summaryrefslogtreecommitdiff
path: root/drivers/of/of_reserved_mem.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/of/of_reserved_mem.c')
-rw-r--r--drivers/of/of_reserved_mem.c689
1 files changed, 549 insertions, 140 deletions
diff --git a/drivers/of/of_reserved_mem.c b/drivers/of/of_reserved_mem.c
index d507c3569a88..5619ec917858 100644
--- a/drivers/of/of_reserved_mem.c
+++ b/drivers/of/of_reserved_mem.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0+
/*
* Device tree based initialization code for reserved memory.
*
@@ -6,16 +7,13 @@
* http://www.samsung.com
* Author: Marek Szyprowski <m.szyprowski@samsung.com>
* Author: Josh Cartwright <joshc@codeaurora.org>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of the
- * License or (at your optional) any later version of the license.
*/
#define pr_fmt(fmt) "OF: reserved mem: " fmt
#include <linux/err.h>
+#include <linux/ioport.h>
+#include <linux/libfdt.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
@@ -24,61 +22,99 @@
#include <linux/of_reserved_mem.h>
#include <linux/sort.h>
#include <linux/slab.h>
+#include <linux/memblock.h>
+#include <linux/kmemleak.h>
+#include <linux/cma.h>
+#include <linux/dma-map-ops.h>
-#define MAX_RESERVED_REGIONS 16
-static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
+#include "of_private.h"
+
+static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
+static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
+static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
static int reserved_mem_count;
-#if defined(CONFIG_HAVE_MEMBLOCK)
-#include <linux/memblock.h>
-int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
+static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
phys_addr_t *res_base)
{
phys_addr_t base;
- /*
- * We use __memblock_alloc_base() because memblock_alloc_base()
- * panic()s on allocation failure.
- */
+ int err = 0;
+
end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
- base = __memblock_alloc_base(size, align, end);
+ align = !align ? SMP_CACHE_BYTES : align;
+ base = memblock_phys_alloc_range(size, align, start, end);
if (!base)
return -ENOMEM;
- /*
- * Check if the allocated region fits in to start..end window
- */
- if (base < start) {
- memblock_free(base, size);
- return -ENOMEM;
+ *res_base = base;
+ if (nomap) {
+ err = memblock_mark_nomap(base, size);
+ if (err)
+ memblock_phys_free(base, size);
}
- *res_base = base;
- if (nomap)
- return memblock_remove(base, size);
- return 0;
+ if (!err)
+ kmemleak_ignore_phys(base);
+
+ return err;
}
-#else
-int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
- phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
- phys_addr_t *res_base)
+
+/*
+ * alloc_reserved_mem_array() - allocate memory for the reserved_mem
+ * array using memblock
+ *
+ * This function is used to allocate memory for the reserved_mem
+ * array according to the total number of reserved memory regions
+ * defined in the DT.
+ * After the new array is allocated, the information stored in
+ * the initial static array is copied over to this new array and
+ * the new array is used from this point on.
+ */
+static void __init alloc_reserved_mem_array(void)
{
- pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
- size, nomap ? " (nomap)" : "");
- return -ENOSYS;
+ struct reserved_mem *new_array;
+ size_t alloc_size, copy_size, memset_size;
+
+ alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
+ if (alloc_size == SIZE_MAX) {
+ pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
+ return;
+ }
+
+ new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
+ if (!new_array) {
+ pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
+ return;
+ }
+
+ copy_size = array_size(reserved_mem_count, sizeof(*new_array));
+ if (copy_size == SIZE_MAX) {
+ memblock_free(new_array, alloc_size);
+ total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
+ pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
+ return;
+ }
+
+ memset_size = alloc_size - copy_size;
+
+ memcpy(new_array, reserved_mem, copy_size);
+ memset(new_array + reserved_mem_count, 0, memset_size);
+
+ reserved_mem = new_array;
}
-#endif
-/**
- * res_mem_save_node() - save fdt node for second pass initialization
+static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
+/*
+ * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
*/
-void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
- phys_addr_t base, phys_addr_t size)
+static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
+ phys_addr_t base, phys_addr_t size)
{
struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
- if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
- pr_err("not enough space all defined regions.\n");
+ if (reserved_mem_count == total_reserved_mem_cnt) {
+ pr_err("not enough space for all defined regions.\n");
return;
}
@@ -87,23 +123,273 @@ void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
rmem->base = base;
rmem->size = size;
+ /* Call the region specific initialization function */
+ fdt_init_reserved_mem_node(rmem);
+
reserved_mem_count++;
return;
}
+static int __init early_init_dt_reserve_memory(phys_addr_t base,
+ phys_addr_t size, bool nomap)
+{
+ if (nomap) {
+ /*
+ * If the memory is already reserved (by another region), we
+ * should not allow it to be marked nomap, but don't worry
+ * if the region isn't memory as it won't be mapped.
+ */
+ if (memblock_overlaps_region(&memblock.memory, base, size) &&
+ memblock_is_region_reserved(base, size))
+ return -EBUSY;
+
+ return memblock_mark_nomap(base, size);
+ }
+ return memblock_reserve(base, size);
+}
+
+/*
+ * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
+ */
+static int __init __reserved_mem_reserve_reg(unsigned long node,
+ const char *uname)
+{
+ phys_addr_t base, size;
+ int i, len;
+ const __be32 *prop;
+ bool nomap;
+
+ prop = of_flat_dt_get_addr_size_prop(node, "reg", &len);
+ if (!prop)
+ return -ENOENT;
+
+ nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
+
+ for (i = 0; i < len; i++) {
+ u64 b, s;
+
+ of_flat_dt_read_addr_size(prop, i, &b, &s);
+
+ base = b;
+ size = s;
+
+ if (size && early_init_dt_reserve_memory(base, size, nomap) == 0) {
+ /* Architecture specific contiguous memory fixup. */
+ if (of_flat_dt_is_compatible(node, "shared-dma-pool") &&
+ of_get_flat_dt_prop(node, "reusable", NULL))
+ dma_contiguous_early_fixup(base, size);
+ pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
+ uname, &base, (unsigned long)(size / SZ_1M));
+ } else {
+ pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
+ uname, &base, (unsigned long)(size / SZ_1M));
+ }
+ }
+ return 0;
+}
+
+/*
+ * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
+ * in /reserved-memory matches the values supported by the current implementation,
+ * also check if ranges property has been provided
+ */
+static int __init __reserved_mem_check_root(unsigned long node)
+{
+ const __be32 *prop;
+
+ prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
+ if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
+ return -EINVAL;
+
+ prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
+ if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
+ return -EINVAL;
+
+ prop = of_get_flat_dt_prop(node, "ranges", NULL);
+ if (!prop)
+ return -EINVAL;
+ return 0;
+}
+
+static void __init __rmem_check_for_overlap(void);
+
/**
- * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
- * and 'alloc-ranges' properties
+ * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
+ * reserved memory regions.
+ *
+ * This function is used to scan through the DT and store the
+ * information for the reserved memory regions that are defined using
+ * the "reg" property. The region node number, name, base address, and
+ * size are all stored in the reserved_mem array by calling the
+ * fdt_reserved_mem_save_node() function.
+ */
+void __init fdt_scan_reserved_mem_reg_nodes(void)
+{
+ const void *fdt = initial_boot_params;
+ phys_addr_t base, size;
+ int node, child;
+
+ if (!fdt)
+ return;
+
+ node = fdt_path_offset(fdt, "/reserved-memory");
+ if (node < 0) {
+ pr_info("Reserved memory: No reserved-memory node in the DT\n");
+ return;
+ }
+
+ /* Attempt dynamic allocation of a new reserved_mem array */
+ alloc_reserved_mem_array();
+
+ if (__reserved_mem_check_root(node)) {
+ pr_err("Reserved memory: unsupported node format, ignoring\n");
+ return;
+ }
+
+ fdt_for_each_subnode(child, fdt, node) {
+ const char *uname;
+ u64 b, s;
+
+ if (!of_fdt_device_is_available(fdt, child))
+ continue;
+
+ if (!of_flat_dt_get_addr_size(child, "reg", &b, &s))
+ continue;
+
+ base = b;
+ size = s;
+
+ if (size) {
+ uname = fdt_get_name(fdt, child, NULL);
+ fdt_reserved_mem_save_node(child, uname, base, size);
+ }
+ }
+
+ /* check for overlapping reserved regions */
+ __rmem_check_for_overlap();
+}
+
+static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
+
+/*
+ * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
+ */
+int __init fdt_scan_reserved_mem(void)
+{
+ int node, child;
+ int dynamic_nodes_cnt = 0, count = 0;
+ int dynamic_nodes[MAX_RESERVED_REGIONS];
+ const void *fdt = initial_boot_params;
+
+ node = fdt_path_offset(fdt, "/reserved-memory");
+ if (node < 0)
+ return -ENODEV;
+
+ if (__reserved_mem_check_root(node) != 0) {
+ pr_err("Reserved memory: unsupported node format, ignoring\n");
+ return -EINVAL;
+ }
+
+ fdt_for_each_subnode(child, fdt, node) {
+ const char *uname;
+ int err;
+
+ if (!of_fdt_device_is_available(fdt, child))
+ continue;
+
+ uname = fdt_get_name(fdt, child, NULL);
+
+ err = __reserved_mem_reserve_reg(child, uname);
+ if (!err)
+ count++;
+ /*
+ * Save the nodes for the dynamically-placed regions
+ * into an array which will be used for allocation right
+ * after all the statically-placed regions are reserved
+ * or marked as no-map. This is done to avoid dynamically
+ * allocating from one of the statically-placed regions.
+ */
+ if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
+ dynamic_nodes[dynamic_nodes_cnt] = child;
+ dynamic_nodes_cnt++;
+ }
+ }
+ for (int i = 0; i < dynamic_nodes_cnt; i++) {
+ const char *uname;
+ int err;
+
+ child = dynamic_nodes[i];
+ uname = fdt_get_name(fdt, child, NULL);
+ err = __reserved_mem_alloc_size(child, uname);
+ if (!err)
+ count++;
+ }
+ total_reserved_mem_cnt = count;
+ return 0;
+}
+
+/*
+ * __reserved_mem_alloc_in_range() - allocate reserved memory described with
+ * 'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
+ * reserved regions to keep the reserved memory contiguous if possible.
*/
-static int __init __reserved_mem_alloc_size(unsigned long node,
- const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
+static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
+ phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
+ phys_addr_t *res_base)
+{
+ bool prev_bottom_up = memblock_bottom_up();
+ bool bottom_up = false, top_down = false;
+ int ret, i;
+
+ for (i = 0; i < reserved_mem_count; i++) {
+ struct reserved_mem *rmem = &reserved_mem[i];
+
+ /* Skip regions that were not reserved yet */
+ if (rmem->size == 0)
+ continue;
+
+ /*
+ * If range starts next to an existing reservation, use bottom-up:
+ * |....RRRR................RRRRRRRR..............|
+ * --RRRR------
+ */
+ if (start >= rmem->base && start <= (rmem->base + rmem->size))
+ bottom_up = true;
+
+ /*
+ * If range ends next to an existing reservation, use top-down:
+ * |....RRRR................RRRRRRRR..............|
+ * -------RRRR-----
+ */
+ if (end >= rmem->base && end <= (rmem->base + rmem->size))
+ top_down = true;
+ }
+
+ /* Change setting only if either bottom-up or top-down was selected */
+ if (bottom_up != top_down)
+ memblock_set_bottom_up(bottom_up);
+
+ ret = early_init_dt_alloc_reserved_memory_arch(size, align,
+ start, end, nomap, res_base);
+
+ /* Restore old setting if needed */
+ if (bottom_up != top_down)
+ memblock_set_bottom_up(prev_bottom_up);
+
+ return ret;
+}
+
+/*
+ * __reserved_mem_alloc_size() - allocate reserved memory described by
+ * 'size', 'alignment' and 'alloc-ranges' properties.
+ */
+static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
{
- int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
phys_addr_t start = 0, end = 0;
phys_addr_t base = 0, align = 0, size;
- int len;
+ int i, len;
const __be32 *prop;
- int nomap;
+ bool nomap;
int ret;
prop = of_get_flat_dt_prop(node, "size", &len);
@@ -116,8 +402,6 @@ static int __init __reserved_mem_alloc_size(unsigned long node,
}
size = dt_mem_next_cell(dt_root_size_cells, &prop);
- nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
-
prop = of_get_flat_dt_prop(node, "alignment", &len);
if (prop) {
if (len != dt_root_addr_cells * sizeof(__be32)) {
@@ -128,73 +412,68 @@ static int __init __reserved_mem_alloc_size(unsigned long node,
align = dt_mem_next_cell(dt_root_addr_cells, &prop);
}
+ nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
+
/* Need adjust the alignment to satisfy the CMA requirement */
if (IS_ENABLED(CONFIG_CMA)
&& of_flat_dt_is_compatible(node, "shared-dma-pool")
&& of_get_flat_dt_prop(node, "reusable", NULL)
- && !of_get_flat_dt_prop(node, "no-map", NULL)) {
- unsigned long order =
- max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
-
- align = max(align, (phys_addr_t)PAGE_SIZE << order);
- }
+ && !nomap)
+ align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
- prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
+ prop = of_flat_dt_get_addr_size_prop(node, "alloc-ranges", &len);
if (prop) {
+ for (i = 0; i < len; i++) {
+ u64 b, s;
- if (len % t_len != 0) {
- pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
- uname);
- return -EINVAL;
- }
-
- base = 0;
+ of_flat_dt_read_addr_size(prop, i, &b, &s);
- while (len > 0) {
- start = dt_mem_next_cell(dt_root_addr_cells, &prop);
- end = start + dt_mem_next_cell(dt_root_size_cells,
- &prop);
+ start = b;
+ end = b + s;
- ret = early_init_dt_alloc_reserved_memory_arch(size,
- align, start, end, nomap, &base);
+ base = 0;
+ ret = __reserved_mem_alloc_in_range(size, align,
+ start, end, nomap, &base);
if (ret == 0) {
- pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
+ pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
uname, &base,
- (unsigned long)size / SZ_1M);
+ (unsigned long)(size / SZ_1M));
break;
}
- len -= t_len;
}
-
} else {
ret = early_init_dt_alloc_reserved_memory_arch(size, align,
0, 0, nomap, &base);
if (ret == 0)
- pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
- uname, &base, (unsigned long)size / SZ_1M);
+ pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
+ uname, &base, (unsigned long)(size / SZ_1M));
}
if (base == 0) {
- pr_info("failed to allocate memory for node '%s'\n", uname);
+ pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
+ uname, (unsigned long)(size / SZ_1M));
return -ENOMEM;
}
-
- *res_base = base;
- *res_size = size;
-
+ /* Architecture specific contiguous memory fixup. */
+ if (of_flat_dt_is_compatible(node, "shared-dma-pool") &&
+ of_get_flat_dt_prop(node, "reusable", NULL))
+ dma_contiguous_early_fixup(base, size);
+ /* Save region in the reserved_mem array */
+ fdt_reserved_mem_save_node(node, uname, base, size);
return 0;
}
static const struct of_device_id __rmem_of_table_sentinel
- __used __section(__reservedmem_of_table_end);
+ __used __section("__reservedmem_of_table_end");
-/**
- * res_mem_init_node() - call region specific reserved memory init code
+/*
+ * __reserved_mem_init_node() - call region specific reserved memory init code
*/
static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
{
extern const struct of_device_id __reservedmem_of_table[];
const struct of_device_id *i;
+ int ret = -ENOENT;
for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
reservedmem_of_init_fn initfn = i->data;
@@ -203,13 +482,14 @@ static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
continue;
- if (initfn(rmem) == 0) {
+ ret = initfn(rmem);
+ if (ret == 0) {
pr_info("initialized node %s, compatible id %s\n",
rmem->name, compat);
- return 0;
+ break;
}
}
- return -ENOENT;
+ return ret;
}
static int __init __rmem_cmp(const void *a, const void *b)
@@ -222,6 +502,21 @@ static int __init __rmem_cmp(const void *a, const void *b)
if (ra->base > rb->base)
return 1;
+ /*
+ * Put the dynamic allocations (address == 0, size == 0) before static
+ * allocations at address 0x0 so that overlap detection works
+ * correctly.
+ */
+ if (ra->size < rb->size)
+ return -1;
+ if (ra->size > rb->size)
+ return 1;
+
+ if (ra->fdt_node < rb->fdt_node)
+ return -1;
+ if (ra->fdt_node > rb->fdt_node)
+ return 1;
+
return 0;
}
@@ -239,8 +534,7 @@ static void __init __rmem_check_for_overlap(void)
this = &reserved_mem[i];
next = &reserved_mem[i + 1];
- if (!(this->base && next->base))
- continue;
+
if (this->base + this->size > next->base) {
phys_addr_t this_end, next_end;
@@ -254,49 +548,40 @@ static void __init __rmem_check_for_overlap(void)
}
/**
- * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
+ * fdt_init_reserved_mem_node() - Initialize a reserved memory region
+ * @rmem: reserved_mem struct of the memory region to be initialized.
+ *
+ * This function is used to call the region specific initialization
+ * function for a reserved memory region.
*/
-void __init fdt_init_reserved_mem(void)
+static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
{
- int i;
-
- /* check for overlapping reserved regions */
- __rmem_check_for_overlap();
-
- for (i = 0; i < reserved_mem_count; i++) {
- struct reserved_mem *rmem = &reserved_mem[i];
- unsigned long node = rmem->fdt_node;
- int len;
- const __be32 *prop;
- int err = 0;
+ unsigned long node = rmem->fdt_node;
+ int err = 0;
+ bool nomap;
- prop = of_get_flat_dt_prop(node, "phandle", &len);
- if (!prop)
- prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
- if (prop)
- rmem->phandle = of_read_number(prop, len/4);
+ nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
- if (rmem->size == 0)
- err = __reserved_mem_alloc_size(node, rmem->name,
- &rmem->base, &rmem->size);
- if (err == 0)
- __reserved_mem_init_node(rmem);
+ err = __reserved_mem_init_node(rmem);
+ if (err != 0 && err != -ENOENT) {
+ pr_info("node %s compatible matching fail\n", rmem->name);
+ if (nomap)
+ memblock_clear_nomap(rmem->base, rmem->size);
+ else
+ memblock_phys_free(rmem->base, rmem->size);
+ } else {
+ phys_addr_t end = rmem->base + rmem->size - 1;
+ bool reusable =
+ (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
+
+ pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
+ &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
+ nomap ? "nomap" : "map",
+ reusable ? "reusable" : "non-reusable",
+ rmem->name ? rmem->name : "unknown");
}
}
-static inline struct reserved_mem *__find_rmem(struct device_node *node)
-{
- unsigned int i;
-
- if (!node->phandle)
- return NULL;
-
- for (i = 0; i < reserved_mem_count; i++)
- if (reserved_mem[i].phandle == node->phandle)
- return &reserved_mem[i];
- return NULL;
-}
-
struct rmem_assigned_device {
struct device *dev;
struct reserved_mem *rmem;
@@ -336,7 +621,12 @@ int of_reserved_mem_device_init_by_idx(struct device *dev,
if (!target)
return -ENODEV;
- rmem = __find_rmem(target);
+ if (!of_device_is_available(target)) {
+ of_node_put(target);
+ return 0;
+ }
+
+ rmem = of_reserved_mem_lookup(target);
of_node_put(target);
if (!rmem || !rmem->ops || !rmem->ops->device_init)
@@ -354,10 +644,6 @@ int of_reserved_mem_device_init_by_idx(struct device *dev,
mutex_lock(&of_rmem_assigned_device_mutex);
list_add(&rd->list, &of_rmem_assigned_device_list);
mutex_unlock(&of_rmem_assigned_device_mutex);
- /* ensure that dma_ops is set for virtual devices
- * using reserved memory
- */
- of_dma_configure(dev, np);
dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
} else {
@@ -369,6 +655,25 @@ int of_reserved_mem_device_init_by_idx(struct device *dev,
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
/**
+ * of_reserved_mem_device_init_by_name() - assign named reserved memory region
+ * to given device
+ * @dev: pointer to the device to configure
+ * @np: pointer to the device node with 'memory-region' property
+ * @name: name of the selected memory region
+ *
+ * Returns: 0 on success or a negative error-code on failure.
+ */
+int of_reserved_mem_device_init_by_name(struct device *dev,
+ struct device_node *np,
+ const char *name)
+{
+ int idx = of_property_match_string(np, "memory-region-names", name);
+
+ return of_reserved_mem_device_init_by_idx(dev, np, idx);
+}
+EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
+
+/**
* of_reserved_mem_device_release() - release reserved memory device structures
* @dev: Pointer to the device to deconfigure
*
@@ -377,23 +682,127 @@ EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
*/
void of_reserved_mem_device_release(struct device *dev)
{
- struct rmem_assigned_device *rd;
- struct reserved_mem *rmem = NULL;
+ struct rmem_assigned_device *rd, *tmp;
+ LIST_HEAD(release_list);
mutex_lock(&of_rmem_assigned_device_mutex);
- list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
- if (rd->dev == dev) {
- rmem = rd->rmem;
- list_del(&rd->list);
- kfree(rd);
- break;
- }
+ list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
+ if (rd->dev == dev)
+ list_move_tail(&rd->list, &release_list);
}
mutex_unlock(&of_rmem_assigned_device_mutex);
- if (!rmem || !rmem->ops || !rmem->ops->device_release)
- return;
+ list_for_each_entry_safe(rd, tmp, &release_list, list) {
+ if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
+ rd->rmem->ops->device_release(rd->rmem, dev);
- rmem->ops->device_release(rmem, dev);
+ kfree(rd);
+ }
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
+
+/**
+ * of_reserved_mem_lookup() - acquire reserved_mem from a device node
+ * @np: node pointer of the desired reserved-memory region
+ *
+ * This function allows drivers to acquire a reference to the reserved_mem
+ * struct based on a device node handle.
+ *
+ * Returns a reserved_mem reference, or NULL on error.
+ */
+struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
+{
+ const char *name;
+ int i;
+
+ if (!np->full_name)
+ return NULL;
+
+ name = kbasename(np->full_name);
+ for (i = 0; i < reserved_mem_count; i++)
+ if (!strcmp(reserved_mem[i].name, name))
+ return &reserved_mem[i];
+
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
+
+/**
+ * of_reserved_mem_region_to_resource() - Get a reserved memory region as a resource
+ * @np: node containing 'memory-region' property
+ * @idx: index of 'memory-region' property to lookup
+ * @res: Pointer to a struct resource to fill in with reserved region
+ *
+ * This function allows drivers to lookup a node's 'memory-region' property
+ * entries by index and return a struct resource for the entry.
+ *
+ * Returns 0 on success with @res filled in. Returns -ENODEV if 'memory-region'
+ * is missing or unavailable, -EINVAL for any other error.
+ */
+int of_reserved_mem_region_to_resource(const struct device_node *np,
+ unsigned int idx, struct resource *res)
+{
+ struct reserved_mem *rmem;
+
+ if (!np)
+ return -EINVAL;
+
+ struct device_node __free(device_node) *target = of_parse_phandle(np, "memory-region", idx);
+ if (!target || !of_device_is_available(target))
+ return -ENODEV;
+
+ rmem = of_reserved_mem_lookup(target);
+ if (!rmem)
+ return -EINVAL;
+
+ resource_set_range(res, rmem->base, rmem->size);
+ res->flags = IORESOURCE_MEM;
+ res->name = rmem->name;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(of_reserved_mem_region_to_resource);
+
+/**
+ * of_reserved_mem_region_to_resource_byname() - Get a reserved memory region as a resource
+ * @np: node containing 'memory-region' property
+ * @name: name of 'memory-region' property entry to lookup
+ * @res: Pointer to a struct resource to fill in with reserved region
+ *
+ * This function allows drivers to lookup a node's 'memory-region' property
+ * entries by name and return a struct resource for the entry.
+ *
+ * Returns 0 on success with @res filled in, or a negative error-code on
+ * failure.
+ */
+int of_reserved_mem_region_to_resource_byname(const struct device_node *np,
+ const char *name,
+ struct resource *res)
+{
+ int idx;
+
+ if (!name)
+ return -EINVAL;
+
+ idx = of_property_match_string(np, "memory-region-names", name);
+ if (idx < 0)
+ return idx;
+
+ return of_reserved_mem_region_to_resource(np, idx, res);
+}
+EXPORT_SYMBOL_GPL(of_reserved_mem_region_to_resource_byname);
+
+/**
+ * of_reserved_mem_region_count() - Return the number of 'memory-region' entries
+ * @np: node containing 'memory-region' property
+ *
+ * This function allows drivers to retrieve the number of entries for a node's
+ * 'memory-region' property.
+ *
+ * Returns the number of entries on success, or negative error code on a
+ * malformed property.
+ */
+int of_reserved_mem_region_count(const struct device_node *np)
+{
+ return of_count_phandle_with_args(np, "memory-region", NULL);
+}
+EXPORT_SYMBOL_GPL(of_reserved_mem_region_count);