diff options
Diffstat (limited to 'drivers/nvme/host/pci.c')
| -rw-r--r-- | drivers/nvme/host/pci.c | 3372 |
1 files changed, 2211 insertions, 1161 deletions
diff --git a/drivers/nvme/host/pci.c b/drivers/nvme/host/pci.c index 9bc585415d9b..0e4caeab739c 100644 --- a/drivers/nvme/host/pci.c +++ b/drivers/nvme/host/pci.c @@ -1,54 +1,79 @@ +// SPDX-License-Identifier: GPL-2.0 /* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. */ -#include <linux/aer.h> +#include <linux/acpi.h> #include <linux/async.h> #include <linux/blkdev.h> -#include <linux/blk-mq.h> -#include <linux/blk-mq-pci.h> +#include <linux/blk-mq-dma.h> +#include <linux/blk-integrity.h> #include <linux/dmi.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> +#include <linux/kstrtox.h> +#include <linux/memremap.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> +#include <linux/nodemask.h> #include <linux/once.h> #include <linux/pci.h> +#include <linux/suspend.h> #include <linux/t10-pi.h> #include <linux/types.h> #include <linux/io-64-nonatomic-lo-hi.h> +#include <linux/io-64-nonatomic-hi-lo.h> #include <linux/sed-opal.h> -#include <linux/pci-p2pdma.h> #include "trace.h" #include "nvme.h" -#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) -#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) +#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) +#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) -#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) +/* Optimisation for I/Os between 4k and 128k */ +#define NVME_SMALL_POOL_SIZE 256 /* - * These can be higher, but we need to ensure that any command doesn't - * require an sg allocation that needs more than a page of data. + * Arbitrary upper bound. */ -#define NVME_MAX_KB_SZ 4096 -#define NVME_MAX_SEGS 127 +#define NVME_MAX_BYTES SZ_8M +#define NVME_MAX_NR_DESCRIPTORS 5 + +/* + * For data SGLs we support a single descriptors worth of SGL entries. + * For PRPs, segments don't matter at all. + */ +#define NVME_MAX_SEGS \ + (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) + +/* + * For metadata SGLs, only the small descriptor is supported, and the first + * entry is the segment descriptor, which for the data pointer sits in the SQE. + */ +#define NVME_MAX_META_SEGS \ + ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1) + +/* + * The last entry is used to link to the next descriptor. + */ +#define PRPS_PER_PAGE \ + (((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1) + +/* + * I/O could be non-aligned both at the beginning and end. + */ +#define MAX_PRP_RANGE \ + (NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1)) + +static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <= + (1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE)); static int use_threaded_interrupts; -module_param(use_threaded_interrupts, int, 0); +module_param(use_threaded_interrupts, int, 0444); static bool use_cmb_sqes = true; module_param(use_cmb_sqes, bool, 0444); @@ -65,37 +90,59 @@ MODULE_PARM_DESC(sgl_threshold, "Use SGLs when average request segment size is larger or equal to " "this size. Use 0 to disable SGLs."); +#define NVME_PCI_MIN_QUEUE_SIZE 2 +#define NVME_PCI_MAX_QUEUE_SIZE 4095 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); static const struct kernel_param_ops io_queue_depth_ops = { .set = io_queue_depth_set, - .get = param_get_int, + .get = param_get_uint, }; -static int io_queue_depth = 1024; +static unsigned int io_queue_depth = 1024; module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); -MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); +MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); + +static int io_queue_count_set(const char *val, const struct kernel_param *kp) +{ + unsigned int n; + int ret; + + ret = kstrtouint(val, 10, &n); + if (ret != 0 || n > blk_mq_num_possible_queues(0)) + return -EINVAL; + return param_set_uint(val, kp); +} -static int queue_count_set(const char *val, const struct kernel_param *kp); -static const struct kernel_param_ops queue_count_ops = { - .set = queue_count_set, - .get = param_get_int, +static const struct kernel_param_ops io_queue_count_ops = { + .set = io_queue_count_set, + .get = param_get_uint, }; -static int write_queues; -module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644); +static unsigned int write_queues; +module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); MODULE_PARM_DESC(write_queues, "Number of queues to use for writes. If not set, reads and writes " "will share a queue set."); -static int poll_queues = 0; -module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644); +static unsigned int poll_queues; +module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); +static bool noacpi; +module_param(noacpi, bool, 0444); +MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); + struct nvme_dev; struct nvme_queue; static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); -static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); +static void nvme_delete_io_queues(struct nvme_dev *dev); +static void nvme_update_attrs(struct nvme_dev *dev); + +struct nvme_descriptor_pools { + struct dma_pool *large; + struct dma_pool *small; +}; /* * Represents an NVM Express device. Each nvme_dev is a PCI function. @@ -106,17 +153,15 @@ struct nvme_dev { struct blk_mq_tag_set admin_tagset; u32 __iomem *dbs; struct device *dev; - struct dma_pool *prp_page_pool; - struct dma_pool *prp_small_pool; unsigned online_queues; unsigned max_qid; unsigned io_queues[HCTX_MAX_TYPES]; unsigned int num_vecs; - int q_depth; + u32 q_depth; + int io_sqes; u32 db_stride; void __iomem *bar; unsigned long bar_mapped_size; - struct work_struct remove_work; struct mutex shutdown_lock; bool subsystem; u64 cmb_size; @@ -124,43 +169,34 @@ struct nvme_dev { u32 cmbsz; u32 cmbloc; struct nvme_ctrl ctrl; - - mempool_t *iod_mempool; + u32 last_ps; + bool hmb; + struct sg_table *hmb_sgt; + mempool_t *dmavec_mempool; /* shadow doorbell buffer support: */ - u32 *dbbuf_dbs; + __le32 *dbbuf_dbs; dma_addr_t dbbuf_dbs_dma_addr; - u32 *dbbuf_eis; + __le32 *dbbuf_eis; dma_addr_t dbbuf_eis_dma_addr; /* host memory buffer support: */ u64 host_mem_size; u32 nr_host_mem_descs; + u32 host_mem_descs_size; dma_addr_t host_mem_descs_dma; struct nvme_host_mem_buf_desc *host_mem_descs; void **host_mem_desc_bufs; + unsigned int nr_allocated_queues; + unsigned int nr_write_queues; + unsigned int nr_poll_queues; + struct nvme_descriptor_pools descriptor_pools[]; }; static int io_queue_depth_set(const char *val, const struct kernel_param *kp) { - int n = 0, ret; - - ret = kstrtoint(val, 10, &n); - if (ret != 0 || n < 2) - return -EINVAL; - - return param_set_int(val, kp); -} - -static int queue_count_set(const char *val, const struct kernel_param *kp) -{ - int n = 0, ret; - - ret = kstrtoint(val, 10, &n); - if (n > num_possible_cpus()) - n = num_possible_cpus(); - - return param_set_int(val, kp); + return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, + NVME_PCI_MAX_QUEUE_SIZE); } static inline unsigned int sq_idx(unsigned int qid, u32 stride) @@ -183,120 +219,134 @@ static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) * commands and one for I/O commands). */ struct nvme_queue { - struct device *q_dmadev; struct nvme_dev *dev; + struct nvme_descriptor_pools descriptor_pools; spinlock_t sq_lock; - struct nvme_command *sq_cmds; + void *sq_cmds; /* only used for poll queues: */ spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; - volatile struct nvme_completion *cqes; - struct blk_mq_tags **tags; + struct nvme_completion *cqes; dma_addr_t sq_dma_addr; dma_addr_t cq_dma_addr; u32 __iomem *q_db; - u16 q_depth; - s16 cq_vector; + u32 q_depth; + u16 cq_vector; u16 sq_tail; u16 last_sq_tail; u16 cq_head; - u16 last_cq_head; u16 qid; u8 cq_phase; + u8 sqes; unsigned long flags; #define NVMEQ_ENABLED 0 #define NVMEQ_SQ_CMB 1 #define NVMEQ_DELETE_ERROR 2 - u32 *dbbuf_sq_db; - u32 *dbbuf_cq_db; - u32 *dbbuf_sq_ei; - u32 *dbbuf_cq_ei; +#define NVMEQ_POLLED 3 + __le32 *dbbuf_sq_db; + __le32 *dbbuf_cq_db; + __le32 *dbbuf_sq_ei; + __le32 *dbbuf_cq_ei; struct completion delete_done; }; +/* bits for iod->flags */ +enum nvme_iod_flags { + /* this command has been aborted by the timeout handler */ + IOD_ABORTED = 1U << 0, + + /* uses the small descriptor pool */ + IOD_SMALL_DESCRIPTOR = 1U << 1, + + /* single segment dma mapping */ + IOD_SINGLE_SEGMENT = 1U << 2, + + /* Data payload contains p2p memory */ + IOD_DATA_P2P = 1U << 3, + + /* Metadata contains p2p memory */ + IOD_META_P2P = 1U << 4, + + /* Data payload contains MMIO memory */ + IOD_DATA_MMIO = 1U << 5, + + /* Metadata contains MMIO memory */ + IOD_META_MMIO = 1U << 6, + + /* Metadata using non-coalesced MPTR */ + IOD_SINGLE_META_SEGMENT = 1U << 7, +}; + +struct nvme_dma_vec { + dma_addr_t addr; + unsigned int len; +}; + /* - * The nvme_iod describes the data in an I/O, including the list of PRP - * entries. You can't see it in this data structure because C doesn't let - * me express that. Use nvme_init_iod to ensure there's enough space - * allocated to store the PRP list. + * The nvme_iod describes the data in an I/O. */ struct nvme_iod { struct nvme_request req; - struct nvme_queue *nvmeq; - bool use_sgl; - int aborted; - int npages; /* In the PRP list. 0 means small pool in use */ - int nents; /* Used in scatterlist */ - int length; /* Of data, in bytes */ - dma_addr_t first_dma; - struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ - struct scatterlist *sg; - struct scatterlist inline_sg[0]; + struct nvme_command cmd; + u8 flags; + u8 nr_descriptors; + + unsigned int total_len; + struct dma_iova_state dma_state; + void *descriptors[NVME_MAX_NR_DESCRIPTORS]; + struct nvme_dma_vec *dma_vecs; + unsigned int nr_dma_vecs; + + dma_addr_t meta_dma; + unsigned int meta_total_len; + struct dma_iova_state meta_dma_state; + struct nvme_sgl_desc *meta_descriptor; }; -/* - * Check we didin't inadvertently grow the command struct - */ -static inline void _nvme_check_size(void) -{ - BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); - BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); - BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); - BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); - BUILD_BUG_ON(sizeof(struct nvme_features) != 64); - BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); - BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); - BUILD_BUG_ON(sizeof(struct nvme_command) != 64); - BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); - BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); - BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); - BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); - BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); -} - -static unsigned int max_io_queues(void) +static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) { - return num_possible_cpus() + write_queues + poll_queues; + return dev->nr_allocated_queues * 8 * dev->db_stride; } -static unsigned int max_queue_count(void) +static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) { - /* IO queues + admin queue */ - return 1 + max_io_queues(); -} + unsigned int mem_size = nvme_dbbuf_size(dev); -static inline unsigned int nvme_dbbuf_size(u32 stride) -{ - return (max_queue_count() * 8 * stride); -} - -static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) -{ - unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); + if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) + return; - if (dev->dbbuf_dbs) - return 0; + if (dev->dbbuf_dbs) { + /* + * Clear the dbbuf memory so the driver doesn't observe stale + * values from the previous instantiation. + */ + memset(dev->dbbuf_dbs, 0, mem_size); + memset(dev->dbbuf_eis, 0, mem_size); + return; + } dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, &dev->dbbuf_dbs_dma_addr, GFP_KERNEL); if (!dev->dbbuf_dbs) - return -ENOMEM; + goto fail; dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, &dev->dbbuf_eis_dma_addr, GFP_KERNEL); - if (!dev->dbbuf_eis) { - dma_free_coherent(dev->dev, mem_size, - dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); - dev->dbbuf_dbs = NULL; - return -ENOMEM; - } + if (!dev->dbbuf_eis) + goto fail_free_dbbuf_dbs; + return; - return 0; +fail_free_dbbuf_dbs: + dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, + dev->dbbuf_dbs_dma_addr); + dev->dbbuf_dbs = NULL; +fail: + dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); } static void nvme_dbbuf_dma_free(struct nvme_dev *dev) { - unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); + unsigned int mem_size = nvme_dbbuf_size(dev); if (dev->dbbuf_dbs) { dma_free_coherent(dev->dev, mem_size, @@ -322,14 +372,25 @@ static void nvme_dbbuf_init(struct nvme_dev *dev, nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; } +static void nvme_dbbuf_free(struct nvme_queue *nvmeq) +{ + if (!nvmeq->qid) + return; + + nvmeq->dbbuf_sq_db = NULL; + nvmeq->dbbuf_cq_db = NULL; + nvmeq->dbbuf_sq_ei = NULL; + nvmeq->dbbuf_cq_ei = NULL; +} + static void nvme_dbbuf_set(struct nvme_dev *dev) { - struct nvme_command c; + struct nvme_command c = { }; + unsigned int i; if (!dev->dbbuf_dbs) return; - memset(&c, 0, sizeof(c)); c.dbbuf.opcode = nvme_admin_dbbuf; c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); @@ -338,6 +399,9 @@ static void nvme_dbbuf_set(struct nvme_dev *dev) dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); /* Free memory and continue on */ nvme_dbbuf_dma_free(dev); + + for (i = 1; i <= dev->online_queues; i++) + nvme_dbbuf_free(&dev->queues[i]); } } @@ -347,11 +411,11 @@ static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) } /* Update dbbuf and return true if an MMIO is required */ -static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, - volatile u32 *dbbuf_ei) +static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, + volatile __le32 *dbbuf_ei) { if (dbbuf_db) { - u16 old_value; + u16 old_value, event_idx; /* * Ensure that the queue is written before updating @@ -359,121 +423,105 @@ static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, */ wmb(); - old_value = *dbbuf_db; - *dbbuf_db = value; + old_value = le32_to_cpu(*dbbuf_db); + *dbbuf_db = cpu_to_le32(value); /* * Ensure that the doorbell is updated before reading the event * index from memory. The controller needs to provide similar - * ordering to ensure the envent index is updated before reading + * ordering to ensure the event index is updated before reading * the doorbell. */ mb(); - if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) + event_idx = le32_to_cpu(*dbbuf_ei); + if (!nvme_dbbuf_need_event(event_idx, value, old_value)) return false; } return true; } -/* - * Max size of iod being embedded in the request payload - */ -#define NVME_INT_PAGES 2 -#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) - -/* - * Will slightly overestimate the number of pages needed. This is OK - * as it only leads to a small amount of wasted memory for the lifetime of - * the I/O. - */ -static int nvme_npages(unsigned size, struct nvme_dev *dev) +static struct nvme_descriptor_pools * +nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node) { - unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, - dev->ctrl.page_size); - return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); -} + struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node]; + size_t small_align = NVME_SMALL_POOL_SIZE; -/* - * Calculates the number of pages needed for the SGL segments. For example a 4k - * page can accommodate 256 SGL descriptors. - */ -static int nvme_pci_npages_sgl(unsigned int num_seg) -{ - return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); -} + if (pools->small) + return pools; /* already initialized */ -static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, - unsigned int size, unsigned int nseg, bool use_sgl) -{ - size_t alloc_size; + pools->large = dma_pool_create_node("nvme descriptor page", dev->dev, + NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node); + if (!pools->large) + return ERR_PTR(-ENOMEM); - if (use_sgl) - alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); - else - alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); + if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512) + small_align = 512; - return alloc_size + sizeof(struct scatterlist) * nseg; + pools->small = dma_pool_create_node("nvme descriptor small", dev->dev, + NVME_SMALL_POOL_SIZE, small_align, 0, numa_node); + if (!pools->small) { + dma_pool_destroy(pools->large); + pools->large = NULL; + return ERR_PTR(-ENOMEM); + } + + return pools; } -static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl) +static void nvme_release_descriptor_pools(struct nvme_dev *dev) { - unsigned int alloc_size = nvme_pci_iod_alloc_size(dev, - NVME_INT_BYTES(dev), NVME_INT_PAGES, - use_sgl); + unsigned i; - return sizeof(struct nvme_iod) + alloc_size; + for (i = 0; i < nr_node_ids; i++) { + struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i]; + + dma_pool_destroy(pools->large); + dma_pool_destroy(pools->small); + } } -static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, - unsigned int hctx_idx) +static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data, + unsigned qid) { - struct nvme_dev *dev = data; - struct nvme_queue *nvmeq = &dev->queues[0]; + struct nvme_dev *dev = to_nvme_dev(data); + struct nvme_queue *nvmeq = &dev->queues[qid]; + struct nvme_descriptor_pools *pools; + struct blk_mq_tags *tags; - WARN_ON(hctx_idx != 0); - WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); - WARN_ON(nvmeq->tags); + tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0]; + WARN_ON(tags != hctx->tags); + pools = nvme_setup_descriptor_pools(dev, hctx->numa_node); + if (IS_ERR(pools)) + return PTR_ERR(pools); + nvmeq->descriptor_pools = *pools; hctx->driver_data = nvmeq; - nvmeq->tags = &dev->admin_tagset.tags[0]; return 0; } -static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) +static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, + unsigned int hctx_idx) { - struct nvme_queue *nvmeq = hctx->driver_data; - - nvmeq->tags = NULL; + WARN_ON(hctx_idx != 0); + return nvme_init_hctx_common(hctx, data, 0); } static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, - unsigned int hctx_idx) + unsigned int hctx_idx) { - struct nvme_dev *dev = data; - struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; - - if (!nvmeq->tags) - nvmeq->tags = &dev->tagset.tags[hctx_idx]; - - WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); - hctx->driver_data = nvmeq; - return 0; + return nvme_init_hctx_common(hctx, data, hctx_idx + 1); } -static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, - unsigned int hctx_idx, unsigned int numa_node) +static int nvme_pci_init_request(struct blk_mq_tag_set *set, + struct request *req, unsigned int hctx_idx, + unsigned int numa_node) { - struct nvme_dev *dev = set->driver_data; struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; - struct nvme_queue *nvmeq = &dev->queues[queue_idx]; - - BUG_ON(!nvmeq); - iod->nvmeq = nvmeq; - nvme_req(req)->ctrl = &dev->ctrl; + nvme_req(req)->ctrl = set->driver_data; + nvme_req(req)->cmd = &iod->cmd; return 0; } @@ -486,9 +534,9 @@ static int queue_irq_offset(struct nvme_dev *dev) return 0; } -static int nvme_pci_map_queues(struct blk_mq_tag_set *set) +static void nvme_pci_map_queues(struct blk_mq_tag_set *set) { - struct nvme_dev *dev = set->driver_data; + struct nvme_dev *dev = to_nvme_dev(set->driver_data); int i, qoff, offset; offset = queue_irq_offset(dev); @@ -506,15 +554,13 @@ static int nvme_pci_map_queues(struct blk_mq_tag_set *set) * affinity), so use the regular blk-mq cpu mapping */ map->queue_offset = qoff; - if (i != HCTX_TYPE_POLL) - blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); + if (i != HCTX_TYPE_POLL && offset) + blk_mq_map_hw_queues(map, dev->dev, offset); else blk_mq_map_queues(map); qoff += map->nr_queues; offset += map->nr_queues; } - - return 0; } /* @@ -537,21 +583,13 @@ static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) nvmeq->last_sq_tail = nvmeq->sq_tail; } -/** - * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell - * @nvmeq: The queue to use - * @cmd: The command to send - * @write_sq: whether to write to the SQ doorbell - */ -static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, - bool write_sq) +static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, + struct nvme_command *cmd) { - spin_lock(&nvmeq->sq_lock); - memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd)); + memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), + absolute_pointer(cmd), sizeof(*cmd)); if (++nvmeq->sq_tail == nvmeq->q_depth) nvmeq->sq_tail = 0; - nvme_write_sq_db(nvmeq, write_sq); - spin_unlock(&nvmeq->sq_lock); } static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) @@ -564,202 +602,368 @@ static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) spin_unlock(&nvmeq->sq_lock); } -static void **nvme_pci_iod_list(struct request *req) +enum nvme_use_sgl { + SGL_UNSUPPORTED, + SGL_SUPPORTED, + SGL_FORCED, +}; + +static inline bool nvme_pci_metadata_use_sgls(struct request *req) { - struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct nvme_dev *dev = nvmeq->dev; + + if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl)) + return false; + return req->nr_integrity_segments > 1 || + nvme_req(req)->flags & NVME_REQ_USERCMD; } -static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) +static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev, + struct request *req) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + + if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) { + /* + * When the controller is capable of using SGL, there are + * several conditions that we force to use it: + * + * 1. A request containing page gaps within the controller's + * mask can not use the PRP format. + * + * 2. User commands use SGL because that lets the device + * validate the requested transfer lengths. + * + * 3. Multiple integrity segments must use SGL as that's the + * only way to describe such a command in NVMe. + */ + if (req_phys_gap_mask(req) & (NVME_CTRL_PAGE_SIZE - 1) || + nvme_req(req)->flags & NVME_REQ_USERCMD || + req->nr_integrity_segments > 1) + return SGL_FORCED; + return SGL_SUPPORTED; + } + + return SGL_UNSUPPORTED; +} + +static unsigned int nvme_pci_avg_seg_size(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - int nseg = blk_rq_nr_phys_segments(req); - unsigned int avg_seg_size; + unsigned int nseg; - if (nseg == 0) - return false; + if (blk_rq_dma_map_coalesce(&iod->dma_state)) + nseg = 1; + else + nseg = blk_rq_nr_phys_segments(req); + return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); +} - avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); +static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq, + struct nvme_iod *iod) +{ + if (iod->flags & IOD_SMALL_DESCRIPTOR) + return nvmeq->descriptor_pools.small; + return nvmeq->descriptor_pools.large; +} - if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) - return false; - if (!iod->nvmeq->qid) - return false; - if (!sgl_threshold || avg_seg_size < sgl_threshold) - return false; - return true; +static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd) +{ + return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG; } -static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) +static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd) { - struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); - int nseg = blk_rq_nr_phys_segments(rq); - unsigned int size = blk_rq_payload_bytes(rq); + return cmd->common.flags & + (NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG); +} - iod->use_sgl = nvme_pci_use_sgls(dev, rq); +static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd) +{ + if (nvme_pci_cmd_use_sgl(cmd)) + return le64_to_cpu(cmd->common.dptr.sgl.addr); + return le64_to_cpu(cmd->common.dptr.prp2); +} - if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { - iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); - if (!iod->sg) - return BLK_STS_RESOURCE; - } else { - iod->sg = iod->inline_sg; +static void nvme_free_descriptors(struct request *req) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd); + int i; + + if (iod->nr_descriptors == 1) { + dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0], + dma_addr); + return; } - iod->aborted = 0; - iod->npages = -1; - iod->nents = 0; - iod->length = size; + for (i = 0; i < iod->nr_descriptors; i++) { + __le64 *prp_list = iod->descriptors[i]; + dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); - return BLK_STS_OK; + dma_pool_free(nvmeq->descriptor_pools.large, prp_list, + dma_addr); + dma_addr = next_dma_addr; + } } -static void nvme_free_iod(struct nvme_dev *dev, struct request *req) +static void nvme_free_prps(struct request *req, unsigned int attrs) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; - dma_addr_t dma_addr = iod->first_dma, next_dma_addr; + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + unsigned int i; - int i; + for (i = 0; i < iod->nr_dma_vecs; i++) + dma_unmap_phys(nvmeq->dev->dev, iod->dma_vecs[i].addr, + iod->dma_vecs[i].len, rq_dma_dir(req), attrs); + mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool); +} - if (iod->npages == 0) - dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], - dma_addr); +static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge, + struct nvme_sgl_desc *sg_list, unsigned int attrs) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + enum dma_data_direction dir = rq_dma_dir(req); + unsigned int len = le32_to_cpu(sge->length); + struct device *dma_dev = nvmeq->dev->dev; + unsigned int i; - for (i = 0; i < iod->npages; i++) { - void *addr = nvme_pci_iod_list(req)[i]; + if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) { + dma_unmap_phys(dma_dev, le64_to_cpu(sge->addr), len, dir, + attrs); + return; + } - if (iod->use_sgl) { - struct nvme_sgl_desc *sg_list = addr; + for (i = 0; i < len / sizeof(*sg_list); i++) + dma_unmap_phys(dma_dev, le64_to_cpu(sg_list[i].addr), + le32_to_cpu(sg_list[i].length), dir, attrs); +} - next_dma_addr = - le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); - } else { - __le64 *prp_list = addr; +static void nvme_unmap_metadata(struct request *req) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE; + enum dma_data_direction dir = rq_dma_dir(req); + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct device *dma_dev = nvmeq->dev->dev; + struct nvme_sgl_desc *sge = iod->meta_descriptor; + unsigned int attrs = 0; + + if (iod->flags & IOD_SINGLE_META_SEGMENT) { + dma_unmap_page(dma_dev, iod->meta_dma, + rq_integrity_vec(req).bv_len, + rq_dma_dir(req)); + return; + } - next_dma_addr = le64_to_cpu(prp_list[last_prp]); - } + if (iod->flags & IOD_META_P2P) + map = PCI_P2PDMA_MAP_BUS_ADDR; + else if (iod->flags & IOD_META_MMIO) { + map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; + attrs |= DMA_ATTR_MMIO; + } - dma_pool_free(dev->prp_page_pool, addr, dma_addr); - dma_addr = next_dma_addr; + if (!blk_rq_dma_unmap(req, dma_dev, &iod->meta_dma_state, + iod->meta_total_len, map)) { + if (nvme_pci_cmd_use_meta_sgl(&iod->cmd)) + nvme_free_sgls(req, sge, &sge[1], attrs); + else + dma_unmap_phys(dma_dev, iod->meta_dma, + iod->meta_total_len, dir, attrs); } - if (iod->sg != iod->inline_sg) - mempool_free(iod->sg, dev->iod_mempool); + if (iod->meta_descriptor) + dma_pool_free(nvmeq->descriptor_pools.small, + iod->meta_descriptor, iod->meta_dma); } -static void nvme_print_sgl(struct scatterlist *sgl, int nents) +static void nvme_unmap_data(struct request *req) { - int i; - struct scatterlist *sg; + enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE; + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct device *dma_dev = nvmeq->dev->dev; + unsigned int attrs = 0; + + if (iod->flags & IOD_SINGLE_SEGMENT) { + static_assert(offsetof(union nvme_data_ptr, prp1) == + offsetof(union nvme_data_ptr, sgl.addr)); + dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1), + iod->total_len, rq_dma_dir(req)); + return; + } + + if (iod->flags & IOD_DATA_P2P) + map = PCI_P2PDMA_MAP_BUS_ADDR; + else if (iod->flags & IOD_DATA_MMIO) { + map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; + attrs |= DMA_ATTR_MMIO; + } - for_each_sg(sgl, sg, nents, i) { - dma_addr_t phys = sg_phys(sg); - pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " - "dma_address:%pad dma_length:%d\n", - i, &phys, sg->offset, sg->length, &sg_dma_address(sg), - sg_dma_len(sg)); + if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len, + map)) { + if (nvme_pci_cmd_use_sgl(&iod->cmd)) + nvme_free_sgls(req, iod->descriptors[0], + &iod->cmd.common.dptr.sgl, attrs); + else + nvme_free_prps(req, attrs); } + + if (iod->nr_descriptors) + nvme_free_descriptors(req); } -static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, - struct request *req, struct nvme_rw_command *cmnd) +static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev, + struct blk_dma_iter *iter) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - struct dma_pool *pool; - int length = blk_rq_payload_bytes(req); - struct scatterlist *sg = iod->sg; - int dma_len = sg_dma_len(sg); - u64 dma_addr = sg_dma_address(sg); - u32 page_size = dev->ctrl.page_size; - int offset = dma_addr & (page_size - 1); - __le64 *prp_list; - void **list = nvme_pci_iod_list(req); - dma_addr_t prp_dma; - int nprps, i; - length -= (page_size - offset); - if (length <= 0) { - iod->first_dma = 0; - goto done; + if (iter->len) + return true; + if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter)) + return false; + if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) { + iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr; + iod->dma_vecs[iod->nr_dma_vecs].len = iter->len; + iod->nr_dma_vecs++; } + return true; +} - dma_len -= (page_size - offset); - if (dma_len) { - dma_addr += (page_size - offset); - } else { - sg = sg_next(sg); - dma_addr = sg_dma_address(sg); - dma_len = sg_dma_len(sg); +static blk_status_t nvme_pci_setup_data_prp(struct request *req, + struct blk_dma_iter *iter) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + unsigned int length = blk_rq_payload_bytes(req); + dma_addr_t prp1_dma, prp2_dma = 0; + unsigned int prp_len, i; + __le64 *prp_list; + + if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) { + iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool, + GFP_ATOMIC); + if (!iod->dma_vecs) + return BLK_STS_RESOURCE; + iod->dma_vecs[0].addr = iter->addr; + iod->dma_vecs[0].len = iter->len; + iod->nr_dma_vecs = 1; } - if (length <= page_size) { - iod->first_dma = dma_addr; + /* + * PRP1 always points to the start of the DMA transfers. + * + * This is the only PRP (except for the list entries) that could be + * non-aligned. + */ + prp1_dma = iter->addr; + prp_len = min(length, NVME_CTRL_PAGE_SIZE - + (iter->addr & (NVME_CTRL_PAGE_SIZE - 1))); + iod->total_len += prp_len; + iter->addr += prp_len; + iter->len -= prp_len; + length -= prp_len; + if (!length) + goto done; + + if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) { + if (WARN_ON_ONCE(!iter->status)) + goto bad_sgl; goto done; } - nprps = DIV_ROUND_UP(length, page_size); - if (nprps <= (256 / 8)) { - pool = dev->prp_small_pool; - iod->npages = 0; - } else { - pool = dev->prp_page_pool; - iod->npages = 1; + /* + * PRP2 is usually a list, but can point to data if all data to be + * transferred fits into PRP1 + PRP2: + */ + if (length <= NVME_CTRL_PAGE_SIZE) { + prp2_dma = iter->addr; + iod->total_len += length; + goto done; } - prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); + if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <= + NVME_SMALL_POOL_SIZE / sizeof(__le64)) + iod->flags |= IOD_SMALL_DESCRIPTOR; + + prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC, + &prp2_dma); if (!prp_list) { - iod->first_dma = dma_addr; - iod->npages = -1; - return BLK_STS_RESOURCE; + iter->status = BLK_STS_RESOURCE; + goto done; } - list[0] = prp_list; - iod->first_dma = prp_dma; + iod->descriptors[iod->nr_descriptors++] = prp_list; + i = 0; for (;;) { - if (i == page_size >> 3) { + prp_list[i++] = cpu_to_le64(iter->addr); + prp_len = min(length, NVME_CTRL_PAGE_SIZE); + if (WARN_ON_ONCE(iter->len < prp_len)) + goto bad_sgl; + + iod->total_len += prp_len; + iter->addr += prp_len; + iter->len -= prp_len; + length -= prp_len; + if (!length) + break; + + if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) { + if (WARN_ON_ONCE(!iter->status)) + goto bad_sgl; + goto done; + } + + /* + * If we've filled the entire descriptor, allocate a new that is + * pointed to be the last entry in the previous PRP list. To + * accommodate for that move the last actual entry to the new + * descriptor. + */ + if (i == NVME_CTRL_PAGE_SIZE >> 3) { __le64 *old_prp_list = prp_list; - prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); - if (!prp_list) - return BLK_STS_RESOURCE; - list[iod->npages++] = prp_list; + dma_addr_t prp_list_dma; + + prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large, + GFP_ATOMIC, &prp_list_dma); + if (!prp_list) { + iter->status = BLK_STS_RESOURCE; + goto done; + } + iod->descriptors[iod->nr_descriptors++] = prp_list; + prp_list[0] = old_prp_list[i - 1]; - old_prp_list[i - 1] = cpu_to_le64(prp_dma); + old_prp_list[i - 1] = cpu_to_le64(prp_list_dma); i = 1; } - prp_list[i++] = cpu_to_le64(dma_addr); - dma_len -= page_size; - dma_addr += page_size; - length -= page_size; - if (length <= 0) - break; - if (dma_len > 0) - continue; - if (unlikely(dma_len < 0)) - goto bad_sgl; - sg = sg_next(sg); - dma_addr = sg_dma_address(sg); - dma_len = sg_dma_len(sg); } done: - cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); - cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); - - return BLK_STS_OK; - - bad_sgl: - WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), - "Invalid SGL for payload:%d nents:%d\n", - blk_rq_payload_bytes(req), iod->nents); + /* + * nvme_unmap_data uses the DPT field in the SQE to tear down the + * mapping, so initialize it even for failures. + */ + iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma); + iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma); + if (unlikely(iter->status)) + nvme_unmap_data(req); + return iter->status; + +bad_sgl: + dev_err_once(nvmeq->dev->dev, + "Incorrectly formed request for payload:%d nents:%d\n", + blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req)); return BLK_STS_IOERR; } static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, - struct scatterlist *sg) + struct blk_dma_iter *iter) { - sge->addr = cpu_to_le64(sg_dma_address(sg)); - sge->length = cpu_to_le32(sg_dma_len(sg)); + sge->addr = cpu_to_le64(iter->addr); + sge->length = cpu_to_le32(iter->len); sge->type = NVME_SGL_FMT_DATA_DESC << 4; } @@ -767,161 +971,288 @@ static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, dma_addr_t dma_addr, int entries) { sge->addr = cpu_to_le64(dma_addr); - if (entries < SGES_PER_PAGE) { - sge->length = cpu_to_le32(entries * sizeof(*sge)); - sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; - } else { - sge->length = cpu_to_le32(PAGE_SIZE); - sge->type = NVME_SGL_FMT_SEG_DESC << 4; - } + sge->length = cpu_to_le32(entries * sizeof(*sge)); + sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; } -static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, - struct request *req, struct nvme_rw_command *cmd, int entries) +static blk_status_t nvme_pci_setup_data_sgl(struct request *req, + struct blk_dma_iter *iter) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - struct dma_pool *pool; + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + unsigned int entries = blk_rq_nr_phys_segments(req); struct nvme_sgl_desc *sg_list; - struct scatterlist *sg = iod->sg; dma_addr_t sgl_dma; - int i = 0; + unsigned int mapped = 0; - /* setting the transfer type as SGL */ - cmd->flags = NVME_CMD_SGL_METABUF; + /* set the transfer type as SGL */ + iod->cmd.common.flags = NVME_CMD_SGL_METABUF; - if (entries == 1) { - nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); + if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) { + nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter); + iod->total_len += iter->len; return BLK_STS_OK; } - if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { - pool = dev->prp_small_pool; - iod->npages = 0; - } else { - pool = dev->prp_page_pool; - iod->npages = 1; - } + if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list)) + iod->flags |= IOD_SMALL_DESCRIPTOR; - sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); - if (!sg_list) { - iod->npages = -1; + sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC, + &sgl_dma); + if (!sg_list) return BLK_STS_RESOURCE; - } - - nvme_pci_iod_list(req)[0] = sg_list; - iod->first_dma = sgl_dma; - - nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); + iod->descriptors[iod->nr_descriptors++] = sg_list; do { - if (i == SGES_PER_PAGE) { - struct nvme_sgl_desc *old_sg_desc = sg_list; - struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; - - sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); - if (!sg_list) - return BLK_STS_RESOURCE; - - i = 0; - nvme_pci_iod_list(req)[iod->npages++] = sg_list; - sg_list[i++] = *link; - nvme_pci_sgl_set_seg(link, sgl_dma, entries); + if (WARN_ON_ONCE(mapped == entries)) { + iter->status = BLK_STS_IOERR; + break; } + nvme_pci_sgl_set_data(&sg_list[mapped++], iter); + iod->total_len += iter->len; + } while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state, + iter)); + + nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped); + if (unlikely(iter->status)) + nvme_unmap_data(req); + return iter->status; +} + +static blk_status_t nvme_pci_setup_data_simple(struct request *req, + enum nvme_use_sgl use_sgl) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct bio_vec bv = req_bvec(req); + unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1); + bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2; + dma_addr_t dma_addr; + + if (!use_sgl && !prp_possible) + return BLK_STS_AGAIN; + if (is_pci_p2pdma_page(bv.bv_page)) + return BLK_STS_AGAIN; + + dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0); + if (dma_mapping_error(nvmeq->dev->dev, dma_addr)) + return BLK_STS_RESOURCE; + iod->total_len = bv.bv_len; + iod->flags |= IOD_SINGLE_SEGMENT; + + if (use_sgl == SGL_FORCED || !prp_possible) { + iod->cmd.common.flags = NVME_CMD_SGL_METABUF; + iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr); + iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len); + iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; + } else { + unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset; - nvme_pci_sgl_set_data(&sg_list[i++], sg); - sg = sg_next(sg); - } while (--entries > 0); + iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr); + iod->cmd.common.dptr.prp2 = 0; + if (bv.bv_len > first_prp_len) + iod->cmd.common.dptr.prp2 = + cpu_to_le64(dma_addr + first_prp_len); + } return BLK_STS_OK; } -static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, - struct nvme_command *cmnd) +static blk_status_t nvme_map_data(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - struct request_queue *q = req->q; - enum dma_data_direction dma_dir = rq_data_dir(req) ? - DMA_TO_DEVICE : DMA_FROM_DEVICE; - blk_status_t ret = BLK_STS_IOERR; - int nr_mapped; - - sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); - iod->nents = blk_rq_map_sg(q, req, iod->sg); - if (!iod->nents) - goto out; + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct nvme_dev *dev = nvmeq->dev; + enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req); + struct blk_dma_iter iter; + blk_status_t ret; - ret = BLK_STS_RESOURCE; + /* + * Try to skip the DMA iterator for single segment requests, as that + * significantly improves performances for small I/O sizes. + */ + if (blk_rq_nr_phys_segments(req) == 1) { + ret = nvme_pci_setup_data_simple(req, use_sgl); + if (ret != BLK_STS_AGAIN) + return ret; + } - if (is_pci_p2pdma_page(sg_page(iod->sg))) - nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents, - dma_dir); - else - nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, - dma_dir, DMA_ATTR_NO_WARN); - if (!nr_mapped) - goto out; + if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter)) + return iter.status; - if (iod->use_sgl) - ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); - else - ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); + switch (iter.p2pdma.map) { + case PCI_P2PDMA_MAP_BUS_ADDR: + iod->flags |= IOD_DATA_P2P; + break; + case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: + iod->flags |= IOD_DATA_MMIO; + break; + case PCI_P2PDMA_MAP_NONE: + break; + default: + return BLK_STS_RESOURCE; + } - if (ret != BLK_STS_OK) - goto out_unmap; + if (use_sgl == SGL_FORCED || + (use_sgl == SGL_SUPPORTED && + (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold))) + return nvme_pci_setup_data_sgl(req, &iter); + return nvme_pci_setup_data_prp(req, &iter); +} - ret = BLK_STS_IOERR; - if (blk_integrity_rq(req)) { - if (blk_rq_count_integrity_sg(q, req->bio) != 1) - goto out_unmap; +static blk_status_t nvme_pci_setup_meta_iter(struct request *req) +{ + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + unsigned int entries = req->nr_integrity_segments; + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_dev *dev = nvmeq->dev; + struct nvme_sgl_desc *sg_list; + struct blk_dma_iter iter; + dma_addr_t sgl_dma; + int i = 0; - sg_init_table(&iod->meta_sg, 1); - if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) - goto out_unmap; + if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev, + &iod->meta_dma_state, &iter)) + return iter.status; + + switch (iter.p2pdma.map) { + case PCI_P2PDMA_MAP_BUS_ADDR: + iod->flags |= IOD_META_P2P; + break; + case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: + iod->flags |= IOD_META_MMIO; + break; + case PCI_P2PDMA_MAP_NONE: + break; + default: + return BLK_STS_RESOURCE; + } + + if (blk_rq_dma_map_coalesce(&iod->meta_dma_state)) + entries = 1; + + /* + * The NVMe MPTR descriptor has an implicit length that the host and + * device must agree on to avoid data/memory corruption. We trust the + * kernel allocated correctly based on the format's parameters, so use + * the more efficient MPTR to avoid extra dma pool allocations for the + * SGL indirection. + * + * But for user commands, we don't necessarily know what they do, so + * the driver can't validate the metadata buffer size. The SGL + * descriptor provides an explicit length, so we're relying on that + * mechanism to catch any misunderstandings between the application and + * device. + * + * P2P DMA also needs to use the blk_dma_iter method, so mptr setup + * leverages this routine when that happens. + */ + if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) || + (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) { + iod->cmd.common.metadata = cpu_to_le64(iter.addr); + iod->meta_total_len = iter.len; + iod->meta_dma = iter.addr; + iod->meta_descriptor = NULL; + return BLK_STS_OK; + } - if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) - goto out_unmap; + sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC, + &sgl_dma); + if (!sg_list) + return BLK_STS_RESOURCE; - cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); + iod->meta_descriptor = sg_list; + iod->meta_dma = sgl_dma; + iod->cmd.common.flags = NVME_CMD_SGL_METASEG; + iod->cmd.common.metadata = cpu_to_le64(sgl_dma); + if (entries == 1) { + iod->meta_total_len = iter.len; + nvme_pci_sgl_set_data(sg_list, &iter); + return BLK_STS_OK; } + sgl_dma += sizeof(*sg_list); + do { + nvme_pci_sgl_set_data(&sg_list[++i], &iter); + iod->meta_total_len += iter.len; + } while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter)); + + nvme_pci_sgl_set_seg(sg_list, sgl_dma, i); + if (unlikely(iter.status)) + nvme_unmap_metadata(req); + return iter.status; +} + +static blk_status_t nvme_pci_setup_meta_mptr(struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; + struct bio_vec bv = rq_integrity_vec(req); + + if (is_pci_p2pdma_page(bv.bv_page)) + return nvme_pci_setup_meta_iter(req); + + iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0); + if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma)) + return BLK_STS_IOERR; + iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma); + iod->flags |= IOD_SINGLE_META_SEGMENT; return BLK_STS_OK; +} -out_unmap: - dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); -out: - return ret; +static blk_status_t nvme_map_metadata(struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) && + nvme_pci_metadata_use_sgls(req)) + return nvme_pci_setup_meta_iter(req); + return nvme_pci_setup_meta_mptr(req); } -static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) +static blk_status_t nvme_prep_rq(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - enum dma_data_direction dma_dir = rq_data_dir(req) ? - DMA_TO_DEVICE : DMA_FROM_DEVICE; + blk_status_t ret; - if (iod->nents) { - /* P2PDMA requests do not need to be unmapped */ - if (!is_pci_p2pdma_page(sg_page(iod->sg))) - dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); + iod->flags = 0; + iod->nr_descriptors = 0; + iod->total_len = 0; + iod->meta_total_len = 0; - if (blk_integrity_rq(req)) - dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); + ret = nvme_setup_cmd(req->q->queuedata, req); + if (ret) + return ret; + + if (blk_rq_nr_phys_segments(req)) { + ret = nvme_map_data(req); + if (ret) + goto out_free_cmd; + } + + if (blk_integrity_rq(req)) { + ret = nvme_map_metadata(req); + if (ret) + goto out_unmap_data; } + nvme_start_request(req); + return BLK_STS_OK; +out_unmap_data: + if (blk_rq_nr_phys_segments(req)) + nvme_unmap_data(req); +out_free_cmd: nvme_cleanup_cmd(req); - nvme_free_iod(dev, req); + return ret; } -/* - * NOTE: ns is NULL when called on the admin queue. - */ static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { - struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_queue *nvmeq = hctx->driver_data; struct nvme_dev *dev = nvmeq->dev; struct request *req = bd->rq; - struct nvme_command cmnd; + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); blk_status_t ret; /* @@ -931,43 +1262,98 @@ static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) return BLK_STS_IOERR; - ret = nvme_setup_cmd(ns, req, &cmnd); - if (ret) + if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) + return nvme_fail_nonready_command(&dev->ctrl, req); + + ret = nvme_prep_rq(req); + if (unlikely(ret)) return ret; + spin_lock(&nvmeq->sq_lock); + nvme_sq_copy_cmd(nvmeq, &iod->cmd); + nvme_write_sq_db(nvmeq, bd->last); + spin_unlock(&nvmeq->sq_lock); + return BLK_STS_OK; +} - ret = nvme_init_iod(req, dev); - if (ret) - goto out_free_cmd; +static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist) +{ + struct request *req; - if (blk_rq_nr_phys_segments(req)) { - ret = nvme_map_data(dev, req, &cmnd); - if (ret) - goto out_cleanup_iod; + if (rq_list_empty(rqlist)) + return; + + spin_lock(&nvmeq->sq_lock); + while ((req = rq_list_pop(rqlist))) { + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + nvme_sq_copy_cmd(nvmeq, &iod->cmd); } + nvme_write_sq_db(nvmeq, true); + spin_unlock(&nvmeq->sq_lock); +} - blk_mq_start_request(req); - nvme_submit_cmd(nvmeq, &cmnd, bd->last); - return BLK_STS_OK; -out_cleanup_iod: - nvme_free_iod(dev, req); -out_free_cmd: - nvme_cleanup_cmd(req); - return ret; +static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) +{ + /* + * We should not need to do this, but we're still using this to + * ensure we can drain requests on a dying queue. + */ + if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) + return false; + if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) + return false; + + return nvme_prep_rq(req) == BLK_STS_OK; } -static void nvme_pci_complete_rq(struct request *req) +static void nvme_queue_rqs(struct rq_list *rqlist) { - struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct rq_list submit_list = { }; + struct rq_list requeue_list = { }; + struct nvme_queue *nvmeq = NULL; + struct request *req; + + while ((req = rq_list_pop(rqlist))) { + if (nvmeq && nvmeq != req->mq_hctx->driver_data) + nvme_submit_cmds(nvmeq, &submit_list); + nvmeq = req->mq_hctx->driver_data; + + if (nvme_prep_rq_batch(nvmeq, req)) + rq_list_add_tail(&submit_list, req); + else + rq_list_add_tail(&requeue_list, req); + } + + if (nvmeq) + nvme_submit_cmds(nvmeq, &submit_list); + *rqlist = requeue_list; +} - nvme_unmap_data(iod->nvmeq->dev, req); +static __always_inline void nvme_pci_unmap_rq(struct request *req) +{ + if (blk_integrity_rq(req)) + nvme_unmap_metadata(req); + if (blk_rq_nr_phys_segments(req)) + nvme_unmap_data(req); +} + +static void nvme_pci_complete_rq(struct request *req) +{ + nvme_pci_unmap_rq(req); nvme_complete_rq(req); } +static void nvme_pci_complete_batch(struct io_comp_batch *iob) +{ + nvme_complete_batch(iob, nvme_pci_unmap_rq); +} + /* We read the CQE phase first to check if the rest of the entry is valid */ static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) { - return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == - nvmeq->cq_phase; + struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; + + return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; } static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) @@ -979,17 +1365,19 @@ static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) writel(head, nvmeq->q_db + nvmeq->dev->db_stride); } -static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) +static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) { - volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; - struct request *req; + if (!nvmeq->qid) + return nvmeq->dev->admin_tagset.tags[0]; + return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; +} - if (unlikely(cqe->command_id >= nvmeq->q_depth)) { - dev_warn(nvmeq->dev->ctrl.device, - "invalid id %d completed on queue %d\n", - cqe->command_id, le16_to_cpu(cqe->sq_id)); - return; - } +static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, + struct io_comp_batch *iob, u16 idx) +{ + struct nvme_completion *cqe = &nvmeq->cqes[idx]; + __u16 command_id = READ_ONCE(cqe->command_id); + struct request *req; /* * AEN requests are special as they don't time out and can @@ -997,51 +1385,57 @@ static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) * aborts. We don't even bother to allocate a struct request * for them but rather special case them here. */ - if (unlikely(nvmeq->qid == 0 && - cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { + if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { nvme_complete_async_event(&nvmeq->dev->ctrl, cqe->status, &cqe->result); return; } - req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); - trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); - nvme_end_request(req, cqe->status, cqe->result); -} - -static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end) -{ - while (start != end) { - nvme_handle_cqe(nvmeq, start); - if (++start == nvmeq->q_depth) - start = 0; + req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); + if (unlikely(!req)) { + dev_warn(nvmeq->dev->ctrl.device, + "invalid id %d completed on queue %d\n", + command_id, le16_to_cpu(cqe->sq_id)); + return; } + + trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); + if (!nvme_try_complete_req(req, cqe->status, cqe->result) && + !blk_mq_add_to_batch(req, iob, + nvme_req(req)->status != NVME_SC_SUCCESS, + nvme_pci_complete_batch)) + nvme_pci_complete_rq(req); } static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) { - if (nvmeq->cq_head == nvmeq->q_depth - 1) { + u32 tmp = nvmeq->cq_head + 1; + + if (tmp == nvmeq->q_depth) { nvmeq->cq_head = 0; - nvmeq->cq_phase = !nvmeq->cq_phase; + nvmeq->cq_phase ^= 1; } else { - nvmeq->cq_head++; + nvmeq->cq_head = tmp; } } -static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start, - u16 *end, unsigned int tag) +static inline bool nvme_poll_cq(struct nvme_queue *nvmeq, + struct io_comp_batch *iob) { - int found = 0; + bool found = false; - *start = nvmeq->cq_head; while (nvme_cqe_pending(nvmeq)) { - if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag) - found++; + found = true; + /* + * load-load control dependency between phase and the rest of + * the cqe requires a full read memory barrier + */ + dma_rmb(); + nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); nvme_update_cq_head(nvmeq); } - *end = nvmeq->cq_head; - if (*start != *end) + if (found) nvme_ring_cq_doorbell(nvmeq); return found; } @@ -1049,79 +1443,54 @@ static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start, static irqreturn_t nvme_irq(int irq, void *data) { struct nvme_queue *nvmeq = data; - irqreturn_t ret = IRQ_NONE; - u16 start, end; + DEFINE_IO_COMP_BATCH(iob); - /* - * The rmb/wmb pair ensures we see all updates from a previous run of - * the irq handler, even if that was on another CPU. - */ - rmb(); - if (nvmeq->cq_head != nvmeq->last_cq_head) - ret = IRQ_HANDLED; - nvme_process_cq(nvmeq, &start, &end, -1); - nvmeq->last_cq_head = nvmeq->cq_head; - wmb(); - - if (start != end) { - nvme_complete_cqes(nvmeq, start, end); + if (nvme_poll_cq(nvmeq, &iob)) { + if (!rq_list_empty(&iob.req_list)) + nvme_pci_complete_batch(&iob); return IRQ_HANDLED; } - - return ret; + return IRQ_NONE; } static irqreturn_t nvme_irq_check(int irq, void *data) { struct nvme_queue *nvmeq = data; + if (nvme_cqe_pending(nvmeq)) return IRQ_WAKE_THREAD; return IRQ_NONE; } /* - * Poll for completions any queue, including those not dedicated to polling. + * Poll for completions for any interrupt driven queue * Can be called from any context. */ -static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag) +static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) { struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); - u16 start, end; - int found; - /* - * For a poll queue we need to protect against the polling thread - * using the CQ lock. For normal interrupt driven threads we have - * to disable the interrupt to avoid racing with it. - */ - if (nvmeq->cq_vector == -1) { - spin_lock(&nvmeq->cq_poll_lock); - found = nvme_process_cq(nvmeq, &start, &end, tag); - spin_unlock(&nvmeq->cq_poll_lock); - } else { - disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); - found = nvme_process_cq(nvmeq, &start, &end, tag); - enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); - } + WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); - nvme_complete_cqes(nvmeq, start, end); - return found; + disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); + spin_lock(&nvmeq->cq_poll_lock); + nvme_poll_cq(nvmeq, NULL); + spin_unlock(&nvmeq->cq_poll_lock); + enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); } -static int nvme_poll(struct blk_mq_hw_ctx *hctx) +static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) { struct nvme_queue *nvmeq = hctx->driver_data; - u16 start, end; bool found; if (!nvme_cqe_pending(nvmeq)) return 0; spin_lock(&nvmeq->cq_poll_lock); - found = nvme_process_cq(nvmeq, &start, &end, -1); + found = nvme_poll_cq(nvmeq, iob); spin_unlock(&nvmeq->cq_poll_lock); - nvme_complete_cqes(nvmeq, start, end); return found; } @@ -1129,19 +1498,56 @@ static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) { struct nvme_dev *dev = to_nvme_dev(ctrl); struct nvme_queue *nvmeq = &dev->queues[0]; - struct nvme_command c; + struct nvme_command c = { }; - memset(&c, 0, sizeof(c)); c.common.opcode = nvme_admin_async_event; c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; - nvme_submit_cmd(nvmeq, &c, true); + + spin_lock(&nvmeq->sq_lock); + nvme_sq_copy_cmd(nvmeq, &c); + nvme_write_sq_db(nvmeq, true); + spin_unlock(&nvmeq->sq_lock); +} + +static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) +{ + struct nvme_dev *dev = to_nvme_dev(ctrl); + int ret = 0; + + /* + * Taking the shutdown_lock ensures the BAR mapping is not being + * altered by reset_work. Holding this lock before the RESETTING state + * change, if successful, also ensures nvme_remove won't be able to + * proceed to iounmap until we're done. + */ + mutex_lock(&dev->shutdown_lock); + if (!dev->bar_mapped_size) { + ret = -ENODEV; + goto unlock; + } + + if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { + ret = -EBUSY; + goto unlock; + } + + writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); + nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); + + /* + * Read controller status to flush the previous write and trigger a + * pcie read error. + */ + readl(dev->bar + NVME_REG_CSTS); +unlock: + mutex_unlock(&dev->shutdown_lock); + return ret; } static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) { - struct nvme_command c; + struct nvme_command c = { }; - memset(&c, 0, sizeof(c)); c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(id); @@ -1151,26 +1557,22 @@ static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq, s16 vector) { - struct nvme_command c; + struct nvme_command c = { }; int flags = NVME_QUEUE_PHYS_CONTIG; - if (vector != -1) + if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) flags |= NVME_CQ_IRQ_ENABLED; /* * Note: we (ab)use the fact that the prp fields survive if no data * is attached to the request. */ - memset(&c, 0, sizeof(c)); c.create_cq.opcode = nvme_admin_create_cq; c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); c.create_cq.cqid = cpu_to_le16(qid); c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_cq.cq_flags = cpu_to_le16(flags); - if (vector != -1) - c.create_cq.irq_vector = cpu_to_le16(vector); - else - c.create_cq.irq_vector = 0; + c.create_cq.irq_vector = cpu_to_le16(vector); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } @@ -1179,7 +1581,7 @@ static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_ctrl *ctrl = &dev->ctrl; - struct nvme_command c; + struct nvme_command c = { }; int flags = NVME_QUEUE_PHYS_CONTIG; /* @@ -1194,7 +1596,6 @@ static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, * Note: we (ab)use the fact that the prp fields survive if no data * is attached to the request. */ - memset(&c, 0, sizeof(c)); c.create_sq.opcode = nvme_admin_create_sq; c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); c.create_sq.sqid = cpu_to_le16(qid); @@ -1215,27 +1616,26 @@ static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); } -static void abort_endio(struct request *req, blk_status_t error) +static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) { - struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - struct nvme_queue *nvmeq = iod->nvmeq; + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", nvme_req(req)->status); atomic_inc(&nvmeq->dev->ctrl.abort_limit); blk_mq_free_request(req); + return RQ_END_IO_NONE; } static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) { - /* If true, indicates loss of adapter communication, possibly by a * NVMe Subsystem reset. */ bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); /* If there is a reset/reinit ongoing, we shouldn't reset again. */ - switch (dev->ctrl.state) { + switch (nvme_ctrl_state(&dev->ctrl)) { case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: return false; @@ -1268,22 +1668,45 @@ static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) dev_warn(dev->ctrl.device, "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", csts, result); + + if (csts != ~0) + return; + + dev_warn(dev->ctrl.device, + "Does your device have a faulty power saving mode enabled?\n"); + dev_warn(dev->ctrl.device, + "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); } -static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) +static enum blk_eh_timer_return nvme_timeout(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); - struct nvme_queue *nvmeq = iod->nvmeq; + struct nvme_queue *nvmeq = req->mq_hctx->driver_data; struct nvme_dev *dev = nvmeq->dev; struct request *abort_req; - struct nvme_command cmd; + struct nvme_command cmd = { }; + struct pci_dev *pdev = to_pci_dev(dev->dev); u32 csts = readl(dev->bar + NVME_REG_CSTS); + u8 opcode; + + /* + * Shutdown the device immediately if we see it is disconnected. This + * unblocks PCIe error handling if the nvme driver is waiting in + * error_resume for a device that has been removed. We can't unbind the + * driver while the driver's error callback is waiting to complete, so + * we're relying on a timeout to break that deadlock if a removal + * occurs while reset work is running. + */ + if (pci_dev_is_disconnected(pdev)) + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + if (nvme_state_terminal(&dev->ctrl)) + goto disable; /* If PCI error recovery process is happening, we cannot reset or * the recovery mechanism will surely fail. */ mb(); - if (pci_channel_offline(to_pci_dev(dev->dev))) + if (pci_channel_offline(pdev)) return BLK_EH_RESET_TIMER; /* @@ -1291,18 +1714,21 @@ static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) */ if (nvme_should_reset(dev, csts)) { nvme_warn_reset(dev, csts); - nvme_dev_disable(dev, false); - nvme_reset_ctrl(&dev->ctrl); - return BLK_EH_DONE; + goto disable; } /* * Did we miss an interrupt? */ - if (nvme_poll_irqdisable(nvmeq, req->tag)) { + if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) + nvme_poll(req->mq_hctx, NULL); + else + nvme_poll_irqdisable(nvmeq); + + if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { dev_warn(dev->ctrl.device, - "I/O %d QID %d timeout, completion polled\n", - req->tag, nvmeq->qid); + "I/O tag %d (%04x) QID %d timeout, completion polled\n", + req->tag, nvme_cid(req), nvmeq->qid); return BLK_EH_DONE; } @@ -1312,60 +1738,65 @@ static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) * cancellation error. All outstanding requests are completed on * shutdown, so we return BLK_EH_DONE. */ - switch (dev->ctrl.state) { + switch (nvme_ctrl_state(&dev->ctrl)) { case NVME_CTRL_CONNECTING: - case NVME_CTRL_RESETTING: + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + fallthrough; + case NVME_CTRL_DELETING: dev_warn_ratelimited(dev->ctrl.device, - "I/O %d QID %d timeout, disable controller\n", - req->tag, nvmeq->qid); - nvme_dev_disable(dev, false); + "I/O tag %d (%04x) QID %d timeout, disable controller\n", + req->tag, nvme_cid(req), nvmeq->qid); nvme_req(req)->flags |= NVME_REQ_CANCELLED; + nvme_dev_disable(dev, true); return BLK_EH_DONE; + case NVME_CTRL_RESETTING: + return BLK_EH_RESET_TIMER; default: break; } /* - * Shutdown the controller immediately and schedule a reset if the - * command was already aborted once before and still hasn't been - * returned to the driver, or if this is the admin queue. + * Shutdown the controller immediately and schedule a reset if the + * command was already aborted once before and still hasn't been + * returned to the driver, or if this is the admin queue. */ - if (!nvmeq->qid || iod->aborted) { + opcode = nvme_req(req)->cmd->common.opcode; + if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) { dev_warn(dev->ctrl.device, - "I/O %d QID %d timeout, reset controller\n", - req->tag, nvmeq->qid); - nvme_dev_disable(dev, false); - nvme_reset_ctrl(&dev->ctrl); - + "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", + req->tag, nvme_cid(req), opcode, + nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); nvme_req(req)->flags |= NVME_REQ_CANCELLED; - return BLK_EH_DONE; + goto disable; } if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { atomic_inc(&dev->ctrl.abort_limit); return BLK_EH_RESET_TIMER; } - iod->aborted = 1; + iod->flags |= IOD_ABORTED; - memset(&cmd, 0, sizeof(cmd)); cmd.abort.opcode = nvme_admin_abort_cmd; - cmd.abort.cid = req->tag; + cmd.abort.cid = nvme_cid(req); cmd.abort.sqid = cpu_to_le16(nvmeq->qid); dev_warn(nvmeq->dev->ctrl.device, - "I/O %d QID %d timeout, aborting\n", - req->tag, nvmeq->qid); + "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", + req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), + nvmeq->qid, blk_op_str(req_op(req)), req_op(req), + blk_rq_bytes(req)); - abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, - BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); + abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), + BLK_MQ_REQ_NOWAIT); if (IS_ERR(abort_req)) { atomic_inc(&dev->ctrl.abort_limit); return BLK_EH_RESET_TIMER; } + nvme_init_request(abort_req, &cmd); - abort_req->timeout = ADMIN_TIMEOUT; + abort_req->end_io = abort_endio; abort_req->end_io_data = NULL; - blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); + blk_execute_rq_nowait(abort_req, false); /* * The aborted req will be completed on receiving the abort req. @@ -1373,20 +1804,32 @@ static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) * as the device then is in a faulty state. */ return BLK_EH_RESET_TIMER; + +disable: + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { + if (nvme_state_terminal(&dev->ctrl)) + nvme_dev_disable(dev, true); + return BLK_EH_DONE; + } + + nvme_dev_disable(dev, false); + if (nvme_try_sched_reset(&dev->ctrl)) + nvme_unquiesce_io_queues(&dev->ctrl); + return BLK_EH_DONE; } static void nvme_free_queue(struct nvme_queue *nvmeq) { - dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), + dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); if (!nvmeq->sq_cmds) return; if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { - pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev), - nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth)); + pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), + nvmeq->sq_cmds, SQ_SIZE(nvmeq)); } else { - dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), + dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), nvmeq->sq_cmds, nvmeq->sq_dma_addr); } } @@ -1401,26 +1844,21 @@ static void nvme_free_queues(struct nvme_dev *dev, int lowest) } } -/** - * nvme_suspend_queue - put queue into suspended state - * @nvmeq: queue to suspend - */ -static int nvme_suspend_queue(struct nvme_queue *nvmeq) +static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) { + struct nvme_queue *nvmeq = &dev->queues[qid]; + if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) - return 1; + return; /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ mb(); nvmeq->dev->online_queues--; if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) - blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); - if (nvmeq->cq_vector == -1) - return 0; - pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); - nvmeq->cq_vector = -1; - return 0; + nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); + if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) + pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); } static void nvme_suspend_io_queues(struct nvme_dev *dev) @@ -1428,19 +1866,24 @@ static void nvme_suspend_io_queues(struct nvme_dev *dev) int i; for (i = dev->ctrl.queue_count - 1; i > 0; i--) - nvme_suspend_queue(&dev->queues[i]); + nvme_suspend_queue(dev, i); } -static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) +/* + * Called only on a device that has been disabled and after all other threads + * that can check this device's completion queues have synced, except + * nvme_poll(). This is the last chance for the driver to see a natural + * completion before nvme_cancel_request() terminates all incomplete requests. + */ +static void nvme_reap_pending_cqes(struct nvme_dev *dev) { - struct nvme_queue *nvmeq = &dev->queues[0]; - - if (shutdown) - nvme_shutdown_ctrl(&dev->ctrl); - else - nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); + int i; - nvme_poll_irqdisable(nvmeq, -1); + for (i = dev->ctrl.queue_count - 1; i > 0; i--) { + spin_lock(&dev->queues[i].cq_poll_lock); + nvme_poll_cq(&dev->queues[i], NULL); + spin_unlock(&dev->queues[i].cq_poll_lock); + } } static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, @@ -1448,11 +1891,12 @@ static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, { int q_depth = dev->q_depth; unsigned q_size_aligned = roundup(q_depth * entry_size, - dev->ctrl.page_size); + NVME_CTRL_PAGE_SIZE); if (q_size_aligned * nr_io_queues > dev->cmb_size) { u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); - mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); + + mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); q_depth = div_u64(mem_per_q, entry_size); /* @@ -1468,21 +1912,25 @@ static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, } static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, - int qid, int depth) + int qid) { struct pci_dev *pdev = to_pci_dev(dev->dev); if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { - nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth)); - nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, - nvmeq->sq_cmds); - if (nvmeq->sq_dma_addr) { - set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); - return 0; + nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); + if (nvmeq->sq_cmds) { + nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, + nvmeq->sq_cmds); + if (nvmeq->sq_dma_addr) { + set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); + return 0; + } + + pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); } } - nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), + nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), &nvmeq->sq_dma_addr, GFP_KERNEL); if (!nvmeq->sq_cmds) return -ENOMEM; @@ -1496,31 +1944,30 @@ static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) if (dev->ctrl.queue_count > qid) return 0; - nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth), + nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; + nvmeq->q_depth = depth; + nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), &nvmeq->cq_dma_addr, GFP_KERNEL); if (!nvmeq->cqes) goto free_nvmeq; - if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) + if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) goto free_cqdma; - nvmeq->q_dmadev = dev->dev; nvmeq->dev = dev; spin_lock_init(&nvmeq->sq_lock); spin_lock_init(&nvmeq->cq_poll_lock); nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; - nvmeq->q_depth = depth; nvmeq->qid = qid; - nvmeq->cq_vector = -1; dev->ctrl.queue_count++; return 0; free_cqdma: - dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, - nvmeq->cq_dma_addr); + dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, + nvmeq->cq_dma_addr); free_nvmeq: return -ENOMEM; } @@ -1548,17 +1995,39 @@ static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; - memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); + memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); nvme_dbbuf_init(dev, nvmeq, qid); dev->online_queues++; wmb(); /* ensure the first interrupt sees the initialization */ } +/* + * Try getting shutdown_lock while setting up IO queues. + */ +static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) +{ + /* + * Give up if the lock is being held by nvme_dev_disable. + */ + if (!mutex_trylock(&dev->shutdown_lock)) + return -ENODEV; + + /* + * Controller is in wrong state, fail early. + */ + if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { + mutex_unlock(&dev->shutdown_lock); + return -ENODEV; + } + + return 0; +} + static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) { struct nvme_dev *dev = nvmeq->dev; int result; - s16 vector; + u16 vector = 0; clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); @@ -1569,7 +2038,7 @@ static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) if (!polled) vector = dev->num_vecs == 1 ? 0 : qid; else - vector = -1; + set_bit(NVMEQ_POLLED, &nvmeq->flags); result = adapter_alloc_cq(dev, qid, nvmeq, vector); if (result) @@ -1578,24 +2047,28 @@ static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) result = adapter_alloc_sq(dev, qid, nvmeq); if (result < 0) return result; - else if (result) + if (result) goto release_cq; nvmeq->cq_vector = vector; - nvme_init_queue(nvmeq, qid); - if (vector != -1) { + result = nvme_setup_io_queues_trylock(dev); + if (result) + return result; + nvme_init_queue(nvmeq, qid); + if (!polled) { result = queue_request_irq(nvmeq); if (result < 0) goto release_sq; } set_bit(NVMEQ_ENABLED, &nvmeq->flags); + mutex_unlock(&dev->shutdown_lock); return result; release_sq: - nvmeq->cq_vector = -1; dev->online_queues--; + mutex_unlock(&dev->shutdown_lock); adapter_delete_sq(dev, qid); release_cq: adapter_delete_cq(dev, qid); @@ -1606,17 +2079,17 @@ static const struct blk_mq_ops nvme_mq_admin_ops = { .queue_rq = nvme_queue_rq, .complete = nvme_pci_complete_rq, .init_hctx = nvme_admin_init_hctx, - .exit_hctx = nvme_admin_exit_hctx, - .init_request = nvme_init_request, + .init_request = nvme_pci_init_request, .timeout = nvme_timeout, }; static const struct blk_mq_ops nvme_mq_ops = { .queue_rq = nvme_queue_rq, + .queue_rqs = nvme_queue_rqs, .complete = nvme_pci_complete_rq, .commit_rqs = nvme_commit_rqs, .init_hctx = nvme_init_hctx, - .init_request = nvme_init_request, + .init_request = nvme_pci_init_request, .map_queues = nvme_pci_map_queues, .timeout = nvme_timeout, .poll = nvme_poll, @@ -1630,45 +2103,11 @@ static void nvme_dev_remove_admin(struct nvme_dev *dev) * user requests may be waiting on a stopped queue. Start the * queue to flush these to completion. */ - blk_mq_unquiesce_queue(dev->ctrl.admin_q); - blk_cleanup_queue(dev->ctrl.admin_q); - blk_mq_free_tag_set(&dev->admin_tagset); + nvme_unquiesce_admin_queue(&dev->ctrl); + nvme_remove_admin_tag_set(&dev->ctrl); } } -static int nvme_alloc_admin_tags(struct nvme_dev *dev) -{ - if (!dev->ctrl.admin_q) { - dev->admin_tagset.ops = &nvme_mq_admin_ops; - dev->admin_tagset.nr_hw_queues = 1; - - dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; - dev->admin_tagset.timeout = ADMIN_TIMEOUT; - dev->admin_tagset.numa_node = dev_to_node(dev->dev); - dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false); - dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; - dev->admin_tagset.driver_data = dev; - - if (blk_mq_alloc_tag_set(&dev->admin_tagset)) - return -ENOMEM; - dev->ctrl.admin_tagset = &dev->admin_tagset; - - dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); - if (IS_ERR(dev->ctrl.admin_q)) { - blk_mq_free_tag_set(&dev->admin_tagset); - return -ENOMEM; - } - if (!blk_get_queue(dev->ctrl.admin_q)) { - nvme_dev_remove_admin(dev); - dev->ctrl.admin_q = NULL; - return -ENODEV; - } - } else - blk_mq_unquiesce_queue(dev->ctrl.admin_q); - - return 0; -} - static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) { return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); @@ -1712,14 +2151,43 @@ static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); - result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); - if (result < 0) - return result; + /* + * If the device has been passed off to us in an enabled state, just + * clear the enabled bit. The spec says we should set the 'shutdown + * notification bits', but doing so may cause the device to complete + * commands to the admin queue ... and we don't know what memory that + * might be pointing at! + */ + result = nvme_disable_ctrl(&dev->ctrl, false); + if (result < 0) { + struct pci_dev *pdev = to_pci_dev(dev->dev); + + /* + * The NVMe Controller Reset method did not get an expected + * CSTS.RDY transition, so something with the device appears to + * be stuck. Use the lower level and bigger hammer PCIe + * Function Level Reset to attempt restoring the device to its + * initial state, and try again. + */ + result = pcie_reset_flr(pdev, false); + if (result < 0) + return result; + + pci_restore_state(pdev); + result = nvme_disable_ctrl(&dev->ctrl, false); + if (result < 0) + return result; + + dev_info(dev->ctrl.device, + "controller reset completed after pcie flr\n"); + } result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); if (result) return result; + dev->ctrl.numa_node = dev_to_node(dev->dev); + nvmeq = &dev->queues[0]; aqa = nvmeq->q_depth - 1; aqa |= aqa << 16; @@ -1728,7 +2196,7 @@ static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); - result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); + result = nvme_enable_ctrl(&dev->ctrl); if (result) return result; @@ -1736,7 +2204,7 @@ static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) nvme_init_queue(nvmeq, 0); result = queue_request_irq(nvmeq); if (result) { - nvmeq->cq_vector = -1; + dev->online_queues--; return result; } @@ -1781,17 +2249,6 @@ static int nvme_create_io_queues(struct nvme_dev *dev) return ret >= 0 ? 0 : ret; } -static ssize_t nvme_cmb_show(struct device *dev, - struct device_attribute *attr, - char *buf) -{ - struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); - - return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", - ndev->cmbloc, ndev->cmbsz); -} -static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); - static u64 nvme_cmb_size_unit(struct nvme_dev *dev) { u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; @@ -1814,6 +2271,9 @@ static void nvme_map_cmb(struct nvme_dev *dev) if (dev->cmb_size) return; + if (NVME_CAP_CMBS(dev->ctrl.cap)) + writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); + dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); if (!dev->cmbsz) return; @@ -1828,16 +2288,31 @@ static void nvme_map_cmb(struct nvme_dev *dev) return; /* - * Controllers may support a CMB size larger than their BAR, - * for example, due to being behind a bridge. Reduce the CMB to - * the reported size of the BAR + * Controllers may support a CMB size larger than their BAR, for + * example, due to being behind a bridge. Reduce the CMB to the + * reported size of the BAR */ - if (size > bar_size - offset) - size = bar_size - offset; + size = min(size, bar_size - offset); + + if (!IS_ALIGNED(size, memremap_compat_align()) || + !IS_ALIGNED(pci_resource_start(pdev, bar), + memremap_compat_align())) + return; + + /* + * Tell the controller about the host side address mapping the CMB, + * and enable CMB decoding for the NVMe 1.4+ scheme: + */ + if (NVME_CAP_CMBS(dev->ctrl.cap)) { + hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | + (pci_bus_address(pdev, bar) + offset), + dev->bar + NVME_REG_CMBMSC); + } if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { dev_warn(dev->ctrl.device, "failed to register the CMB\n"); + hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC); return; } @@ -1847,34 +2322,19 @@ static void nvme_map_cmb(struct nvme_dev *dev) if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) pci_p2pmem_publish(pdev, true); - - if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, - &dev_attr_cmb.attr, NULL)) - dev_warn(dev->ctrl.device, - "failed to add sysfs attribute for CMB\n"); -} - -static inline void nvme_release_cmb(struct nvme_dev *dev) -{ - if (dev->cmb_size) { - sysfs_remove_file_from_group(&dev->ctrl.device->kobj, - &dev_attr_cmb.attr, NULL); - dev->cmb_size = 0; - } } static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) { + u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; u64 dma_addr = dev->host_mem_descs_dma; - struct nvme_command c; + struct nvme_command c = { }; int ret; - memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_set_features; c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); c.features.dword11 = cpu_to_le32(bits); - c.features.dword12 = cpu_to_le32(dev->host_mem_size >> - ilog2(dev->ctrl.page_size)); + c.features.dword12 = cpu_to_le32(host_mem_size); c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); @@ -1884,17 +2344,19 @@ static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) dev_warn(dev->ctrl.device, "failed to set host mem (err %d, flags %#x).\n", ret, bits); - } + } else + dev->hmb = bits & NVME_HOST_MEM_ENABLE; + return ret; } -static void nvme_free_host_mem(struct nvme_dev *dev) +static void nvme_free_host_mem_multi(struct nvme_dev *dev) { int i; for (i = 0; i < dev->nr_host_mem_descs; i++) { struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; - size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; + size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], le64_to_cpu(desc->addr), @@ -1903,18 +2365,54 @@ static void nvme_free_host_mem(struct nvme_dev *dev) kfree(dev->host_mem_desc_bufs); dev->host_mem_desc_bufs = NULL; - dma_free_coherent(dev->dev, - dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), +} + +static void nvme_free_host_mem(struct nvme_dev *dev) +{ + if (dev->hmb_sgt) + dma_free_noncontiguous(dev->dev, dev->host_mem_size, + dev->hmb_sgt, DMA_BIDIRECTIONAL); + else + nvme_free_host_mem_multi(dev); + + dma_free_coherent(dev->dev, dev->host_mem_descs_size, dev->host_mem_descs, dev->host_mem_descs_dma); dev->host_mem_descs = NULL; + dev->host_mem_descs_size = 0; dev->nr_host_mem_descs = 0; } -static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, +static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size) +{ + dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size, + DMA_BIDIRECTIONAL, GFP_KERNEL, 0); + if (!dev->hmb_sgt) + return -ENOMEM; + + dev->host_mem_descs = dma_alloc_coherent(dev->dev, + sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma, + GFP_KERNEL); + if (!dev->host_mem_descs) { + dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt, + DMA_BIDIRECTIONAL); + dev->hmb_sgt = NULL; + return -ENOMEM; + } + dev->host_mem_size = size; + dev->host_mem_descs_size = sizeof(*dev->host_mem_descs); + dev->nr_host_mem_descs = 1; + + dev->host_mem_descs[0].addr = + cpu_to_le64(dev->hmb_sgt->sgl->dma_address); + dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE); + return 0; +} + +static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred, u32 chunk_size) { struct nvme_host_mem_buf_desc *descs; - u32 max_entries, len; + u32 max_entries, len, descs_size; dma_addr_t descs_dma; int i = 0; void **bufs; @@ -1927,8 +2425,9 @@ static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) max_entries = dev->ctrl.hmmaxd; - descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), - &descs_dma, GFP_KERNEL); + descs_size = max_entries * sizeof(*descs); + descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, + GFP_KERNEL); if (!descs) goto out; @@ -1946,7 +2445,7 @@ static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, break; descs[i].addr = cpu_to_le64(dma_addr); - descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); + descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); i++; } @@ -1957,22 +2456,14 @@ static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, dev->host_mem_size = size; dev->host_mem_descs = descs; dev->host_mem_descs_dma = descs_dma; + dev->host_mem_descs_size = descs_size; dev->host_mem_desc_bufs = bufs; return 0; out_free_bufs: - while (--i >= 0) { - size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; - - dma_free_attrs(dev->dev, size, bufs[i], - le64_to_cpu(descs[i].addr), - DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); - } - kfree(bufs); out_free_descs: - dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, - descs_dma); + dma_free_coherent(dev->dev, descs_size, descs, descs_dma); out: dev->host_mem_descs = NULL; return -ENOMEM; @@ -1980,13 +2471,23 @@ out: static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) { - u32 chunk_size; + unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev); + u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); + u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); + u64 chunk_size; + + /* + * If there is an IOMMU that can merge pages, try a virtually + * non-contiguous allocation for a single segment first. + */ + if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) { + if (!nvme_alloc_host_mem_single(dev, preferred)) + return 0; + } /* start big and work our way down */ - for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); - chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); - chunk_size /= 2) { - if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { + for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { + if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) { if (!min || dev->host_mem_size >= min) return 0; nvme_free_host_mem(dev); @@ -2004,6 +2505,9 @@ static int nvme_setup_host_mem(struct nvme_dev *dev) u32 enable_bits = NVME_HOST_MEM_ENABLE; int ret; + if (!dev->ctrl.hmpre) + return 0; + preferred = min(preferred, max); if (min > max) { dev_warn(dev->ctrl.device, @@ -2031,8 +2535,10 @@ static int nvme_setup_host_mem(struct nvme_dev *dev) } dev_info(dev->ctrl.device, - "allocated %lld MiB host memory buffer.\n", - dev->host_mem_size >> ilog2(SZ_1M)); + "allocated %lld MiB host memory buffer (%u segment%s).\n", + dev->host_mem_size >> ilog2(SZ_1M), + dev->nr_host_mem_descs, + str_plural(dev->nr_host_mem_descs)); } ret = nvme_set_host_mem(dev, enable_bits); @@ -2041,145 +2547,247 @@ static int nvme_setup_host_mem(struct nvme_dev *dev) return ret; } -/* irq_queues covers admin queue */ -static void nvme_calc_io_queues(struct nvme_dev *dev, unsigned int irq_queues) +static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, + char *buf) { - unsigned int this_w_queues = write_queues; + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); - WARN_ON(!irq_queues); + return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz : 0x%08x\n", + ndev->cmbloc, ndev->cmbsz); +} +static DEVICE_ATTR_RO(cmb); - /* - * Setup read/write queue split, assign admin queue one independent - * irq vector if irq_queues is > 1. - */ - if (irq_queues <= 2) { - dev->io_queues[HCTX_TYPE_DEFAULT] = 1; - dev->io_queues[HCTX_TYPE_READ] = 0; - return; +static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return sysfs_emit(buf, "%u\n", ndev->cmbloc); +} +static DEVICE_ATTR_RO(cmbloc); + +static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return sysfs_emit(buf, "%u\n", ndev->cmbsz); +} +static DEVICE_ATTR_RO(cmbsz); + +static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return sysfs_emit(buf, "%d\n", ndev->hmb); +} + +static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + bool new; + int ret; + + if (kstrtobool(buf, &new) < 0) + return -EINVAL; + + if (new == ndev->hmb) + return count; + + if (new) { + ret = nvme_setup_host_mem(ndev); + } else { + ret = nvme_set_host_mem(ndev, 0); + if (!ret) + nvme_free_host_mem(ndev); } - /* - * If 'write_queues' is set, ensure it leaves room for at least - * one read queue and one admin queue - */ - if (this_w_queues >= irq_queues) - this_w_queues = irq_queues - 2; + if (ret < 0) + return ret; + + return count; +} +static DEVICE_ATTR_RW(hmb); + +static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, + struct attribute *a, int n) +{ + struct nvme_ctrl *ctrl = + dev_get_drvdata(container_of(kobj, struct device, kobj)); + struct nvme_dev *dev = to_nvme_dev(ctrl); + + if (a == &dev_attr_cmb.attr || + a == &dev_attr_cmbloc.attr || + a == &dev_attr_cmbsz.attr) { + if (!dev->cmbsz) + return 0; + } + if (a == &dev_attr_hmb.attr && !ctrl->hmpre) + return 0; + + return a->mode; +} + +static struct attribute *nvme_pci_attrs[] = { + &dev_attr_cmb.attr, + &dev_attr_cmbloc.attr, + &dev_attr_cmbsz.attr, + &dev_attr_hmb.attr, + NULL, +}; + +static const struct attribute_group nvme_pci_dev_attrs_group = { + .attrs = nvme_pci_attrs, + .is_visible = nvme_pci_attrs_are_visible, +}; + +static const struct attribute_group *nvme_pci_dev_attr_groups[] = { + &nvme_dev_attrs_group, + &nvme_pci_dev_attrs_group, + NULL, +}; + +static void nvme_update_attrs(struct nvme_dev *dev) +{ + sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); +} + +/* + * nirqs is the number of interrupts available for write and read + * queues. The core already reserved an interrupt for the admin queue. + */ +static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) +{ + struct nvme_dev *dev = affd->priv; + unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; /* - * If 'write_queues' is set to zero, reads and writes will share - * a queue set. + * If there is no interrupt available for queues, ensure that + * the default queue is set to 1. The affinity set size is + * also set to one, but the irq core ignores it for this case. + * + * If only one interrupt is available or 'write_queue' == 0, combine + * write and read queues. + * + * If 'write_queues' > 0, ensure it leaves room for at least one read + * queue. */ - if (!this_w_queues) { - dev->io_queues[HCTX_TYPE_DEFAULT] = irq_queues - 1; - dev->io_queues[HCTX_TYPE_READ] = 0; + if (!nrirqs) { + nrirqs = 1; + nr_read_queues = 0; + } else if (nrirqs == 1 || !nr_write_queues) { + nr_read_queues = 0; + } else if (nr_write_queues >= nrirqs) { + nr_read_queues = 1; } else { - dev->io_queues[HCTX_TYPE_DEFAULT] = this_w_queues; - dev->io_queues[HCTX_TYPE_READ] = irq_queues - this_w_queues - 1; + nr_read_queues = nrirqs - nr_write_queues; } + + dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; + affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; + dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; + affd->set_size[HCTX_TYPE_READ] = nr_read_queues; + affd->nr_sets = nr_read_queues ? 2 : 1; } static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) { struct pci_dev *pdev = to_pci_dev(dev->dev); - int irq_sets[2]; struct irq_affinity affd = { - .pre_vectors = 1, - .nr_sets = ARRAY_SIZE(irq_sets), - .sets = irq_sets, + .pre_vectors = 1, + .calc_sets = nvme_calc_irq_sets, + .priv = dev, }; - int result = 0; - unsigned int irq_queues, this_p_queues; + unsigned int irq_queues, poll_queues; + unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; /* - * Poll queues don't need interrupts, but we need at least one IO - * queue left over for non-polled IO. + * Poll queues don't need interrupts, but we need at least one I/O queue + * left over for non-polled I/O. */ - this_p_queues = poll_queues; - if (this_p_queues >= nr_io_queues) { - this_p_queues = nr_io_queues - 1; - irq_queues = 1; - } else { - irq_queues = nr_io_queues - this_p_queues + 1; - } - dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; + poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); + dev->io_queues[HCTX_TYPE_POLL] = poll_queues; /* - * For irq sets, we have to ask for minvec == maxvec. This passes - * any reduction back to us, so we can adjust our queue counts and - * IRQ vector needs. + * Initialize for the single interrupt case, will be updated in + * nvme_calc_irq_sets(). */ - do { - nvme_calc_io_queues(dev, irq_queues); - irq_sets[0] = dev->io_queues[HCTX_TYPE_DEFAULT]; - irq_sets[1] = dev->io_queues[HCTX_TYPE_READ]; - if (!irq_sets[1]) - affd.nr_sets = 1; - - /* - * If we got a failure and we're down to asking for just - * 1 + 1 queues, just ask for a single vector. We'll share - * that between the single IO queue and the admin queue. - * Otherwise, we assign one independent vector to admin queue. - */ - if (irq_queues > 1) - irq_queues = irq_sets[0] + irq_sets[1] + 1; + dev->io_queues[HCTX_TYPE_DEFAULT] = 1; + dev->io_queues[HCTX_TYPE_READ] = 0; - result = pci_alloc_irq_vectors_affinity(pdev, irq_queues, - irq_queues, - PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); - - /* - * Need to reduce our vec counts. If we get ENOSPC, the - * platform should support mulitple vecs, we just need - * to decrease our ask. If we get EINVAL, the platform - * likely does not. Back down to ask for just one vector. - */ - if (result == -ENOSPC) { - irq_queues--; - if (!irq_queues) - return result; - continue; - } else if (result == -EINVAL) { - irq_queues = 1; - continue; - } else if (result <= 0) - return -EIO; - break; - } while (1); - - return result; + /* + * We need interrupts for the admin queue and each non-polled I/O queue, + * but some Apple controllers require all queues to use the first + * vector. + */ + irq_queues = 1; + if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) + irq_queues += (nr_io_queues - poll_queues); + if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) + flags &= ~PCI_IRQ_MSI; + return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, + &affd); } -static void nvme_disable_io_queues(struct nvme_dev *dev) +static unsigned int nvme_max_io_queues(struct nvme_dev *dev) { - if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) - __nvme_disable_io_queues(dev, nvme_admin_delete_cq); + /* + * If tags are shared with admin queue (Apple bug), then + * make sure we only use one IO queue. + */ + if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) + return 1; + return blk_mq_num_possible_queues(0) + dev->nr_write_queues + + dev->nr_poll_queues; } static int nvme_setup_io_queues(struct nvme_dev *dev) { struct nvme_queue *adminq = &dev->queues[0]; struct pci_dev *pdev = to_pci_dev(dev->dev); - int result, nr_io_queues; + unsigned int nr_io_queues; unsigned long size; + int result; - nr_io_queues = max_io_queues(); + /* + * Sample the module parameters once at reset time so that we have + * stable values to work with. + */ + dev->nr_write_queues = write_queues; + dev->nr_poll_queues = poll_queues; + + nr_io_queues = dev->nr_allocated_queues - 1; result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); if (result < 0) return result; if (nr_io_queues == 0) return 0; - - clear_bit(NVMEQ_ENABLED, &adminq->flags); + + /* + * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions + * from set to unset. If there is a window to it is truely freed, + * pci_free_irq_vectors() jumping into this window will crash. + * And take lock to avoid racing with pci_free_irq_vectors() in + * nvme_dev_disable() path. + */ + result = nvme_setup_io_queues_trylock(dev); + if (result) + return result; + if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) + pci_free_irq(pdev, 0, adminq); if (dev->cmb_use_sqes) { result = nvme_cmb_qdepth(dev, nr_io_queues, sizeof(struct nvme_command)); - if (result > 0) + if (result > 0) { dev->q_depth = result; - else + dev->ctrl.sqsize = result - 1; + } else { dev->cmb_use_sqes = false; + } } do { @@ -2187,14 +2795,17 @@ static int nvme_setup_io_queues(struct nvme_dev *dev) result = nvme_remap_bar(dev, size); if (!result) break; - if (!--nr_io_queues) - return -ENOMEM; + if (!--nr_io_queues) { + result = -ENOMEM; + goto out_unlock; + } } while (1); adminq->q_db = dev->dbs; retry: /* Deregister the admin queue's interrupt */ - pci_free_irq(pdev, 0, adminq); + if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) + pci_free_irq(pdev, 0, adminq); /* * If we enable msix early due to not intx, disable it again before @@ -2203,8 +2814,10 @@ static int nvme_setup_io_queues(struct nvme_dev *dev) pci_free_irq_vectors(pdev); result = nvme_setup_irqs(dev, nr_io_queues); - if (result <= 0) - return -EIO; + if (result <= 0) { + result = -EIO; + goto out_unlock; + } dev->num_vecs = result; result = max(result - 1, 1); @@ -2217,11 +2830,10 @@ static int nvme_setup_io_queues(struct nvme_dev *dev) * number of interrupts. */ result = queue_request_irq(adminq); - if (result) { - adminq->cq_vector = -1; - return result; - } + if (result) + goto out_unlock; set_bit(NVMEQ_ENABLED, &adminq->flags); + mutex_unlock(&dev->shutdown_lock); result = nvme_create_io_queues(dev); if (result || dev->online_queues < 2) @@ -2229,7 +2841,10 @@ static int nvme_setup_io_queues(struct nvme_dev *dev) if (dev->online_queues - 1 < dev->max_qid) { nr_io_queues = dev->online_queues - 1; - nvme_disable_io_queues(dev); + nvme_delete_io_queues(dev); + result = nvme_setup_io_queues_trylock(dev); + if (result) + return result; nvme_suspend_io_queues(dev); goto retry; } @@ -2238,57 +2853,64 @@ static int nvme_setup_io_queues(struct nvme_dev *dev) dev->io_queues[HCTX_TYPE_READ], dev->io_queues[HCTX_TYPE_POLL]); return 0; +out_unlock: + mutex_unlock(&dev->shutdown_lock); + return result; } -static void nvme_del_queue_end(struct request *req, blk_status_t error) +static enum rq_end_io_ret nvme_del_queue_end(struct request *req, + blk_status_t error) { struct nvme_queue *nvmeq = req->end_io_data; blk_mq_free_request(req); complete(&nvmeq->delete_done); + return RQ_END_IO_NONE; } -static void nvme_del_cq_end(struct request *req, blk_status_t error) +static enum rq_end_io_ret nvme_del_cq_end(struct request *req, + blk_status_t error) { struct nvme_queue *nvmeq = req->end_io_data; if (error) set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); - nvme_del_queue_end(req, error); + return nvme_del_queue_end(req, error); } static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) { struct request_queue *q = nvmeq->dev->ctrl.admin_q; struct request *req; - struct nvme_command cmd; + struct nvme_command cmd = { }; - memset(&cmd, 0, sizeof(cmd)); cmd.delete_queue.opcode = opcode; cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); - req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); + req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); if (IS_ERR(req)) return PTR_ERR(req); + nvme_init_request(req, &cmd); - req->timeout = ADMIN_TIMEOUT; + if (opcode == nvme_admin_delete_cq) + req->end_io = nvme_del_cq_end; + else + req->end_io = nvme_del_queue_end; req->end_io_data = nvmeq; init_completion(&nvmeq->delete_done); - blk_execute_rq_nowait(q, NULL, req, false, - opcode == nvme_admin_delete_cq ? - nvme_del_cq_end : nvme_del_queue_end); + blk_execute_rq_nowait(req, false); return 0; } -static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) +static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) { int nr_queues = dev->online_queues - 1, sent = 0; unsigned long timeout; retry: - timeout = ADMIN_TIMEOUT; + timeout = NVME_ADMIN_TIMEOUT; while (nr_queues > 0) { if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) break; @@ -2303,11 +2925,6 @@ static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) if (timeout == 0) return false; - /* handle any remaining CQEs */ - if (opcode == nvme_admin_delete_cq && - !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags)) - nvme_poll_irqdisable(nvmeq, -1); - sent--; if (nr_queues) goto retry; @@ -2315,65 +2932,59 @@ static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) return true; } -/* - * return error value only when tagset allocation failed - */ -static int nvme_dev_add(struct nvme_dev *dev) +static void nvme_delete_io_queues(struct nvme_dev *dev) { - int ret; + if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) + __nvme_delete_io_queues(dev, nvme_admin_delete_cq); +} - if (!dev->ctrl.tagset) { - dev->tagset.ops = &nvme_mq_ops; - dev->tagset.nr_hw_queues = dev->online_queues - 1; - dev->tagset.nr_maps = 2; /* default + read */ - if (dev->io_queues[HCTX_TYPE_POLL]) - dev->tagset.nr_maps++; - dev->tagset.timeout = NVME_IO_TIMEOUT; - dev->tagset.numa_node = dev_to_node(dev->dev); - dev->tagset.queue_depth = - min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; - dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false); - if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) { - dev->tagset.cmd_size = max(dev->tagset.cmd_size, - nvme_pci_cmd_size(dev, true)); - } - dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; - dev->tagset.driver_data = dev; +static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) +{ + if (dev->io_queues[HCTX_TYPE_POLL]) + return 3; + if (dev->io_queues[HCTX_TYPE_READ]) + return 2; + return 1; +} - ret = blk_mq_alloc_tag_set(&dev->tagset); - if (ret) { - dev_warn(dev->ctrl.device, - "IO queues tagset allocation failed %d\n", ret); - return ret; - } - dev->ctrl.tagset = &dev->tagset; +static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) +{ + if (!dev->ctrl.tagset) { + nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, + nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); + return true; + } - nvme_dbbuf_set(dev); - } else { - blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); + /* Give up if we are racing with nvme_dev_disable() */ + if (!mutex_trylock(&dev->shutdown_lock)) + return false; - /* Free previously allocated queues that are no longer usable */ - nvme_free_queues(dev, dev->online_queues); + /* Check if nvme_dev_disable() has been executed already */ + if (!dev->online_queues) { + mutex_unlock(&dev->shutdown_lock); + return false; } - return 0; + blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); + /* free previously allocated queues that are no longer usable */ + nvme_free_queues(dev, dev->online_queues); + mutex_unlock(&dev->shutdown_lock); + return true; } static int nvme_pci_enable(struct nvme_dev *dev) { int result = -ENOMEM; struct pci_dev *pdev = to_pci_dev(dev->dev); + unsigned int flags = PCI_IRQ_ALL_TYPES; if (pci_enable_device_mem(pdev)) return result; pci_set_master(pdev); - if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && - dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) - goto disable; - if (readl(dev->bar + NVME_REG_CSTS) == -1) { + dev_dbg(dev->ctrl.device, "reading CSTS register failed\n"); result = -ENODEV; goto disable; } @@ -2383,26 +2994,31 @@ static int nvme_pci_enable(struct nvme_dev *dev) * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll * adjust this later. */ - result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); + if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) + flags &= ~PCI_IRQ_MSI; + result = pci_alloc_irq_vectors(pdev, 1, 1, flags); if (result < 0) - return result; + goto disable; dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); - dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, + dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, io_queue_depth); dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); dev->dbs = dev->bar + 4096; /* - * Temporary fix for the Apple controller found in the MacBook8,1 and - * some MacBook7,1 to avoid controller resets and data loss. + * Some Apple controllers require a non-standard SQE size. + * Interestingly they also seem to ignore the CC:IOSQES register + * so we don't bother updating it here. */ - if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { + if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) + dev->io_sqes = 7; + else + dev->io_sqes = NVME_NVM_IOSQES; + + if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { dev->q_depth = 2; - dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " - "set queue depth=%u to work around controller resets\n", - dev->q_depth); } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && (pdev->device == 0xa821 || pdev->device == 0xa822) && NVME_CAP_MQES(dev->ctrl.cap) == 0) { @@ -2411,12 +3027,29 @@ static int nvme_pci_enable(struct nvme_dev *dev) "set queue depth=%u\n", dev->q_depth); } + /* + * Controllers with the shared tags quirk need the IO queue to be + * big enough so that we get 32 tags for the admin queue + */ + if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && + (dev->q_depth < (NVME_AQ_DEPTH + 2))) { + dev->q_depth = NVME_AQ_DEPTH + 2; + dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", + dev->q_depth); + } + dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ + nvme_map_cmb(dev); - pci_enable_pcie_error_reporting(pdev); pci_save_state(pdev); - return 0; + result = nvme_pci_configure_admin_queue(dev); + if (result) + goto free_irq; + return result; + + free_irq: + pci_free_irq_vectors(pdev); disable: pci_disable_device(pdev); return result; @@ -2429,126 +3062,121 @@ static void nvme_dev_unmap(struct nvme_dev *dev) pci_release_mem_regions(to_pci_dev(dev->dev)); } -static void nvme_pci_disable(struct nvme_dev *dev) +static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) { struct pci_dev *pdev = to_pci_dev(dev->dev); + u32 csts; - pci_free_irq_vectors(pdev); + if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) + return true; + if (pdev->error_state != pci_channel_io_normal) + return true; - if (pci_is_enabled(pdev)) { - pci_disable_pcie_error_reporting(pdev); - pci_disable_device(pdev); - } + csts = readl(dev->bar + NVME_REG_CSTS); + return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); } static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) { - bool dead = true; + enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); struct pci_dev *pdev = to_pci_dev(dev->dev); + bool dead; mutex_lock(&dev->shutdown_lock); - if (pci_is_enabled(pdev)) { - u32 csts = readl(dev->bar + NVME_REG_CSTS); - - if (dev->ctrl.state == NVME_CTRL_LIVE || - dev->ctrl.state == NVME_CTRL_RESETTING) + dead = nvme_pci_ctrl_is_dead(dev); + if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { + if (pci_is_enabled(pdev)) nvme_start_freeze(&dev->ctrl); - dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || - pdev->error_state != pci_channel_io_normal); - } - - /* - * Give the controller a chance to complete all entered requests if - * doing a safe shutdown. - */ - if (!dead) { - if (shutdown) + /* + * Give the controller a chance to complete all entered requests + * if doing a safe shutdown. + */ + if (!dead && shutdown) nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); } - nvme_stop_queues(&dev->ctrl); + nvme_quiesce_io_queues(&dev->ctrl); if (!dead && dev->ctrl.queue_count > 0) { - nvme_disable_io_queues(dev); - nvme_disable_admin_queue(dev, shutdown); + nvme_delete_io_queues(dev); + nvme_disable_ctrl(&dev->ctrl, shutdown); + nvme_poll_irqdisable(&dev->queues[0]); } nvme_suspend_io_queues(dev); - nvme_suspend_queue(&dev->queues[0]); - nvme_pci_disable(dev); + nvme_suspend_queue(dev, 0); + pci_free_irq_vectors(pdev); + if (pci_is_enabled(pdev)) + pci_disable_device(pdev); + nvme_reap_pending_cqes(dev); - blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); - blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); + nvme_cancel_tagset(&dev->ctrl); + nvme_cancel_admin_tagset(&dev->ctrl); /* * The driver will not be starting up queues again if shutting down so * must flush all entered requests to their failed completion to avoid * deadlocking blk-mq hot-cpu notifier. */ - if (shutdown) - nvme_start_queues(&dev->ctrl); + if (shutdown) { + nvme_unquiesce_io_queues(&dev->ctrl); + if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) + nvme_unquiesce_admin_queue(&dev->ctrl); + } mutex_unlock(&dev->shutdown_lock); } -static int nvme_setup_prp_pools(struct nvme_dev *dev) +static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) { - dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, - PAGE_SIZE, PAGE_SIZE, 0); - if (!dev->prp_page_pool) - return -ENOMEM; + if (!nvme_wait_reset(&dev->ctrl)) + return -EBUSY; + nvme_dev_disable(dev, shutdown); + return 0; +} + +static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) +{ + size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS; - /* Optimisation for I/Os between 4k and 128k */ - dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, - 256, 256, 0); - if (!dev->prp_small_pool) { - dma_pool_destroy(dev->prp_page_pool); + dev->dmavec_mempool = mempool_create_node(1, + mempool_kmalloc, mempool_kfree, + (void *)alloc_size, GFP_KERNEL, + dev_to_node(dev->dev)); + if (!dev->dmavec_mempool) return -ENOMEM; - } return 0; } -static void nvme_release_prp_pools(struct nvme_dev *dev) +static void nvme_free_tagset(struct nvme_dev *dev) { - dma_pool_destroy(dev->prp_page_pool); - dma_pool_destroy(dev->prp_small_pool); + if (dev->tagset.tags) + nvme_remove_io_tag_set(&dev->ctrl); + dev->ctrl.tagset = NULL; } +/* pairs with nvme_pci_alloc_dev */ static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) { struct nvme_dev *dev = to_nvme_dev(ctrl); - nvme_dbbuf_dma_free(dev); + nvme_free_tagset(dev); put_device(dev->dev); - if (dev->tagset.tags) - blk_mq_free_tag_set(&dev->tagset); - if (dev->ctrl.admin_q) - blk_put_queue(dev->ctrl.admin_q); kfree(dev->queues); - free_opal_dev(dev->ctrl.opal_dev); - mempool_destroy(dev->iod_mempool); kfree(dev); } -static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) -{ - dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); - - nvme_get_ctrl(&dev->ctrl); - nvme_dev_disable(dev, false); - nvme_kill_queues(&dev->ctrl); - if (!queue_work(nvme_wq, &dev->remove_work)) - nvme_put_ctrl(&dev->ctrl); -} - static void nvme_reset_work(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, ctrl.reset_work); bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); - int result = -ENODEV; - enum nvme_ctrl_state new_state = NVME_CTRL_LIVE; + int result; - if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) + if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { + dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", + dev->ctrl.state); + result = -ENODEV; goto out; + } /* * If we're called to reset a live controller first shut it down before @@ -2556,6 +3184,14 @@ static void nvme_reset_work(struct work_struct *work) */ if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) nvme_dev_disable(dev, false); + nvme_sync_queues(&dev->ctrl); + + mutex_lock(&dev->shutdown_lock); + result = nvme_pci_enable(dev); + if (result) + goto out_unlock; + nvme_unquiesce_admin_queue(&dev->ctrl); + mutex_unlock(&dev->shutdown_lock); /* * Introduce CONNECTING state from nvme-fc/rdma transports to mark the @@ -2564,103 +3200,80 @@ static void nvme_reset_work(struct work_struct *work) if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { dev_warn(dev->ctrl.device, "failed to mark controller CONNECTING\n"); + result = -EBUSY; goto out; } - result = nvme_pci_enable(dev); - if (result) - goto out; - - result = nvme_pci_configure_admin_queue(dev); + result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); if (result) goto out; - result = nvme_alloc_admin_tags(dev); - if (result) - goto out; + if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) + dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; + else + dev->ctrl.max_integrity_segments = 1; - /* - * Limit the max command size to prevent iod->sg allocations going - * over a single page. - */ - dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1; - dev->ctrl.max_segments = NVME_MAX_SEGS; + nvme_dbbuf_dma_alloc(dev); - result = nvme_init_identify(&dev->ctrl); - if (result) + result = nvme_setup_host_mem(dev); + if (result < 0) goto out; - if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { - if (!dev->ctrl.opal_dev) - dev->ctrl.opal_dev = - init_opal_dev(&dev->ctrl, &nvme_sec_submit); - else if (was_suspend) - opal_unlock_from_suspend(dev->ctrl.opal_dev); - } else { - free_opal_dev(dev->ctrl.opal_dev); - dev->ctrl.opal_dev = NULL; - } - - if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { - result = nvme_dbbuf_dma_alloc(dev); - if (result) - dev_warn(dev->dev, - "unable to allocate dma for dbbuf\n"); - } - - if (dev->ctrl.hmpre) { - result = nvme_setup_host_mem(dev); - if (result < 0) - goto out; - } + nvme_update_attrs(dev); result = nvme_setup_io_queues(dev); if (result) goto out; /* - * Keep the controller around but remove all namespaces if we don't have - * any working I/O queue. + * Freeze and update the number of I/O queues as those might have + * changed. If there are no I/O queues left after this reset, keep the + * controller around but remove all namespaces. */ - if (dev->online_queues < 2) { - dev_warn(dev->ctrl.device, "IO queues not created\n"); - nvme_kill_queues(&dev->ctrl); - nvme_remove_namespaces(&dev->ctrl); - new_state = NVME_CTRL_ADMIN_ONLY; - } else { - nvme_start_queues(&dev->ctrl); + if (dev->online_queues > 1) { + nvme_dbbuf_set(dev); + nvme_unquiesce_io_queues(&dev->ctrl); nvme_wait_freeze(&dev->ctrl); - /* hit this only when allocate tagset fails */ - if (nvme_dev_add(dev)) - new_state = NVME_CTRL_ADMIN_ONLY; + if (!nvme_pci_update_nr_queues(dev)) + goto out; nvme_unfreeze(&dev->ctrl); + } else { + dev_warn(dev->ctrl.device, "IO queues lost\n"); + nvme_mark_namespaces_dead(&dev->ctrl); + nvme_unquiesce_io_queues(&dev->ctrl); + nvme_remove_namespaces(&dev->ctrl); + nvme_free_tagset(dev); } /* * If only admin queue live, keep it to do further investigation or * recovery. */ - if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) { + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { dev_warn(dev->ctrl.device, - "failed to mark controller state %d\n", new_state); + "failed to mark controller live state\n"); + result = -ENODEV; goto out; } nvme_start_ctrl(&dev->ctrl); return; + out_unlock: + mutex_unlock(&dev->shutdown_lock); out: - nvme_remove_dead_ctrl(dev, result); -} - -static void nvme_remove_dead_ctrl_work(struct work_struct *work) -{ - struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); - struct pci_dev *pdev = to_pci_dev(dev->dev); - - if (pci_get_drvdata(pdev)) - device_release_driver(&pdev->dev); - nvme_put_ctrl(&dev->ctrl); + /* + * Set state to deleting now to avoid blocking nvme_wait_reset(), which + * may be holding this pci_dev's device lock. + */ + dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", + result); + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + nvme_dev_disable(dev, true); + nvme_sync_queues(&dev->ctrl); + nvme_mark_namespaces_dead(&dev->ctrl); + nvme_unquiesce_io_queues(&dev->ctrl); + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); } static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) @@ -2677,7 +3290,7 @@ static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) { - *val = readq(to_nvme_dev(ctrl)->bar + off); + *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); return 0; } @@ -2685,20 +3298,53 @@ static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) { struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); - return snprintf(buf, size, "%s", dev_name(&pdev->dev)); + return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); +} + +static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) +{ + struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); + struct nvme_subsystem *subsys = ctrl->subsys; + + dev_err(ctrl->device, + "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", + pdev->vendor, pdev->device, + nvme_strlen(subsys->model, sizeof(subsys->model)), + subsys->model, nvme_strlen(subsys->firmware_rev, + sizeof(subsys->firmware_rev)), + subsys->firmware_rev); +} + +static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) +{ + struct nvme_dev *dev = to_nvme_dev(ctrl); + + return dma_pci_p2pdma_supported(dev->dev); +} + +static unsigned long nvme_pci_get_virt_boundary(struct nvme_ctrl *ctrl, + bool is_admin) +{ + if (!nvme_ctrl_sgl_supported(ctrl) || is_admin) + return NVME_CTRL_PAGE_SIZE - 1; + return 0; } static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { .name = "pcie", .module = THIS_MODULE, - .flags = NVME_F_METADATA_SUPPORTED | - NVME_F_PCI_P2PDMA, + .flags = NVME_F_METADATA_SUPPORTED, + .dev_attr_groups = nvme_pci_dev_attr_groups, .reg_read32 = nvme_pci_reg_read32, .reg_write32 = nvme_pci_reg_write32, .reg_read64 = nvme_pci_reg_read64, .free_ctrl = nvme_pci_free_ctrl, .submit_async_event = nvme_pci_submit_async_event, + .subsystem_reset = nvme_pci_subsystem_reset, .get_address = nvme_pci_get_address, + .print_device_info = nvme_pci_print_device_info, + .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, + .get_virt_boundary = nvme_pci_get_virt_boundary, }; static int nvme_dev_map(struct nvme_dev *dev) @@ -2743,116 +3389,257 @@ static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) return NVME_QUIRK_NO_APST; + } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || + pdev->device == 0xa808 || pdev->device == 0xa809)) || + (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { + /* + * Forcing to use host managed nvme power settings for + * lowest idle power with quick resume latency on + * Samsung and Toshiba SSDs based on suspend behavior + * on Coffee Lake board for LENOVO C640 + */ + if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && + dmi_match(DMI_BOARD_NAME, "LNVNB161216")) + return NVME_QUIRK_SIMPLE_SUSPEND; + } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || + pdev->device == 0x500f)) { + /* + * Exclude some Kingston NV1 and A2000 devices from + * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a + * lot of energy with s2idle sleep on some TUXEDO platforms. + */ + if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || + dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || + dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || + dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) + return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; + } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { + /* + * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND + * because of high power consumption (> 2 Watt) in s2idle + * sleep. Only some boards with Intel CPU are affected. + * (Note for testing: Samsung 990 Evo Plus has same PCI ID) + */ + if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") || + dmi_match(DMI_BOARD_NAME, "GMxPXxx") || + dmi_match(DMI_BOARD_NAME, "GXxMRXx") || + dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || + dmi_match(DMI_BOARD_NAME, "PH4PG31") || + dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || + dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) + return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; } + /* + * NVMe SSD drops off the PCIe bus after system idle + * for 10 hours on a Lenovo N60z board. + */ + if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) + return NVME_QUIRK_NO_APST; + return 0; } -static void nvme_async_probe(void *data, async_cookie_t cookie) +static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, + const struct pci_device_id *id) { - struct nvme_dev *dev = data; + unsigned long quirks = id->driver_data; + int node = dev_to_node(&pdev->dev); + struct nvme_dev *dev; + int ret = -ENOMEM; - nvme_reset_ctrl_sync(&dev->ctrl); - flush_work(&dev->ctrl.scan_work); - nvme_put_ctrl(&dev->ctrl); + dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids), + GFP_KERNEL, node); + if (!dev) + return ERR_PTR(-ENOMEM); + INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); + mutex_init(&dev->shutdown_lock); + + dev->nr_write_queues = write_queues; + dev->nr_poll_queues = poll_queues; + dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; + dev->queues = kcalloc_node(dev->nr_allocated_queues, + sizeof(struct nvme_queue), GFP_KERNEL, node); + if (!dev->queues) + goto out_free_dev; + + dev->dev = get_device(&pdev->dev); + + quirks |= check_vendor_combination_bug(pdev); + if (!noacpi && + !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && + acpi_storage_d3(&pdev->dev)) { + /* + * Some systems use a bios work around to ask for D3 on + * platforms that support kernel managed suspend. + */ + dev_info(&pdev->dev, + "platform quirk: setting simple suspend\n"); + quirks |= NVME_QUIRK_SIMPLE_SUSPEND; + } + ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, + quirks); + if (ret) + goto out_put_device; + + if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) + dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); + else + dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); + dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); + dma_set_max_seg_size(&pdev->dev, 0xffffffff); + + /* + * Limit the max command size to prevent iod->sg allocations going + * over a single page. + */ + dev->ctrl.max_hw_sectors = min_t(u32, + NVME_MAX_BYTES >> SECTOR_SHIFT, + dma_opt_mapping_size(&pdev->dev) >> 9); + dev->ctrl.max_segments = NVME_MAX_SEGS; + dev->ctrl.max_integrity_segments = 1; + return dev; + +out_put_device: + put_device(dev->dev); + kfree(dev->queues); +out_free_dev: + kfree(dev); + return ERR_PTR(ret); } static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) { - int node, result = -ENOMEM; struct nvme_dev *dev; - unsigned long quirks = id->driver_data; - size_t alloc_size; - - node = dev_to_node(&pdev->dev); - if (node == NUMA_NO_NODE) - set_dev_node(&pdev->dev, first_memory_node); - - dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); - if (!dev) - return -ENOMEM; + int result = -ENOMEM; - dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue), - GFP_KERNEL, node); - if (!dev->queues) - goto free; + dev = nvme_pci_alloc_dev(pdev, id); + if (IS_ERR(dev)) + return PTR_ERR(dev); - dev->dev = get_device(&pdev->dev); - pci_set_drvdata(pdev, dev); + result = nvme_add_ctrl(&dev->ctrl); + if (result) + goto out_put_ctrl; result = nvme_dev_map(dev); if (result) - goto put_pci; + goto out_uninit_ctrl; - INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); - INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); - mutex_init(&dev->shutdown_lock); + result = nvme_pci_alloc_iod_mempool(dev); + if (result) + goto out_dev_unmap; + + dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); - result = nvme_setup_prp_pools(dev); + result = nvme_pci_enable(dev); if (result) - goto unmap; + goto out_release_iod_mempool; - quirks |= check_vendor_combination_bug(pdev); + result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, + &nvme_mq_admin_ops, sizeof(struct nvme_iod)); + if (result) + goto out_disable; /* - * Double check that our mempool alloc size will cover the biggest - * command we support. + * Mark the controller as connecting before sending admin commands to + * allow the timeout handler to do the right thing. */ - alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, - NVME_MAX_SEGS, true); - WARN_ON_ONCE(alloc_size > PAGE_SIZE); - - dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, - mempool_kfree, - (void *) alloc_size, - GFP_KERNEL, node); - if (!dev->iod_mempool) { - result = -ENOMEM; - goto release_pools; + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { + dev_warn(dev->ctrl.device, + "failed to mark controller CONNECTING\n"); + result = -EBUSY; + goto out_disable; } - result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, - quirks); + result = nvme_init_ctrl_finish(&dev->ctrl, false); if (result) - goto release_mempool; + goto out_disable; - dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); + if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) + dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; + else + dev->ctrl.max_integrity_segments = 1; + + nvme_dbbuf_dma_alloc(dev); + + result = nvme_setup_host_mem(dev); + if (result < 0) + goto out_disable; + + nvme_update_attrs(dev); + + result = nvme_setup_io_queues(dev); + if (result) + goto out_disable; + + if (dev->online_queues > 1) { + nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, + nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); + nvme_dbbuf_set(dev); + } + + if (!dev->ctrl.tagset) + dev_warn(dev->ctrl.device, "IO queues not created\n"); + + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { + dev_warn(dev->ctrl.device, + "failed to mark controller live state\n"); + result = -ENODEV; + goto out_disable; + } - nvme_get_ctrl(&dev->ctrl); - async_schedule(nvme_async_probe, dev); + pci_set_drvdata(pdev, dev); + nvme_start_ctrl(&dev->ctrl); + nvme_put_ctrl(&dev->ctrl); + flush_work(&dev->ctrl.scan_work); return 0; - release_mempool: - mempool_destroy(dev->iod_mempool); - release_pools: - nvme_release_prp_pools(dev); - unmap: +out_disable: + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + nvme_dev_disable(dev, true); + nvme_free_host_mem(dev); + nvme_dev_remove_admin(dev); + nvme_dbbuf_dma_free(dev); + nvme_free_queues(dev, 0); +out_release_iod_mempool: + mempool_destroy(dev->dmavec_mempool); +out_dev_unmap: nvme_dev_unmap(dev); - put_pci: - put_device(dev->dev); - free: - kfree(dev->queues); - kfree(dev); +out_uninit_ctrl: + nvme_uninit_ctrl(&dev->ctrl); +out_put_ctrl: + nvme_put_ctrl(&dev->ctrl); + dev_err_probe(&pdev->dev, result, "probe failed\n"); return result; } static void nvme_reset_prepare(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); - nvme_dev_disable(dev, false); + + /* + * We don't need to check the return value from waiting for the reset + * state as pci_dev device lock is held, making it impossible to race + * with ->remove(). + */ + nvme_disable_prepare_reset(dev, false); + nvme_sync_queues(&dev->ctrl); } static void nvme_reset_done(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); - nvme_reset_ctrl_sync(&dev->ctrl); + + if (!nvme_try_sched_reset(&dev->ctrl)) + flush_work(&dev->ctrl.reset_work); } static void nvme_shutdown(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); - nvme_dev_disable(dev, true); + + nvme_disable_prepare_reset(dev, true); } /* @@ -2870,44 +3657,149 @@ static void nvme_remove(struct pci_dev *pdev) if (!pci_device_is_present(pdev)) { nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); nvme_dev_disable(dev, true); - nvme_dev_remove_admin(dev); } flush_work(&dev->ctrl.reset_work); nvme_stop_ctrl(&dev->ctrl); nvme_remove_namespaces(&dev->ctrl); nvme_dev_disable(dev, true); - nvme_release_cmb(dev); nvme_free_host_mem(dev); nvme_dev_remove_admin(dev); + nvme_dbbuf_dma_free(dev); nvme_free_queues(dev, 0); - nvme_uninit_ctrl(&dev->ctrl); - nvme_release_prp_pools(dev); + mempool_destroy(dev->dmavec_mempool); + nvme_release_descriptor_pools(dev); nvme_dev_unmap(dev); - nvme_put_ctrl(&dev->ctrl); + nvme_uninit_ctrl(&dev->ctrl); } #ifdef CONFIG_PM_SLEEP +static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) +{ + return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); +} + +static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) +{ + return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); +} + +static int nvme_resume(struct device *dev) +{ + struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); + struct nvme_ctrl *ctrl = &ndev->ctrl; + + if (ndev->last_ps == U32_MAX || + nvme_set_power_state(ctrl, ndev->last_ps) != 0) + goto reset; + if (ctrl->hmpre && nvme_setup_host_mem(ndev)) + goto reset; + + return 0; +reset: + return nvme_try_sched_reset(ctrl); +} + static int nvme_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); + struct nvme_ctrl *ctrl = &ndev->ctrl; + int ret = -EBUSY; - nvme_dev_disable(ndev, true); - return 0; + ndev->last_ps = U32_MAX; + + /* + * The platform does not remove power for a kernel managed suspend so + * use host managed nvme power settings for lowest idle power if + * possible. This should have quicker resume latency than a full device + * shutdown. But if the firmware is involved after the suspend or the + * device does not support any non-default power states, shut down the + * device fully. + * + * If ASPM is not enabled for the device, shut down the device and allow + * the PCI bus layer to put it into D3 in order to take the PCIe link + * down, so as to allow the platform to achieve its minimum low-power + * state (which may not be possible if the link is up). + */ + if (pm_suspend_via_firmware() || !ctrl->npss || + !pcie_aspm_enabled(pdev) || + (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) + return nvme_disable_prepare_reset(ndev, true); + + nvme_start_freeze(ctrl); + nvme_wait_freeze(ctrl); + nvme_sync_queues(ctrl); + + if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) + goto unfreeze; + + /* + * Host memory access may not be successful in a system suspend state, + * but the specification allows the controller to access memory in a + * non-operational power state. + */ + if (ndev->hmb) { + ret = nvme_set_host_mem(ndev, 0); + if (ret < 0) + goto unfreeze; + } + + ret = nvme_get_power_state(ctrl, &ndev->last_ps); + if (ret < 0) + goto unfreeze; + + /* + * A saved state prevents pci pm from generically controlling the + * device's power. If we're using protocol specific settings, we don't + * want pci interfering. + */ + pci_save_state(pdev); + + ret = nvme_set_power_state(ctrl, ctrl->npss); + if (ret < 0) + goto unfreeze; + + if (ret) { + /* discard the saved state */ + pci_load_saved_state(pdev, NULL); + + /* + * Clearing npss forces a controller reset on resume. The + * correct value will be rediscovered then. + */ + ret = nvme_disable_prepare_reset(ndev, true); + ctrl->npss = 0; + } +unfreeze: + nvme_unfreeze(ctrl); + return ret; } -static int nvme_resume(struct device *dev) +static int nvme_simple_suspend(struct device *dev) +{ + struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); + + return nvme_disable_prepare_reset(ndev, true); +} + +static int nvme_simple_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); - nvme_reset_ctrl(&ndev->ctrl); - return 0; + return nvme_try_sched_reset(&ndev->ctrl); } -#endif -static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); +static const struct dev_pm_ops nvme_dev_pm_ops = { + .suspend = nvme_suspend, + .resume = nvme_resume, + .freeze = nvme_simple_suspend, + .thaw = nvme_simple_resume, + .poweroff = nvme_simple_suspend, + .restore = nvme_simple_resume, +}; +#endif /* CONFIG_PM_SLEEP */ static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, pci_channel_state_t state) @@ -2925,6 +3817,10 @@ static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, case pci_channel_io_frozen: dev_warn(dev->ctrl.device, "frozen state error detected, reset controller\n"); + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { + nvme_dev_disable(dev, true); + return PCI_ERS_RESULT_DISCONNECT; + } nvme_dev_disable(dev, false); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: @@ -2941,7 +3837,8 @@ static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) dev_info(dev->ctrl.device, "restart after slot reset\n"); pci_restore_state(pdev); - nvme_reset_ctrl(&dev->ctrl); + if (nvme_try_sched_reset(&dev->ctrl)) + nvme_unquiesce_io_queues(&dev->ctrl); return PCI_ERS_RESULT_RECOVERED; } @@ -2961,27 +3858,45 @@ static const struct pci_error_handlers nvme_err_handler = { }; static const struct pci_device_id nvme_id_table[] = { - { PCI_VDEVICE(INTEL, 0x0953), + { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ .driver_data = NVME_QUIRK_STRIPE_SIZE | NVME_QUIRK_DEALLOCATE_ZEROES, }, - { PCI_VDEVICE(INTEL, 0x0a53), + { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ .driver_data = NVME_QUIRK_STRIPE_SIZE | NVME_QUIRK_DEALLOCATE_ZEROES, }, - { PCI_VDEVICE(INTEL, 0x0a54), + { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ .driver_data = NVME_QUIRK_STRIPE_SIZE | - NVME_QUIRK_DEALLOCATE_ZEROES, }, - { PCI_VDEVICE(INTEL, 0x0a55), - .driver_data = NVME_QUIRK_STRIPE_SIZE | - NVME_QUIRK_DEALLOCATE_ZEROES, }, + NVME_QUIRK_IGNORE_DEV_SUBNQN | + NVME_QUIRK_BOGUS_NID, }, + { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ + .driver_data = NVME_QUIRK_STRIPE_SIZE, }, { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ .driver_data = NVME_QUIRK_NO_DEEPEST_PS | - NVME_QUIRK_MEDIUM_PRIO_SQ }, + NVME_QUIRK_MEDIUM_PRIO_SQ | + NVME_QUIRK_NO_TEMP_THRESH_CHANGE | + NVME_QUIRK_DISABLE_WRITE_ZEROES, }, { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ - .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, + .driver_data = NVME_QUIRK_IDENTIFY_CNS | + NVME_QUIRK_DISABLE_WRITE_ZEROES | + NVME_QUIRK_BOGUS_NID, }, + { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ + .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, }, + { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS | + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ + .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | + NVME_QUIRK_BOGUS_NID, }, { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ - .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | + NVME_QUIRK_NO_NS_DESC_LIST, }, { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ @@ -2991,16 +3906,143 @@ static const struct pci_device_id nvme_id_table[] = { { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ - .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, - { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ - .driver_data = NVME_QUIRK_LIGHTNVM, }, - { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ - .driver_data = NVME_QUIRK_LIGHTNVM, }, - { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ - .driver_data = NVME_QUIRK_LIGHTNVM, }, - { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, - { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | + NVME_QUIRK_DISABLE_WRITE_ZEROES| + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ + .driver_data = NVME_QUIRK_BROKEN_MSI }, + { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */ + .driver_data = NVME_QUIRK_BROKEN_MSI | + NVME_QUIRK_NO_DEEPEST_PS }, + { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ + .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ + .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ + .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS | + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ + .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, + { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | + NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ + .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, + { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ + .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, + { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ + .driver_data = NVME_QUIRK_BOGUS_NID | + NVME_QUIRK_IGNORE_DEV_SUBNQN, }, + { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ + .driver_data = NVME_QUIRK_BOGUS_NID, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), + .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), + /* + * Fix for the Apple controller found in the MacBook8,1 and + * some MacBook7,1 to avoid controller resets and data loss. + */ + .driver_data = NVME_QUIRK_SINGLE_VECTOR | + NVME_QUIRK_QDEPTH_ONE }, { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), + .driver_data = NVME_QUIRK_SINGLE_VECTOR | + NVME_QUIRK_128_BYTES_SQES | + NVME_QUIRK_SHARED_TAGS | + NVME_QUIRK_SKIP_CID_GEN | + NVME_QUIRK_IDENTIFY_CNS }, + { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, { 0, } }; MODULE_DEVICE_TABLE(pci, nvme_id_table); @@ -3012,7 +4054,10 @@ static struct pci_driver nvme_driver = { .remove = nvme_remove, .shutdown = nvme_shutdown, .driver = { - .pm = &nvme_dev_pm_ops, + .probe_type = PROBE_PREFER_ASYNCHRONOUS, +#ifdef CONFIG_PM_SLEEP + .pm = &nvme_dev_pm_ops, +#endif }, .sriov_configure = pci_sriov_configure_simple, .err_handler = &nvme_err_handler, @@ -3020,6 +4065,11 @@ static struct pci_driver nvme_driver = { static int __init nvme_init(void) { + BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); + BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); + return pci_register_driver(&nvme_driver); } @@ -3027,11 +4077,11 @@ static void __exit nvme_exit(void) { pci_unregister_driver(&nvme_driver); flush_workqueue(nvme_wq); - _nvme_check_size(); } MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); +MODULE_DESCRIPTION("NVMe host PCIe transport driver"); module_init(nvme_init); module_exit(nvme_exit); |
