diff options
Diffstat (limited to 'drivers/pwm/pwm-stm32.c')
| -rw-r--r-- | drivers/pwm/pwm-stm32.c | 733 |
1 files changed, 486 insertions, 247 deletions
diff --git a/drivers/pwm/pwm-stm32.c b/drivers/pwm/pwm-stm32.c index 794ca5b02968..2594fb771b04 100644 --- a/drivers/pwm/pwm-stm32.c +++ b/drivers/pwm/pwm-stm32.c @@ -19,6 +19,7 @@ #define CCMR_CHANNEL_SHIFT 8 #define CCMR_CHANNEL_MASK 0xFF #define MAX_BREAKINPUT 2 +#define STM32_MAX_PWM_OUTPUT 4 struct stm32_breakinput { u32 index; @@ -27,7 +28,6 @@ struct stm32_breakinput { }; struct stm32_pwm { - struct pwm_chip chip; struct mutex lock; /* protect pwm config/enable */ struct clk *clk; struct regmap *regmap; @@ -40,7 +40,7 @@ struct stm32_pwm { static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) { - return container_of(chip, struct stm32_pwm, chip); + return pwmchip_get_drvdata(chip); } static u32 active_channels(struct stm32_pwm *dev) @@ -52,19 +52,382 @@ static u32 active_channels(struct stm32_pwm *dev) return ccer & TIM_CCER_CCXE; } -static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value) +struct stm32_pwm_waveform { + u32 ccer; + u32 psc; + u32 arr; + u32 ccr; +}; + +static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip, + struct pwm_device *pwm, + const struct pwm_waveform *wf, + void *_wfhw) +{ + struct stm32_pwm_waveform *wfhw = _wfhw; + struct stm32_pwm *priv = to_stm32_pwm_dev(chip); + unsigned int ch = pwm->hwpwm; + unsigned long rate; + u64 ccr, duty; + int ret; + + if (wf->period_length_ns == 0) { + *wfhw = (struct stm32_pwm_waveform){ + .ccer = 0, + }; + + return 0; + } + + ret = clk_enable(priv->clk); + if (ret) + return ret; + + wfhw->ccer = TIM_CCER_CCxE(ch + 1); + if (priv->have_complementary_output) + wfhw->ccer |= TIM_CCER_CCxNE(ch + 1); + + rate = clk_get_rate(priv->clk); + + if (active_channels(priv) & ~TIM_CCER_CCxE(ch + 1)) { + u64 arr; + + /* + * Other channels are already enabled, so the configured PSC and + * ARR must be used for this channel, too. + */ + ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); + if (ret) + goto out; + + ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); + if (ret) + goto out; + + arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, + (u64)NSEC_PER_SEC * (wfhw->psc + 1)); + if (arr <= wfhw->arr) { + /* + * requested period is smaller than the currently + * configured and unchangable period, report back the smallest + * possible period, i.e. the current state and return 1 + * to indicate the wrong rounding direction. + */ + ret = 1; + } + + } else { + /* + * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so + * the calculations here won't overflow. + * First we need to find the minimal value for prescaler such that + * + * period_ns * clkrate + * ------------------------------ < max_arr + 1 + * NSEC_PER_SEC * (prescaler + 1) + * + * This equation is equivalent to + * + * period_ns * clkrate + * ---------------------------- < prescaler + 1 + * NSEC_PER_SEC * (max_arr + 1) + * + * Using integer division and knowing that the right hand side is + * integer, this is further equivalent to + * + * (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler + */ + u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate, + (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1)); + u64 arr; + + wfhw->psc = min_t(u64, psc, MAX_TIM_PSC); + + arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, + (u64)NSEC_PER_SEC * (wfhw->psc + 1)); + if (!arr) { + /* + * requested period is too small, report back the smallest + * possible period, i.e. ARR = 0. The only valid CCR + * value is then zero, too. + */ + wfhw->arr = 0; + wfhw->ccr = 0; + ret = 1; + goto out; + } + + /* + * ARR is limited intentionally to values less than + * priv->max_arr to allow 100% duty cycle. + */ + wfhw->arr = min_t(u64, arr, priv->max_arr) - 1; + } + + duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate, + (u64)NSEC_PER_SEC * (wfhw->psc + 1)); + duty = min_t(u64, duty, wfhw->arr + 1); + + if (wf->duty_length_ns && wf->duty_offset_ns && + wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) { + wfhw->ccer |= TIM_CCER_CCxP(ch + 1); + if (priv->have_complementary_output) + wfhw->ccer |= TIM_CCER_CCxNP(ch + 1); + + ccr = wfhw->arr + 1 - duty; + } else { + ccr = duty; + } + + wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1); + +out: + dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n", + pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, + rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr); + + clk_disable(priv->clk); + + return ret; +} + +/* + * This should be moved to lib/math/div64.c. Currently there are some changes + * pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles. + */ +static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c) +{ + u64 res = mul_u64_u64_div_u64(a, b, c); + /* Those multiplications might overflow but it doesn't matter */ + u64 rem = a * b - c * res; + + if (rem) + res += 1; + + return res; +} + +static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip, + struct pwm_device *pwm, + const void *_wfhw, + struct pwm_waveform *wf) +{ + const struct stm32_pwm_waveform *wfhw = _wfhw; + struct stm32_pwm *priv = to_stm32_pwm_dev(chip); + unsigned long rate = clk_get_rate(priv->clk); + unsigned int ch = pwm->hwpwm; + + if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { + u64 ccr_ns; + + /* The result doesn't overflow for rate >= 15259 */ + wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1), + NSEC_PER_SEC, rate); + + ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr, + NSEC_PER_SEC, rate); + + if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) { + wf->duty_length_ns = + stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr), + NSEC_PER_SEC, rate); + + wf->duty_offset_ns = ccr_ns; + } else { + wf->duty_length_ns = ccr_ns; + wf->duty_offset_ns = 0; + } + } else { + *wf = (struct pwm_waveform){ + .period_length_ns = 0, + }; + } + + dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n", + pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate, + wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); + + return 0; +} + +static int stm32_pwm_read_waveform(struct pwm_chip *chip, + struct pwm_device *pwm, + void *_wfhw) { - switch (ch) { - case 0: - return regmap_write(dev->regmap, TIM_CCR1, value); - case 1: - return regmap_write(dev->regmap, TIM_CCR2, value); - case 2: - return regmap_write(dev->regmap, TIM_CCR3, value); - case 3: - return regmap_write(dev->regmap, TIM_CCR4, value); + struct stm32_pwm_waveform *wfhw = _wfhw; + struct stm32_pwm *priv = to_stm32_pwm_dev(chip); + unsigned int ch = pwm->hwpwm; + int ret; + + ret = clk_enable(priv->clk); + if (ret) + return ret; + + ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer); + if (ret) + goto out; + + if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { + ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); + if (ret) + goto out; + + ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); + if (ret) + goto out; + + if (wfhw->arr == U32_MAX) + wfhw->arr -= 1; + + ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr); + if (ret) + goto out; + + if (wfhw->ccr > wfhw->arr + 1) + wfhw->ccr = wfhw->arr + 1; } - return -EINVAL; + +out: + clk_disable(priv->clk); + + return ret; +} + +static int stm32_pwm_write_waveform(struct pwm_chip *chip, + struct pwm_device *pwm, + const void *_wfhw) +{ + const struct stm32_pwm_waveform *wfhw = _wfhw; + struct stm32_pwm *priv = to_stm32_pwm_dev(chip); + unsigned int ch = pwm->hwpwm; + int ret; + + ret = clk_enable(priv->clk); + if (ret) + return ret; + + if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { + u32 ccer, mask; + unsigned int shift; + u32 ccmr; + + ret = regmap_read(priv->regmap, TIM_CCER, &ccer); + if (ret) + goto out; + + /* If there are other channels enabled, don't update PSC and ARR */ + if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) { + u32 psc, arr; + + ret = regmap_read(priv->regmap, TIM_PSC, &psc); + if (ret) + goto out; + + if (psc != wfhw->psc) { + ret = -EBUSY; + goto out; + } + + ret = regmap_read(priv->regmap, TIM_ARR, &arr); + if (ret) + goto out; + + if (arr != wfhw->arr) { + ret = -EBUSY; + goto out; + } + } else { + ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc); + if (ret) + goto out; + + ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr); + if (ret) + goto out; + + ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE); + if (ret) + goto out; + + } + + /* set polarity */ + mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1); + ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer); + if (ret) + goto out; + + ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr); + if (ret) + goto out; + + /* Configure output mode */ + shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; + ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; + mask = CCMR_CHANNEL_MASK << shift; + + if (ch < 2) + ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); + else + ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); + if (ret) + goto out; + + ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE); + if (ret) + goto out; + + if (!(ccer & TIM_CCER_CCxE(ch + 1))) { + mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1); + + ret = clk_enable(priv->clk); + if (ret) + goto out; + + ccer = (ccer & ~mask) | (wfhw->ccer & mask); + regmap_write(priv->regmap, TIM_CCER, ccer); + + /* Make sure that registers are updated */ + regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); + + /* Enable controller */ + regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); + } + + } else { + /* disable channel */ + u32 mask, ccer; + + mask = TIM_CCER_CCxE(ch + 1); + if (priv->have_complementary_output) + mask |= TIM_CCER_CCxNE(ch + 1); + + ret = regmap_read(priv->regmap, TIM_CCER, &ccer); + if (ret) + goto out; + + if (ccer & mask) { + ccer = ccer & ~mask; + + ret = regmap_write(priv->regmap, TIM_CCER, ccer); + if (ret) + goto out; + + if (!(ccer & TIM_CCER_CCXE)) { + /* When all channels are disabled, we can disable the controller */ + ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); + if (ret) + goto out; + } + + clk_disable(priv->clk); + } + } + +out: + clk_disable(priv->clk); + + return ret; } #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) @@ -105,24 +468,25 @@ static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value) * - Period = t2 - t0 * - Duty cycle = t1 - t0 */ -static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm, +static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm, unsigned long tmo_ms, u32 *raw_prd, u32 *raw_dty) { - struct device *parent = priv->chip.dev->parent; + struct stm32_pwm *priv = to_stm32_pwm_dev(chip); + struct device *parent = pwmchip_parent(chip)->parent; enum stm32_timers_dmas dma_id; u32 ccen, ccr; int ret; /* Ensure registers have been updated, enable counter and capture */ - regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); - regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); + regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); + regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */ dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3; ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E; ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3; - regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen); + regmap_set_bits(priv->regmap, TIM_CCER, ccen); /* * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both @@ -160,8 +524,8 @@ static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm, } stop: - regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0); - regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); + regmap_clear_bits(priv->regmap, TIM_CCER, ccen); + regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); return ret; } @@ -185,7 +549,7 @@ static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, ret = clk_enable(priv->clk); if (ret) { - dev_err(priv->chip.dev, "failed to enable counter clock\n"); + dev_err(pwmchip_parent(chip), "failed to enable counter clock\n"); goto unlock; } @@ -207,6 +571,10 @@ static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, regmap_write(priv->regmap, TIM_ARR, priv->max_arr); regmap_write(priv->regmap, TIM_PSC, psc); + /* Reset input selector to its default input and disable slave mode */ + regmap_write(priv->regmap, TIM_TISEL, 0x0); + regmap_write(priv->regmap, TIM_SMCR, 0x0); + /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */ regmap_update_bits(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, @@ -219,7 +587,7 @@ static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ? TIM_CCER_CC2P : TIM_CCER_CC4P); - ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty); + ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); if (ret) goto stop; @@ -233,14 +601,14 @@ static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, scale = max_arr / min(max_arr, raw_prd); } else { - scale = priv->max_arr; /* bellow resolution, use max scale */ + scale = priv->max_arr; /* below resolution, use max scale */ } if (psc && scale > 1) { /* 2nd measure with new scale */ psc /= scale; regmap_write(priv->regmap, TIM_PSC, psc); - ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, + ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); if (ret) goto stop; @@ -268,7 +636,7 @@ static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) | FIELD_PREP(TIM_CCMR_IC2PSC, icpsc)); - ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty); + ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); if (ret) goto stop; @@ -319,172 +687,13 @@ unlock: return ret; } -static int stm32_pwm_config(struct stm32_pwm *priv, int ch, - int duty_ns, int period_ns) -{ - unsigned long long prd, div, dty; - unsigned int prescaler = 0; - u32 ccmr, mask, shift; - - /* Period and prescaler values depends on clock rate */ - div = (unsigned long long)clk_get_rate(priv->clk) * period_ns; - - do_div(div, NSEC_PER_SEC); - prd = div; - - while (div > priv->max_arr) { - prescaler++; - div = prd; - do_div(div, prescaler + 1); - } - - prd = div; - - if (prescaler > MAX_TIM_PSC) - return -EINVAL; - - /* - * All channels share the same prescaler and counter so when two - * channels are active at the same time we can't change them - */ - if (active_channels(priv) & ~(1 << ch * 4)) { - u32 psc, arr; - - regmap_read(priv->regmap, TIM_PSC, &psc); - regmap_read(priv->regmap, TIM_ARR, &arr); - - if ((psc != prescaler) || (arr != prd - 1)) - return -EBUSY; - } - - regmap_write(priv->regmap, TIM_PSC, prescaler); - regmap_write(priv->regmap, TIM_ARR, prd - 1); - regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE); - - /* Calculate the duty cycles */ - dty = prd * duty_ns; - do_div(dty, period_ns); - - write_ccrx(priv, ch, dty); - - /* Configure output mode */ - shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; - ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; - mask = CCMR_CHANNEL_MASK << shift; - - if (ch < 2) - regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); - else - regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); - - regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE); - - return 0; -} - -static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch, - enum pwm_polarity polarity) -{ - u32 mask; - - mask = TIM_CCER_CC1P << (ch * 4); - if (priv->have_complementary_output) - mask |= TIM_CCER_CC1NP << (ch * 4); - - regmap_update_bits(priv->regmap, TIM_CCER, mask, - polarity == PWM_POLARITY_NORMAL ? 0 : mask); - - return 0; -} - -static int stm32_pwm_enable(struct stm32_pwm *priv, int ch) -{ - u32 mask; - int ret; - - ret = clk_enable(priv->clk); - if (ret) - return ret; - - /* Enable channel */ - mask = TIM_CCER_CC1E << (ch * 4); - if (priv->have_complementary_output) - mask |= TIM_CCER_CC1NE << (ch * 4); - - regmap_update_bits(priv->regmap, TIM_CCER, mask, mask); - - /* Make sure that registers are updated */ - regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); - - /* Enable controller */ - regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); - - return 0; -} - -static void stm32_pwm_disable(struct stm32_pwm *priv, int ch) -{ - u32 mask; - - /* Disable channel */ - mask = TIM_CCER_CC1E << (ch * 4); - if (priv->have_complementary_output) - mask |= TIM_CCER_CC1NE << (ch * 4); - - regmap_update_bits(priv->regmap, TIM_CCER, mask, 0); - - /* When all channels are disabled, we can disable the controller */ - if (!active_channels(priv)) - regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); - - clk_disable(priv->clk); -} - -static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, - const struct pwm_state *state) -{ - bool enabled; - struct stm32_pwm *priv = to_stm32_pwm_dev(chip); - int ret; - - enabled = pwm->state.enabled; - - if (enabled && !state->enabled) { - stm32_pwm_disable(priv, pwm->hwpwm); - return 0; - } - - if (state->polarity != pwm->state.polarity) - stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity); - - ret = stm32_pwm_config(priv, pwm->hwpwm, - state->duty_cycle, state->period); - if (ret) - return ret; - - if (!enabled && state->enabled) - ret = stm32_pwm_enable(priv, pwm->hwpwm); - - return ret; -} - -static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, - const struct pwm_state *state) -{ - struct stm32_pwm *priv = to_stm32_pwm_dev(chip); - int ret; - - /* protect common prescaler for all active channels */ - mutex_lock(&priv->lock); - ret = stm32_pwm_apply(chip, pwm, state); - mutex_unlock(&priv->lock); - - return ret; -} - static const struct pwm_ops stm32pwm_ops = { - .owner = THIS_MODULE, - .apply = stm32_pwm_apply_locked, + .sizeof_wfhw = sizeof(struct stm32_pwm_waveform), + .round_waveform_tohw = stm32_pwm_round_waveform_tohw, + .round_waveform_fromhw = stm32_pwm_round_waveform_fromhw, + .read_waveform = stm32_pwm_read_waveform, + .write_waveform = stm32_pwm_write_waveform, + .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL, }; @@ -560,49 +769,64 @@ static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv, return stm32_pwm_apply_breakinputs(priv); } -static void stm32_pwm_detect_complementary(struct stm32_pwm *priv) +static void stm32_pwm_detect_complementary(struct stm32_pwm *priv, struct stm32_timers *ddata) { u32 ccer; + if (ddata->ipidr) { + u32 val; + + /* Simply read from HWCFGR the number of complementary outputs (MP25). */ + regmap_read(priv->regmap, TIM_HWCFGR1, &val); + priv->have_complementary_output = !!FIELD_GET(TIM_HWCFGR1_NB_OF_DT, val); + return; + } + /* * If complementary bit doesn't exist writing 1 will have no * effect so we can detect it. */ - regmap_update_bits(priv->regmap, - TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE); + regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); regmap_read(priv->regmap, TIM_CCER, &ccer); - regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0); + regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); priv->have_complementary_output = (ccer != 0); } -static int stm32_pwm_detect_channels(struct stm32_pwm *priv) +static unsigned int stm32_pwm_detect_channels(struct stm32_timers *ddata, + unsigned int *num_enabled) { - u32 ccer; - int npwm = 0; + struct regmap *regmap = ddata->regmap; + u32 ccer, ccer_backup; - /* - * If channels enable bits don't exist writing 1 will have no - * effect so we can detect and count them. - */ - regmap_update_bits(priv->regmap, - TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE); - regmap_read(priv->regmap, TIM_CCER, &ccer); - regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0); + regmap_read(regmap, TIM_CCER, &ccer_backup); + *num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE); - if (ccer & TIM_CCER_CC1E) - npwm++; + if (ddata->ipidr) { + u32 hwcfgr; + unsigned int npwm; - if (ccer & TIM_CCER_CC2E) - npwm++; + /* Deduce from HWCFGR the number of outputs (MP25). */ + regmap_read(regmap, TIM_HWCFGR1, &hwcfgr); - if (ccer & TIM_CCER_CC3E) - npwm++; + /* + * Timers may have more capture/compare channels than the + * actual number of PWM channel outputs (e.g. TIM_CH[1..4]). + */ + npwm = FIELD_GET(TIM_HWCFGR1_NB_OF_CC, hwcfgr); - if (ccer & TIM_CCER_CC4E) - npwm++; + return npwm < STM32_MAX_PWM_OUTPUT ? npwm : STM32_MAX_PWM_OUTPUT; + } - return npwm; + /* + * If channels enable bits don't exist writing 1 will have no + * effect so we can detect and count them. + */ + regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE); + regmap_read(regmap, TIM_CCER, &ccer); + regmap_write(regmap, TIM_CCER, ccer_backup); + + return hweight32(ccer & TIM_CCER_CCXE); } static int stm32_pwm_probe(struct platform_device *pdev) @@ -610,12 +834,18 @@ static int stm32_pwm_probe(struct platform_device *pdev) struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); + struct pwm_chip *chip; struct stm32_pwm *priv; + unsigned int npwm, num_enabled; + unsigned int i; int ret; - priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); - if (!priv) - return -ENOMEM; + npwm = stm32_pwm_detect_channels(ddata, &num_enabled); + + chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv)); + if (IS_ERR(chip)) + return PTR_ERR(chip); + priv = to_stm32_pwm_dev(chip); mutex_init(&priv->lock); priv->regmap = ddata->regmap; @@ -623,54 +853,62 @@ static int stm32_pwm_probe(struct platform_device *pdev) priv->max_arr = ddata->max_arr; if (!priv->regmap || !priv->clk) - return -EINVAL; + return dev_err_probe(dev, -EINVAL, "Failed to get %s\n", + priv->regmap ? "clk" : "regmap"); ret = stm32_pwm_probe_breakinputs(priv, np); if (ret) - return ret; + return dev_err_probe(dev, ret, + "Failed to configure breakinputs\n"); - stm32_pwm_detect_complementary(priv); + stm32_pwm_detect_complementary(priv, ddata); - priv->chip.dev = dev; - priv->chip.ops = &stm32pwm_ops; - priv->chip.npwm = stm32_pwm_detect_channels(priv); - - ret = pwmchip_add(&priv->chip); - if (ret < 0) - return ret; + ret = devm_clk_rate_exclusive_get(dev, priv->clk); + if (ret) + return dev_err_probe(dev, ret, "Failed to lock clock\n"); - platform_set_drvdata(pdev, priv); + /* + * With the clk running with not more than 1 GHz the calculations in + * .apply() won't overflow. + */ + if (clk_get_rate(priv->clk) > 1000000000) + return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n", + clk_get_rate(priv->clk)); - return 0; -} + chip->ops = &stm32pwm_ops; -static int stm32_pwm_remove(struct platform_device *pdev) -{ - struct stm32_pwm *priv = platform_get_drvdata(pdev); - unsigned int i; + /* Initialize clock refcount to number of enabled PWM channels. */ + for (i = 0; i < num_enabled; i++) { + ret = clk_enable(priv->clk); + if (ret) + return ret; + } - for (i = 0; i < priv->chip.npwm; i++) - pwm_disable(&priv->chip.pwms[i]); + ret = devm_pwmchip_add(dev, chip); + if (ret < 0) + return dev_err_probe(dev, ret, + "Failed to register pwmchip\n"); - pwmchip_remove(&priv->chip); + platform_set_drvdata(pdev, chip); return 0; } -static int __maybe_unused stm32_pwm_suspend(struct device *dev) +static int stm32_pwm_suspend(struct device *dev) { - struct stm32_pwm *priv = dev_get_drvdata(dev); + struct pwm_chip *chip = dev_get_drvdata(dev); + struct stm32_pwm *priv = to_stm32_pwm_dev(chip); unsigned int i; u32 ccer, mask; /* Look for active channels */ ccer = active_channels(priv); - for (i = 0; i < priv->chip.npwm; i++) { - mask = TIM_CCER_CC1E << (i * 4); + for (i = 0; i < chip->npwm; i++) { + mask = TIM_CCER_CCxE(i + 1); if (ccer & mask) { dev_err(dev, "PWM %u still in use by consumer %s\n", - i, priv->chip.pwms[i].label); + i, chip->pwms[i].label); return -EBUSY; } } @@ -678,9 +916,10 @@ static int __maybe_unused stm32_pwm_suspend(struct device *dev) return pinctrl_pm_select_sleep_state(dev); } -static int __maybe_unused stm32_pwm_resume(struct device *dev) +static int stm32_pwm_resume(struct device *dev) { - struct stm32_pwm *priv = dev_get_drvdata(dev); + struct pwm_chip *chip = dev_get_drvdata(dev); + struct stm32_pwm *priv = to_stm32_pwm_dev(chip); int ret; ret = pinctrl_pm_select_default_state(dev); @@ -691,21 +930,21 @@ static int __maybe_unused stm32_pwm_resume(struct device *dev) return stm32_pwm_apply_breakinputs(priv); } -static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume); +static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume); static const struct of_device_id stm32_pwm_of_match[] = { { .compatible = "st,stm32-pwm", }, + { .compatible = "st,stm32mp25-pwm", }, { /* end node */ }, }; MODULE_DEVICE_TABLE(of, stm32_pwm_of_match); static struct platform_driver stm32_pwm_driver = { .probe = stm32_pwm_probe, - .remove = stm32_pwm_remove, .driver = { .name = "stm32-pwm", .of_match_table = stm32_pwm_of_match, - .pm = &stm32_pwm_pm_ops, + .pm = pm_ptr(&stm32_pwm_pm_ops), }, }; module_platform_driver(stm32_pwm_driver); |
