diff options
Diffstat (limited to 'drivers/pci/endpoint/functions/pci-epf-test.c')
| -rw-r--r-- | drivers/pci/endpoint/functions/pci-epf-test.c | 1218 |
1 files changed, 1218 insertions, 0 deletions
diff --git a/drivers/pci/endpoint/functions/pci-epf-test.c b/drivers/pci/endpoint/functions/pci-epf-test.c new file mode 100644 index 000000000000..debd235253c5 --- /dev/null +++ b/drivers/pci/endpoint/functions/pci-epf-test.c @@ -0,0 +1,1218 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Test driver to test endpoint functionality + * + * Copyright (C) 2017 Texas Instruments + * Author: Kishon Vijay Abraham I <kishon@ti.com> + */ + +#include <linux/crc32.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/msi.h> +#include <linux/slab.h> +#include <linux/pci_ids.h> +#include <linux/random.h> + +#include <linux/pci-epc.h> +#include <linux/pci-epf.h> +#include <linux/pci-ep-msi.h> +#include <linux/pci_regs.h> + +#define IRQ_TYPE_INTX 0 +#define IRQ_TYPE_MSI 1 +#define IRQ_TYPE_MSIX 2 + +#define COMMAND_RAISE_INTX_IRQ BIT(0) +#define COMMAND_RAISE_MSI_IRQ BIT(1) +#define COMMAND_RAISE_MSIX_IRQ BIT(2) +#define COMMAND_READ BIT(3) +#define COMMAND_WRITE BIT(4) +#define COMMAND_COPY BIT(5) +#define COMMAND_ENABLE_DOORBELL BIT(6) +#define COMMAND_DISABLE_DOORBELL BIT(7) + +#define STATUS_READ_SUCCESS BIT(0) +#define STATUS_READ_FAIL BIT(1) +#define STATUS_WRITE_SUCCESS BIT(2) +#define STATUS_WRITE_FAIL BIT(3) +#define STATUS_COPY_SUCCESS BIT(4) +#define STATUS_COPY_FAIL BIT(5) +#define STATUS_IRQ_RAISED BIT(6) +#define STATUS_SRC_ADDR_INVALID BIT(7) +#define STATUS_DST_ADDR_INVALID BIT(8) +#define STATUS_DOORBELL_SUCCESS BIT(9) +#define STATUS_DOORBELL_ENABLE_SUCCESS BIT(10) +#define STATUS_DOORBELL_ENABLE_FAIL BIT(11) +#define STATUS_DOORBELL_DISABLE_SUCCESS BIT(12) +#define STATUS_DOORBELL_DISABLE_FAIL BIT(13) + +#define FLAG_USE_DMA BIT(0) + +#define TIMER_RESOLUTION 1 + +#define CAP_UNALIGNED_ACCESS BIT(0) +#define CAP_MSI BIT(1) +#define CAP_MSIX BIT(2) +#define CAP_INTX BIT(3) + +static struct workqueue_struct *kpcitest_workqueue; + +struct pci_epf_test { + void *reg[PCI_STD_NUM_BARS]; + struct pci_epf *epf; + enum pci_barno test_reg_bar; + size_t msix_table_offset; + struct delayed_work cmd_handler; + struct dma_chan *dma_chan_tx; + struct dma_chan *dma_chan_rx; + struct dma_chan *transfer_chan; + dma_cookie_t transfer_cookie; + enum dma_status transfer_status; + struct completion transfer_complete; + bool dma_supported; + bool dma_private; + const struct pci_epc_features *epc_features; + struct pci_epf_bar db_bar; +}; + +struct pci_epf_test_reg { + __le32 magic; + __le32 command; + __le32 status; + __le64 src_addr; + __le64 dst_addr; + __le32 size; + __le32 checksum; + __le32 irq_type; + __le32 irq_number; + __le32 flags; + __le32 caps; + __le32 doorbell_bar; + __le32 doorbell_offset; + __le32 doorbell_data; +} __packed; + +static struct pci_epf_header test_header = { + .vendorid = PCI_ANY_ID, + .deviceid = PCI_ANY_ID, + .baseclass_code = PCI_CLASS_OTHERS, + .interrupt_pin = PCI_INTERRUPT_INTA, +}; + +static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; + +static void pci_epf_test_dma_callback(void *param) +{ + struct pci_epf_test *epf_test = param; + struct dma_tx_state state; + + epf_test->transfer_status = + dmaengine_tx_status(epf_test->transfer_chan, + epf_test->transfer_cookie, &state); + if (epf_test->transfer_status == DMA_COMPLETE || + epf_test->transfer_status == DMA_ERROR) + complete(&epf_test->transfer_complete); +} + +/** + * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer + * data between PCIe EP and remote PCIe RC + * @epf_test: the EPF test device that performs the data transfer operation + * @dma_dst: The destination address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @dma_src: The source address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @len: The size of the data transfer + * @dma_remote: remote RC physical address + * @dir: DMA transfer direction + * + * Function that uses dmaengine API to transfer data between PCIe EP and remote + * PCIe RC. The source and destination address can be a physical address given + * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs. + * + * The function returns '0' on success and negative value on failure. + */ +static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test, + dma_addr_t dma_dst, dma_addr_t dma_src, + size_t len, dma_addr_t dma_remote, + enum dma_transfer_direction dir) +{ + struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ? + epf_test->dma_chan_tx : epf_test->dma_chan_rx; + dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst; + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + struct pci_epf *epf = epf_test->epf; + struct dma_async_tx_descriptor *tx; + struct dma_slave_config sconf = {}; + struct device *dev = &epf->dev; + int ret; + + if (IS_ERR_OR_NULL(chan)) { + dev_err(dev, "Invalid DMA memcpy channel\n"); + return -EINVAL; + } + + if (epf_test->dma_private) { + sconf.direction = dir; + if (dir == DMA_MEM_TO_DEV) + sconf.dst_addr = dma_remote; + else + sconf.src_addr = dma_remote; + + if (dmaengine_slave_config(chan, &sconf)) { + dev_err(dev, "DMA slave config fail\n"); + return -EIO; + } + tx = dmaengine_prep_slave_single(chan, dma_local, len, dir, + flags); + } else { + tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, + flags); + } + + if (!tx) { + dev_err(dev, "Failed to prepare DMA memcpy\n"); + return -EIO; + } + + reinit_completion(&epf_test->transfer_complete); + epf_test->transfer_chan = chan; + tx->callback = pci_epf_test_dma_callback; + tx->callback_param = epf_test; + epf_test->transfer_cookie = dmaengine_submit(tx); + + ret = dma_submit_error(epf_test->transfer_cookie); + if (ret) { + dev_err(dev, "Failed to do DMA tx_submit %d\n", ret); + goto terminate; + } + + dma_async_issue_pending(chan); + ret = wait_for_completion_interruptible(&epf_test->transfer_complete); + if (ret < 0) { + dev_err(dev, "DMA wait_for_completion interrupted\n"); + goto terminate; + } + + if (epf_test->transfer_status == DMA_ERROR) { + dev_err(dev, "DMA transfer failed\n"); + ret = -EIO; + } + +terminate: + dmaengine_terminate_sync(chan); + + return ret; +} + +struct epf_dma_filter { + struct device *dev; + u32 dma_mask; +}; + +static bool epf_dma_filter_fn(struct dma_chan *chan, void *node) +{ + struct epf_dma_filter *filter = node; + struct dma_slave_caps caps; + + memset(&caps, 0, sizeof(caps)); + dma_get_slave_caps(chan, &caps); + + return chan->device->dev == filter->dev + && (filter->dma_mask & caps.directions); +} + +/** + * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Function to initialize EPF test DMA channel. + */ +static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test) +{ + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct epf_dma_filter filter; + struct dma_chan *dma_chan; + dma_cap_mask_t mask; + int ret; + + filter.dev = epf->epc->dev.parent; + filter.dma_mask = BIT(DMA_DEV_TO_MEM); + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); + if (!dma_chan) { + dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n"); + goto fail_back_tx; + } + + epf_test->dma_chan_rx = dma_chan; + + filter.dma_mask = BIT(DMA_MEM_TO_DEV); + dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); + + if (!dma_chan) { + dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n"); + goto fail_back_rx; + } + + epf_test->dma_chan_tx = dma_chan; + epf_test->dma_private = true; + + init_completion(&epf_test->transfer_complete); + + return 0; + +fail_back_rx: + dma_release_channel(epf_test->dma_chan_rx); + epf_test->dma_chan_rx = NULL; + +fail_back_tx: + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + dma_chan = dma_request_chan_by_mask(&mask); + if (IS_ERR(dma_chan)) { + ret = PTR_ERR(dma_chan); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get DMA channel\n"); + return ret; + } + init_completion(&epf_test->transfer_complete); + + epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan; + + return 0; +} + +/** + * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Helper to cleanup EPF test DMA channel. + */ +static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test) +{ + if (!epf_test->dma_supported) + return; + + if (epf_test->dma_chan_tx) { + dma_release_channel(epf_test->dma_chan_tx); + if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) { + epf_test->dma_chan_tx = NULL; + epf_test->dma_chan_rx = NULL; + return; + } + epf_test->dma_chan_tx = NULL; + } + + if (epf_test->dma_chan_rx) { + dma_release_channel(epf_test->dma_chan_rx); + epf_test->dma_chan_rx = NULL; + } +} + +static void pci_epf_test_print_rate(struct pci_epf_test *epf_test, + const char *op, u64 size, + struct timespec64 *start, + struct timespec64 *end, bool dma) +{ + struct timespec64 ts = timespec64_sub(*end, *start); + u64 rate = 0, ns; + + /* calculate the rate */ + ns = timespec64_to_ns(&ts); + if (ns) + rate = div64_u64(size * NSEC_PER_SEC, ns * 1000); + + dev_info(&epf_test->epf->dev, + "%s => Size: %llu B, DMA: %s, Time: %ptSp s, Rate: %llu KB/s\n", + op, size, dma ? "YES" : "NO", &ts, rate); +} + +static void pci_epf_test_copy(struct pci_epf_test *epf_test, + struct pci_epf_test_reg *reg) +{ + int ret = 0; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + struct pci_epc_map src_map, dst_map; + u64 src_addr = le64_to_cpu(reg->src_addr); + u64 dst_addr = le64_to_cpu(reg->dst_addr); + size_t orig_size, copy_size; + ssize_t map_size = 0; + u32 flags = le32_to_cpu(reg->flags); + u32 status = 0; + void *copy_buf = NULL, *buf; + + orig_size = copy_size = le32_to_cpu(reg->size); + + if (flags & FLAG_USE_DMA) { + if (!dma_has_cap(DMA_MEMCPY, epf_test->dma_chan_tx->device->cap_mask)) { + dev_err(dev, "DMA controller doesn't support MEMCPY\n"); + ret = -EINVAL; + goto set_status; + } + } else { + copy_buf = kzalloc(copy_size, GFP_KERNEL); + if (!copy_buf) { + ret = -ENOMEM; + goto set_status; + } + buf = copy_buf; + } + + while (copy_size) { + ret = pci_epc_mem_map(epc, epf->func_no, epf->vfunc_no, + src_addr, copy_size, &src_map); + if (ret) { + dev_err(dev, "Failed to map source address\n"); + status = STATUS_SRC_ADDR_INVALID; + goto free_buf; + } + + ret = pci_epc_mem_map(epf->epc, epf->func_no, epf->vfunc_no, + dst_addr, copy_size, &dst_map); + if (ret) { + dev_err(dev, "Failed to map destination address\n"); + status = STATUS_DST_ADDR_INVALID; + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, + &src_map); + goto free_buf; + } + + map_size = min_t(size_t, dst_map.pci_size, src_map.pci_size); + + ktime_get_ts64(&start); + if (flags & FLAG_USE_DMA) { + ret = pci_epf_test_data_transfer(epf_test, + dst_map.phys_addr, src_map.phys_addr, + map_size, 0, DMA_MEM_TO_MEM); + if (ret) { + dev_err(dev, "Data transfer failed\n"); + goto unmap; + } + } else { + memcpy_fromio(buf, src_map.virt_addr, map_size); + memcpy_toio(dst_map.virt_addr, buf, map_size); + buf += map_size; + } + ktime_get_ts64(&end); + + copy_size -= map_size; + src_addr += map_size; + dst_addr += map_size; + + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &dst_map); + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &src_map); + map_size = 0; + } + + pci_epf_test_print_rate(epf_test, "COPY", orig_size, &start, &end, + flags & FLAG_USE_DMA); + +unmap: + if (map_size) { + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &dst_map); + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &src_map); + } + +free_buf: + kfree(copy_buf); + +set_status: + if (!ret) + status |= STATUS_COPY_SUCCESS; + else + status |= STATUS_COPY_FAIL; + reg->status = cpu_to_le32(status); +} + +static void pci_epf_test_read(struct pci_epf_test *epf_test, + struct pci_epf_test_reg *reg) +{ + int ret = 0; + void *src_buf, *buf; + u32 crc32; + struct pci_epc_map map; + phys_addr_t dst_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + struct device *dma_dev = epf->epc->dev.parent; + u64 src_addr = le64_to_cpu(reg->src_addr); + size_t orig_size, src_size; + ssize_t map_size = 0; + u32 flags = le32_to_cpu(reg->flags); + u32 checksum = le32_to_cpu(reg->checksum); + u32 status = 0; + + orig_size = src_size = le32_to_cpu(reg->size); + + src_buf = kzalloc(src_size, GFP_KERNEL); + if (!src_buf) { + ret = -ENOMEM; + goto set_status; + } + buf = src_buf; + + while (src_size) { + ret = pci_epc_mem_map(epc, epf->func_no, epf->vfunc_no, + src_addr, src_size, &map); + if (ret) { + dev_err(dev, "Failed to map address\n"); + status = STATUS_SRC_ADDR_INVALID; + goto free_buf; + } + + map_size = map.pci_size; + if (flags & FLAG_USE_DMA) { + dst_phys_addr = dma_map_single(dma_dev, buf, map_size, + DMA_FROM_DEVICE); + if (dma_mapping_error(dma_dev, dst_phys_addr)) { + dev_err(dev, + "Failed to map destination buffer addr\n"); + ret = -ENOMEM; + goto unmap; + } + + ktime_get_ts64(&start); + ret = pci_epf_test_data_transfer(epf_test, + dst_phys_addr, map.phys_addr, + map_size, src_addr, DMA_DEV_TO_MEM); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, dst_phys_addr, map_size, + DMA_FROM_DEVICE); + + if (ret) + goto unmap; + } else { + ktime_get_ts64(&start); + memcpy_fromio(buf, map.virt_addr, map_size); + ktime_get_ts64(&end); + } + + src_size -= map_size; + src_addr += map_size; + buf += map_size; + + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map); + map_size = 0; + } + + pci_epf_test_print_rate(epf_test, "READ", orig_size, &start, &end, + flags & FLAG_USE_DMA); + + crc32 = crc32_le(~0, src_buf, orig_size); + if (crc32 != checksum) + ret = -EIO; + +unmap: + if (map_size) + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map); + +free_buf: + kfree(src_buf); + +set_status: + if (!ret) + status |= STATUS_READ_SUCCESS; + else + status |= STATUS_READ_FAIL; + reg->status = cpu_to_le32(status); +} + +static void pci_epf_test_write(struct pci_epf_test *epf_test, + struct pci_epf_test_reg *reg) +{ + int ret = 0; + void *dst_buf, *buf; + struct pci_epc_map map; + phys_addr_t src_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + struct device *dma_dev = epf->epc->dev.parent; + u64 dst_addr = le64_to_cpu(reg->dst_addr); + size_t orig_size, dst_size; + ssize_t map_size = 0; + u32 flags = le32_to_cpu(reg->flags); + u32 status = 0; + + orig_size = dst_size = le32_to_cpu(reg->size); + + dst_buf = kzalloc(dst_size, GFP_KERNEL); + if (!dst_buf) { + ret = -ENOMEM; + goto set_status; + } + get_random_bytes(dst_buf, dst_size); + reg->checksum = cpu_to_le32(crc32_le(~0, dst_buf, dst_size)); + buf = dst_buf; + + while (dst_size) { + ret = pci_epc_mem_map(epc, epf->func_no, epf->vfunc_no, + dst_addr, dst_size, &map); + if (ret) { + dev_err(dev, "Failed to map address\n"); + status = STATUS_DST_ADDR_INVALID; + goto free_buf; + } + + map_size = map.pci_size; + if (flags & FLAG_USE_DMA) { + src_phys_addr = dma_map_single(dma_dev, buf, map_size, + DMA_TO_DEVICE); + if (dma_mapping_error(dma_dev, src_phys_addr)) { + dev_err(dev, + "Failed to map source buffer addr\n"); + ret = -ENOMEM; + goto unmap; + } + + ktime_get_ts64(&start); + + ret = pci_epf_test_data_transfer(epf_test, + map.phys_addr, src_phys_addr, + map_size, dst_addr, + DMA_MEM_TO_DEV); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, src_phys_addr, map_size, + DMA_TO_DEVICE); + + if (ret) + goto unmap; + } else { + ktime_get_ts64(&start); + memcpy_toio(map.virt_addr, buf, map_size); + ktime_get_ts64(&end); + } + + dst_size -= map_size; + dst_addr += map_size; + buf += map_size; + + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map); + map_size = 0; + } + + pci_epf_test_print_rate(epf_test, "WRITE", orig_size, &start, &end, + flags & FLAG_USE_DMA); + + /* + * wait 1ms inorder for the write to complete. Without this delay L3 + * error in observed in the host system. + */ + usleep_range(1000, 2000); + +unmap: + if (map_size) + pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map); + +free_buf: + kfree(dst_buf); + +set_status: + if (!ret) + status |= STATUS_WRITE_SUCCESS; + else + status |= STATUS_WRITE_FAIL; + reg->status = cpu_to_le32(status); +} + +static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, + struct pci_epf_test_reg *reg) +{ + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + u32 status = le32_to_cpu(reg->status); + u32 irq_number = le32_to_cpu(reg->irq_number); + u32 irq_type = le32_to_cpu(reg->irq_type); + int count; + + /* + * Set the status before raising the IRQ to ensure that the host sees + * the updated value when it gets the IRQ. + */ + status |= STATUS_IRQ_RAISED; + WRITE_ONCE(reg->status, cpu_to_le32(status)); + + switch (irq_type) { + case IRQ_TYPE_INTX: + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_IRQ_INTX, 0); + break; + case IRQ_TYPE_MSI: + count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no); + if (irq_number > count || count <= 0) { + dev_err(dev, "Invalid MSI IRQ number %d / %d\n", + irq_number, count); + return; + } + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_IRQ_MSI, irq_number); + break; + case IRQ_TYPE_MSIX: + count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no); + if (irq_number > count || count <= 0) { + dev_err(dev, "Invalid MSI-X IRQ number %d / %d\n", + irq_number, count); + return; + } + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_IRQ_MSIX, irq_number); + break; + default: + dev_err(dev, "Failed to raise IRQ, unknown type\n"); + break; + } +} + +static irqreturn_t pci_epf_test_doorbell_handler(int irq, void *data) +{ + struct pci_epf_test *epf_test = data; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + u32 status = le32_to_cpu(reg->status); + + status |= STATUS_DOORBELL_SUCCESS; + reg->status = cpu_to_le32(status); + pci_epf_test_raise_irq(epf_test, reg); + + return IRQ_HANDLED; +} + +static void pci_epf_test_doorbell_cleanup(struct pci_epf_test *epf_test) +{ + struct pci_epf_test_reg *reg = epf_test->reg[epf_test->test_reg_bar]; + struct pci_epf *epf = epf_test->epf; + + free_irq(epf->db_msg[0].virq, epf_test); + reg->doorbell_bar = cpu_to_le32(NO_BAR); + + pci_epf_free_doorbell(epf); +} + +static void pci_epf_test_enable_doorbell(struct pci_epf_test *epf_test, + struct pci_epf_test_reg *reg) +{ + u32 status = le32_to_cpu(reg->status); + struct pci_epf *epf = epf_test->epf; + struct pci_epc *epc = epf->epc; + struct msi_msg *msg; + enum pci_barno bar; + size_t offset; + int ret; + + ret = pci_epf_alloc_doorbell(epf, 1); + if (ret) + goto set_status_err; + + msg = &epf->db_msg[0].msg; + bar = pci_epc_get_next_free_bar(epf_test->epc_features, epf_test->test_reg_bar + 1); + if (bar < BAR_0) + goto err_doorbell_cleanup; + + ret = request_threaded_irq(epf->db_msg[0].virq, NULL, + pci_epf_test_doorbell_handler, IRQF_ONESHOT, + "pci-ep-test-doorbell", epf_test); + if (ret) { + dev_err(&epf->dev, + "Failed to request doorbell IRQ: %d\n", + epf->db_msg[0].virq); + goto err_doorbell_cleanup; + } + + reg->doorbell_data = cpu_to_le32(msg->data); + reg->doorbell_bar = cpu_to_le32(bar); + + msg = &epf->db_msg[0].msg; + ret = pci_epf_align_inbound_addr(epf, bar, ((u64)msg->address_hi << 32) | msg->address_lo, + &epf_test->db_bar.phys_addr, &offset); + + if (ret) + goto err_doorbell_cleanup; + + reg->doorbell_offset = cpu_to_le32(offset); + + epf_test->db_bar.barno = bar; + epf_test->db_bar.size = epf->bar[bar].size; + epf_test->db_bar.flags = epf->bar[bar].flags; + + ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, &epf_test->db_bar); + if (ret) + goto err_doorbell_cleanup; + + status |= STATUS_DOORBELL_ENABLE_SUCCESS; + reg->status = cpu_to_le32(status); + return; + +err_doorbell_cleanup: + pci_epf_test_doorbell_cleanup(epf_test); +set_status_err: + status |= STATUS_DOORBELL_ENABLE_FAIL; + reg->status = cpu_to_le32(status); +} + +static void pci_epf_test_disable_doorbell(struct pci_epf_test *epf_test, + struct pci_epf_test_reg *reg) +{ + enum pci_barno bar = le32_to_cpu(reg->doorbell_bar); + u32 status = le32_to_cpu(reg->status); + struct pci_epf *epf = epf_test->epf; + struct pci_epc *epc = epf->epc; + int ret; + + if (bar < BAR_0) + goto set_status_err; + + pci_epf_test_doorbell_cleanup(epf_test); + + /* + * The doorbell feature temporarily overrides the inbound translation + * to point to the address stored in epf_test->db_bar.phys_addr, i.e., + * it calls set_bar() twice without ever calling clear_bar(), as + * calling clear_bar() would clear the BAR's PCI address assigned by + * the host. Thus, when disabling the doorbell, restore the inbound + * translation to point to the memory allocated for the BAR. + */ + ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, &epf->bar[bar]); + if (ret) + goto set_status_err; + + status |= STATUS_DOORBELL_DISABLE_SUCCESS; + reg->status = cpu_to_le32(status); + + return; + +set_status_err: + status |= STATUS_DOORBELL_DISABLE_FAIL; + reg->status = cpu_to_le32(status); +} + +static void pci_epf_test_cmd_handler(struct work_struct *work) +{ + u32 command; + struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test, + cmd_handler.work); + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + u32 irq_type = le32_to_cpu(reg->irq_type); + + command = le32_to_cpu(READ_ONCE(reg->command)); + if (!command) + goto reset_handler; + + WRITE_ONCE(reg->command, 0); + WRITE_ONCE(reg->status, 0); + + if ((le32_to_cpu(READ_ONCE(reg->flags)) & FLAG_USE_DMA) && + !epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + goto reset_handler; + } + + if (irq_type > IRQ_TYPE_MSIX) { + dev_err(dev, "Failed to detect IRQ type\n"); + goto reset_handler; + } + + switch (command) { + case COMMAND_RAISE_INTX_IRQ: + case COMMAND_RAISE_MSI_IRQ: + case COMMAND_RAISE_MSIX_IRQ: + pci_epf_test_raise_irq(epf_test, reg); + break; + case COMMAND_WRITE: + pci_epf_test_write(epf_test, reg); + pci_epf_test_raise_irq(epf_test, reg); + break; + case COMMAND_READ: + pci_epf_test_read(epf_test, reg); + pci_epf_test_raise_irq(epf_test, reg); + break; + case COMMAND_COPY: + pci_epf_test_copy(epf_test, reg); + pci_epf_test_raise_irq(epf_test, reg); + break; + case COMMAND_ENABLE_DOORBELL: + pci_epf_test_enable_doorbell(epf_test, reg); + pci_epf_test_raise_irq(epf_test, reg); + break; + case COMMAND_DISABLE_DOORBELL: + pci_epf_test_disable_doorbell(epf_test, reg); + pci_epf_test_raise_irq(epf_test, reg); + break; + default: + dev_err(dev, "Invalid command 0x%x\n", command); + break; + } + +reset_handler: + queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, + msecs_to_jiffies(1)); +} + +static int pci_epf_test_set_bar(struct pci_epf *epf) +{ + int bar, ret; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { + if (!epf_test->reg[bar]) + continue; + + ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, + &epf->bar[bar]); + if (ret) { + pci_epf_free_space(epf, epf_test->reg[bar], bar, + PRIMARY_INTERFACE); + epf_test->reg[bar] = NULL; + dev_err(dev, "Failed to set BAR%d\n", bar); + if (bar == test_reg_bar) + return ret; + } + } + + return 0; +} + +static void pci_epf_test_clear_bar(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epc *epc = epf->epc; + int bar; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { + if (!epf_test->reg[bar]) + continue; + + pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, + &epf->bar[bar]); + } +} + +static void pci_epf_test_set_capabilities(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + struct pci_epc *epc = epf->epc; + u32 caps = 0; + + if (epc->ops->align_addr) + caps |= CAP_UNALIGNED_ACCESS; + + if (epf_test->epc_features->msi_capable) + caps |= CAP_MSI; + + if (epf_test->epc_features->msix_capable) + caps |= CAP_MSIX; + + if (epf_test->epc_features->intx_capable) + caps |= CAP_INTX; + + reg->caps = cpu_to_le32(caps); +} + +static int pci_epf_test_epc_init(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epf_header *header = epf->header; + const struct pci_epc_features *epc_features = epf_test->epc_features; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + bool linkup_notifier = false; + int ret; + + epf_test->dma_supported = true; + + ret = pci_epf_test_init_dma_chan(epf_test); + if (ret) + epf_test->dma_supported = false; + + if (epf->vfunc_no <= 1) { + ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header); + if (ret) { + dev_err(dev, "Configuration header write failed\n"); + return ret; + } + } + + pci_epf_test_set_capabilities(epf); + + ret = pci_epf_test_set_bar(epf); + if (ret) + return ret; + + if (epc_features->msi_capable) { + ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no, + epf->msi_interrupts); + if (ret) { + dev_err(dev, "MSI configuration failed\n"); + return ret; + } + } + + if (epc_features->msix_capable) { + ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no, + epf->msix_interrupts, + epf_test->test_reg_bar, + epf_test->msix_table_offset); + if (ret) { + dev_err(dev, "MSI-X configuration failed\n"); + return ret; + } + } + + linkup_notifier = epc_features->linkup_notifier; + if (!linkup_notifier) + queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); + + return 0; +} + +static void pci_epf_test_epc_deinit(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + + cancel_delayed_work_sync(&epf_test->cmd_handler); + pci_epf_test_clean_dma_chan(epf_test); + pci_epf_test_clear_bar(epf); +} + +static int pci_epf_test_link_up(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + + queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, + msecs_to_jiffies(1)); + + return 0; +} + +static int pci_epf_test_link_down(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + + cancel_delayed_work_sync(&epf_test->cmd_handler); + + return 0; +} + +static const struct pci_epc_event_ops pci_epf_test_event_ops = { + .epc_init = pci_epf_test_epc_init, + .epc_deinit = pci_epf_test_epc_deinit, + .link_up = pci_epf_test_link_up, + .link_down = pci_epf_test_link_down, +}; + +static int pci_epf_test_alloc_space(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct device *dev = &epf->dev; + size_t msix_table_size = 0; + size_t test_reg_bar_size; + size_t pba_size = 0; + void *base; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + enum pci_barno bar; + const struct pci_epc_features *epc_features = epf_test->epc_features; + size_t test_reg_size; + + test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128); + + if (epc_features->msix_capable) { + msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; + epf_test->msix_table_offset = test_reg_bar_size; + /* Align to QWORD or 8 Bytes */ + pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); + } + test_reg_size = test_reg_bar_size + msix_table_size + pba_size; + + base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, + epc_features, PRIMARY_INTERFACE); + if (!base) { + dev_err(dev, "Failed to allocated register space\n"); + return -ENOMEM; + } + epf_test->reg[test_reg_bar] = base; + + for (bar = BAR_0; bar < PCI_STD_NUM_BARS; bar++) { + bar = pci_epc_get_next_free_bar(epc_features, bar); + if (bar == NO_BAR) + break; + + if (bar == test_reg_bar) + continue; + + if (epc_features->bar[bar].type == BAR_FIXED) + test_reg_size = epc_features->bar[bar].fixed_size; + else + test_reg_size = bar_size[bar]; + + base = pci_epf_alloc_space(epf, test_reg_size, bar, + epc_features, PRIMARY_INTERFACE); + if (!base) + dev_err(dev, "Failed to allocate space for BAR%d\n", + bar); + epf_test->reg[bar] = base; + } + + return 0; +} + +static void pci_epf_test_free_space(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + int bar; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { + if (!epf_test->reg[bar]) + continue; + + pci_epf_free_space(epf, epf_test->reg[bar], bar, + PRIMARY_INTERFACE); + epf_test->reg[bar] = NULL; + } +} + +static int pci_epf_test_bind(struct pci_epf *epf) +{ + int ret; + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + const struct pci_epc_features *epc_features; + enum pci_barno test_reg_bar = BAR_0; + struct pci_epc *epc = epf->epc; + + if (WARN_ON_ONCE(!epc)) + return -EINVAL; + + epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); + if (!epc_features) { + dev_err(&epf->dev, "epc_features not implemented\n"); + return -EOPNOTSUPP; + } + + test_reg_bar = pci_epc_get_first_free_bar(epc_features); + if (test_reg_bar < 0) + return -EINVAL; + + epf_test->test_reg_bar = test_reg_bar; + epf_test->epc_features = epc_features; + + ret = pci_epf_test_alloc_space(epf); + if (ret) + return ret; + + return 0; +} + +static void pci_epf_test_unbind(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epc *epc = epf->epc; + + cancel_delayed_work_sync(&epf_test->cmd_handler); + if (epc->init_complete) { + pci_epf_test_clean_dma_chan(epf_test); + pci_epf_test_clear_bar(epf); + } + pci_epf_test_free_space(epf); +} + +static const struct pci_epf_device_id pci_epf_test_ids[] = { + { + .name = "pci_epf_test", + }, + {}, +}; + +static int pci_epf_test_probe(struct pci_epf *epf, + const struct pci_epf_device_id *id) +{ + struct pci_epf_test *epf_test; + struct device *dev = &epf->dev; + + epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); + if (!epf_test) + return -ENOMEM; + + epf->header = &test_header; + epf_test->epf = epf; + + INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); + + epf->event_ops = &pci_epf_test_event_ops; + + epf_set_drvdata(epf, epf_test); + return 0; +} + +static const struct pci_epf_ops ops = { + .unbind = pci_epf_test_unbind, + .bind = pci_epf_test_bind, +}; + +static struct pci_epf_driver test_driver = { + .driver.name = "pci_epf_test", + .probe = pci_epf_test_probe, + .id_table = pci_epf_test_ids, + .ops = &ops, + .owner = THIS_MODULE, +}; + +static int __init pci_epf_test_init(void) +{ + int ret; + + kpcitest_workqueue = alloc_workqueue("kpcitest", + WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); + if (!kpcitest_workqueue) { + pr_err("Failed to allocate the kpcitest work queue\n"); + return -ENOMEM; + } + + ret = pci_epf_register_driver(&test_driver); + if (ret) { + destroy_workqueue(kpcitest_workqueue); + pr_err("Failed to register pci epf test driver --> %d\n", ret); + return ret; + } + + return 0; +} +module_init(pci_epf_test_init); + +static void __exit pci_epf_test_exit(void) +{ + if (kpcitest_workqueue) + destroy_workqueue(kpcitest_workqueue); + pci_epf_unregister_driver(&test_driver); +} +module_exit(pci_epf_test_exit); + +MODULE_DESCRIPTION("PCI EPF TEST DRIVER"); +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); +MODULE_LICENSE("GPL v2"); |
