. We also track what those values are - * each time this function is called. Subtracting the two tells us - * the number of bytes and transactions that have been added between - * successive calls. - * - * Calling this each time we ring the channel doorbell allows us to - * provide accurate information to the network stack about how much - * work we've given the hardware at any point in time. - */ -void gsi_channel_tx_queued(struct gsi_channel *channel) +void gsi_trans_tx_committed(struct gsi_trans *trans) +{ + struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; + + channel->trans_count++; + channel->byte_count += trans->len; + + trans->trans_count = channel->trans_count; + trans->byte_count = channel->byte_count; +} + +void gsi_trans_tx_queued(struct gsi_trans *trans) { + u32 channel_id = trans->channel_id; + struct gsi *gsi = trans->gsi; + struct gsi_channel *channel; u32 trans_count; u32 byte_count; + channel = &gsi->channel[channel_id]; + byte_count = channel->byte_count - channel->queued_byte_count; trans_count = channel->trans_count - channel->queued_trans_count; channel->queued_byte_count = channel->byte_count; channel->queued_trans_count = channel->trans_count; - ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), - trans_count, byte_count); + ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count); } /** - * gsi_channel_tx_update() - Report completed TX transfers - * @channel: Channel that has completed transmitting packets - * @trans: Last transation known to be complete + * gsi_trans_tx_completed() - Report completed TX transactions + * @trans: TX channel transaction that has completed * - * Compute the number of transactions and bytes that have been transferred - * over a TX channel since the given transaction was committed. Report this - * information to the network stack. + * Report that a transaction on a TX channel has completed. At the time a + * transaction is committed, we record *in the transaction* its channel's + * committed transaction and byte counts. Transactions are completed in + * order, and the difference between the channel's byte/transaction count + * when the transaction was committed and when it completes tells us + * exactly how much data has been transferred while the transaction was + * pending. * - * At the time a transaction is committed, we record its channel's - * committed transaction and byte counts *in the transaction*. - * Completions are signaled by the hardware with an interrupt, and - * we can determine the latest completed transaction at that time. - * - * The difference between the byte/transaction count recorded in - * the transaction and the count last time we recorded a completion - * tells us exactly how much data has been transferred between - * completions. - * - * Calling this each time we learn of a newly-completed transaction - * allows us to provide accurate information to the network stack - * about how much work has been completed by the hardware at a given - * point in time. + * We report this information to the network stack, which uses it to manage + * the rate at which data is sent to hardware. */ -static void -gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) +static void gsi_trans_tx_completed(struct gsi_trans *trans) { - u64 byte_count = trans->byte_count + trans->len; - u64 trans_count = trans->trans_count + 1; + u32 channel_id = trans->channel_id; + struct gsi *gsi = trans->gsi; + struct gsi_channel *channel; + u32 trans_count; + u32 byte_count; + + channel = &gsi->channel[channel_id]; + trans_count = trans->trans_count - channel->compl_trans_count; + byte_count = trans->byte_count - channel->compl_byte_count; - byte_count -= channel->compl_byte_count; - channel->compl_byte_count += byte_count; - trans_count -= channel->compl_trans_count; channel->compl_trans_count += trans_count; + channel->compl_byte_count += byte_count; - ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), - trans_count, byte_count); + ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count); } /* Channel control interrupt handler */ static void gsi_isr_chan_ctrl(struct gsi *gsi) { + const struct reg *reg; u32 channel_mask; - channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); - iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); + reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ); + channel_mask = ioread32(gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); + iowrite32(channel_mask, gsi->virt + reg_offset(reg)); while (channel_mask) { u32 channel_id = __ffs(channel_mask); @@ -1082,10 +1153,14 @@ static void gsi_isr_chan_ctrl(struct gsi *gsi) /* Event ring control interrupt handler */ static void gsi_isr_evt_ctrl(struct gsi *gsi) { + const struct reg *reg; u32 event_mask; - event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); - iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); + reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ); + event_mask = ioread32(gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); + iowrite32(event_mask, gsi->virt + reg_offset(reg)); while (event_mask) { u32 evt_ring_id = __ffs(event_mask); @@ -1133,21 +1208,29 @@ gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) /* Global error interrupt handler */ static void gsi_isr_glob_err(struct gsi *gsi) { + const struct reg *log_reg; + const struct reg *clr_reg; enum gsi_err_type type; enum gsi_err_code code; + u32 offset; u32 which; u32 val; u32 ee; /* Get the logged error, then reinitialize the log */ - val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); - iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); - iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); + log_reg = gsi_reg(gsi, ERROR_LOG); + offset = reg_offset(log_reg); + val = ioread32(gsi->virt + offset); + iowrite32(0, gsi->virt + offset); - ee = u32_get_bits(val, ERR_EE_FMASK); - type = u32_get_bits(val, ERR_TYPE_FMASK); - which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); - code = u32_get_bits(val, ERR_CODE_FMASK); + clr_reg = gsi_reg(gsi, ERROR_LOG_CLR); + iowrite32(~0, gsi->virt + reg_offset(clr_reg)); + + /* Parse the error value */ + ee = reg_decode(log_reg, ERR_EE, val); + type = reg_decode(log_reg, ERR_TYPE, val); + which = reg_decode(log_reg, ERR_VIRT_IDX, val); + code = reg_decode(log_reg, ERR_CODE, val); if (type == GSI_ERR_TYPE_CHAN) gsi_isr_glob_chan_err(gsi, ee, which, code); @@ -1160,6 +1243,7 @@ static void gsi_isr_glob_err(struct gsi *gsi) /* Generic EE interrupt handler */ static void gsi_isr_gp_int1(struct gsi *gsi) { + const struct reg *reg; u32 result; u32 val; @@ -1179,15 +1263,16 @@ static void gsi_isr_gp_int1(struct gsi *gsi) * Similarly, we could get an error back when updating flow control * on a channel because it's not in the proper state. * - * In either case, we silently ignore a CHANNEL_NOT_RUNNING error - * if we receive it. + * In either case, we silently ignore a INCORRECT_CHANNEL_STATE + * error if we receive it. */ - val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); - result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); + reg = gsi_reg(gsi, CNTXT_SCRATCH_0); + val = ioread32(gsi->virt + reg_offset(reg)); + result = reg_decode(reg, GENERIC_EE_RESULT, val); switch (result) { case GENERIC_EE_SUCCESS: - case GENERIC_EE_CHANNEL_NOT_RUNNING: + case GENERIC_EE_INCORRECT_CHANNEL_STATE: gsi->result = 0; break; @@ -1207,19 +1292,22 @@ static void gsi_isr_gp_int1(struct gsi *gsi) /* Inter-EE interrupt handler */ static void gsi_isr_glob_ee(struct gsi *gsi) { + const struct reg *reg; u32 val; - val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); + reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS); + val = ioread32(gsi->virt + reg_offset(reg)); - if (val & BIT(ERROR_INT)) + if (val & ERROR_INT) gsi_isr_glob_err(gsi); - iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); + reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR); + iowrite32(val, gsi->virt + reg_offset(reg)); - val &= ~BIT(ERROR_INT); + val &= ~ERROR_INT; - if (val & BIT(GP_INT1)) { - val ^= BIT(GP_INT1); + if (val & GP_INT1) { + val ^= GP_INT1; gsi_isr_gp_int1(gsi); } @@ -1230,11 +1318,16 @@ static void gsi_isr_glob_ee(struct gsi *gsi) /* I/O completion interrupt event */ static void gsi_isr_ieob(struct gsi *gsi) { + const struct reg *reg; u32 event_mask; - event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); + reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ); + event_mask = ioread32(gsi->virt + reg_offset(reg)); + gsi_irq_ieob_disable(gsi, event_mask); - iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); + + reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR); + iowrite32(event_mask, gsi->virt + reg_offset(reg)); while (event_mask) { u32 evt_ring_id = __ffs(event_mask); @@ -1249,10 +1342,14 @@ static void gsi_isr_ieob(struct gsi *gsi) static void gsi_isr_general(struct gsi *gsi) { struct device *dev = gsi->dev; + const struct reg *reg; u32 val; - val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); - iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); + reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS); + val = ioread32(gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR); + iowrite32(val, gsi->virt + reg_offset(reg)); dev_err(dev, "unexpected general interrupt 0x%08x\n", val); } @@ -1268,31 +1365,39 @@ static void gsi_isr_general(struct gsi *gsi) static irqreturn_t gsi_isr(int irq, void *dev_id) { struct gsi *gsi = dev_id; + const struct reg *reg; u32 intr_mask; u32 cnt = 0; + u32 offset; + + reg = gsi_reg(gsi, CNTXT_TYPE_IRQ); + offset = reg_offset(reg); /* enum gsi_irq_type_id defines GSI interrupt types */ - while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { + while ((intr_mask = ioread32(gsi->virt + offset))) { /* intr_mask contains bitmask of pending GSI interrupts */ do { u32 gsi_intr = BIT(__ffs(intr_mask)); intr_mask ^= gsi_intr; + /* Note: the IRQ condition for each type is cleared + * when the type-specific register is updated. + */ switch (gsi_intr) { - case BIT(GSI_CH_CTRL): + case GSI_CH_CTRL: gsi_isr_chan_ctrl(gsi); break; - case BIT(GSI_EV_CTRL): + case GSI_EV_CTRL: gsi_isr_evt_ctrl(gsi); break; - case BIT(GSI_GLOB_EE): + case GSI_GLOB_EE: gsi_isr_glob_ee(gsi); break; - case BIT(GSI_IEOB): + case GSI_IEOB: gsi_isr_ieob(gsi); break; - case BIT(GSI_GENERAL): + case GSI_GENERAL: gsi_isr_general(gsi); break; default: @@ -1327,60 +1432,73 @@ static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) } /* Return the transaction associated with a transfer completion event */ -static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, - struct gsi_event *event) +static struct gsi_trans * +gsi_event_trans(struct gsi *gsi, struct gsi_event *event) { + u32 channel_id = event->chid; + struct gsi_channel *channel; + struct gsi_trans *trans; u32 tre_offset; u32 tre_index; + channel = &gsi->channel[channel_id]; + if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id)) + return NULL; + /* Event xfer_ptr records the TRE it's associated with */ tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); - return gsi_channel_trans_mapped(channel, tre_index); + trans = gsi_channel_trans_mapped(channel, tre_index); + + if (WARN(!trans, "channel %u event with no transaction\n", channel_id)) + return NULL; + + return trans; } /** - * gsi_evt_ring_rx_update() - Record lengths of received data - * @evt_ring: Event ring associated with channel that received packets - * @index: Event index in ring reported by hardware + * gsi_evt_ring_update() - Update transaction state from hardware + * @gsi: GSI pointer + * @evt_ring_id: Event ring ID + * @index: Event index in ring reported by hardware * * Events for RX channels contain the actual number of bytes received into * the buffer. Every event has a transaction associated with it, and here * we update transactions to record their actual received lengths. * + * When an event for a TX channel arrives we use information in the + * transaction to report the number of requests and bytes that have + * been transferred. + * * This function is called whenever we learn that the GSI hardware has filled * new events since the last time we checked. The ring's index field tells * the first entry in need of processing. The index provided is the * first *unfilled* event in the ring (following the last filled one). * * Events are sequential within the event ring, and transactions are - * sequential within the transaction pool. + * sequential within the transaction array. * * Note that @index always refers to an element *within* the event ring. */ -static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) +static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index) { - struct gsi_channel *channel = evt_ring->channel; + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; struct gsi_ring *ring = &evt_ring->ring; - struct gsi_trans_info *trans_info; struct gsi_event *event_done; struct gsi_event *event; - struct gsi_trans *trans; - u32 byte_count = 0; - u32 old_index; u32 event_avail; + u32 old_index; - trans_info = &channel->trans_info; - - /* We'll start with the oldest un-processed event. RX channels - * replenish receive buffers in single-TRE transactions, so we - * can just map that event to its transaction. Transactions - * associated with completion events are consecutive. + /* Starting with the oldest un-processed event, determine which + * transaction (and which channel) is associated with the event. + * For RX channels, update each completed transaction with the + * number of bytes that were actually received. For TX channels + * associated with a network device, report to the network stack + * the number of transfers and bytes this completion represents. */ old_index = ring->index; event = gsi_ring_virt(ring, old_index); - trans = gsi_event_trans(channel, event); /* Compute the number of events to process before we wrap, * and determine when we'll be done processing events. @@ -1388,20 +1506,28 @@ static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) event_avail = ring->count - old_index % ring->count; event_done = gsi_ring_virt(ring, index); do { - trans->len = __le16_to_cpu(event->len); - byte_count += trans->len; + struct gsi_trans *trans; + + trans = gsi_event_trans(gsi, event); + if (!trans) + return; + + if (trans->direction == DMA_FROM_DEVICE) + trans->len = __le16_to_cpu(event->len); + else + gsi_trans_tx_completed(trans); + + gsi_trans_move_complete(trans); /* Move on to the next event and transaction */ if (--event_avail) event++; else event = gsi_ring_virt(ring, 0); - trans = gsi_trans_pool_next(&trans_info->pool, trans); } while (event != event_done); - /* We record RX bytes when they are received */ - channel->byte_count += byte_count; - channel->trans_count++; + /* Tell the hardware we've handled these events */ + gsi_evt_ring_doorbell(gsi, evt_ring_id, index); } /* Initialize a ring, including allocating DMA memory for its entries */ @@ -1421,6 +1547,7 @@ static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) ring->addr = addr; ring->count = count; + ring->index = 0; return 0; } @@ -1461,21 +1588,24 @@ void gsi_channel_doorbell(struct gsi_channel *channel) struct gsi_ring *tre_ring = &channel->tre_ring; u32 channel_id = gsi_channel_id(channel); struct gsi *gsi = channel->gsi; + const struct reg *reg; u32 val; + reg = gsi_reg(gsi, CH_C_DOORBELL_0); /* Note: index *must* be used modulo the ring count here */ val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); - iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); + iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); } -/* Consult hardware, move any newly completed transactions to completed list */ -static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel) +/* Consult hardware, move newly completed transactions to completed state */ +void gsi_channel_update(struct gsi_channel *channel) { u32 evt_ring_id = channel->evt_ring_id; struct gsi *gsi = channel->gsi; struct gsi_evt_ring *evt_ring; struct gsi_trans *trans; struct gsi_ring *ring; + const struct reg *reg; u32 offset; u32 index; @@ -1485,36 +1615,23 @@ static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel) /* See if there's anything new to process; if not, we're done. Note * that index always refers to an entry *within* the event ring. */ - offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); + reg = gsi_reg(gsi, EV_CH_E_CNTXT_4); + offset = reg_n_offset(reg, evt_ring_id); index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); if (index == ring->index % ring->count) - return NULL; + return; - /* Get the transaction for the latest completed event. Take a - * reference to keep it from completing before we give the events - * for this and previous transactions back to the hardware. - */ - trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); - refcount_inc(&trans->refcount); + /* Get the transaction for the latest completed event. */ + trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1)); + if (!trans) + return; /* For RX channels, update each completed transaction with the number * of bytes that were actually received. For TX channels, report * the number of transactions and bytes this completion represents * up the network stack. */ - if (channel->toward_ipa) - gsi_channel_tx_update(channel, trans); - else - gsi_evt_ring_rx_update(evt_ring, index); - - gsi_trans_move_complete(trans); - - /* Tell the hardware we've handled these events */ - gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); - - gsi_trans_free(trans); - - return gsi_channel_trans_complete(channel); + gsi_evt_ring_update(gsi, evt_ring_id, index); } /** @@ -1523,21 +1640,18 @@ static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel) * * Return: Transaction pointer, or null if none are available * - * This function returns the first entry on a channel's completed transaction - * list. If that list is empty, the hardware is consulted to determine - * whether any new transactions have completed. If so, they're moved to the - * completed list and the new first entry is returned. If there are no more - * completed transactions, a null pointer is returned. + * This function returns the first of a channel's completed transactions. + * If no transactions are in completed state, the hardware is consulted to + * determine whether any new transactions have completed. If so, they're + * moved to completed state and the first such transaction is returned. + * If there are no more completed transactions, a null pointer is returned. */ static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) { struct gsi_trans *trans; - /* Get the first transaction from the completed list */ + /* Get the first completed transaction */ trans = gsi_channel_trans_complete(channel); - if (!trans) /* List is empty; see if there's more to do */ - trans = gsi_channel_update(channel); - if (trans) gsi_trans_move_polled(trans); @@ -1614,11 +1728,11 @@ static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) gsi_channel_program(channel, true); if (channel->toward_ipa) - netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, - gsi_channel_poll, NAPI_POLL_WEIGHT); + netif_napi_add_tx(gsi->dummy_dev, &channel->napi, + gsi_channel_poll); else - netif_napi_add(&gsi->dummy_dev, &channel->napi, - gsi_channel_poll, NAPI_POLL_WEIGHT); + netif_napi_add(gsi->dummy_dev, &channel->napi, + gsi_channel_poll); return 0; @@ -1653,7 +1767,9 @@ static int gsi_generic_command(struct gsi *gsi, u32 channel_id, enum gsi_generic_cmd_opcode opcode, u8 params) { + const struct reg *reg; bool timeout; + u32 offset; u32 val; /* The error global interrupt type is always enabled (until we tear @@ -1665,24 +1781,31 @@ static int gsi_generic_command(struct gsi *gsi, u32 channel_id, * channel), and only from this function. So we enable the GP_INT1 * IRQ type here, and disable it again after the command completes. */ - val = BIT(ERROR_INT) | BIT(GP_INT1); - iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); + val = ERROR_INT | GP_INT1; + iowrite32(val, gsi->virt + reg_offset(reg)); /* First zero the result code field */ - val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); - val &= ~GENERIC_EE_RESULT_FMASK; - iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); + reg = gsi_reg(gsi, CNTXT_SCRATCH_0); + offset = reg_offset(reg); + val = ioread32(gsi->virt + offset); + + val &= ~reg_fmask(reg, GENERIC_EE_RESULT); + iowrite32(val, gsi->virt + offset); /* Now issue the command */ - val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); - val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); - val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); - val |= u32_encode_bits(params, GENERIC_PARAMS_FMASK); + reg = gsi_reg(gsi, GENERIC_CMD); + val = reg_encode(reg, GENERIC_OPCODE, opcode); + val |= reg_encode(reg, GENERIC_CHID, channel_id); + val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM); + if (gsi->version >= IPA_VERSION_4_11) + val |= reg_encode(reg, GENERIC_PARAMS, params); - timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val); + timeout = !gsi_command(gsi, reg_offset(reg), val); /* Disable the GP_INT1 IRQ type again */ - iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); + iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); if (!timeout) return gsi->result; @@ -1839,32 +1962,40 @@ static void gsi_channel_teardown(struct gsi *gsi) /* Turn off all GSI interrupts initially */ static int gsi_irq_setup(struct gsi *gsi) { + const struct reg *reg; int ret; /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ - iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); + reg = gsi_reg(gsi, CNTXT_INTSET); + iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg)); /* Disable all interrupt types */ gsi_irq_type_update(gsi, 0); /* Clear all type-specific interrupt masks */ - iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); - iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); - iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); - iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); + iowrite32(0, gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); + iowrite32(0, gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); + iowrite32(0, gsi->virt + reg_offset(reg)); + + reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); + iowrite32(0, gsi->virt + reg_offset(reg)); /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ if (gsi->version > IPA_VERSION_3_1) { - u32 offset; + reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK); + iowrite32(0, gsi->virt + reg_offset(reg)); - /* These registers are in the non-adjusted address range */ - offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET; - iowrite32(0, gsi->virt_raw + offset); - offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET; - iowrite32(0, gsi->virt_raw + offset); + reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK); + iowrite32(0, gsi->virt + reg_offset(reg)); } - iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); + reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); + iowrite32(0, gsi->virt + reg_offset(reg)); ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); if (ret) @@ -1882,6 +2013,7 @@ static void gsi_irq_teardown(struct gsi *gsi) static int gsi_ring_setup(struct gsi *gsi) { struct device *dev = gsi->dev; + const struct reg *reg; u32 count; u32 val; @@ -1893,9 +2025,10 @@ static int gsi_ring_setup(struct gsi *gsi) return 0; } - val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); + reg = gsi_reg(gsi, HW_PARAM_2); + val = ioread32(gsi->virt + reg_offset(reg)); - count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); + count = reg_decode(reg, NUM_CH_PER_EE, val); if (!count) { dev_err(dev, "GSI reports zero channels supported\n"); return -EINVAL; @@ -1907,7 +2040,12 @@ static int gsi_ring_setup(struct gsi *gsi) } gsi->channel_count = count; - count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); + if (gsi->version < IPA_VERSION_5_0) { + count = reg_decode(reg, NUM_EV_PER_EE, val); + } else { + reg = gsi_reg(gsi, HW_PARAM_4); + count = reg_decode(reg, EV_PER_EE, val); + } if (!count) { dev_err(dev, "GSI reports zero event rings supported\n"); return -EINVAL; @@ -1926,12 +2064,14 @@ static int gsi_ring_setup(struct gsi *gsi) /* Setup function for GSI. GSI firmware must be loaded and initialized */ int gsi_setup(struct gsi *gsi) { + const struct reg *reg; u32 val; int ret; /* Here is where we first touch the GSI hardware */ - val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); - if (!(val & ENABLED_FMASK)) { + reg = gsi_reg(gsi, GSI_STATUS); + val = ioread32(gsi->virt + reg_offset(reg)); + if (!(val & reg_bit(reg, ENABLED))) { dev_err(gsi->dev, "GSI has not been enabled\n"); return -EIO; } @@ -1945,7 +2085,8 @@ int gsi_setup(struct gsi *gsi) goto err_irq_teardown; /* Initialize the error log */ - iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); + reg = gsi_reg(gsi, ERROR_LOG); + iowrite32(0, gsi->virt + reg_offset(reg)); ret = gsi_channel_setup(gsi); if (ret) @@ -2005,9 +2146,10 @@ static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) gsi_evt_ring_id_free(gsi, evt_ring_id); } -static bool gsi_channel_data_valid(struct gsi *gsi, +static bool gsi_channel_data_valid(struct gsi *gsi, bool command, const struct ipa_gsi_endpoint_data *data) { + const struct gsi_channel_data *channel_data; u32 channel_id = data->channel_id; struct device *dev = gsi->dev; @@ -2023,10 +2165,24 @@ static bool gsi_channel_data_valid(struct gsi *gsi, return false; } - if (!data->channel.tlv_count || - data->channel.tlv_count > GSI_TLV_MAX) { + if (command && !data->toward_ipa) { + dev_err(dev, "command channel %u is not TX\n", channel_id); + return false; + } + + channel_data = &data->channel; + + if (!channel_data->tlv_count || + channel_data->tlv_count > GSI_TLV_MAX) { dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", - channel_id, data->channel.tlv_count, GSI_TLV_MAX); + channel_id, channel_data->tlv_count, GSI_TLV_MAX); + return false; + } + + if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) { + dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n", + channel_id, IPA_COMMAND_TRANS_TRE_MAX, + channel_data->tlv_count); return false; } @@ -2035,22 +2191,22 @@ static bool gsi_channel_data_valid(struct gsi *gsi, * gsi_channel_tre_max() is computed, tre_count has to be almost * twice the TLV FIFO size to satisfy this requirement. */ - if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { + if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) { dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", - channel_id, data->channel.tlv_count, - data->channel.tre_count); + channel_id, channel_data->tlv_count, + channel_data->tre_count); return false; } - if (!is_power_of_2(data->channel.tre_count)) { + if (!is_power_of_2(channel_data->tre_count)) { dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", - channel_id, data->channel.tre_count); + channel_id, channel_data->tre_count); return false; } - if (!is_power_of_2(data->channel.event_count)) { + if (!is_power_of_2(channel_data->event_count)) { dev_err(dev, "channel %u bad event_count %u; not power of 2\n", - channel_id, data->channel.event_count); + channel_id, channel_data->event_count); return false; } @@ -2066,7 +2222,7 @@ static int gsi_channel_init_one(struct gsi *gsi, u32 tre_count; int ret; - if (!gsi_channel_data_valid(gsi, data)) + if (!gsi_channel_data_valid(gsi, command, data)) return -EINVAL; /* Worst case we need an event for every outstanding TRE */ @@ -2084,7 +2240,7 @@ static int gsi_channel_init_one(struct gsi *gsi, channel->gsi = gsi; channel->toward_ipa = data->toward_ipa; channel->command = command; - channel->tlv_count = data->channel.tlv_count; + channel->trans_tre_max = data->channel.tlv_count; channel->tre_count = tre_count; channel->event_count = data->channel.event_count; @@ -2201,67 +2357,40 @@ int gsi_init(struct gsi *gsi, struct platform_device *pdev, enum ipa_version version, u32 count, const struct ipa_gsi_endpoint_data *data) { - struct device *dev = &pdev->dev; - struct resource *res; - resource_size_t size; - u32 adjust; int ret; gsi_validate_build(); - gsi->dev = dev; + gsi->dev = &pdev->dev; gsi->version = version; /* GSI uses NAPI on all channels. Create a dummy network device * for the channel NAPI contexts to be associated with. */ - init_dummy_netdev(&gsi->dummy_dev); - - /* Get GSI memory range and map it */ - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); - if (!res) { - dev_err(dev, "DT error getting \"gsi\" memory property\n"); - return -ENODEV; - } - - size = resource_size(res); - if (res->start > U32_MAX || size > U32_MAX - res->start) { - dev_err(dev, "DT memory resource \"gsi\" out of range\n"); - return -EINVAL; - } - - /* Make sure we can make our pointer adjustment if necessary */ - adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; - if (res->start < adjust) { - dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", - adjust); - return -EINVAL; - } - - gsi->virt_raw = ioremap(res->start, size); - if (!gsi->virt_raw) { - dev_err(dev, "unable to remap \"gsi\" memory\n"); + gsi->dummy_dev = alloc_netdev_dummy(0); + if (!gsi->dummy_dev) return -ENOMEM; - } - /* Most registers are accessed using an adjusted register range */ - gsi->virt = gsi->virt_raw - adjust; - init_completion(&gsi->completion); + ret = gsi_reg_init(gsi, pdev); + if (ret) + goto err_reg_exit; + ret = gsi_irq_init(gsi, pdev); /* No matching exit required */ if (ret) - goto err_iounmap; + goto err_reg_exit; ret = gsi_channel_init(gsi, count, data); if (ret) - goto err_iounmap; + goto err_reg_exit; mutex_init(&gsi->mutex); return 0; -err_iounmap: - iounmap(gsi->virt_raw); +err_reg_exit: + free_netdev(gsi->dummy_dev); + gsi_reg_exit(gsi); return ret; } @@ -2271,7 +2400,8 @@ void gsi_exit(struct gsi *gsi) { mutex_destroy(&gsi->mutex); gsi_channel_exit(gsi); - iounmap(gsi->virt_raw); + free_netdev(gsi->dummy_dev); + gsi_reg_exit(gsi); } /* The maximum number of outstanding TREs on a channel. This limits @@ -2299,13 +2429,5 @@ u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) struct gsi_channel *channel = &gsi->channel[channel_id]; /* Hardware limit is channel->tre_count - 1 */ - return channel->tre_count - (channel->tlv_count - 1); -} - -/* Returns the maximum number of TREs in a single transaction for a channel */ -u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) -{ - struct gsi_channel *channel = &gsi->channel[channel_id]; - - return channel->tlv_count; + return channel->tre_count - (channel->trans_tre_max - 1); } |
