diff options
Diffstat (limited to 'drivers/regulator/core.c')
| -rw-r--r-- | drivers/regulator/core.c | 6164 |
1 files changed, 4426 insertions, 1738 deletions
diff --git a/drivers/regulator/core.c b/drivers/regulator/core.c index 288c75abc190..f4987f54e01b 100644 --- a/drivers/regulator/core.c +++ b/drivers/regulator/core.c @@ -1,17 +1,11 @@ -/* - * core.c -- Voltage/Current Regulator framework. - * - * Copyright 2007, 2008 Wolfson Microelectronics PLC. - * Copyright 2008 SlimLogic Ltd. - * - * Author: Liam Girdwood <lrg@slimlogic.co.uk> - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - * - */ +// SPDX-License-Identifier: GPL-2.0-or-later +// +// core.c -- Voltage/Current Regulator framework. +// +// Copyright 2007, 2008 Wolfson Microelectronics PLC. +// Copyright 2008 SlimLogic Ltd. +// +// Author: Liam Girdwood <lrg@slimlogic.co.uk> #include <linux/kernel.h> #include <linux/init.h> @@ -23,11 +17,13 @@ #include <linux/mutex.h> #include <linux/suspend.h> #include <linux/delay.h> -#include <linux/gpio.h> +#include <linux/gpio/consumer.h> #include <linux/of.h> +#include <linux/reboot.h> #include <linux/regmap.h> #include <linux/regulator/of_regulator.h> #include <linux/regulator/consumer.h> +#include <linux/regulator/coupler.h> #include <linux/regulator/driver.h> #include <linux/regulator/machine.h> #include <linux/module.h> @@ -36,24 +32,17 @@ #include <trace/events/regulator.h> #include "dummy.h" +#include "internal.h" +#include "regnl.h" -#define rdev_crit(rdev, fmt, ...) \ - pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) -#define rdev_err(rdev, fmt, ...) \ - pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) -#define rdev_warn(rdev, fmt, ...) \ - pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) -#define rdev_info(rdev, fmt, ...) \ - pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) -#define rdev_dbg(rdev, fmt, ...) \ - pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) - +static DEFINE_WW_CLASS(regulator_ww_class); +static DEFINE_MUTEX(regulator_nesting_mutex); static DEFINE_MUTEX(regulator_list_mutex); -static LIST_HEAD(regulator_list); static LIST_HEAD(regulator_map_list); static LIST_HEAD(regulator_ena_gpio_list); +static LIST_HEAD(regulator_supply_alias_list); +static LIST_HEAD(regulator_coupler_list); static bool has_full_constraints; -static bool board_wants_dummy_regulator; static struct dentry *debugfs_root; @@ -76,45 +65,55 @@ struct regulator_map { */ struct regulator_enable_gpio { struct list_head list; - int gpio; + struct gpio_desc *gpiod; u32 enable_count; /* a number of enabled shared GPIO */ u32 request_count; /* a number of requested shared GPIO */ - unsigned int ena_gpio_invert:1; }; /* - * struct regulator + * struct regulator_supply_alias * - * One for each consumer device. + * Used to map lookups for a supply onto an alternative device. */ -struct regulator { - struct device *dev; +struct regulator_supply_alias { struct list_head list; - unsigned int always_on:1; - unsigned int bypass:1; - int uA_load; - int min_uV; - int max_uV; - char *supply_name; - struct device_attribute dev_attr; + struct device *src_dev; + const char *src_supply; + struct device *alias_dev; + const char *alias_supply; +}; + +/* + * Work item used to forward regulator events. + * + * @work: workqueue entry + * @rdev: regulator device to notify (consumer receiving the forwarded event) + * @event: event code to be forwarded + */ +struct regulator_event_work { + struct work_struct work; struct regulator_dev *rdev; - struct dentry *debugfs; + unsigned long event; }; static int _regulator_is_enabled(struct regulator_dev *rdev); -static int _regulator_disable(struct regulator_dev *rdev); -static int _regulator_get_voltage(struct regulator_dev *rdev); +static int _regulator_disable(struct regulator *regulator); +static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); static int _regulator_get_current_limit(struct regulator_dev *rdev); static unsigned int _regulator_get_mode(struct regulator_dev *rdev); -static void _notifier_call_chain(struct regulator_dev *rdev, +static int _notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data); static int _regulator_do_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV); +static int regulator_balance_voltage(struct regulator_dev *rdev, + suspend_state_t state); static struct regulator *create_regulator(struct regulator_dev *rdev, struct device *dev, const char *supply_name); +static void destroy_regulator(struct regulator *regulator); +static void _regulator_put(struct regulator *regulator); -static const char *rdev_get_name(struct regulator_dev *rdev) +const char *rdev_get_name(struct regulator_dev *rdev) { if (rdev->constraints && rdev->constraints->name) return rdev->constraints->name; @@ -123,57 +122,326 @@ static const char *rdev_get_name(struct regulator_dev *rdev) else return ""; } +EXPORT_SYMBOL_GPL(rdev_get_name); + +static bool have_full_constraints(void) +{ + return has_full_constraints || of_have_populated_dt(); +} + +static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) +{ + if (!rdev->constraints) { + rdev_err(rdev, "no constraints\n"); + return false; + } + + if (rdev->constraints->valid_ops_mask & ops) + return true; + + return false; +} /** - * of_get_regulator - get a regulator device node based on supply name - * @dev: Device pointer for the consumer (of regulator) device - * @supply: regulator supply name + * regulator_lock_nested - lock a single regulator + * @rdev: regulator source + * @ww_ctx: w/w mutex acquire context * - * Extract the regulator device node corresponding to the supply name. - * returns the device node corresponding to the regulator if found, else - * returns NULL. + * This function can be called many times by one task on + * a single regulator and its mutex will be locked only + * once. If a task, which is calling this function is other + * than the one, which initially locked the mutex, it will + * wait on mutex. + * + * Return: 0 on success or a negative error number on failure. */ -static struct device_node *of_get_regulator(struct device *dev, const char *supply) +static inline int regulator_lock_nested(struct regulator_dev *rdev, + struct ww_acquire_ctx *ww_ctx) { - struct device_node *regnode = NULL; - char prop_name[32]; /* 32 is max size of property name */ + bool lock = false; + int ret = 0; - dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); + mutex_lock(®ulator_nesting_mutex); - snprintf(prop_name, 32, "%s-supply", supply); - regnode = of_parse_phandle(dev->of_node, prop_name, 0); + if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { + if (rdev->mutex_owner == current) + rdev->ref_cnt++; + else + lock = true; - if (!regnode) { - dev_dbg(dev, "Looking up %s property in node %s failed", - prop_name, dev->of_node->full_name); - return NULL; + if (lock) { + mutex_unlock(®ulator_nesting_mutex); + ret = ww_mutex_lock(&rdev->mutex, ww_ctx); + mutex_lock(®ulator_nesting_mutex); + } + } else { + lock = true; } - return regnode; + + if (lock && ret != -EDEADLK) { + rdev->ref_cnt++; + rdev->mutex_owner = current; + } + + mutex_unlock(®ulator_nesting_mutex); + + return ret; } -static int _regulator_can_change_status(struct regulator_dev *rdev) +/** + * regulator_lock - lock a single regulator + * @rdev: regulator source + * + * This function can be called many times by one task on + * a single regulator and its mutex will be locked only + * once. If a task, which is calling this function is other + * than the one, which initially locked the mutex, it will + * wait on mutex. + */ +static void regulator_lock(struct regulator_dev *rdev) { - if (!rdev->constraints) - return 0; + regulator_lock_nested(rdev, NULL); +} - if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) - return 1; - else - return 0; +/** + * regulator_unlock - unlock a single regulator + * @rdev: regulator_source + * + * This function unlocks the mutex when the + * reference counter reaches 0. + */ +static void regulator_unlock(struct regulator_dev *rdev) +{ + mutex_lock(®ulator_nesting_mutex); + + if (--rdev->ref_cnt == 0) { + rdev->mutex_owner = NULL; + ww_mutex_unlock(&rdev->mutex); + } + + WARN_ON_ONCE(rdev->ref_cnt < 0); + + mutex_unlock(®ulator_nesting_mutex); +} + +/** + * regulator_lock_two - lock two regulators + * @rdev1: first regulator + * @rdev2: second regulator + * @ww_ctx: w/w mutex acquire context + * + * Locks both rdevs using the regulator_ww_class. + */ +static void regulator_lock_two(struct regulator_dev *rdev1, + struct regulator_dev *rdev2, + struct ww_acquire_ctx *ww_ctx) +{ + struct regulator_dev *held, *contended; + int ret; + + ww_acquire_init(ww_ctx, ®ulator_ww_class); + + /* Try to just grab both of them */ + ret = regulator_lock_nested(rdev1, ww_ctx); + WARN_ON(ret); + ret = regulator_lock_nested(rdev2, ww_ctx); + if (ret != -EDEADLOCK) { + WARN_ON(ret); + goto exit; + } + + held = rdev1; + contended = rdev2; + while (true) { + regulator_unlock(held); + + ww_mutex_lock_slow(&contended->mutex, ww_ctx); + contended->ref_cnt++; + contended->mutex_owner = current; + swap(held, contended); + ret = regulator_lock_nested(contended, ww_ctx); + + if (ret != -EDEADLOCK) { + WARN_ON(ret); + break; + } + } + +exit: + ww_acquire_done(ww_ctx); +} + +/** + * regulator_unlock_two - unlock two regulators + * @rdev1: first regulator + * @rdev2: second regulator + * @ww_ctx: w/w mutex acquire context + * + * The inverse of regulator_lock_two(). + */ + +static void regulator_unlock_two(struct regulator_dev *rdev1, + struct regulator_dev *rdev2, + struct ww_acquire_ctx *ww_ctx) +{ + regulator_unlock(rdev2); + regulator_unlock(rdev1); + ww_acquire_fini(ww_ctx); +} + +static bool regulator_supply_is_couple(struct regulator_dev *rdev) +{ + struct regulator_dev *c_rdev; + int i; + + for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { + c_rdev = rdev->coupling_desc.coupled_rdevs[i]; + + if (rdev->supply->rdev == c_rdev) + return true; + } + + return false; +} + +static void regulator_unlock_recursive(struct regulator_dev *rdev, + unsigned int n_coupled) +{ + struct regulator_dev *c_rdev, *supply_rdev; + int i, supply_n_coupled; + + for (i = n_coupled; i > 0; i--) { + c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; + + if (!c_rdev) + continue; + + if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { + supply_rdev = c_rdev->supply->rdev; + supply_n_coupled = supply_rdev->coupling_desc.n_coupled; + + regulator_unlock_recursive(supply_rdev, + supply_n_coupled); + } + + regulator_unlock(c_rdev); + } +} + +static int regulator_lock_recursive(struct regulator_dev *rdev, + struct regulator_dev **new_contended_rdev, + struct regulator_dev **old_contended_rdev, + struct ww_acquire_ctx *ww_ctx) +{ + struct regulator_dev *c_rdev; + int i, err; + + for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { + c_rdev = rdev->coupling_desc.coupled_rdevs[i]; + + if (!c_rdev) + continue; + + if (c_rdev != *old_contended_rdev) { + err = regulator_lock_nested(c_rdev, ww_ctx); + if (err) { + if (err == -EDEADLK) { + *new_contended_rdev = c_rdev; + goto err_unlock; + } + + /* shouldn't happen */ + WARN_ON_ONCE(err != -EALREADY); + } + } else { + *old_contended_rdev = NULL; + } + + if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { + err = regulator_lock_recursive(c_rdev->supply->rdev, + new_contended_rdev, + old_contended_rdev, + ww_ctx); + if (err) { + regulator_unlock(c_rdev); + goto err_unlock; + } + } + } + + return 0; + +err_unlock: + regulator_unlock_recursive(rdev, i); + + return err; +} + +/** + * regulator_unlock_dependent - unlock regulator's suppliers and coupled + * regulators + * @rdev: regulator source + * @ww_ctx: w/w mutex acquire context + * + * Unlock all regulators related with rdev by coupling or supplying. + */ +static void regulator_unlock_dependent(struct regulator_dev *rdev, + struct ww_acquire_ctx *ww_ctx) +{ + regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); + ww_acquire_fini(ww_ctx); +} + +/** + * regulator_lock_dependent - lock regulator's suppliers and coupled regulators + * @rdev: regulator source + * @ww_ctx: w/w mutex acquire context + * + * This function as a wrapper on regulator_lock_recursive(), which locks + * all regulators related with rdev by coupling or supplying. + */ +static void regulator_lock_dependent(struct regulator_dev *rdev, + struct ww_acquire_ctx *ww_ctx) +{ + struct regulator_dev *new_contended_rdev = NULL; + struct regulator_dev *old_contended_rdev = NULL; + int err; + + mutex_lock(®ulator_list_mutex); + + ww_acquire_init(ww_ctx, ®ulator_ww_class); + + do { + if (new_contended_rdev) { + ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); + old_contended_rdev = new_contended_rdev; + old_contended_rdev->ref_cnt++; + old_contended_rdev->mutex_owner = current; + } + + err = regulator_lock_recursive(rdev, + &new_contended_rdev, + &old_contended_rdev, + ww_ctx); + + if (old_contended_rdev) + regulator_unlock(old_contended_rdev); + + } while (err == -EDEADLK); + + ww_acquire_done(ww_ctx); + + mutex_unlock(®ulator_list_mutex); } /* Platform voltage constraint check */ -static int regulator_check_voltage(struct regulator_dev *rdev, - int *min_uV, int *max_uV) +int regulator_check_voltage(struct regulator_dev *rdev, + int *min_uV, int *max_uV) { BUG_ON(*min_uV > *max_uV); - if (!rdev->constraints) { - rdev_err(rdev, "no constraints\n"); - return -ENODEV; - } - if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { - rdev_err(rdev, "operation not allowed\n"); + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { + rdev_err(rdev, "voltage operation not allowed\n"); return -EPERM; } @@ -191,26 +459,35 @@ static int regulator_check_voltage(struct regulator_dev *rdev, return 0; } +/* return 0 if the state is valid */ +static int regulator_check_states(suspend_state_t state) +{ + return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); +} + /* Make sure we select a voltage that suits the needs of all * regulator consumers */ -static int regulator_check_consumers(struct regulator_dev *rdev, - int *min_uV, int *max_uV) +int regulator_check_consumers(struct regulator_dev *rdev, + int *min_uV, int *max_uV, + suspend_state_t state) { struct regulator *regulator; + struct regulator_voltage *voltage; list_for_each_entry(regulator, &rdev->consumer_list, list) { + voltage = ®ulator->voltage[state]; /* * Assume consumers that didn't say anything are OK * with anything in the constraint range. */ - if (!regulator->min_uV && !regulator->max_uV) + if (!voltage->min_uV && !voltage->max_uV) continue; - if (*max_uV > regulator->max_uV) - *max_uV = regulator->max_uV; - if (*min_uV < regulator->min_uV) - *min_uV = regulator->min_uV; + if (*max_uV > voltage->max_uV) + *max_uV = voltage->max_uV; + if (*min_uV < voltage->min_uV) + *min_uV = voltage->min_uV; } if (*min_uV > *max_uV) { @@ -228,16 +505,13 @@ static int regulator_check_current_limit(struct regulator_dev *rdev, { BUG_ON(*min_uA > *max_uA); - if (!rdev->constraints) { - rdev_err(rdev, "no constraints\n"); - return -ENODEV; - } - if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { - rdev_err(rdev, "operation not allowed\n"); + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { + rdev_err(rdev, "current operation not allowed\n"); return -EPERM; } - if (*max_uA > rdev->constraints->max_uA) + if (*max_uA > rdev->constraints->max_uA && + rdev->constraints->max_uA) *max_uA = rdev->constraints->max_uA; if (*min_uA < rdev->constraints->min_uA) *min_uA = rdev->constraints->min_uA; @@ -252,7 +526,8 @@ static int regulator_check_current_limit(struct regulator_dev *rdev, } /* operating mode constraint check */ -static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) +static int regulator_mode_constrain(struct regulator_dev *rdev, + unsigned int *mode) { switch (*mode) { case REGULATOR_MODE_FAST: @@ -265,18 +540,15 @@ static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) return -EINVAL; } - if (!rdev->constraints) { - rdev_err(rdev, "no constraints\n"); - return -ENODEV; - } - if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { - rdev_err(rdev, "operation not allowed\n"); + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { + rdev_err(rdev, "mode operation not allowed\n"); return -EPERM; } /* The modes are bitmasks, the most power hungry modes having * the lowest values. If the requested mode isn't supported - * try higher modes. */ + * try higher modes. + */ while (*mode) { if (rdev->constraints->valid_modes_mask & *mode) return 0; @@ -286,74 +558,110 @@ static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) return -EINVAL; } -/* dynamic regulator mode switching constraint check */ -static int regulator_check_drms(struct regulator_dev *rdev) +static inline struct regulator_state * +regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) { - if (!rdev->constraints) { - rdev_err(rdev, "no constraints\n"); - return -ENODEV; + if (rdev->constraints == NULL) + return NULL; + + switch (state) { + case PM_SUSPEND_STANDBY: + return &rdev->constraints->state_standby; + case PM_SUSPEND_MEM: + return &rdev->constraints->state_mem; + case PM_SUSPEND_MAX: + return &rdev->constraints->state_disk; + default: + return NULL; } - if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { - rdev_err(rdev, "operation not allowed\n"); - return -EPERM; +} + +static const struct regulator_state * +regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) +{ + const struct regulator_state *rstate; + + rstate = regulator_get_suspend_state(rdev, state); + if (rstate == NULL) + return NULL; + + /* If we have no suspend mode configuration don't set anything; + * only warn if the driver implements set_suspend_voltage or + * set_suspend_mode callback. + */ + if (rstate->enabled != ENABLE_IN_SUSPEND && + rstate->enabled != DISABLE_IN_SUSPEND) { + if (rdev->desc->ops->set_suspend_voltage || + rdev->desc->ops->set_suspend_mode) + rdev_warn(rdev, "No configuration\n"); + return NULL; } - return 0; + + return rstate; } -static ssize_t regulator_uV_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t microvolts_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); - ssize_t ret; + int uV; - mutex_lock(&rdev->mutex); - ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); - mutex_unlock(&rdev->mutex); + regulator_lock(rdev); + uV = regulator_get_voltage_rdev(rdev); + regulator_unlock(rdev); - return ret; + if (uV < 0) + return uV; + return sprintf(buf, "%d\n", uV); } -static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); +static DEVICE_ATTR_RO(microvolts); -static ssize_t regulator_uA_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t microamps_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); } -static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); +static DEVICE_ATTR_RO(microamps); -static ssize_t regulator_name_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t name_show(struct device *dev, struct device_attribute *attr, + char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%s\n", rdev_get_name(rdev)); } +static DEVICE_ATTR_RO(name); -static ssize_t regulator_print_opmode(char *buf, int mode) +static const char *regulator_opmode_to_str(int mode) { switch (mode) { case REGULATOR_MODE_FAST: - return sprintf(buf, "fast\n"); + return "fast"; case REGULATOR_MODE_NORMAL: - return sprintf(buf, "normal\n"); + return "normal"; case REGULATOR_MODE_IDLE: - return sprintf(buf, "idle\n"); + return "idle"; case REGULATOR_MODE_STANDBY: - return sprintf(buf, "standby\n"); + return "standby"; } - return sprintf(buf, "unknown\n"); + return "unknown"; } -static ssize_t regulator_opmode_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t regulator_print_opmode(char *buf, int mode) +{ + return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); +} + +static ssize_t opmode_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, _regulator_get_mode(rdev)); } -static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); +static DEVICE_ATTR_RO(opmode); static ssize_t regulator_print_state(char *buf, int state) { @@ -365,22 +673,22 @@ static ssize_t regulator_print_state(char *buf, int state) return sprintf(buf, "unknown\n"); } -static ssize_t regulator_state_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t state_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); ssize_t ret; - mutex_lock(&rdev->mutex); + regulator_lock(rdev); ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); - mutex_unlock(&rdev->mutex); + regulator_unlock(rdev); return ret; } -static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); +static DEVICE_ATTR_RO(state); -static ssize_t regulator_status_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t status_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); int status; @@ -424,10 +732,10 @@ static ssize_t regulator_status_show(struct device *dev, return sprintf(buf, "%s\n", label); } -static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); +static DEVICE_ATTR_RO(status); -static ssize_t regulator_min_uA_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t min_microamps_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); @@ -436,10 +744,10 @@ static ssize_t regulator_min_uA_show(struct device *dev, return sprintf(buf, "%d\n", rdev->constraints->min_uA); } -static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); +static DEVICE_ATTR_RO(min_microamps); -static ssize_t regulator_max_uA_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t max_microamps_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); @@ -448,10 +756,10 @@ static ssize_t regulator_max_uA_show(struct device *dev, return sprintf(buf, "%d\n", rdev->constraints->max_uA); } -static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); +static DEVICE_ATTR_RO(max_microamps); -static ssize_t regulator_min_uV_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t min_microvolts_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); @@ -460,10 +768,10 @@ static ssize_t regulator_min_uV_show(struct device *dev, return sprintf(buf, "%d\n", rdev->constraints->min_uV); } -static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); +static DEVICE_ATTR_RO(min_microvolts); -static ssize_t regulator_max_uV_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t max_microvolts_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); @@ -472,32 +780,35 @@ static ssize_t regulator_max_uV_show(struct device *dev, return sprintf(buf, "%d\n", rdev->constraints->max_uV); } -static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); +static DEVICE_ATTR_RO(max_microvolts); -static ssize_t regulator_total_uA_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t requested_microamps_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); struct regulator *regulator; int uA = 0; - mutex_lock(&rdev->mutex); - list_for_each_entry(regulator, &rdev->consumer_list, list) - uA += regulator->uA_load; - mutex_unlock(&rdev->mutex); + regulator_lock(rdev); + list_for_each_entry(regulator, &rdev->consumer_list, list) { + if (regulator->enable_count) + uA += regulator->uA_load; + } + regulator_unlock(rdev); return sprintf(buf, "%d\n", uA); } -static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); +static DEVICE_ATTR_RO(requested_microamps); -static ssize_t regulator_num_users_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, + char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->use_count); } +static DEVICE_ATTR_RO(num_users); -static ssize_t regulator_type_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t type_show(struct device *dev, struct device_attribute *attr, + char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); @@ -509,105 +820,97 @@ static ssize_t regulator_type_show(struct device *dev, } return sprintf(buf, "unknown\n"); } +static DEVICE_ATTR_RO(type); -static ssize_t regulator_suspend_mem_uV_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_mem_microvolts_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); } -static DEVICE_ATTR(suspend_mem_microvolts, 0444, - regulator_suspend_mem_uV_show, NULL); +static DEVICE_ATTR_RO(suspend_mem_microvolts); -static ssize_t regulator_suspend_disk_uV_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_disk_microvolts_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); } -static DEVICE_ATTR(suspend_disk_microvolts, 0444, - regulator_suspend_disk_uV_show, NULL); +static DEVICE_ATTR_RO(suspend_disk_microvolts); -static ssize_t regulator_suspend_standby_uV_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_standby_microvolts_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); } -static DEVICE_ATTR(suspend_standby_microvolts, 0444, - regulator_suspend_standby_uV_show, NULL); +static DEVICE_ATTR_RO(suspend_standby_microvolts); -static ssize_t regulator_suspend_mem_mode_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_mem_mode_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_mem.mode); } -static DEVICE_ATTR(suspend_mem_mode, 0444, - regulator_suspend_mem_mode_show, NULL); +static DEVICE_ATTR_RO(suspend_mem_mode); -static ssize_t regulator_suspend_disk_mode_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_disk_mode_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_disk.mode); } -static DEVICE_ATTR(suspend_disk_mode, 0444, - regulator_suspend_disk_mode_show, NULL); +static DEVICE_ATTR_RO(suspend_disk_mode); -static ssize_t regulator_suspend_standby_mode_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_standby_mode_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_standby.mode); } -static DEVICE_ATTR(suspend_standby_mode, 0444, - regulator_suspend_standby_mode_show, NULL); +static DEVICE_ATTR_RO(suspend_standby_mode); -static ssize_t regulator_suspend_mem_state_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_mem_state_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_mem.enabled); } -static DEVICE_ATTR(suspend_mem_state, 0444, - regulator_suspend_mem_state_show, NULL); +static DEVICE_ATTR_RO(suspend_mem_state); -static ssize_t regulator_suspend_disk_state_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_disk_state_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_disk.enabled); } -static DEVICE_ATTR(suspend_disk_state, 0444, - regulator_suspend_disk_state_show, NULL); +static DEVICE_ATTR_RO(suspend_disk_state); -static ssize_t regulator_suspend_standby_state_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t suspend_standby_state_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_standby.enabled); } -static DEVICE_ATTR(suspend_standby_state, 0444, - regulator_suspend_standby_state_show, NULL); +static DEVICE_ATTR_RO(suspend_standby_state); -static ssize_t regulator_bypass_show(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t bypass_show(struct device *dev, + struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); const char *report; @@ -625,112 +928,173 @@ static ssize_t regulator_bypass_show(struct device *dev, return sprintf(buf, "%s\n", report); } -static DEVICE_ATTR(bypass, 0444, - regulator_bypass_show, NULL); - -/* - * These are the only attributes are present for all regulators. - * Other attributes are a function of regulator functionality. - */ -static struct device_attribute regulator_dev_attrs[] = { - __ATTR(name, 0444, regulator_name_show, NULL), - __ATTR(num_users, 0444, regulator_num_users_show, NULL), - __ATTR(type, 0444, regulator_type_show, NULL), - __ATTR_NULL, -}; +static DEVICE_ATTR_RO(bypass); -static void regulator_dev_release(struct device *dev) +static ssize_t power_budget_milliwatt_show(struct device *dev, + struct device_attribute *attr, + char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); - kfree(rdev); + + return sprintf(buf, "%d\n", rdev->constraints->pw_budget_mW); } +static DEVICE_ATTR_RO(power_budget_milliwatt); -static struct class regulator_class = { - .name = "regulator", - .dev_release = regulator_dev_release, - .dev_attrs = regulator_dev_attrs, -}; +static ssize_t power_requested_milliwatt_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return sprintf(buf, "%d\n", rdev->pw_requested_mW); +} +static DEVICE_ATTR_RO(power_requested_milliwatt); + +#define REGULATOR_ERROR_ATTR(name, bit) \ + static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ + char *buf) \ + { \ + int ret; \ + unsigned int flags; \ + struct regulator_dev *rdev = dev_get_drvdata(dev); \ + ret = _regulator_get_error_flags(rdev, &flags); \ + if (ret) \ + return ret; \ + return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ + } \ + static DEVICE_ATTR_RO(name) + +REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); +REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); +REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); +REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); +REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); +REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); +REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); +REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); +REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); /* Calculate the new optimum regulator operating mode based on the new total - * consumer load. All locks held by caller */ -static void drms_uA_update(struct regulator_dev *rdev) + * consumer load. All locks held by caller + */ +static int drms_uA_update(struct regulator_dev *rdev) { struct regulator *sibling; int current_uA = 0, output_uV, input_uV, err; unsigned int mode; - err = regulator_check_drms(rdev); - if (err < 0 || !rdev->desc->ops->get_optimum_mode || - (!rdev->desc->ops->get_voltage && - !rdev->desc->ops->get_voltage_sel) || - !rdev->desc->ops->set_mode) - return; + /* + * first check to see if we can set modes at all, otherwise just + * tell the consumer everything is OK. + */ + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { + rdev_dbg(rdev, "DRMS operation not allowed\n"); + return 0; + } - /* get output voltage */ - output_uV = _regulator_get_voltage(rdev); - if (output_uV <= 0) - return; + if (!rdev->desc->ops->get_optimum_mode && + !rdev->desc->ops->set_load) + return 0; - /* get input voltage */ - input_uV = 0; - if (rdev->supply) - input_uV = regulator_get_voltage(rdev->supply); - if (input_uV <= 0) - input_uV = rdev->constraints->input_uV; - if (input_uV <= 0) - return; + if (!rdev->desc->ops->set_mode && + !rdev->desc->ops->set_load) + return -EINVAL; /* calc total requested load */ - list_for_each_entry(sibling, &rdev->consumer_list, list) - current_uA += sibling->uA_load; + list_for_each_entry(sibling, &rdev->consumer_list, list) { + if (sibling->enable_count) + current_uA += sibling->uA_load; + } - /* now get the optimum mode for our new total regulator load */ - mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, - output_uV, current_uA); + current_uA += rdev->constraints->system_load; - /* check the new mode is allowed */ - err = regulator_mode_constrain(rdev, &mode); - if (err == 0) - rdev->desc->ops->set_mode(rdev, mode); -} + if (rdev->desc->ops->set_load) { + /* set the optimum mode for our new total regulator load */ + err = rdev->desc->ops->set_load(rdev, current_uA); + if (err < 0) + rdev_err(rdev, "failed to set load %d: %pe\n", + current_uA, ERR_PTR(err)); + } else { + /* + * Unfortunately in some cases the constraints->valid_ops has + * REGULATOR_CHANGE_DRMS but there are no valid modes listed. + * That's not really legit but we won't consider it a fatal + * error here. We'll treat it as if REGULATOR_CHANGE_DRMS + * wasn't set. + */ + if (!rdev->constraints->valid_modes_mask) { + rdev_dbg(rdev, "Can change modes; but no valid mode\n"); + return 0; + } -static int suspend_set_state(struct regulator_dev *rdev, - struct regulator_state *rstate) -{ - int ret = 0; + /* get output voltage */ + output_uV = regulator_get_voltage_rdev(rdev); - /* If we have no suspend mode configration don't set anything; - * only warn if the driver implements set_suspend_voltage or - * set_suspend_mode callback. - */ - if (!rstate->enabled && !rstate->disabled) { - if (rdev->desc->ops->set_suspend_voltage || - rdev->desc->ops->set_suspend_mode) - rdev_warn(rdev, "No configuration\n"); - return 0; - } + /* + * Don't return an error; if regulator driver cares about + * output_uV then it's up to the driver to validate. + */ + if (output_uV <= 0) + rdev_dbg(rdev, "invalid output voltage found\n"); - if (rstate->enabled && rstate->disabled) { - rdev_err(rdev, "invalid configuration\n"); - return -EINVAL; + /* get input voltage */ + input_uV = 0; + if (rdev->supply) + input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); + if (input_uV <= 0) + input_uV = rdev->constraints->input_uV; + + /* + * Don't return an error; if regulator driver cares about + * input_uV then it's up to the driver to validate. + */ + if (input_uV <= 0) + rdev_dbg(rdev, "invalid input voltage found\n"); + + /* now get the optimum mode for our new total regulator load */ + mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, + output_uV, current_uA); + + /* check the new mode is allowed */ + err = regulator_mode_constrain(rdev, &mode); + if (err < 0) { + rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", + current_uA, input_uV, output_uV, ERR_PTR(err)); + return err; + } + + err = rdev->desc->ops->set_mode(rdev, mode); + if (err < 0) + rdev_err(rdev, "failed to set optimum mode %x: %pe\n", + mode, ERR_PTR(err)); } - if (rstate->enabled && rdev->desc->ops->set_suspend_enable) + return err; +} + +static int __suspend_set_state(struct regulator_dev *rdev, + const struct regulator_state *rstate) +{ + int ret = 0; + + if (rstate->enabled == ENABLE_IN_SUSPEND && + rdev->desc->ops->set_suspend_enable) ret = rdev->desc->ops->set_suspend_enable(rdev); - else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) + else if (rstate->enabled == DISABLE_IN_SUSPEND && + rdev->desc->ops->set_suspend_disable) ret = rdev->desc->ops->set_suspend_disable(rdev); else /* OK if set_suspend_enable or set_suspend_disable is NULL */ ret = 0; if (ret < 0) { - rdev_err(rdev, "failed to enabled/disable\n"); + rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); return ret; } if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); if (ret < 0) { - rdev_err(rdev, "failed to set voltage\n"); + rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); return ret; } } @@ -738,95 +1102,112 @@ static int suspend_set_state(struct regulator_dev *rdev, if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); if (ret < 0) { - rdev_err(rdev, "failed to set mode\n"); + rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); return ret; } } + return ret; } -/* locks held by caller */ -static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) +static int suspend_set_initial_state(struct regulator_dev *rdev) { - if (!rdev->constraints) - return -EINVAL; + const struct regulator_state *rstate; - switch (state) { - case PM_SUSPEND_STANDBY: - return suspend_set_state(rdev, - &rdev->constraints->state_standby); - case PM_SUSPEND_MEM: - return suspend_set_state(rdev, - &rdev->constraints->state_mem); - case PM_SUSPEND_MAX: - return suspend_set_state(rdev, - &rdev->constraints->state_disk); - default: - return -EINVAL; - } + rstate = regulator_get_suspend_state_check(rdev, + rdev->constraints->initial_state); + if (!rstate) + return 0; + + return __suspend_set_state(rdev, rstate); } -static void print_constraints(struct regulator_dev *rdev) +#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) +static void print_constraints_debug(struct regulator_dev *rdev) { struct regulation_constraints *constraints = rdev->constraints; - char buf[80] = ""; + char buf[160] = ""; + size_t len = sizeof(buf) - 1; int count = 0; int ret; if (constraints->min_uV && constraints->max_uV) { if (constraints->min_uV == constraints->max_uV) - count += sprintf(buf + count, "%d mV ", - constraints->min_uV / 1000); + count += scnprintf(buf + count, len - count, "%d mV ", + constraints->min_uV / 1000); else - count += sprintf(buf + count, "%d <--> %d mV ", - constraints->min_uV / 1000, - constraints->max_uV / 1000); + count += scnprintf(buf + count, len - count, + "%d <--> %d mV ", + constraints->min_uV / 1000, + constraints->max_uV / 1000); } if (!constraints->min_uV || constraints->min_uV != constraints->max_uV) { - ret = _regulator_get_voltage(rdev); + ret = regulator_get_voltage_rdev(rdev); if (ret > 0) - count += sprintf(buf + count, "at %d mV ", ret / 1000); + count += scnprintf(buf + count, len - count, + "at %d mV ", ret / 1000); } if (constraints->uV_offset) - count += sprintf(buf, "%dmV offset ", - constraints->uV_offset / 1000); + count += scnprintf(buf + count, len - count, "%dmV offset ", + constraints->uV_offset / 1000); if (constraints->min_uA && constraints->max_uA) { if (constraints->min_uA == constraints->max_uA) - count += sprintf(buf + count, "%d mA ", - constraints->min_uA / 1000); + count += scnprintf(buf + count, len - count, "%d mA ", + constraints->min_uA / 1000); else - count += sprintf(buf + count, "%d <--> %d mA ", - constraints->min_uA / 1000, - constraints->max_uA / 1000); + count += scnprintf(buf + count, len - count, + "%d <--> %d mA ", + constraints->min_uA / 1000, + constraints->max_uA / 1000); } if (!constraints->min_uA || constraints->min_uA != constraints->max_uA) { ret = _regulator_get_current_limit(rdev); if (ret > 0) - count += sprintf(buf + count, "at %d mA ", ret / 1000); + count += scnprintf(buf + count, len - count, + "at %d mA ", ret / 1000); } if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) - count += sprintf(buf + count, "fast "); + count += scnprintf(buf + count, len - count, "fast "); if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) - count += sprintf(buf + count, "normal "); + count += scnprintf(buf + count, len - count, "normal "); if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) - count += sprintf(buf + count, "idle "); + count += scnprintf(buf + count, len - count, "idle "); if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) - count += sprintf(buf + count, "standby"); + count += scnprintf(buf + count, len - count, "standby "); + + if (constraints->pw_budget_mW) + count += scnprintf(buf + count, len - count, "%d mW budget", + constraints->pw_budget_mW); if (!count) - sprintf(buf, "no parameters"); + count = scnprintf(buf, len, "no parameters"); + else + --count; + + count += scnprintf(buf + count, len - count, ", %s", + _regulator_is_enabled(rdev) ? "enabled" : "disabled"); + + rdev_dbg(rdev, "%s\n", buf); +} +#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ +static inline void print_constraints_debug(struct regulator_dev *rdev) {} +#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ + +static void print_constraints(struct regulator_dev *rdev) +{ + struct regulation_constraints *constraints = rdev->constraints; - rdev_info(rdev, "%s\n", buf); + print_constraints_debug(rdev); if ((constraints->min_uV != constraints->max_uV) && - !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) + !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) rdev_warn(rdev, "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); } @@ -834,19 +1215,63 @@ static void print_constraints(struct regulator_dev *rdev) static int machine_constraints_voltage(struct regulator_dev *rdev, struct regulation_constraints *constraints) { - struct regulator_ops *ops = rdev->desc->ops; + const struct regulator_ops *ops = rdev->desc->ops; int ret; /* do we need to apply the constraint voltage */ if (rdev->constraints->apply_uV && - rdev->constraints->min_uV == rdev->constraints->max_uV) { - ret = _regulator_do_set_voltage(rdev, - rdev->constraints->min_uV, - rdev->constraints->max_uV); - if (ret < 0) { - rdev_err(rdev, "failed to apply %duV constraint\n", - rdev->constraints->min_uV); - return ret; + rdev->constraints->min_uV && rdev->constraints->max_uV) { + int target_min, target_max; + int current_uV = regulator_get_voltage_rdev(rdev); + + if (current_uV == -ENOTRECOVERABLE) { + /* This regulator can't be read and must be initialized */ + rdev_info(rdev, "Setting %d-%duV\n", + rdev->constraints->min_uV, + rdev->constraints->max_uV); + _regulator_do_set_voltage(rdev, + rdev->constraints->min_uV, + rdev->constraints->max_uV); + current_uV = regulator_get_voltage_rdev(rdev); + } + + if (current_uV < 0) { + if (current_uV != -EPROBE_DEFER) + rdev_err(rdev, + "failed to get the current voltage: %pe\n", + ERR_PTR(current_uV)); + return current_uV; + } + + /* + * If we're below the minimum voltage move up to the + * minimum voltage, if we're above the maximum voltage + * then move down to the maximum. + */ + target_min = current_uV; + target_max = current_uV; + + if (current_uV < rdev->constraints->min_uV) { + target_min = rdev->constraints->min_uV; + target_max = rdev->constraints->min_uV; + } + + if (current_uV > rdev->constraints->max_uV) { + target_min = rdev->constraints->max_uV; + target_max = rdev->constraints->max_uV; + } + + if (target_min != current_uV || target_max != current_uV) { + rdev_info(rdev, "Bringing %duV into %d-%duV\n", + current_uV, target_min, target_max); + ret = _regulator_do_set_voltage( + rdev, target_min, target_max); + if (ret < 0) { + rdev_err(rdev, + "failed to apply %d-%duV constraint: %pe\n", + target_min, target_max, ERR_PTR(ret)); + return ret; + } } } @@ -862,7 +1287,8 @@ static int machine_constraints_voltage(struct regulator_dev *rdev, int cmax = constraints->max_uV; /* it's safe to autoconfigure fixed-voltage supplies - and the constraints are used by list_voltage. */ + * and the constraints are used by list_voltage. + */ if (count == 1 && !cmin) { cmin = 1; cmax = INT_MAX; @@ -880,6 +1306,10 @@ static int machine_constraints_voltage(struct regulator_dev *rdev, return -EINVAL; } + /* no need to loop voltages if range is continuous */ + if (rdev->desc->continuous_voltage_range) + return 0; + /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ for (i = 0; i < count; i++) { int value; @@ -919,105 +1349,455 @@ static int machine_constraints_voltage(struct regulator_dev *rdev, return 0; } +static int machine_constraints_current(struct regulator_dev *rdev, + struct regulation_constraints *constraints) +{ + const struct regulator_ops *ops = rdev->desc->ops; + int ret; + + if (!constraints->min_uA && !constraints->max_uA) + return 0; + + if (constraints->min_uA > constraints->max_uA) { + rdev_err(rdev, "Invalid current constraints\n"); + return -EINVAL; + } + + if (!ops->set_current_limit || !ops->get_current_limit) { + rdev_warn(rdev, "Operation of current configuration missing\n"); + return 0; + } + + /* Set regulator current in constraints range */ + ret = ops->set_current_limit(rdev, constraints->min_uA, + constraints->max_uA); + if (ret < 0) { + rdev_err(rdev, "Failed to set current constraint, %d\n", ret); + return ret; + } + + return 0; +} + +static int _regulator_do_enable(struct regulator_dev *rdev); + +static int notif_set_limit(struct regulator_dev *rdev, + int (*set)(struct regulator_dev *, int, int, bool), + int limit, int severity) +{ + bool enable; + + if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { + enable = false; + limit = 0; + } else { + enable = true; + } + + if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) + limit = 0; + + return set(rdev, limit, severity, enable); +} + +static int handle_notify_limits(struct regulator_dev *rdev, + int (*set)(struct regulator_dev *, int, int, bool), + struct notification_limit *limits) +{ + int ret = 0; + + if (!set) + return -EOPNOTSUPP; + + if (limits->prot) + ret = notif_set_limit(rdev, set, limits->prot, + REGULATOR_SEVERITY_PROT); + if (ret) + return ret; + + if (limits->err) + ret = notif_set_limit(rdev, set, limits->err, + REGULATOR_SEVERITY_ERR); + if (ret) + return ret; + + if (limits->warn) + ret = notif_set_limit(rdev, set, limits->warn, + REGULATOR_SEVERITY_WARN); + + return ret; +} /** * set_machine_constraints - sets regulator constraints * @rdev: regulator source - * @constraints: constraints to apply * * Allows platform initialisation code to define and constrain * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: * Constraints *must* be set by platform code in order for some * regulator operations to proceed i.e. set_voltage, set_current_limit, * set_mode. + * + * Return: 0 on success or a negative error number on failure. */ -static int set_machine_constraints(struct regulator_dev *rdev, - const struct regulation_constraints *constraints) +static int set_machine_constraints(struct regulator_dev *rdev) { int ret = 0; - struct regulator_ops *ops = rdev->desc->ops; - - if (constraints) - rdev->constraints = kmemdup(constraints, sizeof(*constraints), - GFP_KERNEL); - else - rdev->constraints = kzalloc(sizeof(*constraints), - GFP_KERNEL); - if (!rdev->constraints) - return -ENOMEM; + const struct regulator_ops *ops = rdev->desc->ops; ret = machine_constraints_voltage(rdev, rdev->constraints); if (ret != 0) - goto out; + return ret; + + ret = machine_constraints_current(rdev, rdev->constraints); + if (ret != 0) + return ret; + + if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { + ret = ops->set_input_current_limit(rdev, + rdev->constraints->ilim_uA); + if (ret < 0) { + rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); + return ret; + } + } /* do we need to setup our suspend state */ if (rdev->constraints->initial_state) { - ret = suspend_prepare(rdev, rdev->constraints->initial_state); + ret = suspend_set_initial_state(rdev); if (ret < 0) { - rdev_err(rdev, "failed to set suspend state\n"); - goto out; + rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); + return ret; } } if (rdev->constraints->initial_mode) { if (!ops->set_mode) { rdev_err(rdev, "no set_mode operation\n"); - ret = -EINVAL; - goto out; + return -EINVAL; } ret = ops->set_mode(rdev, rdev->constraints->initial_mode); if (ret < 0) { - rdev_err(rdev, "failed to set initial mode: %d\n", ret); - goto out; + rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); + return ret; } + } else if (rdev->constraints->system_load) { + /* + * We'll only apply the initial system load if an + * initial mode wasn't specified. + */ + drms_uA_update(rdev); } - /* If the constraints say the regulator should be on at this point - * and we have control then make sure it is enabled. + if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) + && ops->set_ramp_delay) { + ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); + if (ret < 0) { + rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); + return ret; + } + } + + if (rdev->constraints->pull_down && ops->set_pull_down) { + ret = ops->set_pull_down(rdev); + if (ret < 0) { + rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); + return ret; + } + } + + if (rdev->constraints->soft_start && ops->set_soft_start) { + ret = ops->set_soft_start(rdev); + if (ret < 0) { + rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); + return ret; + } + } + + /* + * Existing logic does not warn if over_current_protection is given as + * a constraint but driver does not support that. I think we should + * warn about this type of issues as it is possible someone changes + * PMIC on board to another type - and the another PMIC's driver does + * not support setting protection. Board composer may happily believe + * the DT limits are respected - especially if the new PMIC HW also + * supports protection but the driver does not. I won't change the logic + * without hearing more experienced opinion on this though. + * + * If warning is seen as a good idea then we can merge handling the + * over-curret protection and detection and get rid of this special + * handling. */ - if ((rdev->constraints->always_on || rdev->constraints->boot_on) && - ops->enable) { - ret = ops->enable(rdev); + if (rdev->constraints->over_current_protection + && ops->set_over_current_protection) { + int lim = rdev->constraints->over_curr_limits.prot; + + ret = ops->set_over_current_protection(rdev, lim, + REGULATOR_SEVERITY_PROT, + true); if (ret < 0) { - rdev_err(rdev, "failed to enable\n"); - goto out; + rdev_err(rdev, "failed to set over current protection: %pe\n", + ERR_PTR(ret)); + return ret; } } - if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { - ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); + if (rdev->constraints->over_current_detection) + ret = handle_notify_limits(rdev, + ops->set_over_current_protection, + &rdev->constraints->over_curr_limits); + if (ret) { + if (ret != -EOPNOTSUPP) { + rdev_err(rdev, "failed to set over current limits: %pe\n", + ERR_PTR(ret)); + return ret; + } + rdev_warn(rdev, + "IC does not support requested over-current limits\n"); + } + + if (rdev->constraints->over_voltage_detection) + ret = handle_notify_limits(rdev, + ops->set_over_voltage_protection, + &rdev->constraints->over_voltage_limits); + if (ret) { + if (ret != -EOPNOTSUPP) { + rdev_err(rdev, "failed to set over voltage limits %pe\n", + ERR_PTR(ret)); + return ret; + } + rdev_warn(rdev, + "IC does not support requested over voltage limits\n"); + } + + if (rdev->constraints->under_voltage_detection) + ret = handle_notify_limits(rdev, + ops->set_under_voltage_protection, + &rdev->constraints->under_voltage_limits); + if (ret) { + if (ret != -EOPNOTSUPP) { + rdev_err(rdev, "failed to set under voltage limits %pe\n", + ERR_PTR(ret)); + return ret; + } + rdev_warn(rdev, + "IC does not support requested under voltage limits\n"); + } + + if (rdev->constraints->over_temp_detection) + ret = handle_notify_limits(rdev, + ops->set_thermal_protection, + &rdev->constraints->temp_limits); + if (ret) { + if (ret != -EOPNOTSUPP) { + rdev_err(rdev, "failed to set temperature limits %pe\n", + ERR_PTR(ret)); + return ret; + } + rdev_warn(rdev, + "IC does not support requested temperature limits\n"); + } + + if (rdev->constraints->active_discharge && ops->set_active_discharge) { + bool ad_state = rdev->constraints->active_discharge == + REGULATOR_ACTIVE_DISCHARGE_ENABLE; + + ret = ops->set_active_discharge(rdev, ad_state); if (ret < 0) { - rdev_err(rdev, "failed to set ramp_delay\n"); - goto out; + rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); + return ret; + } + } + + /* + * If there is no mechanism for controlling the regulator then + * flag it as always_on so we don't end up duplicating checks + * for this so much. Note that we could control the state of + * a supply to control the output on a regulator that has no + * direct control. + */ + if (!rdev->ena_pin && !ops->enable) { + if (rdev->supply_name && !rdev->supply) + return -EPROBE_DEFER; + + if (rdev->supply) + rdev->constraints->always_on = + rdev->supply->rdev->constraints->always_on; + else + rdev->constraints->always_on = true; + } + + /* If the constraints say the regulator should be on at this point + * and we have control then make sure it is enabled. + */ + if (rdev->constraints->always_on || rdev->constraints->boot_on) { + bool supply_enabled = false; + + /* If we want to enable this regulator, make sure that we know + * the supplying regulator. + */ + if (rdev->supply_name && !rdev->supply) + return -EPROBE_DEFER; + + /* If supplying regulator has already been enabled, + * it's not intended to have use_count increment + * when rdev is only boot-on. + */ + if (rdev->supply && + (rdev->constraints->always_on || + !regulator_is_enabled(rdev->supply))) { + ret = regulator_enable(rdev->supply); + if (ret < 0) { + _regulator_put(rdev->supply); + rdev->supply = NULL; + return ret; + } + supply_enabled = true; } + + ret = _regulator_do_enable(rdev); + if (ret < 0 && ret != -EINVAL) { + rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); + if (supply_enabled) + regulator_disable(rdev->supply); + return ret; + } + + if (rdev->constraints->always_on) + rdev->use_count++; + } else if (rdev->desc->off_on_delay) { + rdev->last_off = ktime_get(); } + if (!rdev->constraints->pw_budget_mW) + rdev->constraints->pw_budget_mW = INT_MAX; + print_constraints(rdev); return 0; -out: - kfree(rdev->constraints); - rdev->constraints = NULL; - return ret; +} + +/** + * regulator_event_work_fn - process a deferred regulator event + * @work: work_struct queued by the notifier + * + * Calls the regulator's notifier chain in process context while holding + * the rdev lock, then releases the device reference. + */ +static void regulator_event_work_fn(struct work_struct *work) +{ + struct regulator_event_work *rew = + container_of(work, struct regulator_event_work, work); + struct regulator_dev *rdev = rew->rdev; + int ret; + + regulator_lock(rdev); + ret = regulator_notifier_call_chain(rdev, rew->event, NULL); + regulator_unlock(rdev); + if (ret == NOTIFY_BAD) + dev_err(rdev_get_dev(rdev), "failed to forward regulator event\n"); + + put_device(rdev_get_dev(rdev)); + kfree(rew); +} + +/** + * regulator_event_forward_notifier - notifier callback for supply events + * @nb: notifier block embedded in the regulator + * @event: regulator event code + * @data: unused + * + * Packages the event into a work item and schedules it in process context. + * Takes a reference on @rdev->dev to pin the regulator until the work + * completes (see put_device() in the worker). + * + * Return: NOTIFY_OK on success, NOTIFY_DONE for events that are not forwarded. + */ +static int regulator_event_forward_notifier(struct notifier_block *nb, + unsigned long event, + void __always_unused *data) +{ + struct regulator_dev *rdev = container_of(nb, struct regulator_dev, + supply_fwd_nb); + struct regulator_event_work *rew; + + switch (event) { + case REGULATOR_EVENT_UNDER_VOLTAGE: + break; + default: + /* Only forward allowed events downstream. */ + return NOTIFY_DONE; + } + + rew = kmalloc(sizeof(*rew), GFP_ATOMIC); + if (!rew) + return NOTIFY_DONE; + + get_device(rdev_get_dev(rdev)); + rew->rdev = rdev; + rew->event = event; + INIT_WORK(&rew->work, regulator_event_work_fn); + + queue_work(system_highpri_wq, &rew->work); + + return NOTIFY_OK; +} + +/** + * register_regulator_event_forwarding - enable supply event forwarding + * @rdev: regulator device + * + * Registers a notifier on the regulator's supply so that supply events + * are forwarded to the consumer regulator via the deferred work handler. + * + * Return: 0 on success, -EALREADY if already enabled, or a negative error code. + */ +static int register_regulator_event_forwarding(struct regulator_dev *rdev) +{ + int ret; + + if (!rdev->supply) + return 0; /* top-level regulator: nothing to forward */ + + if (rdev->supply_fwd_nb.notifier_call) + return -EALREADY; + + rdev->supply_fwd_nb.notifier_call = regulator_event_forward_notifier; + + ret = regulator_register_notifier(rdev->supply, &rdev->supply_fwd_nb); + if (ret) { + dev_err(&rdev->dev, "failed to register supply notifier: %pe\n", + ERR_PTR(ret)); + rdev->supply_fwd_nb.notifier_call = NULL; + return ret; + } + + return 0; } /** * set_supply - set regulator supply regulator - * @rdev: regulator name - * @supply_rdev: supply regulator name + * @rdev: regulator (locked) + * @supply_rdev: supply regulator (locked)) * * Called by platform initialisation code to set the supply regulator for this * regulator. This ensures that a regulators supply will also be enabled by the * core if it's child is enabled. + * + * Return: 0 on success or a negative error number on failure. */ static int set_supply(struct regulator_dev *rdev, struct regulator_dev *supply_rdev) { int err; - rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); + rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); + + if (!try_module_get(supply_rdev->owner)) + return -ENODEV; rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); if (rdev->supply == NULL) { + module_put(supply_rdev->owner); err = -ENOMEM; return err; } @@ -1036,12 +1816,14 @@ static int set_supply(struct regulator_dev *rdev, * sources to symbolic names for supplies for use by devices. Devices * should use these symbolic names to request regulators, avoiding the * need to provide board-specific regulator names as platform data. + * + * Return: 0 on success or a negative error number on failure. */ static int set_consumer_device_supply(struct regulator_dev *rdev, const char *consumer_dev_name, const char *supply) { - struct regulator_map *node; + struct regulator_map *node, *new_node; int has_dev; if (supply == NULL) @@ -1052,6 +1834,22 @@ static int set_consumer_device_supply(struct regulator_dev *rdev, else has_dev = 0; + new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); + if (new_node == NULL) + return -ENOMEM; + + new_node->regulator = rdev; + new_node->supply = supply; + + if (has_dev) { + new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); + if (new_node->dev_name == NULL) { + kfree(new_node); + return -ENOMEM; + } + } + + mutex_lock(®ulator_list_mutex); list_for_each_entry(node, ®ulator_map_list, list) { if (node->dev_name && consumer_dev_name) { if (strcmp(node->dev_name, consumer_dev_name) != 0) @@ -1069,26 +1867,19 @@ static int set_consumer_device_supply(struct regulator_dev *rdev, node->regulator->desc->name, supply, dev_name(&rdev->dev), rdev_get_name(rdev)); - return -EBUSY; + goto fail; } - node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); - if (node == NULL) - return -ENOMEM; - - node->regulator = rdev; - node->supply = supply; - - if (has_dev) { - node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); - if (node->dev_name == NULL) { - kfree(node); - return -ENOMEM; - } - } + list_add(&new_node->list, ®ulator_map_list); + mutex_unlock(®ulator_list_mutex); - list_add(&node->list, ®ulator_map_list); return 0; + +fail: + mutex_unlock(®ulator_list_mutex); + kfree(new_node->dev_name); + kfree(new_node); + return -EBUSY; } static void unset_regulator_supplies(struct regulator_dev *rdev) @@ -1104,334 +1895,694 @@ static void unset_regulator_supplies(struct regulator_dev *rdev) } } -#define REG_STR_SIZE 64 - -static struct regulator *create_regulator(struct regulator_dev *rdev, - struct device *dev, - const char *supply_name) +#ifdef CONFIG_DEBUG_FS +static ssize_t constraint_flags_read_file(struct file *file, + char __user *user_buf, + size_t count, loff_t *ppos) { - struct regulator *regulator; - char buf[REG_STR_SIZE]; - int err, size; + const struct regulator *regulator = file->private_data; + const struct regulation_constraints *c = regulator->rdev->constraints; + char *buf; + ssize_t ret; - regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); - if (regulator == NULL) - return NULL; + if (!c) + return 0; - mutex_lock(&rdev->mutex); - regulator->rdev = rdev; - list_add(®ulator->list, &rdev->consumer_list); + buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + ret = snprintf(buf, PAGE_SIZE, + "always_on: %u\n" + "boot_on: %u\n" + "apply_uV: %u\n" + "ramp_disable: %u\n" + "soft_start: %u\n" + "pull_down: %u\n" + "over_current_protection: %u\n", + c->always_on, + c->boot_on, + c->apply_uV, + c->ramp_disable, + c->soft_start, + c->pull_down, + c->over_current_protection); + + ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); + kfree(buf); + + return ret; +} + +#endif + +static const struct file_operations constraint_flags_fops = { +#ifdef CONFIG_DEBUG_FS + .open = simple_open, + .read = constraint_flags_read_file, + .llseek = default_llseek, +#endif +}; + +#define REG_STR_SIZE 64 + +static void link_and_create_debugfs(struct regulator *regulator, struct regulator_dev *rdev, + struct device *dev) +{ + int err = 0; if (dev) { regulator->dev = dev; /* Add a link to the device sysfs entry */ - size = scnprintf(buf, REG_STR_SIZE, "%s-%s", - dev->kobj.name, supply_name); - if (size >= REG_STR_SIZE) - goto overflow_err; - - regulator->supply_name = kstrdup(buf, GFP_KERNEL); - if (regulator->supply_name == NULL) - goto overflow_err; - - err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, - buf); + err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, + regulator->supply_name); if (err) { - rdev_warn(rdev, "could not add device link %s err %d\n", - dev->kobj.name, err); + rdev_dbg(rdev, "could not add device link %s: %pe\n", + dev->kobj.name, ERR_PTR(err)); /* non-fatal */ } - } else { - regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); - if (regulator->supply_name == NULL) - goto overflow_err; } - regulator->debugfs = debugfs_create_dir(regulator->supply_name, - rdev->debugfs); - if (!regulator->debugfs) { - rdev_warn(rdev, "Failed to create debugfs directory\n"); - } else { + if (err != -EEXIST) { + regulator->debugfs = debugfs_create_dir(regulator->supply_name, rdev->debugfs); + if (IS_ERR(regulator->debugfs)) { + rdev_dbg(rdev, "Failed to create debugfs directory\n"); + regulator->debugfs = NULL; + } + } + + if (regulator->debugfs) { debugfs_create_u32("uA_load", 0444, regulator->debugfs, ®ulator->uA_load); debugfs_create_u32("min_uV", 0444, regulator->debugfs, - ®ulator->min_uV); + ®ulator->voltage[PM_SUSPEND_ON].min_uV); debugfs_create_u32("max_uV", 0444, regulator->debugfs, - ®ulator->max_uV); + ®ulator->voltage[PM_SUSPEND_ON].max_uV); + debugfs_create_file("constraint_flags", 0444, regulator->debugfs, + regulator, &constraint_flags_fops); + } +} + +static struct regulator *create_regulator(struct regulator_dev *rdev, + struct device *dev, + const char *supply_name) +{ + struct regulator *regulator; + + lockdep_assert_held_once(&rdev->mutex.base); + + if (dev) { + char buf[REG_STR_SIZE]; + int size; + + size = snprintf(buf, REG_STR_SIZE, "%s-%s", + dev->kobj.name, supply_name); + if (size >= REG_STR_SIZE) + return NULL; + + supply_name = kstrdup(buf, GFP_KERNEL); + if (supply_name == NULL) + return NULL; + } else { + supply_name = kstrdup_const(supply_name, GFP_KERNEL); + if (supply_name == NULL) + return NULL; + } + + regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); + if (regulator == NULL) { + kfree_const(supply_name); + return NULL; } + regulator->rdev = rdev; + regulator->supply_name = supply_name; + + list_add(®ulator->list, &rdev->consumer_list); + /* * Check now if the regulator is an always on regulator - if * it is then we don't need to do nearly so much work for * enable/disable calls. */ - if (!_regulator_can_change_status(rdev) && + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && _regulator_is_enabled(rdev)) regulator->always_on = true; - mutex_unlock(&rdev->mutex); return regulator; -overflow_err: - list_del(®ulator->list); - kfree(regulator); - mutex_unlock(&rdev->mutex); - return NULL; } static int _regulator_get_enable_time(struct regulator_dev *rdev) { - if (!rdev->desc->ops->enable_time) - return rdev->desc->enable_time; - return rdev->desc->ops->enable_time(rdev); + if (rdev->constraints && rdev->constraints->enable_time) + return rdev->constraints->enable_time; + if (rdev->desc->ops->enable_time) + return rdev->desc->ops->enable_time(rdev); + return rdev->desc->enable_time; +} + +static struct regulator_supply_alias *regulator_find_supply_alias( + struct device *dev, const char *supply) +{ + struct regulator_supply_alias *map; + + list_for_each_entry(map, ®ulator_supply_alias_list, list) + if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) + return map; + + return NULL; } +static void regulator_supply_alias(struct device **dev, const char **supply) +{ + struct regulator_supply_alias *map; + + mutex_lock(®ulator_list_mutex); + map = regulator_find_supply_alias(*dev, *supply); + if (map) { + dev_dbg(*dev, "Mapping supply %s to %s,%s\n", + *supply, map->alias_supply, + dev_name(map->alias_dev)); + *dev = map->alias_dev; + *supply = map->alias_supply; + } + mutex_unlock(®ulator_list_mutex); +} + +static int regulator_match(struct device *dev, const void *data) +{ + struct regulator_dev *r = dev_to_rdev(dev); + + return strcmp(rdev_get_name(r), data) == 0; +} + +static struct regulator_dev *regulator_lookup_by_name(const char *name) +{ + struct device *dev; + + dev = class_find_device(®ulator_class, NULL, name, regulator_match); + + return dev ? dev_to_rdev(dev) : NULL; +} + +static struct regulator_dev *regulator_dt_lookup(struct device *dev, + const char *supply) +{ + struct regulator_dev *r = NULL; + + if (dev_of_node(dev)) { + r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply); + if (PTR_ERR(r) == -ENODEV) + r = NULL; + } + + return r; +} + +/** + * regulator_dev_lookup - lookup a regulator device. + * @dev: device for regulator "consumer". + * @supply: Supply name or regulator ID. + * + * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number. + * + * If successful, returns a struct regulator_dev that corresponds to the name + * @supply and with the embedded struct device refcount incremented by one. + * The refcount must be dropped by calling put_device(). + * On failure one of the following ERR_PTR() encoded values is returned: + * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed + * in the future. + */ static struct regulator_dev *regulator_dev_lookup(struct device *dev, - const char *supply, - int *ret) + const char *supply) { - struct regulator_dev *r; - struct device_node *node; + struct regulator_dev *r = NULL; struct regulator_map *map; const char *devname = NULL; + regulator_supply_alias(&dev, &supply); + /* first do a dt based lookup */ - if (dev && dev->of_node) { - node = of_get_regulator(dev, supply); - if (node) { - list_for_each_entry(r, ®ulator_list, list) - if (r->dev.parent && - node == r->dev.of_node) - return r; - } else { - /* - * If we couldn't even get the node then it's - * not just that the device didn't register - * yet, there's no node and we'll never - * succeed. - */ - *ret = -ENODEV; - } - } + r = regulator_dt_lookup(dev, supply); + if (r) + return r; /* if not found, try doing it non-dt way */ if (dev) devname = dev_name(dev); - list_for_each_entry(r, ®ulator_list, list) - if (strcmp(rdev_get_name(r), supply) == 0) - return r; - + mutex_lock(®ulator_list_mutex); list_for_each_entry(map, ®ulator_map_list, list) { /* If the mapping has a device set up it must match */ if (map->dev_name && (!devname || strcmp(map->dev_name, devname))) continue; - if (strcmp(map->supply, supply) == 0) - return map->regulator; + if (strcmp(map->supply, supply) == 0 && + get_device(&map->regulator->dev)) { + r = map->regulator; + break; + } } + mutex_unlock(®ulator_list_mutex); + if (r) + return r; - return NULL; + r = regulator_lookup_by_name(supply); + if (r) + return r; + + return ERR_PTR(-ENODEV); } -/* Internal regulator request function */ -static struct regulator *_regulator_get(struct device *dev, const char *id, - int exclusive) +static int regulator_resolve_supply(struct regulator_dev *rdev) { - struct regulator_dev *rdev; - struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); - const char *devname = NULL; + struct regulator_dev *r; + struct device *dev = rdev->dev.parent; + struct ww_acquire_ctx ww_ctx; int ret = 0; - if (id == NULL) { - pr_err("get() with no identifier\n"); - return regulator; + /* No supply to resolve? */ + if (!rdev->supply_name) + return 0; + + /* Supply already resolved? (fast-path without locking contention) */ + if (rdev->supply) + return 0; + + /* first do a dt based lookup on the node described in the virtual + * device. + */ + r = regulator_dt_lookup(&rdev->dev, rdev->supply_name); + + /* If regulator not found use usual search path in the parent + * device. + */ + if (!r) + r = regulator_dev_lookup(dev, rdev->supply_name); + + if (IS_ERR(r)) { + ret = PTR_ERR(r); + + /* Did the lookup explicitly defer for us? */ + if (ret == -EPROBE_DEFER) + goto out; + + if (have_full_constraints()) { + r = dummy_regulator_rdev; + if (!r) { + ret = -EPROBE_DEFER; + goto out; + } + get_device(&r->dev); + } else { + dev_err(dev, "Failed to resolve %s-supply for %s\n", + rdev->supply_name, rdev->desc->name); + ret = -EPROBE_DEFER; + goto out; + } } - if (dev) - devname = dev_name(dev); + if (r == rdev) { + dev_err(dev, "Supply for %s (%s) resolved to itself\n", + rdev->desc->name, rdev->supply_name); + if (!have_full_constraints()) { + ret = -EINVAL; + goto out; + } + r = dummy_regulator_rdev; + if (!r) { + ret = -EPROBE_DEFER; + goto out; + } + get_device(&r->dev); + } - mutex_lock(®ulator_list_mutex); + /* + * If the supply's parent device is not the same as the + * regulator's parent device, then ensure the parent device + * is bound before we resolve the supply, in case the parent + * device get probe deferred and unregisters the supply. + */ + if (r->dev.parent && r->dev.parent != rdev->dev.parent) { + if (!device_is_bound(r->dev.parent)) { + put_device(&r->dev); + ret = -EPROBE_DEFER; + goto out; + } + } - rdev = regulator_dev_lookup(dev, id, &ret); - if (rdev) - goto found; + /* Recursively resolve the supply of the supply */ + ret = regulator_resolve_supply(r); + if (ret < 0) { + put_device(&r->dev); + goto out; + } /* - * If we have return value from dev_lookup fail, we do not expect to - * succeed, so, quit with appropriate error value + * Recheck rdev->supply with rdev->mutex lock held to avoid a race + * between rdev->supply null check and setting rdev->supply in + * set_supply() from concurrent tasks. */ - if (ret) { - regulator = ERR_PTR(ret); + regulator_lock_two(rdev, r, &ww_ctx); + + /* Supply just resolved by a concurrent task? */ + if (rdev->supply) { + regulator_unlock_two(rdev, r, &ww_ctx); + put_device(&r->dev); goto out; } - if (board_wants_dummy_regulator) { - rdev = dummy_regulator_rdev; - goto found; + ret = set_supply(rdev, r); + if (ret < 0) { + regulator_unlock_two(rdev, r, &ww_ctx); + put_device(&r->dev); + goto out; } -#ifdef CONFIG_REGULATOR_DUMMY - if (!devname) - devname = "deviceless"; + /* + * Automatically register for event forwarding from the new supply. + * This creates the downstream propagation link for events like + * under-voltage. + */ + ret = register_regulator_event_forwarding(rdev); + if (ret < 0) + rdev_warn(rdev, "Failed to register event forwarding: %pe\n", + ERR_PTR(ret)); + + regulator_unlock_two(rdev, r, &ww_ctx); + + /* rdev->supply was created in set_supply() */ + link_and_create_debugfs(rdev->supply, r, &rdev->dev); - /* If the board didn't flag that it was fully constrained then - * substitute in a dummy regulator so consumers can continue. + /* + * In set_machine_constraints() we may have turned this regulator on + * but we couldn't propagate to the supply if it hadn't been resolved + * yet. Do it now. */ - if (!has_full_constraints) { - pr_warn("%s supply %s not found, using dummy regulator\n", - devname, id); - rdev = dummy_regulator_rdev; - goto found; + if (rdev->use_count) { + ret = regulator_enable(rdev->supply); + if (ret < 0) { + _regulator_put(rdev->supply); + rdev->supply = NULL; + goto out; + } } -#endif - mutex_unlock(®ulator_list_mutex); - return regulator; +out: + return ret; +} + +/* common pre-checks for regulator requests */ +int _regulator_get_common_check(struct device *dev, const char *id, + enum regulator_get_type get_type) +{ + if (get_type >= MAX_GET_TYPE) { + dev_err(dev, "invalid type %d in %s\n", get_type, __func__); + return -EINVAL; + } + + if (id == NULL) { + dev_err(dev, "regulator request with no identifier\n"); + return -EINVAL; + } + + return 0; +} + +/** + * _regulator_get_common - Common code for regulator requests + * @rdev: regulator device pointer as returned by *regulator_dev_lookup() + * Its reference count is expected to have been incremented. + * @dev: device used for dev_printk messages + * @id: Supply name or regulator ID + * @get_type: enum regulator_get_type value corresponding to type of request + * + * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR() + * encoded error. + * + * This function should be chained with *regulator_dev_lookup() functions. + */ +struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev, + const char *id, enum regulator_get_type get_type) +{ + struct regulator *regulator; + struct device_link *link; + int ret; + + if (IS_ERR(rdev)) { + ret = PTR_ERR(rdev); + + /* + * If regulator_dev_lookup() fails with error other + * than -ENODEV our job here is done, we simply return it. + */ + if (ret != -ENODEV) + return ERR_PTR(ret); + + if (!have_full_constraints()) { + dev_warn(dev, + "incomplete constraints, dummy supplies not allowed (id=%s)\n", id); + return ERR_PTR(-ENODEV); + } + + switch (get_type) { + case NORMAL_GET: + /* + * Assume that a regulator is physically present and + * enabled, even if it isn't hooked up, and just + * provide a dummy. + */ + rdev = dummy_regulator_rdev; + if (!rdev) + return ERR_PTR(-EPROBE_DEFER); + dev_warn(dev, "supply %s not found, using dummy regulator\n", id); + get_device(&rdev->dev); + break; + + case EXCLUSIVE_GET: + dev_warn(dev, + "dummy supplies not allowed for exclusive requests (id=%s)\n", id); + fallthrough; + + default: + return ERR_PTR(-ENODEV); + } + } -found: if (rdev->exclusive) { regulator = ERR_PTR(-EPERM); - goto out; + put_device(&rdev->dev); + return regulator; } - if (exclusive && rdev->open_count) { + if (get_type == EXCLUSIVE_GET && rdev->open_count) { regulator = ERR_PTR(-EBUSY); - goto out; + put_device(&rdev->dev); + return regulator; } - if (!try_module_get(rdev->owner)) - goto out; + mutex_lock(®ulator_list_mutex); + ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); + mutex_unlock(®ulator_list_mutex); + + if (ret != 0) { + regulator = ERR_PTR(-EPROBE_DEFER); + put_device(&rdev->dev); + return regulator; + } + + ret = regulator_resolve_supply(rdev); + if (ret < 0) { + regulator = ERR_PTR(ret); + put_device(&rdev->dev); + return regulator; + } + if (!try_module_get(rdev->owner)) { + regulator = ERR_PTR(-EPROBE_DEFER); + put_device(&rdev->dev); + return regulator; + } + + regulator_lock(rdev); regulator = create_regulator(rdev, dev, id); + regulator_unlock(rdev); if (regulator == NULL) { regulator = ERR_PTR(-ENOMEM); module_put(rdev->owner); - goto out; + put_device(&rdev->dev); + return regulator; } + link_and_create_debugfs(regulator, rdev, dev); + rdev->open_count++; - if (exclusive) { + if (get_type == EXCLUSIVE_GET) { rdev->exclusive = 1; ret = _regulator_is_enabled(rdev); - if (ret > 0) + if (ret > 0) { rdev->use_count = 1; - else + regulator->enable_count = 1; + + /* Propagate the regulator state to its supply */ + if (rdev->supply) { + ret = regulator_enable(rdev->supply); + if (ret < 0) { + destroy_regulator(regulator); + module_put(rdev->owner); + put_device(&rdev->dev); + return ERR_PTR(ret); + } + } + } else { rdev->use_count = 0; + regulator->enable_count = 0; + } } -out: - mutex_unlock(®ulator_list_mutex); + link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); + if (!IS_ERR_OR_NULL(link)) + regulator->device_link = true; return regulator; } +/* Internal regulator request function */ +struct regulator *_regulator_get(struct device *dev, const char *id, + enum regulator_get_type get_type) +{ + struct regulator_dev *rdev; + int ret; + + ret = _regulator_get_common_check(dev, id, get_type); + if (ret) + return ERR_PTR(ret); + + rdev = regulator_dev_lookup(dev, id); + return _regulator_get_common(rdev, dev, id, get_type); +} + /** * regulator_get - lookup and obtain a reference to a regulator. * @dev: device for regulator "consumer" * @id: Supply name or regulator ID. * - * Returns a struct regulator corresponding to the regulator producer, - * or IS_ERR() condition containing errno. - * - * Use of supply names configured via regulator_set_device_supply() is + * Use of supply names configured via set_consumer_device_supply() is * strongly encouraged. It is recommended that the supply name used * should match the name used for the supply and/or the relevant * device pins in the datasheet. + * + * Return: Pointer to a &struct regulator corresponding to the regulator + * producer, or an ERR_PTR() encoded negative error number. */ struct regulator *regulator_get(struct device *dev, const char *id) { - return _regulator_get(dev, id, 0); + return _regulator_get(dev, id, NORMAL_GET); } EXPORT_SYMBOL_GPL(regulator_get); -static void devm_regulator_release(struct device *dev, void *res) -{ - regulator_put(*(struct regulator **)res); -} - -/** - * devm_regulator_get - Resource managed regulator_get() - * @dev: device for regulator "consumer" - * @id: Supply name or regulator ID. - * - * Managed regulator_get(). Regulators returned from this function are - * automatically regulator_put() on driver detach. See regulator_get() for more - * information. - */ -struct regulator *devm_regulator_get(struct device *dev, const char *id) -{ - struct regulator **ptr, *regulator; - - ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); - if (!ptr) - return ERR_PTR(-ENOMEM); - - regulator = regulator_get(dev, id); - if (!IS_ERR(regulator)) { - *ptr = regulator; - devres_add(dev, ptr); - } else { - devres_free(ptr); - } - - return regulator; -} -EXPORT_SYMBOL_GPL(devm_regulator_get); - /** * regulator_get_exclusive - obtain exclusive access to a regulator. * @dev: device for regulator "consumer" * @id: Supply name or regulator ID. * - * Returns a struct regulator corresponding to the regulator producer, - * or IS_ERR() condition containing errno. Other consumers will be - * unable to obtain this reference is held and the use count for the - * regulator will be initialised to reflect the current state of the - * regulator. + * Other consumers will be unable to obtain this regulator while this + * reference is held and the use count for the regulator will be + * initialised to reflect the current state of the regulator. * * This is intended for use by consumers which cannot tolerate shared * use of the regulator such as those which need to force the * regulator off for correct operation of the hardware they are * controlling. * - * Use of supply names configured via regulator_set_device_supply() is + * Use of supply names configured via set_consumer_device_supply() is * strongly encouraged. It is recommended that the supply name used * should match the name used for the supply and/or the relevant * device pins in the datasheet. + * + * Return: Pointer to a &struct regulator corresponding to the regulator + * producer, or an ERR_PTR() encoded negative error number. */ struct regulator *regulator_get_exclusive(struct device *dev, const char *id) { - return _regulator_get(dev, id, 1); + return _regulator_get(dev, id, EXCLUSIVE_GET); } EXPORT_SYMBOL_GPL(regulator_get_exclusive); -/* Locks held by regulator_put() */ -static void _regulator_put(struct regulator *regulator) +/** + * regulator_get_optional - obtain optional access to a regulator. + * @dev: device for regulator "consumer" + * @id: Supply name or regulator ID. + * + * This is intended for use by consumers for devices which can have + * some supplies unconnected in normal use, such as some MMC devices. + * It can allow the regulator core to provide stub supplies for other + * supplies requested using normal regulator_get() calls without + * disrupting the operation of drivers that can handle absent + * supplies. + * + * Use of supply names configured via set_consumer_device_supply() is + * strongly encouraged. It is recommended that the supply name used + * should match the name used for the supply and/or the relevant + * device pins in the datasheet. + * + * Return: Pointer to a &struct regulator corresponding to the regulator + * producer, or an ERR_PTR() encoded negative error number. + */ +struct regulator *regulator_get_optional(struct device *dev, const char *id) { - struct regulator_dev *rdev; - - if (regulator == NULL || IS_ERR(regulator)) - return; + return _regulator_get(dev, id, OPTIONAL_GET); +} +EXPORT_SYMBOL_GPL(regulator_get_optional); - rdev = regulator->rdev; +static void destroy_regulator(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; debugfs_remove_recursive(regulator->debugfs); - /* remove any sysfs entries */ - if (regulator->dev) + if (regulator->dev) { + if (regulator->device_link) + device_link_remove(regulator->dev, &rdev->dev); + + /* remove any sysfs entries */ sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); - kfree(regulator->supply_name); + } + + regulator_lock(rdev); list_del(®ulator->list); - kfree(regulator); rdev->open_count--; rdev->exclusive = 0; + regulator_unlock(rdev); + + kfree_const(regulator->supply_name); + kfree(regulator); +} + +/* regulator_list_mutex lock held by regulator_put() */ +static void _regulator_put(struct regulator *regulator) +{ + struct regulator_dev *rdev; + + if (IS_ERR_OR_NULL(regulator)) + return; + + lockdep_assert_held_once(®ulator_list_mutex); + + /* Docs say you must disable before calling regulator_put() */ + WARN_ON(regulator->enable_count); + + rdev = regulator->rdev; + + destroy_regulator(regulator); module_put(rdev->owner); + put_device(&rdev->dev); } /** @@ -1450,69 +2601,188 @@ void regulator_put(struct regulator *regulator) } EXPORT_SYMBOL_GPL(regulator_put); -static int devm_regulator_match(struct device *dev, void *res, void *data) +/** + * regulator_register_supply_alias - Provide device alias for supply lookup + * + * @dev: device that will be given as the regulator "consumer" + * @id: Supply name or regulator ID + * @alias_dev: device that should be used to lookup the supply + * @alias_id: Supply name or regulator ID that should be used to lookup the + * supply + * + * All lookups for id on dev will instead be conducted for alias_id on + * alias_dev. + * + * Return: 0 on success or a negative error number on failure. + */ +int regulator_register_supply_alias(struct device *dev, const char *id, + struct device *alias_dev, + const char *alias_id) { - struct regulator **r = res; - if (!r || !*r) { - WARN_ON(!r || !*r); - return 0; + struct regulator_supply_alias *map; + struct regulator_supply_alias *new_map; + + new_map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); + if (!new_map) + return -ENOMEM; + + mutex_lock(®ulator_list_mutex); + map = regulator_find_supply_alias(dev, id); + if (map) { + mutex_unlock(®ulator_list_mutex); + kfree(new_map); + return -EEXIST; + } + + new_map->src_dev = dev; + new_map->src_supply = id; + new_map->alias_dev = alias_dev; + new_map->alias_supply = alias_id; + list_add(&new_map->list, ®ulator_supply_alias_list); + mutex_unlock(®ulator_list_mutex); + pr_info("Adding alias for supply %s,%s -> %s,%s\n", + id, dev_name(dev), alias_id, dev_name(alias_dev)); + + return 0; +} +EXPORT_SYMBOL_GPL(regulator_register_supply_alias); + +/** + * regulator_unregister_supply_alias - Remove device alias + * + * @dev: device that will be given as the regulator "consumer" + * @id: Supply name or regulator ID + * + * Remove a lookup alias if one exists for id on dev. + */ +void regulator_unregister_supply_alias(struct device *dev, const char *id) +{ + struct regulator_supply_alias *map; + + mutex_lock(®ulator_list_mutex); + map = regulator_find_supply_alias(dev, id); + if (map) { + list_del(&map->list); + kfree(map); } - return *r == data; + mutex_unlock(®ulator_list_mutex); } +EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); /** - * devm_regulator_put - Resource managed regulator_put() - * @regulator: regulator to free + * regulator_bulk_register_supply_alias - register multiple aliases * - * Deallocate a regulator allocated with devm_regulator_get(). Normally - * this function will not need to be called and the resource management - * code will ensure that the resource is freed. + * @dev: device that will be given as the regulator "consumer" + * @id: List of supply names or regulator IDs + * @alias_dev: device that should be used to lookup the supply + * @alias_id: List of supply names or regulator IDs that should be used to + * lookup the supply + * @num_id: Number of aliases to register + * + * This helper function allows drivers to register several supply + * aliases in one operation. If any of the aliases cannot be + * registered any aliases that were registered will be removed + * before returning to the caller. + * + * Return: 0 on success or a negative error number on failure. */ -void devm_regulator_put(struct regulator *regulator) +int regulator_bulk_register_supply_alias(struct device *dev, + const char *const *id, + struct device *alias_dev, + const char *const *alias_id, + int num_id) { - int rc; + int i; + int ret; + + for (i = 0; i < num_id; ++i) { + ret = regulator_register_supply_alias(dev, id[i], alias_dev, + alias_id[i]); + if (ret < 0) + goto err; + } + + return 0; + +err: + dev_err(dev, + "Failed to create supply alias %s,%s -> %s,%s\n", + id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); + + while (--i >= 0) + regulator_unregister_supply_alias(dev, id[i]); - rc = devres_release(regulator->dev, devm_regulator_release, - devm_regulator_match, regulator); - if (rc != 0) - WARN_ON(rc); + return ret; } -EXPORT_SYMBOL_GPL(devm_regulator_put); +EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); + +/** + * regulator_bulk_unregister_supply_alias - unregister multiple aliases + * + * @dev: device that will be given as the regulator "consumer" + * @id: List of supply names or regulator IDs + * @num_id: Number of aliases to unregister + * + * This helper function allows drivers to unregister several supply + * aliases in one operation. + */ +void regulator_bulk_unregister_supply_alias(struct device *dev, + const char *const *id, + int num_id) +{ + int i; + + for (i = 0; i < num_id; ++i) + regulator_unregister_supply_alias(dev, id[i]); +} +EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); + /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ static int regulator_ena_gpio_request(struct regulator_dev *rdev, const struct regulator_config *config) { - struct regulator_enable_gpio *pin; - int ret; + struct regulator_enable_gpio *pin, *new_pin; + struct gpio_desc *gpiod; + + gpiod = config->ena_gpiod; + new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); + + mutex_lock(®ulator_list_mutex); + + if (gpiod_is_shared(gpiod)) + /* + * The sharing of this GPIO pin is managed internally by + * GPIOLIB. We don't need to keep track of its enable count. + */ + goto skip_compare; list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { - if (pin->gpio == config->ena_gpio) { - rdev_dbg(rdev, "GPIO %d is already used\n", - config->ena_gpio); + if (gpiod_is_equal(pin->gpiod, gpiod)) { + rdev_dbg(rdev, "GPIO is already used\n"); goto update_ena_gpio_to_rdev; } } - ret = gpio_request_one(config->ena_gpio, - GPIOF_DIR_OUT | config->ena_gpio_flags, - rdev_get_name(rdev)); - if (ret) - return ret; - - pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); - if (pin == NULL) { - gpio_free(config->ena_gpio); + if (new_pin == NULL) { + mutex_unlock(®ulator_list_mutex); return -ENOMEM; } - pin->gpio = config->ena_gpio; - pin->ena_gpio_invert = config->ena_gpio_invert; +skip_compare: + pin = new_pin; + new_pin = NULL; + + pin->gpiod = gpiod; list_add(&pin->list, ®ulator_ena_gpio_list); update_ena_gpio_to_rdev: pin->request_count++; rdev->ena_pin = pin; + + mutex_unlock(®ulator_list_mutex); + kfree(new_pin); + return 0; } @@ -1525,17 +2795,19 @@ static void regulator_ena_gpio_free(struct regulator_dev *rdev) /* Free the GPIO only in case of no use */ list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { - if (pin->gpio == rdev->ena_pin->gpio) { - if (pin->request_count <= 1) { - pin->request_count = 0; - gpio_free(pin->gpio); - list_del(&pin->list); - kfree(pin); - } else { - pin->request_count--; - } - } + if (pin != rdev->ena_pin) + continue; + + if (--pin->request_count) + break; + + gpiod_put(pin->gpiod); + list_del(&pin->list); + kfree(pin); + break; } + + rdev->ena_pin = NULL; } /** @@ -1545,6 +2817,8 @@ static void regulator_ena_gpio_free(struct regulator_dev *rdev) * * GPIO is enabled in case of initial use. (enable_count is 0) * GPIO is disabled when it is not shared any more. (enable_count <= 1) + * + * Return: 0 on success or a negative error number on failure. */ static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) { @@ -1556,8 +2830,7 @@ static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) if (enable) { /* Enable GPIO at initial use */ if (pin->enable_count == 0) - gpio_set_value_cansleep(pin->gpio, - !pin->ena_gpio_invert); + gpiod_set_value_cansleep(pin->gpiod, 1); pin->enable_count++; } else { @@ -1568,8 +2841,7 @@ static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) /* Disable GPIO if not used */ if (pin->enable_count <= 1) { - gpio_set_value_cansleep(pin->gpio, - pin->ena_gpio_invert); + gpiod_set_value_cansleep(pin->gpiod, 0); pin->enable_count = 0; } } @@ -1577,6 +2849,35 @@ static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) return 0; } +/** + * _regulator_check_status_enabled - check if regulator status can be + * interpreted as "regulator is enabled" + * @rdev: the regulator device to check + * + * Return: + * * 1 - if status shows regulator is in enabled state + * * 0 - if not enabled state + * * Error Value - as received from ops->get_status() + */ +static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) +{ + int ret = rdev->desc->ops->get_status(rdev); + + if (ret < 0) { + rdev_info(rdev, "get_status returned error: %d\n", ret); + return ret; + } + + switch (ret) { + case REGULATOR_STATUS_OFF: + case REGULATOR_STATUS_ERROR: + case REGULATOR_STATUS_UNDEFINED: + return 0; + default: + return 1; + } +} + static int _regulator_do_enable(struct regulator_dev *rdev) { int ret, delay; @@ -1586,17 +2887,30 @@ static int _regulator_do_enable(struct regulator_dev *rdev) if (ret >= 0) { delay = ret; } else { - rdev_warn(rdev, "enable_time() failed: %d\n", ret); + rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); delay = 0; } trace_regulator_enable(rdev_get_name(rdev)); + if (rdev->desc->off_on_delay) { + /* if needed, keep a distance of off_on_delay from last time + * this regulator was disabled. + */ + ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); + s64 remaining = ktime_us_delta(end, ktime_get_boottime()); + + if (remaining > 0) + fsleep(remaining); + } + if (rdev->ena_pin) { - ret = regulator_ena_gpio_ctrl(rdev, true); - if (ret < 0) - return ret; - rdev->ena_gpio_state = 1; + if (!rdev->ena_gpio_state) { + ret = regulator_ena_gpio_ctrl(rdev, true); + if (ret < 0) + return ret; + rdev->ena_gpio_state = 1; + } } else if (rdev->desc->ops->enable) { ret = rdev->desc->ops->enable(rdev); if (ret < 0) @@ -1607,14 +2921,40 @@ static int _regulator_do_enable(struct regulator_dev *rdev) /* Allow the regulator to ramp; it would be useful to extend * this for bulk operations so that the regulators can ramp - * together. */ + * together. + */ trace_regulator_enable_delay(rdev_get_name(rdev)); - if (delay >= 1000) { - mdelay(delay / 1000); - udelay(delay % 1000); - } else if (delay) { - udelay(delay); + /* If poll_enabled_time is set, poll upto the delay calculated + * above, delaying poll_enabled_time uS to check if the regulator + * actually got enabled. + * If the regulator isn't enabled after our delay helper has expired, + * return -ETIMEDOUT. + */ + if (rdev->desc->poll_enabled_time) { + int time_remaining = delay; + + while (time_remaining > 0) { + fsleep(rdev->desc->poll_enabled_time); + + if (rdev->desc->ops->get_status) { + ret = _regulator_check_status_enabled(rdev); + if (ret < 0) + return ret; + else if (ret) + break; + } else if (rdev->desc->ops->is_enabled(rdev)) + break; + + time_remaining -= rdev->desc->poll_enabled_time; + } + + if (time_remaining <= 0) { + rdev_err(rdev, "Enabled check timed out\n"); + return -ETIMEDOUT; + } + } else { + fsleep(delay); } trace_regulator_enable_complete(rdev_get_name(rdev)); @@ -1622,37 +2962,134 @@ static int _regulator_do_enable(struct regulator_dev *rdev) return 0; } +/** + * _regulator_handle_consumer_enable - handle that a consumer enabled + * @regulator: regulator source + * + * Some things on a regulator consumer (like the contribution towards total + * load on the regulator) only have an effect when the consumer wants the + * regulator enabled. Explained in example with two consumers of the same + * regulator: + * consumer A: set_load(100); => total load = 0 + * consumer A: regulator_enable(); => total load = 100 + * consumer B: set_load(1000); => total load = 100 + * consumer B: regulator_enable(); => total load = 1100 + * consumer A: regulator_disable(); => total_load = 1000 + * + * This function (together with _regulator_handle_consumer_disable) is + * responsible for keeping track of the refcount for a given regulator consumer + * and applying / unapplying these things. + * + * Return: 0 on success or negative error number on failure. + */ +static int _regulator_handle_consumer_enable(struct regulator *regulator) +{ + int ret; + struct regulator_dev *rdev = regulator->rdev; + + lockdep_assert_held_once(&rdev->mutex.base); + + regulator->enable_count++; + if (regulator->uA_load && regulator->enable_count == 1) { + ret = drms_uA_update(rdev); + if (ret) + regulator->enable_count--; + return ret; + } + + return 0; +} + +/** + * _regulator_handle_consumer_disable - handle that a consumer disabled + * @regulator: regulator source + * + * The opposite of _regulator_handle_consumer_enable(). + * + * Return: 0 on success or a negative error number on failure. + */ +static int _regulator_handle_consumer_disable(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + + lockdep_assert_held_once(&rdev->mutex.base); + + if (!regulator->enable_count) { + rdev_err(rdev, "Underflow of regulator enable count\n"); + return -EINVAL; + } + + regulator->enable_count--; + if (regulator->uA_load && regulator->enable_count == 0) + return drms_uA_update(rdev); + + return 0; +} + /* locks held by regulator_enable() */ -static int _regulator_enable(struct regulator_dev *rdev) +static int _regulator_enable(struct regulator *regulator) { + struct regulator_dev *rdev = regulator->rdev; int ret; - /* check voltage and requested load before enabling */ - if (rdev->constraints && - (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) - drms_uA_update(rdev); + lockdep_assert_held_once(&rdev->mutex.base); + + if (rdev->use_count == 0 && rdev->supply) { + ret = _regulator_enable(rdev->supply); + if (ret < 0) + return ret; + } + + /* balance only if there are regulators coupled */ + if (rdev->coupling_desc.n_coupled > 1) { + ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); + if (ret < 0) + goto err_disable_supply; + } + + ret = _regulator_handle_consumer_enable(regulator); + if (ret < 0) + goto err_disable_supply; if (rdev->use_count == 0) { - /* The regulator may on if it's not switchable or left on */ + /* + * The regulator may already be enabled if it's not switchable + * or was left on + */ ret = _regulator_is_enabled(rdev); if (ret == -EINVAL || ret == 0) { - if (!_regulator_can_change_status(rdev)) - return -EPERM; + if (!regulator_ops_is_valid(rdev, + REGULATOR_CHANGE_STATUS)) { + ret = -EPERM; + goto err_consumer_disable; + } ret = _regulator_do_enable(rdev); if (ret < 0) - return ret; + goto err_consumer_disable; + _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, + NULL); } else if (ret < 0) { - rdev_err(rdev, "is_enabled() failed: %d\n", ret); - return ret; + rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); + goto err_consumer_disable; } /* Fallthrough on positive return values - already enabled */ } - rdev->use_count++; + if (regulator->enable_count == 1) + rdev->use_count++; return 0; + +err_consumer_disable: + _regulator_handle_consumer_disable(regulator); + +err_disable_supply: + if (rdev->use_count == 0 && rdev->supply) + _regulator_disable(rdev->supply); + + return ret; } /** @@ -1665,27 +3102,18 @@ static int _regulator_enable(struct regulator_dev *rdev) * * NOTE: the output value can be set by other drivers, boot loader or may be * hardwired in the regulator. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_enable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; - int ret = 0; - - if (regulator->always_on) - return 0; - - if (rdev->supply) { - ret = regulator_enable(rdev->supply); - if (ret != 0) - return ret; - } - - mutex_lock(&rdev->mutex); - ret = _regulator_enable(rdev); - mutex_unlock(&rdev->mutex); + struct ww_acquire_ctx ww_ctx; + int ret; - if (ret != 0 && rdev->supply) - regulator_disable(rdev->supply); + regulator_lock_dependent(rdev, &ww_ctx); + ret = _regulator_enable(regulator); + regulator_unlock_dependent(rdev, &ww_ctx); return ret; } @@ -1698,10 +3126,12 @@ static int _regulator_do_disable(struct regulator_dev *rdev) trace_regulator_disable(rdev_get_name(rdev)); if (rdev->ena_pin) { - ret = regulator_ena_gpio_ctrl(rdev, false); - if (ret < 0) - return ret; - rdev->ena_gpio_state = 0; + if (rdev->ena_gpio_state) { + ret = regulator_ena_gpio_ctrl(rdev, false); + if (ret < 0) + return ret; + rdev->ena_gpio_state = 0; + } } else if (rdev->desc->ops->disable) { ret = rdev->desc->ops->disable(rdev); @@ -1709,45 +3139,66 @@ static int _regulator_do_disable(struct regulator_dev *rdev) return ret; } + if (rdev->desc->off_on_delay) + rdev->last_off = ktime_get_boottime(); + trace_regulator_disable_complete(rdev_get_name(rdev)); - _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, - NULL); return 0; } /* locks held by regulator_disable() */ -static int _regulator_disable(struct regulator_dev *rdev) +static int _regulator_disable(struct regulator *regulator) { + struct regulator_dev *rdev = regulator->rdev; int ret = 0; - if (WARN(rdev->use_count <= 0, + lockdep_assert_held_once(&rdev->mutex.base); + + if (WARN(regulator->enable_count == 0, "unbalanced disables for %s\n", rdev_get_name(rdev))) return -EIO; - /* are we the last user and permitted to disable ? */ - if (rdev->use_count == 1 && - (rdev->constraints && !rdev->constraints->always_on)) { - - /* we are last user */ - if (_regulator_can_change_status(rdev)) { - ret = _regulator_do_disable(rdev); - if (ret < 0) { - rdev_err(rdev, "failed to disable\n"); - return ret; + if (regulator->enable_count == 1) { + /* disabling last enable_count from this regulator */ + /* are we the last user and permitted to disable ? */ + if (rdev->use_count == 1 && + (rdev->constraints && !rdev->constraints->always_on)) { + + /* we are last user */ + if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { + ret = _notifier_call_chain(rdev, + REGULATOR_EVENT_PRE_DISABLE, + NULL); + if (ret & NOTIFY_STOP_MASK) + return -EINVAL; + + ret = _regulator_do_disable(rdev); + if (ret < 0) { + rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); + _notifier_call_chain(rdev, + REGULATOR_EVENT_ABORT_DISABLE, + NULL); + return ret; + } + _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, + NULL); } + + rdev->use_count = 0; + } else if (rdev->use_count > 1) { + rdev->use_count--; } + } - rdev->use_count = 0; - } else if (rdev->use_count > 1) { + if (ret == 0) + ret = _regulator_handle_consumer_disable(regulator); - if (rdev->constraints && - (rdev->constraints->valid_ops_mask & - REGULATOR_CHANGE_DRMS)) - drms_uA_update(rdev); + if (ret == 0 && rdev->coupling_desc.n_coupled > 1) + ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); - rdev->use_count--; - } + if (ret == 0 && rdev->use_count == 0 && rdev->supply) + ret = _regulator_disable(rdev->supply); return ret; } @@ -1763,21 +3214,18 @@ static int _regulator_disable(struct regulator_dev *rdev) * NOTE: this will only disable the regulator output if no other consumer * devices have it enabled, the regulator device supports disabling and * machine constraints permit this operation. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_disable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; - int ret = 0; - - if (regulator->always_on) - return 0; - - mutex_lock(&rdev->mutex); - ret = _regulator_disable(rdev); - mutex_unlock(&rdev->mutex); + struct ww_acquire_ctx ww_ctx; + int ret; - if (ret == 0 && rdev->supply) - regulator_disable(rdev->supply); + regulator_lock_dependent(rdev, &ww_ctx); + ret = _regulator_disable(regulator); + regulator_unlock_dependent(rdev, &ww_ctx); return ret; } @@ -1788,20 +3236,25 @@ static int _regulator_force_disable(struct regulator_dev *rdev) { int ret = 0; - /* force disable */ - if (rdev->desc->ops->disable) { - /* ah well, who wants to live forever... */ - ret = rdev->desc->ops->disable(rdev); - if (ret < 0) { - rdev_err(rdev, "failed to force disable\n"); - return ret; - } - /* notify other consumers that power has been forced off */ + lockdep_assert_held_once(&rdev->mutex.base); + + ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | + REGULATOR_EVENT_PRE_DISABLE, NULL); + if (ret & NOTIFY_STOP_MASK) + return -EINVAL; + + ret = _regulator_do_disable(rdev); + if (ret < 0) { + rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | - REGULATOR_EVENT_DISABLE, NULL); + REGULATOR_EVENT_ABORT_DISABLE, NULL); + return ret; } - return ret; + _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | + REGULATOR_EVENT_DISABLE, NULL); + + return 0; } /** @@ -1812,20 +3265,31 @@ static int _regulator_force_disable(struct regulator_dev *rdev) * NOTE: this *will* disable the regulator output even if other consumer * devices have it enabled. This should be used for situations when device * damage will likely occur if the regulator is not disabled (e.g. over temp). + * + * Return: 0 on success or a negative error number on failure. */ int regulator_force_disable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; + struct ww_acquire_ctx ww_ctx; int ret; - mutex_lock(&rdev->mutex); - regulator->uA_load = 0; + regulator_lock_dependent(rdev, &ww_ctx); + ret = _regulator_force_disable(regulator->rdev); - mutex_unlock(&rdev->mutex); - if (rdev->supply) - while (rdev->open_count--) - regulator_disable(rdev->supply); + if (rdev->coupling_desc.n_coupled > 1) + regulator_balance_voltage(rdev, PM_SUSPEND_ON); + + if (regulator->uA_load) { + regulator->uA_load = 0; + ret = drms_uA_update(rdev); + } + + if (rdev->use_count != 0 && rdev->supply) + _regulator_disable(rdev->supply); + + regulator_unlock_dependent(rdev, &ww_ctx); return ret; } @@ -1835,38 +3299,49 @@ static void regulator_disable_work(struct work_struct *work) { struct regulator_dev *rdev = container_of(work, struct regulator_dev, disable_work.work); + struct ww_acquire_ctx ww_ctx; int count, i, ret; + struct regulator *regulator; + int total_count = 0; - mutex_lock(&rdev->mutex); + regulator_lock_dependent(rdev, &ww_ctx); - BUG_ON(!rdev->deferred_disables); + /* + * Workqueue functions queue the new work instance while the previous + * work instance is being processed. Cancel the queued work instance + * as the work instance under processing does the job of the queued + * work instance. + */ + cancel_delayed_work(&rdev->disable_work); - count = rdev->deferred_disables; - rdev->deferred_disables = 0; + list_for_each_entry(regulator, &rdev->consumer_list, list) { + count = regulator->deferred_disables; - for (i = 0; i < count; i++) { - ret = _regulator_disable(rdev); - if (ret != 0) - rdev_err(rdev, "Deferred disable failed: %d\n", ret); - } + if (!count) + continue; - mutex_unlock(&rdev->mutex); + total_count += count; + regulator->deferred_disables = 0; - if (rdev->supply) { for (i = 0; i < count; i++) { - ret = regulator_disable(rdev->supply); - if (ret != 0) { - rdev_err(rdev, - "Supply disable failed: %d\n", ret); - } + ret = _regulator_disable(regulator); + if (ret != 0) + rdev_err(rdev, "Deferred disable failed: %pe\n", + ERR_PTR(ret)); } } + WARN_ON(!total_count); + + if (rdev->coupling_desc.n_coupled > 1) + regulator_balance_voltage(rdev, PM_SUSPEND_ON); + + regulator_unlock_dependent(rdev, &ww_ctx); } /** * regulator_disable_deferred - disable regulator output with delay * @regulator: regulator source - * @ms: miliseconds until the regulator is disabled + * @ms: milliseconds until the regulator is disabled * * Execute regulator_disable() on the regulator after a delay. This * is intended for use with devices that require some time to quiesce. @@ -1874,102 +3349,26 @@ static void regulator_disable_work(struct work_struct *work) * NOTE: this will only disable the regulator output if no other consumer * devices have it enabled, the regulator device supports disabling and * machine constraints permit this operation. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_disable_deferred(struct regulator *regulator, int ms) { struct regulator_dev *rdev = regulator->rdev; - int ret; - - if (regulator->always_on) - return 0; if (!ms) return regulator_disable(regulator); - mutex_lock(&rdev->mutex); - rdev->deferred_disables++; - mutex_unlock(&rdev->mutex); + regulator_lock(rdev); + regulator->deferred_disables++; + mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, + msecs_to_jiffies(ms)); + regulator_unlock(rdev); - ret = schedule_delayed_work(&rdev->disable_work, - msecs_to_jiffies(ms)); - if (ret < 0) - return ret; - else - return 0; + return 0; } EXPORT_SYMBOL_GPL(regulator_disable_deferred); -/** - * regulator_is_enabled_regmap - standard is_enabled() for regmap users - * - * @rdev: regulator to operate on - * - * Regulators that use regmap for their register I/O can set the - * enable_reg and enable_mask fields in their descriptor and then use - * this as their is_enabled operation, saving some code. - */ -int regulator_is_enabled_regmap(struct regulator_dev *rdev) -{ - unsigned int val; - int ret; - - ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); - if (ret != 0) - return ret; - - if (rdev->desc->enable_is_inverted) - return (val & rdev->desc->enable_mask) == 0; - else - return (val & rdev->desc->enable_mask) != 0; -} -EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); - -/** - * regulator_enable_regmap - standard enable() for regmap users - * - * @rdev: regulator to operate on - * - * Regulators that use regmap for their register I/O can set the - * enable_reg and enable_mask fields in their descriptor and then use - * this as their enable() operation, saving some code. - */ -int regulator_enable_regmap(struct regulator_dev *rdev) -{ - unsigned int val; - - if (rdev->desc->enable_is_inverted) - val = 0; - else - val = rdev->desc->enable_mask; - - return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, - rdev->desc->enable_mask, val); -} -EXPORT_SYMBOL_GPL(regulator_enable_regmap); - -/** - * regulator_disable_regmap - standard disable() for regmap users - * - * @rdev: regulator to operate on - * - * Regulators that use regmap for their register I/O can set the - * enable_reg and enable_mask fields in their descriptor and then use - * this as their disable() operation, saving some code. - */ -int regulator_disable_regmap(struct regulator_dev *rdev) -{ - unsigned int val; - - if (rdev->desc->enable_is_inverted) - val = rdev->desc->enable_mask; - else - val = 0; - - return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, - rdev->desc->enable_mask, val); -} -EXPORT_SYMBOL_GPL(regulator_disable_regmap); - static int _regulator_is_enabled(struct regulator_dev *rdev) { /* A GPIO control always takes precedence */ @@ -1983,17 +3382,53 @@ static int _regulator_is_enabled(struct regulator_dev *rdev) return rdev->desc->ops->is_enabled(rdev); } +static int _regulator_list_voltage(struct regulator_dev *rdev, + unsigned selector, int lock) +{ + const struct regulator_ops *ops = rdev->desc->ops; + int ret; + + if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) + return rdev->desc->fixed_uV; + + if (ops->list_voltage) { + if (selector >= rdev->desc->n_voltages) + return -EINVAL; + if (selector < rdev->desc->linear_min_sel) + return 0; + if (lock) + regulator_lock(rdev); + ret = ops->list_voltage(rdev, selector); + if (lock) + regulator_unlock(rdev); + } else if (rdev->is_switch && rdev->supply) { + ret = _regulator_list_voltage(rdev->supply->rdev, + selector, lock); + } else { + return -EINVAL; + } + + if (ret > 0) { + if (ret < rdev->constraints->min_uV) + ret = 0; + else if (ret > rdev->constraints->max_uV) + ret = 0; + } + + return ret; +} + /** * regulator_is_enabled - is the regulator output enabled * @regulator: regulator source * - * Returns positive if the regulator driver backing the source/client - * has requested that the device be enabled, zero if it hasn't, else a - * negative errno code. - * * Note that the device backing this regulator handle can have multiple * users, so it might be enabled even if regulator_enable() was never * called for this particular source. + * + * Return: Positive if the regulator driver backing the source/client + * has requested that the device be enabled, zero if it hasn't, + * else a negative error number. */ int regulator_is_enabled(struct regulator *regulator) { @@ -2002,147 +3437,166 @@ int regulator_is_enabled(struct regulator *regulator) if (regulator->always_on) return 1; - mutex_lock(®ulator->rdev->mutex); + regulator_lock(regulator->rdev); ret = _regulator_is_enabled(regulator->rdev); - mutex_unlock(®ulator->rdev->mutex); + regulator_unlock(regulator->rdev); return ret; } EXPORT_SYMBOL_GPL(regulator_is_enabled); /** - * regulator_can_change_voltage - check if regulator can change voltage + * regulator_count_voltages - count regulator_list_voltage() selectors * @regulator: regulator source * - * Returns positive if the regulator driver backing the source/client - * can change its voltage, false otherwise. Usefull for detecting fixed - * or dummy regulators and disabling voltage change logic in the client - * driver. + * Return: Number of selectors for @regulator, or negative error number. + * + * Selectors are numbered starting at zero, and typically correspond to + * bitfields in hardware registers. */ -int regulator_can_change_voltage(struct regulator *regulator) +int regulator_count_voltages(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; - if (rdev->constraints && - (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { - if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) - return 1; + if (rdev->desc->n_voltages) + return rdev->desc->n_voltages; - if (rdev->desc->continuous_voltage_range && - rdev->constraints->min_uV && rdev->constraints->max_uV && - rdev->constraints->min_uV != rdev->constraints->max_uV) - return 1; - } + if (!rdev->is_switch || !rdev->supply) + return -EINVAL; - return 0; + return regulator_count_voltages(rdev->supply); } -EXPORT_SYMBOL_GPL(regulator_can_change_voltage); +EXPORT_SYMBOL_GPL(regulator_count_voltages); /** - * regulator_count_voltages - count regulator_list_voltage() selectors + * regulator_list_voltage - enumerate supported voltages * @regulator: regulator source + * @selector: identify voltage to list + * Context: can sleep * - * Returns number of selectors, or negative errno. Selectors are - * numbered starting at zero, and typically correspond to bitfields - * in hardware registers. + * Return: Voltage for @selector that can be passed to regulator_set_voltage(), + * 0 if @selector can't be used on this system, or a negative error + * number on failure. */ -int regulator_count_voltages(struct regulator *regulator) +int regulator_list_voltage(struct regulator *regulator, unsigned selector) { - struct regulator_dev *rdev = regulator->rdev; + return _regulator_list_voltage(regulator->rdev, selector, 1); +} +EXPORT_SYMBOL_GPL(regulator_list_voltage); + +/** + * regulator_get_regmap - get the regulator's register map + * @regulator: regulator source + * + * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR() + * encoded -%EOPNOTSUPP if @regulator doesn't use regmap. + */ +struct regmap *regulator_get_regmap(struct regulator *regulator) +{ + struct regmap *map = regulator->rdev->regmap; - return rdev->desc->n_voltages ? : -EINVAL; + return map ? map : ERR_PTR(-EOPNOTSUPP); } -EXPORT_SYMBOL_GPL(regulator_count_voltages); +EXPORT_SYMBOL_GPL(regulator_get_regmap); /** - * regulator_list_voltage_linear - List voltages with simple calculation + * regulator_get_hardware_vsel_register - get the HW voltage selector register + * @regulator: regulator source + * @vsel_reg: voltage selector register, output parameter + * @vsel_mask: mask for voltage selector bitfield, output parameter + * + * Returns the hardware register offset and bitmask used for setting the + * regulator voltage. This might be useful when configuring voltage-scaling + * hardware or firmware that can make I2C requests behind the kernel's back, + * for example. * - * @rdev: Regulator device - * @selector: Selector to convert into a voltage + * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support + * voltage selectors. * - * Regulators with a simple linear mapping between voltages and - * selectors can set min_uV and uV_step in the regulator descriptor - * and then use this function as their list_voltage() operation, + * On success, the output parameters @vsel_reg and @vsel_mask are filled in + * and 0 is returned, otherwise a negative error number is returned. */ -int regulator_list_voltage_linear(struct regulator_dev *rdev, - unsigned int selector) +int regulator_get_hardware_vsel_register(struct regulator *regulator, + unsigned *vsel_reg, + unsigned *vsel_mask) { - if (selector >= rdev->desc->n_voltages) - return -EINVAL; - if (selector < rdev->desc->linear_min_sel) - return 0; + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; + + if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) + return -EOPNOTSUPP; - selector -= rdev->desc->linear_min_sel; + *vsel_reg = rdev->desc->vsel_reg; + *vsel_mask = rdev->desc->vsel_mask; - return rdev->desc->min_uV + (rdev->desc->uV_step * selector); + return 0; } -EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); +EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); /** - * regulator_list_voltage_table - List voltages with table based mapping + * regulator_list_hardware_vsel - get the HW-specific register value for a selector + * @regulator: regulator source + * @selector: identify voltage to list * - * @rdev: Regulator device - * @selector: Selector to convert into a voltage + * Converts the selector to a hardware-specific voltage selector that can be + * directly written to the regulator registers. The address of the voltage + * register can be determined by calling @regulator_get_hardware_vsel_register. * - * Regulators with table based mapping between voltages and - * selectors can set volt_table in the regulator descriptor - * and then use this function as their list_voltage() operation. + * Return: 0 on success, -%EINVAL if the selector is outside the supported + * range, or -%EOPNOTSUPP if the regulator does not support voltage + * selectors. */ -int regulator_list_voltage_table(struct regulator_dev *rdev, - unsigned int selector) +int regulator_list_hardware_vsel(struct regulator *regulator, + unsigned selector) { - if (!rdev->desc->volt_table) { - BUG_ON(!rdev->desc->volt_table); - return -EINVAL; - } + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; if (selector >= rdev->desc->n_voltages) return -EINVAL; + if (selector < rdev->desc->linear_min_sel) + return 0; + if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) + return -EOPNOTSUPP; - return rdev->desc->volt_table[selector]; + return selector; } -EXPORT_SYMBOL_GPL(regulator_list_voltage_table); +EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); /** - * regulator_list_voltage - enumerate supported voltages + * regulator_hardware_enable - access the HW for enable/disable regulator * @regulator: regulator source - * @selector: identify voltage to list - * Context: can sleep + * @enable: true for enable, false for disable + * + * Request that the regulator be enabled/disabled with the regulator output at + * the predefined voltage or current value. * - * Returns a voltage that can be passed to @regulator_set_voltage(), - * zero if this selector code can't be used on this system, or a - * negative errno. + * Return: 0 on success or a negative error number on failure. */ -int regulator_list_voltage(struct regulator *regulator, unsigned selector) +int regulator_hardware_enable(struct regulator *regulator, bool enable) { - struct regulator_dev *rdev = regulator->rdev; - struct regulator_ops *ops = rdev->desc->ops; - int ret; - - if (!ops->list_voltage || selector >= rdev->desc->n_voltages) - return -EINVAL; + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; + int ret = -EOPNOTSUPP; - mutex_lock(&rdev->mutex); - ret = ops->list_voltage(rdev, selector); - mutex_unlock(&rdev->mutex); + if (!rdev->exclusive || !ops || !ops->enable || !ops->disable) + return ret; - if (ret > 0) { - if (ret < rdev->constraints->min_uV) - ret = 0; - else if (ret > rdev->constraints->max_uV) - ret = 0; - } + if (enable) + ret = ops->enable(rdev); + else + ret = ops->disable(rdev); return ret; } -EXPORT_SYMBOL_GPL(regulator_list_voltage); +EXPORT_SYMBOL_GPL(regulator_hardware_enable); /** * regulator_get_linear_step - return the voltage step size between VSEL values * @regulator: regulator source * - * Returns the voltage step size between VSEL values for linear - * regulators, or return 0 if the regulator isn't a linear regulator. + * Return: The voltage step size between VSEL values for linear regulators, + * or 0 if the regulator isn't a linear regulator. */ unsigned int regulator_get_linear_step(struct regulator *regulator) { @@ -2159,7 +3613,9 @@ EXPORT_SYMBOL_GPL(regulator_get_linear_step); * @min_uV: Minimum required voltage in uV. * @max_uV: Maximum required voltage in uV. * - * Returns a boolean or a negative error code. + * Return: 1 if the voltage range is supported, 0 if not, or a negative error + * number if @regulator's voltage can't be changed and voltage readback + * failed. */ int regulator_is_supported_voltage(struct regulator *regulator, int min_uV, int max_uV) @@ -2168,10 +3624,10 @@ int regulator_is_supported_voltage(struct regulator *regulator, int i, voltages, ret; /* If we can't change voltage check the current voltage */ - if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { ret = regulator_get_voltage(regulator); if (ret >= 0) - return (min_uV <= ret && ret <= max_uV); + return min_uV <= ret && ret <= max_uV; else return ret; } @@ -2183,7 +3639,7 @@ int regulator_is_supported_voltage(struct regulator *regulator, ret = regulator_count_voltages(regulator); if (ret < 0) - return ret; + return 0; voltages = ret; for (i = 0; i < voltages; i++) { @@ -2197,176 +3653,160 @@ int regulator_is_supported_voltage(struct regulator *regulator, } EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); -/** - * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users - * - * @rdev: regulator to operate on - * - * Regulators that use regmap for their register I/O can set the - * vsel_reg and vsel_mask fields in their descriptor and then use this - * as their get_voltage_vsel operation, saving some code. - */ -int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) +static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, + int max_uV) { - unsigned int val; - int ret; + const struct regulator_desc *desc = rdev->desc; - ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); - if (ret != 0) - return ret; + if (desc->ops->map_voltage) + return desc->ops->map_voltage(rdev, min_uV, max_uV); - val &= rdev->desc->vsel_mask; - val >>= ffs(rdev->desc->vsel_mask) - 1; + if (desc->ops->list_voltage == regulator_list_voltage_linear) + return regulator_map_voltage_linear(rdev, min_uV, max_uV); - return val; + if (desc->ops->list_voltage == regulator_list_voltage_linear_range) + return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); + + if (desc->ops->list_voltage == + regulator_list_voltage_pickable_linear_range) + return regulator_map_voltage_pickable_linear_range(rdev, + min_uV, max_uV); + + return regulator_map_voltage_iterate(rdev, min_uV, max_uV); } -EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); -/** - * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users - * - * @rdev: regulator to operate on - * @sel: Selector to set - * - * Regulators that use regmap for their register I/O can set the - * vsel_reg and vsel_mask fields in their descriptor and then use this - * as their set_voltage_vsel operation, saving some code. - */ -int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) +static int _regulator_call_set_voltage(struct regulator_dev *rdev, + int min_uV, int max_uV, + unsigned *selector) { + struct pre_voltage_change_data data; int ret; - sel <<= ffs(rdev->desc->vsel_mask) - 1; + data.old_uV = regulator_get_voltage_rdev(rdev); + data.min_uV = min_uV; + data.max_uV = max_uV; + ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, + &data); + if (ret & NOTIFY_STOP_MASK) + return -EINVAL; - ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, - rdev->desc->vsel_mask, sel); - if (ret) + ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); + if (ret >= 0) return ret; - if (rdev->desc->apply_bit) - ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, - rdev->desc->apply_bit, - rdev->desc->apply_bit); + _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, + (void *)data.old_uV); + return ret; } -EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); -/** - * regulator_map_voltage_iterate - map_voltage() based on list_voltage() - * - * @rdev: Regulator to operate on - * @min_uV: Lower bound for voltage - * @max_uV: Upper bound for voltage - * - * Drivers implementing set_voltage_sel() and list_voltage() can use - * this as their map_voltage() operation. It will find a suitable - * voltage by calling list_voltage() until it gets something in bounds - * for the requested voltages. - */ -int regulator_map_voltage_iterate(struct regulator_dev *rdev, - int min_uV, int max_uV) +static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, + int uV, unsigned selector) { - int best_val = INT_MAX; - int selector = 0; - int i, ret; - - /* Find the smallest voltage that falls within the specified - * range. - */ - for (i = 0; i < rdev->desc->n_voltages; i++) { - ret = rdev->desc->ops->list_voltage(rdev, i); - if (ret < 0) - continue; - - if (ret < best_val && ret >= min_uV && ret <= max_uV) { - best_val = ret; - selector = i; - } - } + struct pre_voltage_change_data data; + int ret; - if (best_val != INT_MAX) - return selector; - else + data.old_uV = regulator_get_voltage_rdev(rdev); + data.min_uV = uV; + data.max_uV = uV; + ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, + &data); + if (ret & NOTIFY_STOP_MASK) return -EINVAL; -} -EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); - -/** - * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list - * - * @rdev: Regulator to operate on - * @min_uV: Lower bound for voltage - * @max_uV: Upper bound for voltage - * - * Drivers that have ascendant voltage list can use this as their - * map_voltage() operation. - */ -int regulator_map_voltage_ascend(struct regulator_dev *rdev, - int min_uV, int max_uV) -{ - int i, ret; - for (i = 0; i < rdev->desc->n_voltages; i++) { - ret = rdev->desc->ops->list_voltage(rdev, i); - if (ret < 0) - continue; - - if (ret > max_uV) - break; + ret = rdev->desc->ops->set_voltage_sel(rdev, selector); + if (ret >= 0) + return ret; - if (ret >= min_uV && ret <= max_uV) - return i; - } + _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, + (void *)data.old_uV); - return -EINVAL; + return ret; } -EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); -/** - * regulator_map_voltage_linear - map_voltage() for simple linear mappings - * - * @rdev: Regulator to operate on - * @min_uV: Lower bound for voltage - * @max_uV: Upper bound for voltage - * - * Drivers providing min_uV and uV_step in their regulator_desc can - * use this as their map_voltage() operation. - */ -int regulator_map_voltage_linear(struct regulator_dev *rdev, - int min_uV, int max_uV) +static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, + int uV, int new_selector) { - int ret, voltage; + const struct regulator_ops *ops = rdev->desc->ops; + int diff, old_sel, curr_sel, ret; - /* Allow uV_step to be 0 for fixed voltage */ - if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { - if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) - return 0; - else - return -EINVAL; - } + /* Stepping is only needed if the regulator is enabled. */ + if (!_regulator_is_enabled(rdev)) + goto final_set; - if (!rdev->desc->uV_step) { - BUG_ON(!rdev->desc->uV_step); + if (!ops->get_voltage_sel) return -EINVAL; - } - if (min_uV < rdev->desc->min_uV) - min_uV = rdev->desc->min_uV; + old_sel = ops->get_voltage_sel(rdev); + if (old_sel < 0) + return old_sel; - ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); - if (ret < 0) - return ret; + diff = new_selector - old_sel; + if (diff == 0) + return 0; /* No change needed. */ - ret += rdev->desc->linear_min_sel; + if (diff > 0) { + /* Stepping up. */ + for (curr_sel = old_sel + rdev->desc->vsel_step; + curr_sel < new_selector; + curr_sel += rdev->desc->vsel_step) { + /* + * Call the callback directly instead of using + * _regulator_call_set_voltage_sel() as we don't + * want to notify anyone yet. Same in the branch + * below. + */ + ret = ops->set_voltage_sel(rdev, curr_sel); + if (ret) + goto try_revert; + } + } else { + /* Stepping down. */ + for (curr_sel = old_sel - rdev->desc->vsel_step; + curr_sel > new_selector; + curr_sel -= rdev->desc->vsel_step) { + ret = ops->set_voltage_sel(rdev, curr_sel); + if (ret) + goto try_revert; + } + } - /* Map back into a voltage to verify we're still in bounds */ - voltage = rdev->desc->ops->list_voltage(rdev, ret); - if (voltage < min_uV || voltage > max_uV) - return -EINVAL; +final_set: + /* The final selector will trigger the notifiers. */ + return _regulator_call_set_voltage_sel(rdev, uV, new_selector); +try_revert: + /* + * At least try to return to the previous voltage if setting a new + * one failed. + */ + (void)ops->set_voltage_sel(rdev, old_sel); return ret; } -EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); + +static int _regulator_set_voltage_time(struct regulator_dev *rdev, + int old_uV, int new_uV) +{ + unsigned int ramp_delay = 0; + + if (rdev->constraints->ramp_delay) + ramp_delay = rdev->constraints->ramp_delay; + else if (rdev->desc->ramp_delay) + ramp_delay = rdev->desc->ramp_delay; + else if (rdev->constraints->settling_time) + return rdev->constraints->settling_time; + else if (rdev->constraints->settling_time_up && + (new_uV > old_uV)) + return rdev->constraints->settling_time_up; + else if (rdev->constraints->settling_time_down && + (new_uV < old_uV)) + return rdev->constraints->settling_time_down; + + if (ramp_delay == 0) + return 0; + + return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); +} static int _regulator_do_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV) @@ -2376,6 +3816,8 @@ static int _regulator_do_set_voltage(struct regulator_dev *rdev, int best_val = 0; unsigned int selector; int old_selector = -1; + const struct regulator_ops *ops = rdev->desc->ops; + int old_uV = regulator_get_voltage_rdev(rdev); trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); @@ -2387,48 +3829,38 @@ static int _regulator_do_set_voltage(struct regulator_dev *rdev, * info to call set_voltage_time_sel(). */ if (_regulator_is_enabled(rdev) && - rdev->desc->ops->set_voltage_time_sel && - rdev->desc->ops->get_voltage_sel) { - old_selector = rdev->desc->ops->get_voltage_sel(rdev); + ops->set_voltage_time_sel && ops->get_voltage_sel) { + old_selector = ops->get_voltage_sel(rdev); if (old_selector < 0) return old_selector; } - if (rdev->desc->ops->set_voltage) { - ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, - &selector); + if (ops->set_voltage) { + ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, + &selector); if (ret >= 0) { - if (rdev->desc->ops->list_voltage) - best_val = rdev->desc->ops->list_voltage(rdev, - selector); - else - best_val = _regulator_get_voltage(rdev); - } - - } else if (rdev->desc->ops->set_voltage_sel) { - if (rdev->desc->ops->map_voltage) { - ret = rdev->desc->ops->map_voltage(rdev, min_uV, - max_uV); - } else { - if (rdev->desc->ops->list_voltage == - regulator_list_voltage_linear) - ret = regulator_map_voltage_linear(rdev, - min_uV, max_uV); + if (ops->list_voltage) + best_val = ops->list_voltage(rdev, + selector); else - ret = regulator_map_voltage_iterate(rdev, - min_uV, max_uV); + best_val = regulator_get_voltage_rdev(rdev); } + } else if (ops->set_voltage_sel) { + ret = regulator_map_voltage(rdev, min_uV, max_uV); if (ret >= 0) { - best_val = rdev->desc->ops->list_voltage(rdev, ret); + best_val = ops->list_voltage(rdev, ret); if (min_uV <= best_val && max_uV >= best_val) { selector = ret; if (old_selector == selector) ret = 0; + else if (rdev->desc->vsel_step) + ret = _regulator_set_voltage_sel_step( + rdev, best_val, selector); else - ret = rdev->desc->ops->set_voltage_sel( - rdev, ret); + ret = _regulator_call_set_voltage_sel( + rdev, best_val, selector); } else { ret = -EINVAL; } @@ -2437,72 +3869,116 @@ static int _regulator_do_set_voltage(struct regulator_dev *rdev, ret = -EINVAL; } - /* Call set_voltage_time_sel if successfully obtained old_selector */ - if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && - old_selector != selector && rdev->desc->ops->set_voltage_time_sel) { + if (ret) + goto out; - delay = rdev->desc->ops->set_voltage_time_sel(rdev, - old_selector, selector); - if (delay < 0) { - rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", - delay); - delay = 0; + if (ops->set_voltage_time_sel) { + /* + * Call set_voltage_time_sel if successfully obtained + * old_selector + */ + if (old_selector >= 0 && old_selector != selector) + delay = ops->set_voltage_time_sel(rdev, old_selector, + selector); + } else { + if (old_uV != best_val) { + if (ops->set_voltage_time) + delay = ops->set_voltage_time(rdev, old_uV, + best_val); + else + delay = _regulator_set_voltage_time(rdev, + old_uV, + best_val); } + } - /* Insert any necessary delays */ - if (delay >= 1000) { - mdelay(delay / 1000); - udelay(delay % 1000); - } else if (delay) { - udelay(delay); - } + if (delay < 0) { + rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); + delay = 0; } - if (ret == 0 && best_val >= 0) { + /* Insert any necessary delays */ + fsleep(delay); + + if (best_val >= 0) { unsigned long data = best_val; _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, (void *)data); } +out: trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); return ret; } -/** - * regulator_set_voltage - set regulator output voltage - * @regulator: regulator source - * @min_uV: Minimum required voltage in uV - * @max_uV: Maximum acceptable voltage in uV - * - * Sets a voltage regulator to the desired output voltage. This can be set - * during any regulator state. IOW, regulator can be disabled or enabled. - * - * If the regulator is enabled then the voltage will change to the new value - * immediately otherwise if the regulator is disabled the regulator will - * output at the new voltage when enabled. - * - * NOTE: If the regulator is shared between several devices then the lowest - * request voltage that meets the system constraints will be used. - * Regulator system constraints must be set for this regulator before - * calling this function otherwise this call will fail. - */ -int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) +static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, + int min_uV, int max_uV, suspend_state_t state) +{ + struct regulator_state *rstate; + int uV, sel; + + rstate = regulator_get_suspend_state(rdev, state); + if (rstate == NULL) + return -EINVAL; + + if (min_uV < rstate->min_uV) + min_uV = rstate->min_uV; + if (max_uV > rstate->max_uV) + max_uV = rstate->max_uV; + + sel = regulator_map_voltage(rdev, min_uV, max_uV); + if (sel < 0) + return sel; + + uV = rdev->desc->ops->list_voltage(rdev, sel); + if (uV >= min_uV && uV <= max_uV) + rstate->uV = uV; + + return 0; +} + +static int regulator_get_voltage_delta(struct regulator_dev *rdev, int uV) +{ + int current_uV = regulator_get_voltage_rdev(rdev); + + if (current_uV < 0) + return current_uV; + + return abs(current_uV - uV); +} + +static int regulator_set_voltage_unlocked(struct regulator *regulator, + int min_uV, int max_uV, + suspend_state_t state) { struct regulator_dev *rdev = regulator->rdev; + struct regulator_voltage *voltage = ®ulator->voltage[state]; int ret = 0; + int current_uV, delta, new_delta; int old_min_uV, old_max_uV; - mutex_lock(&rdev->mutex); - /* If we're setting the same range as last time the change * should be a noop (some cpufreq implementations use the same * voltage for multiple frequencies, for example). */ - if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) + if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) goto out; + /* If we're trying to set a range that overlaps the current voltage, + * return successfully even though the regulator does not support + * changing the voltage. + */ + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { + current_uV = regulator_get_voltage_rdev(rdev); + if (min_uV <= current_uV && current_uV <= max_uV) { + voltage->min_uV = min_uV; + voltage->max_uV = max_uV; + goto out; + } + } + /* sanity check */ if (!rdev->desc->ops->set_voltage && !rdev->desc->ops->set_voltage_sel) { @@ -2514,32 +3990,527 @@ int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) ret = regulator_check_voltage(rdev, &min_uV, &max_uV); if (ret < 0) goto out; - + /* restore original values in case of error */ - old_min_uV = regulator->min_uV; - old_max_uV = regulator->max_uV; - regulator->min_uV = min_uV; - regulator->max_uV = max_uV; + old_min_uV = voltage->min_uV; + old_max_uV = voltage->max_uV; + voltage->min_uV = min_uV; + voltage->max_uV = max_uV; - ret = regulator_check_consumers(rdev, &min_uV, &max_uV); - if (ret < 0) - goto out2; + /* for not coupled regulators this will just set the voltage */ + ret = regulator_balance_voltage(rdev, state); + if (ret < 0) { + voltage->min_uV = old_min_uV; + voltage->max_uV = old_max_uV; + } + + if (rdev->constraints->max_uV_step > 0) { + /* For regulators with a maximum voltage step, reaching the desired + * voltage might take a few retries. + */ + ret = regulator_get_voltage_delta(rdev, min_uV); + if (ret < 0) + goto out; + + delta = ret; + + while (delta > 0) { + ret = regulator_balance_voltage(rdev, state); + if (ret < 0) + goto out; + + ret = regulator_get_voltage_delta(rdev, min_uV); + if (ret < 0) + goto out; + + new_delta = ret; + + /* check that voltage is converging quickly enough */ + if (delta - new_delta < rdev->constraints->max_uV_step) { + ret = -EWOULDBLOCK; + goto out; + } + + delta = new_delta; + } + } + +out: + return ret; +} + +int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, + int max_uV, suspend_state_t state) +{ + int best_supply_uV = 0; + int supply_change_uV = 0; + int ret; + + if (rdev->supply && + regulator_ops_is_valid(rdev->supply->rdev, + REGULATOR_CHANGE_VOLTAGE) && + (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || + rdev->desc->ops->get_voltage_sel))) { + int current_supply_uV; + int selector; + + selector = regulator_map_voltage(rdev, min_uV, max_uV); + if (selector < 0) { + ret = selector; + goto out; + } - ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); + best_supply_uV = _regulator_list_voltage(rdev, selector, 0); + if (best_supply_uV < 0) { + ret = best_supply_uV; + goto out; + } + + best_supply_uV += rdev->desc->min_dropout_uV; + + current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); + if (current_supply_uV < 0) { + ret = current_supply_uV; + goto out; + } + + supply_change_uV = best_supply_uV - current_supply_uV; + } + + if (supply_change_uV > 0) { + ret = regulator_set_voltage_unlocked(rdev->supply, + best_supply_uV, INT_MAX, state); + if (ret) { + dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", + ERR_PTR(ret)); + goto out; + } + } + + if (state == PM_SUSPEND_ON) + ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); + else + ret = _regulator_do_set_suspend_voltage(rdev, min_uV, + max_uV, state); if (ret < 0) - goto out2; - + goto out; + + if (supply_change_uV < 0) { + ret = regulator_set_voltage_unlocked(rdev->supply, + best_supply_uV, INT_MAX, state); + if (ret) + dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", + ERR_PTR(ret)); + /* No need to fail here */ + ret = 0; + } + +out: + return ret; +} +EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); + +static int regulator_limit_voltage_step(struct regulator_dev *rdev, + int *current_uV, int *min_uV) +{ + struct regulation_constraints *constraints = rdev->constraints; + + /* Limit voltage change only if necessary */ + if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) + return 1; + + if (*current_uV < 0) { + *current_uV = regulator_get_voltage_rdev(rdev); + + if (*current_uV < 0) + return *current_uV; + } + + if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) + return 1; + + /* Clamp target voltage within the given step */ + if (*current_uV < *min_uV) + *min_uV = min(*current_uV + constraints->max_uV_step, + *min_uV); + else + *min_uV = max(*current_uV - constraints->max_uV_step, + *min_uV); + + return 0; +} + +static int regulator_get_optimal_voltage(struct regulator_dev *rdev, + int *current_uV, + int *min_uV, int *max_uV, + suspend_state_t state, + int n_coupled) +{ + struct coupling_desc *c_desc = &rdev->coupling_desc; + struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; + struct regulation_constraints *constraints = rdev->constraints; + int desired_min_uV = 0, desired_max_uV = INT_MAX; + int max_current_uV = 0, min_current_uV = INT_MAX; + int highest_min_uV = 0, target_uV, possible_uV; + int i, ret, max_spread; + bool done; + + *current_uV = -1; + + /* + * If there are no coupled regulators, simply set the voltage + * demanded by consumers. + */ + if (n_coupled == 1) { + /* + * If consumers don't provide any demands, set voltage + * to min_uV + */ + desired_min_uV = constraints->min_uV; + desired_max_uV = constraints->max_uV; + + ret = regulator_check_consumers(rdev, + &desired_min_uV, + &desired_max_uV, state); + if (ret < 0) + return ret; + + done = true; + + goto finish; + } + + /* Find highest min desired voltage */ + for (i = 0; i < n_coupled; i++) { + int tmp_min = 0; + int tmp_max = INT_MAX; + + lockdep_assert_held_once(&c_rdevs[i]->mutex.base); + + ret = regulator_check_consumers(c_rdevs[i], + &tmp_min, + &tmp_max, state); + if (ret < 0) + return ret; + + ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); + if (ret < 0) + return ret; + + highest_min_uV = max(highest_min_uV, tmp_min); + + if (i == 0) { + desired_min_uV = tmp_min; + desired_max_uV = tmp_max; + } + } + + max_spread = constraints->max_spread[0]; + + /* + * Let target_uV be equal to the desired one if possible. + * If not, set it to minimum voltage, allowed by other coupled + * regulators. + */ + target_uV = max(desired_min_uV, highest_min_uV - max_spread); + + /* + * Find min and max voltages, which currently aren't violating + * max_spread. + */ + for (i = 1; i < n_coupled; i++) { + int tmp_act; + + if (!_regulator_is_enabled(c_rdevs[i])) + continue; + + tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); + if (tmp_act < 0) + return tmp_act; + + min_current_uV = min(tmp_act, min_current_uV); + max_current_uV = max(tmp_act, max_current_uV); + } + + /* There aren't any other regulators enabled */ + if (max_current_uV == 0) { + possible_uV = target_uV; + } else { + /* + * Correct target voltage, so as it currently isn't + * violating max_spread + */ + possible_uV = max(target_uV, max_current_uV - max_spread); + possible_uV = min(possible_uV, min_current_uV + max_spread); + } + + if (possible_uV > desired_max_uV) + return -EINVAL; + + done = (possible_uV == target_uV); + desired_min_uV = possible_uV; + +finish: + /* Apply max_uV_step constraint if necessary */ + if (state == PM_SUSPEND_ON) { + ret = regulator_limit_voltage_step(rdev, current_uV, + &desired_min_uV); + if (ret < 0) + return ret; + + if (ret == 0) + done = false; + } + + /* Set current_uV if wasn't done earlier in the code and if necessary */ + if (n_coupled > 1 && *current_uV == -1) { + + if (_regulator_is_enabled(rdev)) { + ret = regulator_get_voltage_rdev(rdev); + if (ret < 0) + return ret; + + *current_uV = ret; + } else { + *current_uV = desired_min_uV; + } + } + + *min_uV = desired_min_uV; + *max_uV = desired_max_uV; + + return done; +} + +int regulator_do_balance_voltage(struct regulator_dev *rdev, + suspend_state_t state, bool skip_coupled) +{ + struct regulator_dev **c_rdevs; + struct regulator_dev *best_rdev; + struct coupling_desc *c_desc = &rdev->coupling_desc; + int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; + unsigned int delta, best_delta; + unsigned long c_rdev_done = 0; + bool best_c_rdev_done; + + c_rdevs = c_desc->coupled_rdevs; + n_coupled = skip_coupled ? 1 : c_desc->n_coupled; + + /* + * Find the best possible voltage change on each loop. Leave the loop + * if there isn't any possible change. + */ + do { + best_c_rdev_done = false; + best_delta = 0; + best_min_uV = 0; + best_max_uV = 0; + best_c_rdev = 0; + best_rdev = NULL; + + /* + * Find highest difference between optimal voltage + * and current voltage. + */ + for (i = 0; i < n_coupled; i++) { + /* + * optimal_uV is the best voltage that can be set for + * i-th regulator at the moment without violating + * max_spread constraint in order to balance + * the coupled voltages. + */ + int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; + + if (test_bit(i, &c_rdev_done)) + continue; + + ret = regulator_get_optimal_voltage(c_rdevs[i], + ¤t_uV, + &optimal_uV, + &optimal_max_uV, + state, n_coupled); + if (ret < 0) + goto out; + + delta = abs(optimal_uV - current_uV); + + if (delta && best_delta <= delta) { + best_c_rdev_done = ret; + best_delta = delta; + best_rdev = c_rdevs[i]; + best_min_uV = optimal_uV; + best_max_uV = optimal_max_uV; + best_c_rdev = i; + } + } + + /* Nothing to change, return successfully */ + if (!best_rdev) { + ret = 0; + goto out; + } + + ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, + best_max_uV, state); + + if (ret < 0) + goto out; + + if (best_c_rdev_done) + set_bit(best_c_rdev, &c_rdev_done); + + } while (n_coupled > 1); + out: - mutex_unlock(&rdev->mutex); return ret; -out2: - regulator->min_uV = old_min_uV; - regulator->max_uV = old_max_uV; - mutex_unlock(&rdev->mutex); +} + +static int regulator_balance_voltage(struct regulator_dev *rdev, + suspend_state_t state) +{ + struct coupling_desc *c_desc = &rdev->coupling_desc; + struct regulator_coupler *coupler = c_desc->coupler; + bool skip_coupled = false; + + /* + * If system is in a state other than PM_SUSPEND_ON, don't check + * other coupled regulators. + */ + if (state != PM_SUSPEND_ON) + skip_coupled = true; + + if (c_desc->n_resolved < c_desc->n_coupled) { + rdev_err(rdev, "Not all coupled regulators registered\n"); + return -EPERM; + } + + /* Invoke custom balancer for customized couplers */ + if (coupler && coupler->balance_voltage) + return coupler->balance_voltage(coupler, rdev, state); + + return regulator_do_balance_voltage(rdev, state, skip_coupled); +} + +/** + * regulator_set_voltage - set regulator output voltage + * @regulator: regulator source + * @min_uV: Minimum required voltage in uV + * @max_uV: Maximum acceptable voltage in uV + * + * Sets a voltage regulator to the desired output voltage. This can be set + * during any regulator state. IOW, regulator can be disabled or enabled. + * + * If the regulator is enabled then the voltage will change to the new value + * immediately otherwise if the regulator is disabled the regulator will + * output at the new voltage when enabled. + * + * NOTE: If the regulator is shared between several devices then the lowest + * request voltage that meets the system constraints will be used. + * Regulator system constraints must be set for this regulator before + * calling this function otherwise this call will fail. + * + * Return: 0 on success or a negative error number on failure. + */ +int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) +{ + struct ww_acquire_ctx ww_ctx; + int ret; + + regulator_lock_dependent(regulator->rdev, &ww_ctx); + + ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, + PM_SUSPEND_ON); + + regulator_unlock_dependent(regulator->rdev, &ww_ctx); + return ret; } EXPORT_SYMBOL_GPL(regulator_set_voltage); +static inline int regulator_suspend_toggle(struct regulator_dev *rdev, + suspend_state_t state, bool en) +{ + struct regulator_state *rstate; + + rstate = regulator_get_suspend_state(rdev, state); + if (rstate == NULL) + return -EINVAL; + + if (!rstate->changeable) + return -EPERM; + + rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; + + return 0; +} + +int regulator_suspend_enable(struct regulator_dev *rdev, + suspend_state_t state) +{ + return regulator_suspend_toggle(rdev, state, true); +} +EXPORT_SYMBOL_GPL(regulator_suspend_enable); + +int regulator_suspend_disable(struct regulator_dev *rdev, + suspend_state_t state) +{ + struct regulator *regulator; + struct regulator_voltage *voltage; + + /* + * if any consumer wants this regulator device keeping on in + * suspend states, don't set it as disabled. + */ + list_for_each_entry(regulator, &rdev->consumer_list, list) { + voltage = ®ulator->voltage[state]; + if (voltage->min_uV || voltage->max_uV) + return 0; + } + + return regulator_suspend_toggle(rdev, state, false); +} +EXPORT_SYMBOL_GPL(regulator_suspend_disable); + +static int _regulator_set_suspend_voltage(struct regulator *regulator, + int min_uV, int max_uV, + suspend_state_t state) +{ + struct regulator_dev *rdev = regulator->rdev; + struct regulator_state *rstate; + + rstate = regulator_get_suspend_state(rdev, state); + if (rstate == NULL) + return -EINVAL; + + if (rstate->min_uV == rstate->max_uV) { + rdev_err(rdev, "The suspend voltage can't be changed!\n"); + return -EPERM; + } + + return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); +} + +int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, + int max_uV, suspend_state_t state) +{ + struct ww_acquire_ctx ww_ctx; + int ret; + + /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ + if (regulator_check_states(state) || state == PM_SUSPEND_ON) + return -EINVAL; + + regulator_lock_dependent(regulator->rdev, &ww_ctx); + + ret = _regulator_set_suspend_voltage(regulator, min_uV, + max_uV, state); + + regulator_unlock_dependent(regulator->rdev, &ww_ctx); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); + /** * regulator_set_voltage_time - get raise/fall time * @regulator: regulator source @@ -2549,24 +4520,36 @@ EXPORT_SYMBOL_GPL(regulator_set_voltage); * Provided with the starting and ending voltage, this function attempts to * calculate the time in microseconds required to rise or fall to this new * voltage. + * + * Return: ramp time in microseconds, or a negative error number if calculation failed. */ int regulator_set_voltage_time(struct regulator *regulator, int old_uV, int new_uV) { - struct regulator_dev *rdev = regulator->rdev; - struct regulator_ops *ops = rdev->desc->ops; + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; int old_sel = -1; int new_sel = -1; int voltage; int i; + if (ops->set_voltage_time) + return ops->set_voltage_time(rdev, old_uV, new_uV); + else if (!ops->set_voltage_time_sel) + return _regulator_set_voltage_time(rdev, old_uV, new_uV); + /* Currently requires operations to do this */ - if (!ops->list_voltage || !ops->set_voltage_time_sel - || !rdev->desc->n_voltages) + if (!ops->list_voltage || !rdev->desc->n_voltages) return -EINVAL; for (i = 0; i < rdev->desc->n_voltages; i++) { /* We only look for exact voltage matches here */ + if (i < rdev->desc->linear_min_sel) + continue; + + if (old_sel >= 0 && new_sel >= 0) + break; + voltage = regulator_list_voltage(regulator, i); if (voltage < 0) return -EINVAL; @@ -2596,24 +4579,15 @@ EXPORT_SYMBOL_GPL(regulator_set_voltage_time); * * Drivers providing ramp_delay in regulation_constraints can use this as their * set_voltage_time_sel() operation. + * + * Return: ramp time in microseconds, or a negative error number if calculation failed. */ int regulator_set_voltage_time_sel(struct regulator_dev *rdev, unsigned int old_selector, unsigned int new_selector) { - unsigned int ramp_delay = 0; int old_volt, new_volt; - if (rdev->constraints->ramp_delay) - ramp_delay = rdev->constraints->ramp_delay; - else if (rdev->desc->ramp_delay) - ramp_delay = rdev->desc->ramp_delay; - - if (ramp_delay == 0) { - rdev_warn(rdev, "ramp_delay not set\n"); - return 0; - } - /* sanity check */ if (!rdev->desc->ops->list_voltage) return -EINVAL; @@ -2621,10 +4595,37 @@ int regulator_set_voltage_time_sel(struct regulator_dev *rdev, old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); - return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); + if (rdev->desc->ops->set_voltage_time) + return rdev->desc->ops->set_voltage_time(rdev, old_volt, + new_volt); + else + return _regulator_set_voltage_time(rdev, old_volt, new_volt); } EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); +int regulator_sync_voltage_rdev(struct regulator_dev *rdev) +{ + int ret; + + regulator_lock(rdev); + + if (!rdev->desc->ops->set_voltage && + !rdev->desc->ops->set_voltage_sel) { + ret = -EINVAL; + goto out; + } + + /* balance only, if regulator is coupled */ + if (rdev->coupling_desc.n_coupled > 1) + ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); + else + ret = -EOPNOTSUPP; + +out: + regulator_unlock(rdev); + return ret; +} + /** * regulator_sync_voltage - re-apply last regulator output voltage * @regulator: regulator source @@ -2632,13 +4633,19 @@ EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); * Re-apply the last configured voltage. This is intended to be used * where some external control source the consumer is cooperating with * has caused the configured voltage to change. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_sync_voltage(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; + struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; int ret, min_uV, max_uV; - mutex_lock(&rdev->mutex); + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) + return 0; + + regulator_lock(rdev); if (!rdev->desc->ops->set_voltage && !rdev->desc->ops->set_voltage_sel) { @@ -2647,34 +4654,55 @@ int regulator_sync_voltage(struct regulator *regulator) } /* This is only going to work if we've had a voltage configured. */ - if (!regulator->min_uV && !regulator->max_uV) { + if (!voltage->min_uV && !voltage->max_uV) { ret = -EINVAL; goto out; } - min_uV = regulator->min_uV; - max_uV = regulator->max_uV; + min_uV = voltage->min_uV; + max_uV = voltage->max_uV; /* This should be a paranoia check... */ ret = regulator_check_voltage(rdev, &min_uV, &max_uV); if (ret < 0) goto out; - ret = regulator_check_consumers(rdev, &min_uV, &max_uV); + ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); if (ret < 0) goto out; - ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); + /* balance only, if regulator is coupled */ + if (rdev->coupling_desc.n_coupled > 1) + ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); + else + ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); out: - mutex_unlock(&rdev->mutex); + regulator_unlock(rdev); return ret; } EXPORT_SYMBOL_GPL(regulator_sync_voltage); -static int _regulator_get_voltage(struct regulator_dev *rdev) +int regulator_get_voltage_rdev(struct regulator_dev *rdev) { int sel, ret; + bool bypassed; + + if (rdev->desc->ops->get_bypass) { + ret = rdev->desc->ops->get_bypass(rdev, &bypassed); + if (ret < 0) + return ret; + if (bypassed) { + /* if bypassed the regulator must have a supply */ + if (!rdev->supply) { + rdev_err(rdev, + "bypassed regulator has no supply!\n"); + return -EPROBE_DEFER; + } + + return regulator_get_voltage_rdev(rdev->supply->rdev); + } + } if (rdev->desc->ops->get_voltage_sel) { sel = rdev->desc->ops->get_voltage_sel(rdev); @@ -2685,6 +4713,12 @@ static int _regulator_get_voltage(struct regulator_dev *rdev) ret = rdev->desc->ops->get_voltage(rdev); } else if (rdev->desc->ops->list_voltage) { ret = rdev->desc->ops->list_voltage(rdev, 0); + } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { + ret = rdev->desc->fixed_uV; + } else if (rdev->supply) { + ret = regulator_get_voltage_rdev(rdev->supply->rdev); + } else if (rdev->supply_name) { + return -EPROBE_DEFER; } else { return -EINVAL; } @@ -2693,25 +4727,25 @@ static int _regulator_get_voltage(struct regulator_dev *rdev) return ret; return ret - rdev->constraints->uV_offset; } +EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); /** * regulator_get_voltage - get regulator output voltage * @regulator: regulator source * - * This returns the current regulator voltage in uV. + * Return: Current regulator voltage in uV, or a negative error number on failure. * * NOTE: If the regulator is disabled it will return the voltage value. This * function should not be used to determine regulator state. */ int regulator_get_voltage(struct regulator *regulator) { + struct ww_acquire_ctx ww_ctx; int ret; - mutex_lock(®ulator->rdev->mutex); - - ret = _regulator_get_voltage(regulator->rdev); - - mutex_unlock(®ulator->rdev->mutex); + regulator_lock_dependent(regulator->rdev, &ww_ctx); + ret = regulator_get_voltage_rdev(regulator->rdev); + regulator_unlock_dependent(regulator->rdev, &ww_ctx); return ret; } @@ -2732,6 +4766,8 @@ EXPORT_SYMBOL_GPL(regulator_get_voltage); * * NOTE: Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_set_current_limit(struct regulator *regulator, int min_uA, int max_uA) @@ -2739,7 +4775,7 @@ int regulator_set_current_limit(struct regulator *regulator, struct regulator_dev *rdev = regulator->rdev; int ret; - mutex_lock(&rdev->mutex); + regulator_lock(rdev); /* sanity check */ if (!rdev->desc->ops->set_current_limit) { @@ -2754,26 +4790,28 @@ int regulator_set_current_limit(struct regulator *regulator, ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); out: - mutex_unlock(&rdev->mutex); + regulator_unlock(rdev); return ret; } EXPORT_SYMBOL_GPL(regulator_set_current_limit); +static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) +{ + /* sanity check */ + if (!rdev->desc->ops->get_current_limit) + return -EINVAL; + + return rdev->desc->ops->get_current_limit(rdev); +} + static int _regulator_get_current_limit(struct regulator_dev *rdev) { int ret; - mutex_lock(&rdev->mutex); + regulator_lock(rdev); + ret = _regulator_get_current_limit_unlocked(rdev); + regulator_unlock(rdev); - /* sanity check */ - if (!rdev->desc->ops->get_current_limit) { - ret = -EINVAL; - goto out; - } - - ret = rdev->desc->ops->get_current_limit(rdev); -out: - mutex_unlock(&rdev->mutex); return ret; } @@ -2781,7 +4819,8 @@ out: * regulator_get_current_limit - get regulator output current * @regulator: regulator source * - * This returns the current supplied by the specified current sink in uA. + * Return: Current supplied by the specified current sink in uA, + * or a negative error number on failure. * * NOTE: If the regulator is disabled it will return the current value. This * function should not be used to determine regulator state. @@ -2793,6 +4832,87 @@ int regulator_get_current_limit(struct regulator *regulator) EXPORT_SYMBOL_GPL(regulator_get_current_limit); /** + * regulator_get_unclaimed_power_budget - get regulator unclaimed power budget + * @regulator: regulator source + * + * Return: Unclaimed power budget of the regulator in mW. + */ +int regulator_get_unclaimed_power_budget(struct regulator *regulator) +{ + return regulator->rdev->constraints->pw_budget_mW - + regulator->rdev->pw_requested_mW; +} +EXPORT_SYMBOL_GPL(regulator_get_unclaimed_power_budget); + +/** + * regulator_request_power_budget - request power budget on a regulator + * @regulator: regulator source + * @pw_req: Power requested + * + * Return: 0 on success or a negative error number on failure. + */ +int regulator_request_power_budget(struct regulator *regulator, + unsigned int pw_req) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret = 0, pw_tot_req; + + regulator_lock(rdev); + if (rdev->supply) { + ret = regulator_request_power_budget(rdev->supply, pw_req); + if (ret < 0) + goto out; + } + + pw_tot_req = rdev->pw_requested_mW + pw_req; + if (pw_tot_req > rdev->constraints->pw_budget_mW) { + rdev_warn(rdev, "power requested %d mW out of budget %d mW", + pw_req, + rdev->constraints->pw_budget_mW - rdev->pw_requested_mW); + regulator_notifier_call_chain(rdev, + REGULATOR_EVENT_OVER_CURRENT_WARN, + NULL); + ret = -ERANGE; + goto out; + } + + rdev->pw_requested_mW = pw_tot_req; +out: + regulator_unlock(rdev); + return ret; +} +EXPORT_SYMBOL_GPL(regulator_request_power_budget); + +/** + * regulator_free_power_budget - free power budget on a regulator + * @regulator: regulator source + * @pw: Power to be released. + * + * Return: Power budget of the regulator in mW. + */ +void regulator_free_power_budget(struct regulator *regulator, + unsigned int pw) +{ + struct regulator_dev *rdev = regulator->rdev; + int pw_tot_req; + + regulator_lock(rdev); + if (rdev->supply) + regulator_free_power_budget(rdev->supply, pw); + + pw_tot_req = rdev->pw_requested_mW - pw; + if (pw_tot_req >= 0) + rdev->pw_requested_mW = pw_tot_req; + else + rdev_warn(rdev, + "too much power freed %d mW (already requested %d mW)", + pw, rdev->pw_requested_mW); + + regulator_unlock(rdev); +} +EXPORT_SYMBOL_GPL(regulator_free_power_budget); + +/** * regulator_set_mode - set regulator operating mode * @regulator: regulator source * @mode: operating mode - one of the REGULATOR_MODE constants @@ -2802,6 +4922,8 @@ EXPORT_SYMBOL_GPL(regulator_get_current_limit); * * NOTE: Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_set_mode(struct regulator *regulator, unsigned int mode) { @@ -2809,7 +4931,7 @@ int regulator_set_mode(struct regulator *regulator, unsigned int mode) int ret; int regulator_curr_mode; - mutex_lock(&rdev->mutex); + regulator_lock(rdev); /* sanity check */ if (!rdev->desc->ops->set_mode) { @@ -2833,26 +4955,28 @@ int regulator_set_mode(struct regulator *regulator, unsigned int mode) ret = rdev->desc->ops->set_mode(rdev, mode); out: - mutex_unlock(&rdev->mutex); + regulator_unlock(rdev); return ret; } EXPORT_SYMBOL_GPL(regulator_set_mode); +static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) +{ + /* sanity check */ + if (!rdev->desc->ops->get_mode) + return -EINVAL; + + return rdev->desc->ops->get_mode(rdev); +} + static unsigned int _regulator_get_mode(struct regulator_dev *rdev) { int ret; - mutex_lock(&rdev->mutex); - - /* sanity check */ - if (!rdev->desc->ops->get_mode) { - ret = -EINVAL; - goto out; - } + regulator_lock(rdev); + ret = _regulator_get_mode_unlocked(rdev); + regulator_unlock(rdev); - ret = rdev->desc->ops->get_mode(rdev); -out: - mutex_unlock(&rdev->mutex); return ret; } @@ -2861,6 +4985,9 @@ out: * @regulator: regulator source * * Get the current regulator operating mode. + * + * Return: Current operating mode as %REGULATOR_MODE_* values, + * or a negative error number on failure. */ unsigned int regulator_get_mode(struct regulator *regulator) { @@ -2868,8 +4995,57 @@ unsigned int regulator_get_mode(struct regulator *regulator) } EXPORT_SYMBOL_GPL(regulator_get_mode); +static int rdev_get_cached_err_flags(struct regulator_dev *rdev) +{ + int ret = 0; + + if (rdev->use_cached_err) { + spin_lock(&rdev->err_lock); + ret = rdev->cached_err; + spin_unlock(&rdev->err_lock); + } + return ret; +} + +static int _regulator_get_error_flags(struct regulator_dev *rdev, + unsigned int *flags) +{ + int cached_flags, ret = 0; + + regulator_lock(rdev); + + cached_flags = rdev_get_cached_err_flags(rdev); + + if (rdev->desc->ops->get_error_flags) + ret = rdev->desc->ops->get_error_flags(rdev, flags); + else if (!rdev->use_cached_err) + ret = -EINVAL; + + *flags |= cached_flags; + + regulator_unlock(rdev); + + return ret; +} + +/** + * regulator_get_error_flags - get regulator error information + * @regulator: regulator source + * @flags: pointer to store error flags + * + * Get the current regulator error information. + * + * Return: 0 on success or a negative error number on failure. + */ +int regulator_get_error_flags(struct regulator *regulator, + unsigned int *flags) +{ + return _regulator_get_error_flags(regulator->rdev, flags); +} +EXPORT_SYMBOL_GPL(regulator_get_error_flags); + /** - * regulator_set_optimum_mode - set regulator optimum operating mode + * regulator_set_load - set regulator load * @regulator: regulator source * @uA_load: load current * @@ -2892,124 +5068,35 @@ EXPORT_SYMBOL_GPL(regulator_get_mode); * DRMS will sum the total requested load on the regulator and change * to the most efficient operating mode if platform constraints allow. * - * Returns the new regulator mode or error. + * NOTE: when a regulator consumer requests to have a regulator + * disabled then any load that consumer requested no longer counts + * toward the total requested load. If the regulator is re-enabled + * then the previously requested load will start counting again. + * + * If a regulator is an always-on regulator then an individual consumer's + * load will still be removed if that consumer is fully disabled. + * + * Return: 0 on success or a negative error number on failure. */ -int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) +int regulator_set_load(struct regulator *regulator, int uA_load) { struct regulator_dev *rdev = regulator->rdev; - struct regulator *consumer; - int ret, output_uV, input_uV = 0, total_uA_load = 0; - unsigned int mode; - - if (rdev->supply) - input_uV = regulator_get_voltage(rdev->supply); - - mutex_lock(&rdev->mutex); + int old_uA_load; + int ret = 0; - /* - * first check to see if we can set modes at all, otherwise just - * tell the consumer everything is OK. - */ + regulator_lock(rdev); + old_uA_load = regulator->uA_load; regulator->uA_load = uA_load; - ret = regulator_check_drms(rdev); - if (ret < 0) { - ret = 0; - goto out; - } - - if (!rdev->desc->ops->get_optimum_mode) - goto out; - - /* - * we can actually do this so any errors are indicators of - * potential real failure. - */ - ret = -EINVAL; - - if (!rdev->desc->ops->set_mode) - goto out; - - /* get output voltage */ - output_uV = _regulator_get_voltage(rdev); - if (output_uV <= 0) { - rdev_err(rdev, "invalid output voltage found\n"); - goto out; - } - - /* No supply? Use constraint voltage */ - if (input_uV <= 0) - input_uV = rdev->constraints->input_uV; - if (input_uV <= 0) { - rdev_err(rdev, "invalid input voltage found\n"); - goto out; - } - - /* calc total requested load for this regulator */ - list_for_each_entry(consumer, &rdev->consumer_list, list) - total_uA_load += consumer->uA_load; - - mode = rdev->desc->ops->get_optimum_mode(rdev, - input_uV, output_uV, - total_uA_load); - ret = regulator_mode_constrain(rdev, &mode); - if (ret < 0) { - rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", - total_uA_load, input_uV, output_uV); - goto out; + if (regulator->enable_count && old_uA_load != uA_load) { + ret = drms_uA_update(rdev); + if (ret < 0) + regulator->uA_load = old_uA_load; } + regulator_unlock(rdev); - ret = rdev->desc->ops->set_mode(rdev, mode); - if (ret < 0) { - rdev_err(rdev, "failed to set optimum mode %x\n", mode); - goto out; - } - ret = mode; -out: - mutex_unlock(&rdev->mutex); return ret; } -EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); - -/** - * regulator_set_bypass_regmap - Default set_bypass() using regmap - * - * @rdev: device to operate on. - * @enable: state to set. - */ -int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) -{ - unsigned int val; - - if (enable) - val = rdev->desc->bypass_mask; - else - val = 0; - - return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, - rdev->desc->bypass_mask, val); -} -EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); - -/** - * regulator_get_bypass_regmap - Default get_bypass() using regmap - * - * @rdev: device to operate on. - * @enable: current state. - */ -int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) -{ - unsigned int val; - int ret; - - ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); - if (ret != 0) - return ret; - - *enable = val & rdev->desc->bypass_mask; - - return 0; -} -EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); +EXPORT_SYMBOL_GPL(regulator_set_load); /** * regulator_allow_bypass - allow the regulator to go into bypass mode @@ -3021,44 +5108,55 @@ EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); * for the regulator also enable bypass mode and the machine * constraints allow this. Bypass mode means that the regulator is * simply passing the input directly to the output with no regulation. + * + * Return: 0 on success or if changing bypass is not possible, or + * a negative error number on failure. */ int regulator_allow_bypass(struct regulator *regulator, bool enable) { struct regulator_dev *rdev = regulator->rdev; + const char *name = rdev_get_name(rdev); int ret = 0; if (!rdev->desc->ops->set_bypass) return 0; - if (rdev->constraints && - !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) return 0; - mutex_lock(&rdev->mutex); + regulator_lock(rdev); if (enable && !regulator->bypass) { rdev->bypass_count++; if (rdev->bypass_count == rdev->open_count) { + trace_regulator_bypass_enable(name); + ret = rdev->desc->ops->set_bypass(rdev, enable); if (ret != 0) rdev->bypass_count--; + else + trace_regulator_bypass_enable_complete(name); } } else if (!enable && regulator->bypass) { rdev->bypass_count--; if (rdev->bypass_count != rdev->open_count) { + trace_regulator_bypass_disable(name); + ret = rdev->desc->ops->set_bypass(rdev, enable); if (ret != 0) rdev->bypass_count++; + else + trace_regulator_bypass_disable_complete(name); } } if (ret == 0) regulator->bypass = enable; - mutex_unlock(&rdev->mutex); + regulator_unlock(rdev); return ret; } @@ -3070,6 +5168,8 @@ EXPORT_SYMBOL_GPL(regulator_allow_bypass); * @nb: notifier block * * Register notifier block to receive regulator events. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_register_notifier(struct regulator *regulator, struct notifier_block *nb) @@ -3085,6 +5185,8 @@ EXPORT_SYMBOL_GPL(regulator_register_notifier); * @nb: notifier block * * Unregister regulator event notifier block. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_unregister_notifier(struct regulator *regulator, struct notifier_block *nb) @@ -3097,29 +5199,31 @@ EXPORT_SYMBOL_GPL(regulator_unregister_notifier); /* notify regulator consumers and downstream regulator consumers. * Note mutex must be held by caller. */ -static void _notifier_call_chain(struct regulator_dev *rdev, +static int _notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data) { /* call rdev chain first */ - blocking_notifier_call_chain(&rdev->notifier, event, data); + int ret = blocking_notifier_call_chain(&rdev->notifier, event, data); + + if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { + struct device *parent = rdev->dev.parent; + const char *rname = rdev_get_name(rdev); + char name[32]; + + /* Avoid duplicate debugfs directory names */ + if (parent && rname == rdev->desc->name) { + snprintf(name, sizeof(name), "%s-%s", dev_name(parent), + rname); + rname = name; + } + reg_generate_netlink_event(rname, event); + } + + return ret; } -/** - * regulator_bulk_get - get multiple regulator consumers - * - * @dev: Device to supply - * @num_consumers: Number of consumers to register - * @consumers: Configuration of consumers; clients are stored here. - * - * @return 0 on success, an errno on failure. - * - * This helper function allows drivers to get several regulator - * consumers in one operation. If any of the regulators cannot be - * acquired then any regulators that were allocated will be freed - * before returning to the caller. - */ -int regulator_bulk_get(struct device *dev, int num_consumers, - struct regulator_bulk_data *consumers) +int _regulator_bulk_get(struct device *dev, int num_consumers, + struct regulator_bulk_data *consumers, enum regulator_get_type get_type) { int i; int ret; @@ -3128,15 +5232,24 @@ int regulator_bulk_get(struct device *dev, int num_consumers, consumers[i].consumer = NULL; for (i = 0; i < num_consumers; i++) { - consumers[i].consumer = regulator_get(dev, - consumers[i].supply); + consumers[i].consumer = _regulator_get(dev, + consumers[i].supply, get_type); if (IS_ERR(consumers[i].consumer)) { - ret = PTR_ERR(consumers[i].consumer); - dev_err(dev, "Failed to get supply '%s': %d\n", - consumers[i].supply, ret); + ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), + "Failed to get supply '%s'\n", + consumers[i].supply); consumers[i].consumer = NULL; goto err; } + + if (consumers[i].init_load_uA > 0) { + ret = regulator_set_load(consumers[i].consumer, + consumers[i].init_load_uA); + if (ret) { + i++; + goto err; + } + } } return 0; @@ -3147,53 +5260,27 @@ err: return ret; } -EXPORT_SYMBOL_GPL(regulator_bulk_get); /** - * devm_regulator_bulk_get - managed get multiple regulator consumers + * regulator_bulk_get - get multiple regulator consumers * * @dev: Device to supply * @num_consumers: Number of consumers to register * @consumers: Configuration of consumers; clients are stored here. * - * @return 0 on success, an errno on failure. - * * This helper function allows drivers to get several regulator - * consumers in one operation with management, the regulators will - * automatically be freed when the device is unbound. If any of the - * regulators cannot be acquired then any regulators that were - * allocated will be freed before returning to the caller. + * consumers in one operation. If any of the regulators cannot be + * acquired then any regulators that were allocated will be freed + * before returning to the caller. + * + * Return: 0 on success or a negative error number on failure. */ -int devm_regulator_bulk_get(struct device *dev, int num_consumers, - struct regulator_bulk_data *consumers) +int regulator_bulk_get(struct device *dev, int num_consumers, + struct regulator_bulk_data *consumers) { - int i; - int ret; - - for (i = 0; i < num_consumers; i++) - consumers[i].consumer = NULL; - - for (i = 0; i < num_consumers; i++) { - consumers[i].consumer = devm_regulator_get(dev, - consumers[i].supply); - if (IS_ERR(consumers[i].consumer)) { - ret = PTR_ERR(consumers[i].consumer); - dev_err(dev, "Failed to get supply '%s': %d\n", - consumers[i].supply, ret); - consumers[i].consumer = NULL; - goto err; - } - } - - return 0; - -err: - for (i = 0; i < num_consumers && consumers[i].consumer; i++) - devm_regulator_put(consumers[i].consumer); - - return ret; + return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); } -EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); +EXPORT_SYMBOL_GPL(regulator_bulk_get); static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) { @@ -3207,12 +5294,13 @@ static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. - * @return 0 on success, an errno on failure * * This convenience API allows consumers to enable multiple regulator * clients in a single API call. If any consumers cannot be enabled * then any others that were enabled will be disabled again prior to * return. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_bulk_enable(int num_consumers, struct regulator_bulk_data *consumers) @@ -3222,11 +5310,8 @@ int regulator_bulk_enable(int num_consumers, int ret = 0; for (i = 0; i < num_consumers; i++) { - if (consumers[i].consumer->always_on) - consumers[i].ret = 0; - else - async_schedule_domain(regulator_bulk_enable_async, - &consumers[i], &async_domain); + async_schedule_domain(regulator_bulk_enable_async, + &consumers[i], &async_domain); } async_synchronize_full_domain(&async_domain); @@ -3244,8 +5329,8 @@ int regulator_bulk_enable(int num_consumers, err: for (i = 0; i < num_consumers; i++) { if (consumers[i].ret < 0) - pr_err("Failed to enable %s: %d\n", consumers[i].supply, - consumers[i].ret); + pr_err("Failed to enable %s: %pe\n", consumers[i].supply, + ERR_PTR(consumers[i].ret)); else regulator_disable(consumers[i].consumer); } @@ -3259,12 +5344,13 @@ EXPORT_SYMBOL_GPL(regulator_bulk_enable); * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. - * @return 0 on success, an errno on failure * * This convenience API allows consumers to disable multiple regulator * clients in a single API call. If any consumers cannot be disabled * then any others that were disabled will be enabled again prior to * return. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_bulk_disable(int num_consumers, struct regulator_bulk_data *consumers) @@ -3281,12 +5367,12 @@ int regulator_bulk_disable(int num_consumers, return 0; err: - pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); + pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); for (++i; i < num_consumers; ++i) { r = regulator_enable(consumers[i].consumer); if (r != 0) - pr_err("Failed to reename %s: %d\n", - consumers[i].supply, r); + pr_err("Failed to re-enable %s: %pe\n", + consumers[i].supply, ERR_PTR(r)); } return ret; @@ -3298,7 +5384,6 @@ EXPORT_SYMBOL_GPL(regulator_bulk_disable); * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. - * @return 0 on success, an errno on failure * * This convenience API allows consumers to forcibly disable multiple regulator * clients in a single API call. @@ -3306,26 +5391,24 @@ EXPORT_SYMBOL_GPL(regulator_bulk_disable); * likely occur if the regulators are not disabled (e.g. over temp). * Although regulator_force_disable function call for some consumers can * return error numbers, the function is called for all consumers. + * + * Return: 0 on success or a negative error number on failure. */ int regulator_bulk_force_disable(int num_consumers, struct regulator_bulk_data *consumers) { int i; - int ret; + int ret = 0; - for (i = 0; i < num_consumers; i++) + for (i = 0; i < num_consumers; i++) { consumers[i].ret = regulator_force_disable(consumers[i].consumer); - for (i = 0; i < num_consumers; i++) { - if (consumers[i].ret != 0) { + /* Store first error for reporting */ + if (consumers[i].ret && !ret) ret = consumers[i].ret; - goto out; - } } - return 0; -out: return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); @@ -3352,18 +5435,56 @@ void regulator_bulk_free(int num_consumers, EXPORT_SYMBOL_GPL(regulator_bulk_free); /** + * regulator_handle_critical - Handle events for system-critical regulators. + * @rdev: The regulator device. + * @event: The event being handled. + * + * This function handles critical events such as under-voltage, over-current, + * and unknown errors for regulators deemed system-critical. On detecting such + * events, it triggers a hardware protection shutdown with a defined timeout. + */ +static void regulator_handle_critical(struct regulator_dev *rdev, + unsigned long event) +{ + const char *reason = NULL; + + if (!rdev->constraints->system_critical) + return; + + switch (event) { + case REGULATOR_EVENT_UNDER_VOLTAGE: + reason = "System critical regulator: voltage drop detected"; + break; + case REGULATOR_EVENT_OVER_CURRENT: + reason = "System critical regulator: over-current detected"; + break; + case REGULATOR_EVENT_FAIL: + reason = "System critical regulator: unknown error"; + } + + if (!reason) + return; + + hw_protection_trigger(reason, + rdev->constraints->uv_less_critical_window_ms); +} + +/** * regulator_notifier_call_chain - call regulator event notifier * @rdev: regulator source * @event: notifier block * @data: callback-specific data. * * Called by regulator drivers to notify clients a regulator event has - * occurred. We also notify regulator clients downstream. - * Note lock must be held by caller. + * occurred. + * + * Return: %NOTIFY_DONE. */ int regulator_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data) { + regulator_handle_critical(rdev, event); + _notifier_call_chain(rdev, event, data); return NOTIFY_DONE; @@ -3376,6 +5497,8 @@ EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); * @mode: Mode to convert * * Convert a regulator mode into a status. + * + * Return: %REGULATOR_STATUS_* value corresponding to given mode. */ int regulator_mode_to_status(unsigned int mode) { @@ -3394,133 +5517,166 @@ int regulator_mode_to_status(unsigned int mode) } EXPORT_SYMBOL_GPL(regulator_mode_to_status); +static struct attribute *regulator_dev_attrs[] = { + &dev_attr_name.attr, + &dev_attr_num_users.attr, + &dev_attr_type.attr, + &dev_attr_microvolts.attr, + &dev_attr_microamps.attr, + &dev_attr_opmode.attr, + &dev_attr_state.attr, + &dev_attr_status.attr, + &dev_attr_bypass.attr, + &dev_attr_requested_microamps.attr, + &dev_attr_min_microvolts.attr, + &dev_attr_max_microvolts.attr, + &dev_attr_min_microamps.attr, + &dev_attr_max_microamps.attr, + &dev_attr_under_voltage.attr, + &dev_attr_over_current.attr, + &dev_attr_regulation_out.attr, + &dev_attr_fail.attr, + &dev_attr_over_temp.attr, + &dev_attr_under_voltage_warn.attr, + &dev_attr_over_current_warn.attr, + &dev_attr_over_voltage_warn.attr, + &dev_attr_over_temp_warn.attr, + &dev_attr_suspend_standby_state.attr, + &dev_attr_suspend_mem_state.attr, + &dev_attr_suspend_disk_state.attr, + &dev_attr_suspend_standby_microvolts.attr, + &dev_attr_suspend_mem_microvolts.attr, + &dev_attr_suspend_disk_microvolts.attr, + &dev_attr_suspend_standby_mode.attr, + &dev_attr_suspend_mem_mode.attr, + &dev_attr_suspend_disk_mode.attr, + &dev_attr_power_budget_milliwatt.attr, + &dev_attr_power_requested_milliwatt.attr, + NULL +}; + /* * To avoid cluttering sysfs (and memory) with useless state, only * create attributes that can be meaningfully displayed. */ -static int add_regulator_attributes(struct regulator_dev *rdev) +static umode_t regulator_attr_is_visible(struct kobject *kobj, + struct attribute *attr, int idx) { - struct device *dev = &rdev->dev; - struct regulator_ops *ops = rdev->desc->ops; - int status = 0; + struct device *dev = kobj_to_dev(kobj); + struct regulator_dev *rdev = dev_to_rdev(dev); + const struct regulator_ops *ops = rdev->desc->ops; + umode_t mode = attr->mode; + + /* these three are always present */ + if (attr == &dev_attr_name.attr || + attr == &dev_attr_num_users.attr || + attr == &dev_attr_type.attr) + return mode; /* some attributes need specific methods to be displayed */ - if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || - (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || - (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { - status = device_create_file(dev, &dev_attr_microvolts); - if (status < 0) - return status; - } - if (ops->get_current_limit) { - status = device_create_file(dev, &dev_attr_microamps); - if (status < 0) - return status; - } - if (ops->get_mode) { - status = device_create_file(dev, &dev_attr_opmode); - if (status < 0) - return status; - } - if (rdev->ena_pin || ops->is_enabled) { - status = device_create_file(dev, &dev_attr_state); - if (status < 0) - return status; - } - if (ops->get_status) { - status = device_create_file(dev, &dev_attr_status); - if (status < 0) - return status; - } - if (ops->get_bypass) { - status = device_create_file(dev, &dev_attr_bypass); - if (status < 0) - return status; - } - - /* some attributes are type-specific */ - if (rdev->desc->type == REGULATOR_CURRENT) { - status = device_create_file(dev, &dev_attr_requested_microamps); - if (status < 0) - return status; - } - - /* all the other attributes exist to support constraints; - * don't show them if there are no constraints, or if the - * relevant supporting methods are missing. - */ - if (!rdev->constraints) - return status; + if (attr == &dev_attr_microvolts.attr) { + if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || + (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || + (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || + (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) + return mode; + return 0; + } + + if (attr == &dev_attr_microamps.attr) + return ops->get_current_limit ? mode : 0; + + if (attr == &dev_attr_opmode.attr) + return ops->get_mode ? mode : 0; + + if (attr == &dev_attr_state.attr) + return (rdev->ena_pin || ops->is_enabled) ? mode : 0; + + if (attr == &dev_attr_status.attr) + return ops->get_status ? mode : 0; + + if (attr == &dev_attr_bypass.attr) + return ops->get_bypass ? mode : 0; + + if (attr == &dev_attr_under_voltage.attr || + attr == &dev_attr_over_current.attr || + attr == &dev_attr_regulation_out.attr || + attr == &dev_attr_fail.attr || + attr == &dev_attr_over_temp.attr || + attr == &dev_attr_under_voltage_warn.attr || + attr == &dev_attr_over_current_warn.attr || + attr == &dev_attr_over_voltage_warn.attr || + attr == &dev_attr_over_temp_warn.attr) + return ops->get_error_flags ? mode : 0; /* constraints need specific supporting methods */ - if (ops->set_voltage || ops->set_voltage_sel) { - status = device_create_file(dev, &dev_attr_min_microvolts); - if (status < 0) - return status; - status = device_create_file(dev, &dev_attr_max_microvolts); - if (status < 0) - return status; - } - if (ops->set_current_limit) { - status = device_create_file(dev, &dev_attr_min_microamps); - if (status < 0) - return status; - status = device_create_file(dev, &dev_attr_max_microamps); - if (status < 0) - return status; - } - - status = device_create_file(dev, &dev_attr_suspend_standby_state); - if (status < 0) - return status; - status = device_create_file(dev, &dev_attr_suspend_mem_state); - if (status < 0) - return status; - status = device_create_file(dev, &dev_attr_suspend_disk_state); - if (status < 0) - return status; + if (attr == &dev_attr_min_microvolts.attr || + attr == &dev_attr_max_microvolts.attr) + return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; + + if (attr == &dev_attr_min_microamps.attr || + attr == &dev_attr_max_microamps.attr) + return ops->set_current_limit ? mode : 0; + + if (attr == &dev_attr_suspend_standby_state.attr || + attr == &dev_attr_suspend_mem_state.attr || + attr == &dev_attr_suspend_disk_state.attr) + return mode; + + if (attr == &dev_attr_suspend_standby_microvolts.attr || + attr == &dev_attr_suspend_mem_microvolts.attr || + attr == &dev_attr_suspend_disk_microvolts.attr) + return ops->set_suspend_voltage ? mode : 0; + + if (attr == &dev_attr_suspend_standby_mode.attr || + attr == &dev_attr_suspend_mem_mode.attr || + attr == &dev_attr_suspend_disk_mode.attr) + return ops->set_suspend_mode ? mode : 0; + + if (attr == &dev_attr_power_budget_milliwatt.attr || + attr == &dev_attr_power_requested_milliwatt.attr) + return rdev->constraints->pw_budget_mW != INT_MAX ? mode : 0; + + return mode; +} + +static const struct attribute_group regulator_dev_group = { + .attrs = regulator_dev_attrs, + .is_visible = regulator_attr_is_visible, +}; + +static const struct attribute_group *regulator_dev_groups[] = { + ®ulator_dev_group, + NULL +}; - if (ops->set_suspend_voltage) { - status = device_create_file(dev, - &dev_attr_suspend_standby_microvolts); - if (status < 0) - return status; - status = device_create_file(dev, - &dev_attr_suspend_mem_microvolts); - if (status < 0) - return status; - status = device_create_file(dev, - &dev_attr_suspend_disk_microvolts); - if (status < 0) - return status; - } - - if (ops->set_suspend_mode) { - status = device_create_file(dev, - &dev_attr_suspend_standby_mode); - if (status < 0) - return status; - status = device_create_file(dev, - &dev_attr_suspend_mem_mode); - if (status < 0) - return status; - status = device_create_file(dev, - &dev_attr_suspend_disk_mode); - if (status < 0) - return status; - } - - return status; +static void regulator_dev_release(struct device *dev) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + debugfs_remove_recursive(rdev->debugfs); + kfree(rdev->constraints); + of_node_put(rdev->dev.of_node); + kfree(rdev); } static void rdev_init_debugfs(struct regulator_dev *rdev) { - rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); - if (!rdev->debugfs) { - rdev_warn(rdev, "Failed to create debugfs directory\n"); - return; + struct device *parent = rdev->dev.parent; + const char *rname = rdev_get_name(rdev); + char name[NAME_MAX]; + + /* Avoid duplicate debugfs directory names */ + if (parent && rname == rdev->desc->name) { + snprintf(name, sizeof(name), "%s-%s", dev_name(parent), + rname); + rname = name; } + rdev->debugfs = debugfs_create_dir(rname, debugfs_root); + if (IS_ERR(rdev->debugfs)) + rdev_dbg(rdev, "Failed to create debugfs directory\n"); + debugfs_create_u32("use_count", 0444, rdev->debugfs, &rdev->use_count); debugfs_create_u32("open_count", 0444, rdev->debugfs, @@ -3529,39 +5685,260 @@ static void rdev_init_debugfs(struct regulator_dev *rdev) &rdev->bypass_count); } +static int regulator_register_resolve_supply(struct device *dev, void *data) +{ + struct regulator_dev *rdev = dev_to_rdev(dev); + + if (regulator_resolve_supply(rdev)) + rdev_dbg(rdev, "unable to resolve supply\n"); + + return 0; +} + +int regulator_coupler_register(struct regulator_coupler *coupler) +{ + mutex_lock(®ulator_list_mutex); + list_add_tail(&coupler->list, ®ulator_coupler_list); + mutex_unlock(®ulator_list_mutex); + + return 0; +} + +static struct regulator_coupler * +regulator_find_coupler(struct regulator_dev *rdev) +{ + struct regulator_coupler *coupler; + int err; + + /* + * Note that regulators are appended to the list and the generic + * coupler is registered first, hence it will be attached at last + * if nobody cared. + */ + list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { + err = coupler->attach_regulator(coupler, rdev); + if (!err) { + if (!coupler->balance_voltage && + rdev->coupling_desc.n_coupled > 2) + goto err_unsupported; + + return coupler; + } + + if (err < 0) + return ERR_PTR(err); + + if (err == 1) + continue; + + break; + } + + return ERR_PTR(-EINVAL); + +err_unsupported: + if (coupler->detach_regulator) + coupler->detach_regulator(coupler, rdev); + + rdev_err(rdev, + "Voltage balancing for multiple regulator couples is unimplemented\n"); + + return ERR_PTR(-EPERM); +} + +static void regulator_resolve_coupling(struct regulator_dev *rdev) +{ + struct regulator_coupler *coupler = rdev->coupling_desc.coupler; + struct coupling_desc *c_desc = &rdev->coupling_desc; + int n_coupled = c_desc->n_coupled; + struct regulator_dev *c_rdev; + int i; + + for (i = 1; i < n_coupled; i++) { + /* already resolved */ + if (c_desc->coupled_rdevs[i]) + continue; + + c_rdev = of_parse_coupled_regulator(rdev, i - 1); + + if (!c_rdev) + continue; + + if (c_rdev->coupling_desc.coupler != coupler) { + rdev_err(rdev, "coupler mismatch with %s\n", + rdev_get_name(c_rdev)); + return; + } + + c_desc->coupled_rdevs[i] = c_rdev; + c_desc->n_resolved++; + + regulator_resolve_coupling(c_rdev); + } +} + +static void regulator_remove_coupling(struct regulator_dev *rdev) +{ + struct regulator_coupler *coupler = rdev->coupling_desc.coupler; + struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; + struct regulator_dev *__c_rdev, *c_rdev; + unsigned int __n_coupled, n_coupled; + int i, k; + int err; + + n_coupled = c_desc->n_coupled; + + for (i = 1; i < n_coupled; i++) { + c_rdev = c_desc->coupled_rdevs[i]; + + if (!c_rdev) + continue; + + regulator_lock(c_rdev); + + __c_desc = &c_rdev->coupling_desc; + __n_coupled = __c_desc->n_coupled; + + for (k = 1; k < __n_coupled; k++) { + __c_rdev = __c_desc->coupled_rdevs[k]; + + if (__c_rdev == rdev) { + __c_desc->coupled_rdevs[k] = NULL; + __c_desc->n_resolved--; + break; + } + } + + regulator_unlock(c_rdev); + + c_desc->coupled_rdevs[i] = NULL; + c_desc->n_resolved--; + } + + if (coupler && coupler->detach_regulator) { + err = coupler->detach_regulator(coupler, rdev); + if (err) + rdev_err(rdev, "failed to detach from coupler: %pe\n", + ERR_PTR(err)); + } + + rdev->coupling_desc.n_coupled = 0; + kfree(rdev->coupling_desc.coupled_rdevs); + rdev->coupling_desc.coupled_rdevs = NULL; +} + +static int regulator_init_coupling(struct regulator_dev *rdev) +{ + struct regulator_dev **coupled; + int err, n_phandles; + + if (!IS_ENABLED(CONFIG_OF)) + n_phandles = 0; + else + n_phandles = of_get_n_coupled(rdev); + + coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); + if (!coupled) + return -ENOMEM; + + rdev->coupling_desc.coupled_rdevs = coupled; + + /* + * Every regulator should always have coupling descriptor filled with + * at least pointer to itself. + */ + rdev->coupling_desc.coupled_rdevs[0] = rdev; + rdev->coupling_desc.n_coupled = n_phandles + 1; + rdev->coupling_desc.n_resolved++; + + /* regulator isn't coupled */ + if (n_phandles == 0) + return 0; + + if (!of_check_coupling_data(rdev)) + return -EPERM; + + mutex_lock(®ulator_list_mutex); + rdev->coupling_desc.coupler = regulator_find_coupler(rdev); + mutex_unlock(®ulator_list_mutex); + + if (IS_ERR(rdev->coupling_desc.coupler)) { + err = PTR_ERR(rdev->coupling_desc.coupler); + rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); + return err; + } + + return 0; +} + +static int generic_coupler_attach(struct regulator_coupler *coupler, + struct regulator_dev *rdev) +{ + if (rdev->coupling_desc.n_coupled > 2) { + rdev_err(rdev, + "Voltage balancing for multiple regulator couples is unimplemented\n"); + return -EPERM; + } + + if (!rdev->constraints->always_on) { + rdev_err(rdev, + "Coupling of a non always-on regulator is unimplemented\n"); + return -ENOTSUPP; + } + + return 0; +} + +static struct regulator_coupler generic_regulator_coupler = { + .attach_regulator = generic_coupler_attach, +}; + /** * regulator_register - register regulator + * @dev: the device that drive the regulator * @regulator_desc: regulator to register - * @config: runtime configuration for regulator + * @cfg: runtime configuration for regulator * * Called by regulator drivers to register a regulator. - * Returns a valid pointer to struct regulator_dev on success - * or an ERR_PTR() on error. + * + * Return: Pointer to a valid &struct regulator_dev on success or + * an ERR_PTR() encoded negative error number on failure. */ struct regulator_dev * -regulator_register(const struct regulator_desc *regulator_desc, - const struct regulator_config *config) +regulator_register(struct device *dev, + const struct regulator_desc *regulator_desc, + const struct regulator_config *cfg) { - const struct regulation_constraints *constraints = NULL; const struct regulator_init_data *init_data; - static atomic_t regulator_no = ATOMIC_INIT(0); + struct regulator_config *config = NULL; + static atomic_t regulator_no = ATOMIC_INIT(-1); struct regulator_dev *rdev; - struct device *dev; + bool dangling_cfg_gpiod = false; + bool dangling_of_gpiod = false; int ret, i; - const char *supply = NULL; + bool resolved_early = false; - if (regulator_desc == NULL || config == NULL) + if (cfg == NULL) return ERR_PTR(-EINVAL); + if (cfg->ena_gpiod) + dangling_cfg_gpiod = true; + if (regulator_desc == NULL) { + ret = -EINVAL; + goto rinse; + } - dev = config->dev; - WARN_ON(!dev); + WARN_ON(!dev || !cfg->dev); - if (regulator_desc->name == NULL || regulator_desc->ops == NULL) - return ERR_PTR(-EINVAL); + if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { + ret = -EINVAL; + goto rinse; + } if (regulator_desc->type != REGULATOR_VOLTAGE && - regulator_desc->type != REGULATOR_CURRENT) - return ERR_PTR(-EINVAL); + regulator_desc->type != REGULATOR_CURRENT) { + ret = -EINVAL; + goto rinse; + } /* Only one of each should be implemented */ WARN_ON(regulator_desc->ops->get_voltage && @@ -3572,22 +5949,68 @@ regulator_register(const struct regulator_desc *regulator_desc, /* If we're using selectors we must implement list_voltage. */ if (regulator_desc->ops->get_voltage_sel && !regulator_desc->ops->list_voltage) { - return ERR_PTR(-EINVAL); + ret = -EINVAL; + goto rinse; } if (regulator_desc->ops->set_voltage_sel && !regulator_desc->ops->list_voltage) { - return ERR_PTR(-EINVAL); + ret = -EINVAL; + goto rinse; } - init_data = config->init_data; - rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); - if (rdev == NULL) - return ERR_PTR(-ENOMEM); + if (rdev == NULL) { + ret = -ENOMEM; + goto rinse; + } + device_initialize(&rdev->dev); + dev_set_drvdata(&rdev->dev, rdev); + rdev->dev.class = ®ulator_class; + spin_lock_init(&rdev->err_lock); - mutex_lock(®ulator_list_mutex); + /* + * Duplicate the config so the driver could override it after + * parsing init data. + */ + config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); + if (config == NULL) { + ret = -ENOMEM; + goto clean; + } + + /* + * DT may override the config->init_data provided if the platform + * needs to do so. If so, config->init_data is completely ignored. + */ + init_data = regulator_of_get_init_data(dev, regulator_desc, config, + &rdev->dev.of_node); + + /* + * Sometimes not all resources are probed already so we need to take + * that into account. This happens most the time if the ena_gpiod comes + * from a gpio extender or something else. + */ + if (PTR_ERR(init_data) == -EPROBE_DEFER) { + ret = -EPROBE_DEFER; + goto clean; + } + + /* + * We need to keep track of any GPIO descriptor coming from the + * device tree until we have handled it over to the core. If the + * config that was passed in to this function DOES NOT contain + * a descriptor, and the config after this call DOES contain + * a descriptor, we definitely got one from parsing the device + * tree. + */ + if (!cfg->ena_gpiod && config->ena_gpiod) + dangling_of_gpiod = true; + if (!init_data) { + init_data = config->init_data; + rdev->dev.of_node = of_node_get(config->of_node); + } - mutex_init(&rdev->mutex); + ww_mutex_init(&rdev->mutex, ®ulator_ww_class); rdev->reg_data = config->driver_data; rdev->owner = regulator_desc->owner; rdev->desc = regulator_desc; @@ -3602,91 +6025,83 @@ regulator_register(const struct regulator_desc *regulator_desc, BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); - /* preform any regulator specific init */ - if (init_data && init_data->regulator_init) { - ret = init_data->regulator_init(rdev->reg_data); - if (ret < 0) - goto clean; - } + if (init_data && init_data->supply_regulator) + rdev->supply_name = init_data->supply_regulator; + else if (regulator_desc->supply_name) + rdev->supply_name = regulator_desc->supply_name; /* register with sysfs */ - rdev->dev.class = ®ulator_class; - rdev->dev.of_node = config->of_node; - rdev->dev.parent = dev; - dev_set_name(&rdev->dev, "regulator.%d", - atomic_inc_return(®ulator_no) - 1); - ret = device_register(&rdev->dev); - if (ret != 0) { - put_device(&rdev->dev); - goto clean; + rdev->dev.parent = config->dev; + dev_set_name(&rdev->dev, "regulator.%lu", + (unsigned long) atomic_inc_return(®ulator_no)); + + /* set regulator constraints */ + if (init_data) + rdev->constraints = kmemdup(&init_data->constraints, + sizeof(*rdev->constraints), + GFP_KERNEL); + else + rdev->constraints = kzalloc(sizeof(*rdev->constraints), + GFP_KERNEL); + if (!rdev->constraints) { + ret = -ENOMEM; + goto wash; } - dev_set_drvdata(&rdev->dev, rdev); + if (regulator_desc->init_cb) { + ret = regulator_desc->init_cb(rdev, config); + if (ret < 0) + goto wash; + } + + if ((rdev->supply_name && !rdev->supply) && + (rdev->constraints->always_on || + rdev->constraints->boot_on)) { + ret = regulator_resolve_supply(rdev); + if (ret) + rdev_dbg(rdev, "unable to resolve supply early: %pe\n", + ERR_PTR(ret)); + + resolved_early = true; + } - if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { + if (config->ena_gpiod) { ret = regulator_ena_gpio_request(rdev, config); if (ret != 0) { - rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", - config->ena_gpio, ret); + rdev_err(rdev, "Failed to request enable GPIO: %pe\n", + ERR_PTR(ret)); goto wash; } - - if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) - rdev->ena_gpio_state = 1; - - if (config->ena_gpio_invert) - rdev->ena_gpio_state = !rdev->ena_gpio_state; + /* The regulator core took over the GPIO descriptor */ + dangling_cfg_gpiod = false; + dangling_of_gpiod = false; } - /* set regulator constraints */ - if (init_data) - constraints = &init_data->constraints; - - ret = set_machine_constraints(rdev, constraints); + ret = set_machine_constraints(rdev); + if (ret == -EPROBE_DEFER && !resolved_early) { + /* Regulator might be in bypass mode and so needs its supply + * to set the constraints + */ + /* FIXME: this currently triggers a chicken-and-egg problem + * when creating -SUPPLY symlink in sysfs to a regulator + * that is just being created + */ + rdev_dbg(rdev, "will resolve supply early: %s\n", + rdev->supply_name); + ret = regulator_resolve_supply(rdev); + if (!ret) + ret = set_machine_constraints(rdev); + else + rdev_dbg(rdev, "unable to resolve supply early: %pe\n", + ERR_PTR(ret)); + } if (ret < 0) - goto scrub; + goto wash; - /* add attributes supported by this regulator */ - ret = add_regulator_attributes(rdev); + ret = regulator_init_coupling(rdev); if (ret < 0) - goto scrub; - - if (init_data && init_data->supply_regulator) - supply = init_data->supply_regulator; - else if (regulator_desc->supply_name) - supply = regulator_desc->supply_name; + goto wash; - if (supply) { - struct regulator_dev *r; - - r = regulator_dev_lookup(dev, supply, &ret); - - if (ret == -ENODEV) { - /* - * No supply was specified for this regulator and - * there will never be one. - */ - ret = 0; - goto add_dev; - } else if (!r) { - dev_err(dev, "Failed to find supply %s\n", supply); - ret = -EPROBE_DEFER; - goto scrub; - } - - ret = set_supply(rdev, r); - if (ret < 0) - goto scrub; - - /* Enable supply if rail is enabled */ - if (_regulator_is_enabled(rdev)) { - ret = regulator_enable(rdev->supply); - if (ret < 0) - goto scrub; - } - } - -add_dev: /* add consumers devices */ if (init_data) { for (i = 0; i < init_data->num_consumer_supplies; i++) { @@ -3701,31 +6116,48 @@ add_dev: } } - list_add(&rdev->list, ®ulator_list); + if (!rdev->desc->ops->get_voltage && + !rdev->desc->ops->list_voltage && + !rdev->desc->fixed_uV) + rdev->is_switch = true; + + ret = device_add(&rdev->dev); + if (ret != 0) + goto unset_supplies; rdev_init_debugfs(rdev); -out: + + /* try to resolve regulators coupling since a new one was registered */ + mutex_lock(®ulator_list_mutex); + regulator_resolve_coupling(rdev); mutex_unlock(®ulator_list_mutex); + + /* try to resolve regulators supply since a new one was registered */ + class_for_each_device(®ulator_class, NULL, NULL, + regulator_register_resolve_supply); + kfree(config); return rdev; unset_supplies: + mutex_lock(®ulator_list_mutex); unset_regulator_supplies(rdev); - -scrub: - if (rdev->supply) - _regulator_put(rdev->supply); - regulator_ena_gpio_free(rdev); - kfree(rdev->constraints); + regulator_remove_coupling(rdev); + mutex_unlock(®ulator_list_mutex); wash: - device_unregister(&rdev->dev); - /* device core frees rdev */ - rdev = ERR_PTR(ret); - goto out; - + regulator_put(rdev->supply); + kfree(rdev->coupling_desc.coupled_rdevs); + mutex_lock(®ulator_list_mutex); + regulator_ena_gpio_free(rdev); + mutex_unlock(®ulator_list_mutex); clean: - kfree(rdev); - rdev = ERR_PTR(ret); - goto out; + if (dangling_of_gpiod) + gpiod_put(config->ena_gpiod); + kfree(config); + put_device(&rdev->dev); +rinse: + if (dangling_cfg_gpiod) + gpiod_put(cfg->ena_gpiod); + return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(regulator_register); @@ -3740,96 +6172,104 @@ void regulator_unregister(struct regulator_dev *rdev) if (rdev == NULL) return; - if (rdev->supply) + if (rdev->supply) { + regulator_unregister_notifier(rdev->supply, + &rdev->supply_fwd_nb); + + while (rdev->use_count--) + regulator_disable(rdev->supply); regulator_put(rdev->supply); - mutex_lock(®ulator_list_mutex); - debugfs_remove_recursive(rdev->debugfs); + } + flush_work(&rdev->disable_work.work); + + mutex_lock(®ulator_list_mutex); + WARN_ON(rdev->open_count); + regulator_remove_coupling(rdev); unset_regulator_supplies(rdev); list_del(&rdev->list); - kfree(rdev->constraints); regulator_ena_gpio_free(rdev); device_unregister(&rdev->dev); + mutex_unlock(®ulator_list_mutex); } EXPORT_SYMBOL_GPL(regulator_unregister); +#ifdef CONFIG_SUSPEND /** - * regulator_suspend_prepare - prepare regulators for system wide suspend - * @state: system suspend state + * regulator_suspend - prepare regulators for system wide suspend + * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() * * Configure each regulator with it's suspend operating parameters for state. - * This will usually be called by machine suspend code prior to supending. + * + * Return: 0 on success or a negative error number on failure. */ -int regulator_suspend_prepare(suspend_state_t state) +static int regulator_suspend(struct device *dev) { - struct regulator_dev *rdev; - int ret = 0; - - /* ON is handled by regulator active state */ - if (state == PM_SUSPEND_ON) - return -EINVAL; + struct regulator_dev *rdev = dev_to_rdev(dev); + suspend_state_t state = pm_suspend_target_state; + int ret; + const struct regulator_state *rstate; - mutex_lock(®ulator_list_mutex); - list_for_each_entry(rdev, ®ulator_list, list) { + rstate = regulator_get_suspend_state_check(rdev, state); + if (!rstate) + return 0; - mutex_lock(&rdev->mutex); - ret = suspend_prepare(rdev, state); - mutex_unlock(&rdev->mutex); + regulator_lock(rdev); + ret = __suspend_set_state(rdev, rstate); + regulator_unlock(rdev); - if (ret < 0) { - rdev_err(rdev, "failed to prepare\n"); - goto out; - } - } -out: - mutex_unlock(®ulator_list_mutex); return ret; } -EXPORT_SYMBOL_GPL(regulator_suspend_prepare); -/** - * regulator_suspend_finish - resume regulators from system wide suspend - * - * Turn on regulators that might be turned off by regulator_suspend_prepare - * and that should be turned on according to the regulators properties. - */ -int regulator_suspend_finish(void) +static int regulator_resume(struct device *dev) { - struct regulator_dev *rdev; - int ret = 0, error; + suspend_state_t state = pm_suspend_target_state; + struct regulator_dev *rdev = dev_to_rdev(dev); + struct regulator_state *rstate; + int ret = 0; - mutex_lock(®ulator_list_mutex); - list_for_each_entry(rdev, ®ulator_list, list) { - struct regulator_ops *ops = rdev->desc->ops; - - mutex_lock(&rdev->mutex); - if ((rdev->use_count > 0 || rdev->constraints->always_on) && - ops->enable) { - error = ops->enable(rdev); - if (error) - ret = error; - } else { - if (!has_full_constraints) - goto unlock; - if (!ops->disable) - goto unlock; - if (!_regulator_is_enabled(rdev)) - goto unlock; + rstate = regulator_get_suspend_state(rdev, state); + if (rstate == NULL) + return 0; + + /* Avoid grabbing the lock if we don't need to */ + if (!rdev->desc->ops->resume) + return 0; + + regulator_lock(rdev); + + if (rstate->enabled == ENABLE_IN_SUSPEND || + rstate->enabled == DISABLE_IN_SUSPEND) + ret = rdev->desc->ops->resume(rdev); + + regulator_unlock(rdev); - error = ops->disable(rdev); - if (error) - ret = error; - } -unlock: - mutex_unlock(&rdev->mutex); - } - mutex_unlock(®ulator_list_mutex); return ret; } -EXPORT_SYMBOL_GPL(regulator_suspend_finish); +#else /* !CONFIG_SUSPEND */ + +#define regulator_suspend NULL +#define regulator_resume NULL +#endif /* !CONFIG_SUSPEND */ + +#ifdef CONFIG_PM +static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { + .suspend = regulator_suspend, + .resume = regulator_resume, +}; +#endif + +const struct class regulator_class = { + .name = "regulator", + .dev_release = regulator_dev_release, + .dev_groups = regulator_dev_groups, +#ifdef CONFIG_PM + .pm = ®ulator_pm_ops, +#endif +}; /** * regulator_has_full_constraints - the system has fully specified constraints * @@ -3848,27 +6288,13 @@ void regulator_has_full_constraints(void) EXPORT_SYMBOL_GPL(regulator_has_full_constraints); /** - * regulator_use_dummy_regulator - Provide a dummy regulator when none is found - * - * Calling this function will cause the regulator API to provide a - * dummy regulator to consumers if no physical regulator is found, - * allowing most consumers to proceed as though a regulator were - * configured. This allows systems such as those with software - * controllable regulators for the CPU core only to be brought up more - * readily. - */ -void regulator_use_dummy_regulator(void) -{ - board_wants_dummy_regulator = true; -} -EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); - -/** * rdev_get_drvdata - get rdev regulator driver data * @rdev: regulator * * Get rdev regulator driver private data. This call can be used in the * regulator driver context. + * + * Return: Pointer to regulator driver private data. */ void *rdev_get_drvdata(struct regulator_dev *rdev) { @@ -3882,6 +6308,8 @@ EXPORT_SYMBOL_GPL(rdev_get_drvdata); * * Get regulator driver private data. This call can be used in the consumer * driver context when non API regulator specific functions need to be called. + * + * Return: Pointer to regulator driver private data. */ void *regulator_get_drvdata(struct regulator *regulator) { @@ -3901,8 +6329,10 @@ void regulator_set_drvdata(struct regulator *regulator, void *data) EXPORT_SYMBOL_GPL(regulator_set_drvdata); /** - * regulator_get_id - get regulator ID + * rdev_get_id - get regulator ID * @rdev: regulator + * + * Return: Regulator ID for @rdev. */ int rdev_get_id(struct regulator_dev *rdev) { @@ -3916,6 +6346,12 @@ struct device *rdev_get_dev(struct regulator_dev *rdev) } EXPORT_SYMBOL_GPL(rdev_get_dev); +struct regmap *rdev_get_regmap(struct regulator_dev *rdev) +{ + return rdev->regmap; +} +EXPORT_SYMBOL_GPL(rdev_get_regmap); + void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) { return reg_init_data->driver_data; @@ -3923,44 +6359,246 @@ void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); #ifdef CONFIG_DEBUG_FS -static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, - size_t count, loff_t *ppos) +static int supply_map_show(struct seq_file *sf, void *data) { - char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); - ssize_t len, ret = 0; struct regulator_map *map; - if (!buf) - return -ENOMEM; - list_for_each_entry(map, ®ulator_map_list, list) { - len = snprintf(buf + ret, PAGE_SIZE - ret, - "%s -> %s.%s\n", - rdev_get_name(map->regulator), map->dev_name, - map->supply); - if (len >= 0) - ret += len; - if (ret > PAGE_SIZE) { - ret = PAGE_SIZE; + seq_printf(sf, "%s -> %s.%s\n", + rdev_get_name(map->regulator), map->dev_name, + map->supply); + } + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(supply_map); + +struct summary_data { + struct seq_file *s; + struct regulator_dev *parent; + int level; +}; + +static void regulator_summary_show_subtree(struct seq_file *s, + struct regulator_dev *rdev, + int level); + +static int regulator_summary_show_children(struct device *dev, void *data) +{ + struct regulator_dev *rdev = dev_to_rdev(dev); + struct summary_data *summary_data = data; + + if (rdev->supply && rdev->supply->rdev == summary_data->parent) + regulator_summary_show_subtree(summary_data->s, rdev, + summary_data->level + 1); + + return 0; +} + +static void regulator_summary_show_subtree(struct seq_file *s, + struct regulator_dev *rdev, + int level) +{ + struct regulation_constraints *c; + struct regulator *consumer; + struct summary_data summary_data; + unsigned int opmode; + + if (!rdev) + return; + + opmode = _regulator_get_mode_unlocked(rdev); + seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", + level * 3 + 1, "", + 30 - level * 3, rdev_get_name(rdev), + rdev->use_count, rdev->open_count, rdev->bypass_count, + regulator_opmode_to_str(opmode)); + + seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); + seq_printf(s, "%5dmA ", + _regulator_get_current_limit_unlocked(rdev) / 1000); + + c = rdev->constraints; + if (c) { + switch (rdev->desc->type) { + case REGULATOR_VOLTAGE: + seq_printf(s, "%5dmV %5dmV ", + c->min_uV / 1000, c->max_uV / 1000); + break; + case REGULATOR_CURRENT: + seq_printf(s, "%5dmA %5dmA ", + c->min_uA / 1000, c->max_uA / 1000); break; } } - ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); + seq_puts(s, "\n"); - kfree(buf); + list_for_each_entry(consumer, &rdev->consumer_list, list) { + if (consumer->dev && consumer->dev->class == ®ulator_class) + continue; - return ret; + seq_printf(s, "%*s%-*s ", + (level + 1) * 3 + 1, "", + 30 - (level + 1) * 3, + consumer->supply_name ? consumer->supply_name : + consumer->dev ? dev_name(consumer->dev) : "deviceless"); + + switch (rdev->desc->type) { + case REGULATOR_VOLTAGE: + seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", + consumer->enable_count, + consumer->uA_load / 1000, + consumer->uA_load && !consumer->enable_count ? + '*' : ' ', + consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, + consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); + break; + case REGULATOR_CURRENT: + break; + } + + seq_puts(s, "\n"); + } + + summary_data.s = s; + summary_data.level = level; + summary_data.parent = rdev; + + class_for_each_device(®ulator_class, NULL, &summary_data, + regulator_summary_show_children); } -#endif -static const struct file_operations supply_map_fops = { -#ifdef CONFIG_DEBUG_FS - .read = supply_map_read_file, - .llseek = default_llseek, -#endif +struct summary_lock_data { + struct ww_acquire_ctx *ww_ctx; + struct regulator_dev **new_contended_rdev; + struct regulator_dev **old_contended_rdev; }; +static int regulator_summary_lock_one(struct device *dev, void *data) +{ + struct regulator_dev *rdev = dev_to_rdev(dev); + struct summary_lock_data *lock_data = data; + int ret = 0; + + if (rdev != *lock_data->old_contended_rdev) { + ret = regulator_lock_nested(rdev, lock_data->ww_ctx); + + if (ret == -EDEADLK) + *lock_data->new_contended_rdev = rdev; + else + WARN_ON_ONCE(ret); + } else { + *lock_data->old_contended_rdev = NULL; + } + + return ret; +} + +static int regulator_summary_unlock_one(struct device *dev, void *data) +{ + struct regulator_dev *rdev = dev_to_rdev(dev); + struct summary_lock_data *lock_data = data; + + if (lock_data) { + if (rdev == *lock_data->new_contended_rdev) + return -EDEADLK; + } + + regulator_unlock(rdev); + + return 0; +} + +static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, + struct regulator_dev **new_contended_rdev, + struct regulator_dev **old_contended_rdev) +{ + struct summary_lock_data lock_data; + int ret; + + lock_data.ww_ctx = ww_ctx; + lock_data.new_contended_rdev = new_contended_rdev; + lock_data.old_contended_rdev = old_contended_rdev; + + ret = class_for_each_device(®ulator_class, NULL, &lock_data, + regulator_summary_lock_one); + if (ret) + class_for_each_device(®ulator_class, NULL, &lock_data, + regulator_summary_unlock_one); + + return ret; +} + +static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) +{ + struct regulator_dev *new_contended_rdev = NULL; + struct regulator_dev *old_contended_rdev = NULL; + int err; + + mutex_lock(®ulator_list_mutex); + + ww_acquire_init(ww_ctx, ®ulator_ww_class); + + do { + if (new_contended_rdev) { + ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); + old_contended_rdev = new_contended_rdev; + old_contended_rdev->ref_cnt++; + old_contended_rdev->mutex_owner = current; + } + + err = regulator_summary_lock_all(ww_ctx, + &new_contended_rdev, + &old_contended_rdev); + + if (old_contended_rdev) + regulator_unlock(old_contended_rdev); + + } while (err == -EDEADLK); + + ww_acquire_done(ww_ctx); +} + +static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) +{ + class_for_each_device(®ulator_class, NULL, NULL, + regulator_summary_unlock_one); + ww_acquire_fini(ww_ctx); + + mutex_unlock(®ulator_list_mutex); +} + +static int regulator_summary_show_roots(struct device *dev, void *data) +{ + struct regulator_dev *rdev = dev_to_rdev(dev); + struct seq_file *s = data; + + if (!rdev->supply) + regulator_summary_show_subtree(s, rdev, 0); + + return 0; +} + +static int regulator_summary_show(struct seq_file *s, void *data) +{ + struct ww_acquire_ctx ww_ctx; + + seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); + seq_puts(s, "---------------------------------------------------------------------------------------\n"); + + regulator_summary_lock(&ww_ctx); + + class_for_each_device(®ulator_class, NULL, s, + regulator_summary_show_roots); + + regulator_summary_unlock(&ww_ctx); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(regulator_summary); +#endif /* CONFIG_DEBUG_FS */ + static int __init regulator_init(void) { int ret; @@ -3968,27 +6606,113 @@ static int __init regulator_init(void) ret = class_register(®ulator_class); debugfs_root = debugfs_create_dir("regulator", NULL); - if (!debugfs_root) - pr_warn("regulator: Failed to create debugfs directory\n"); + if (IS_ERR(debugfs_root)) + pr_debug("regulator: Failed to create debugfs directory\n"); +#ifdef CONFIG_DEBUG_FS debugfs_create_file("supply_map", 0444, debugfs_root, NULL, &supply_map_fops); + debugfs_create_file("regulator_summary", 0444, debugfs_root, + NULL, ®ulator_summary_fops); +#endif regulator_dummy_init(); + regulator_coupler_register(&generic_regulator_coupler); + return ret; } /* init early to allow our consumers to complete system booting */ core_initcall(regulator_init); -static int __init regulator_init_complete(void) +static int regulator_late_cleanup(struct device *dev, void *data) { - struct regulator_dev *rdev; - struct regulator_ops *ops; - struct regulation_constraints *c; - int enabled, ret; + struct regulator_dev *rdev = dev_to_rdev(dev); + struct regulation_constraints *c = rdev->constraints; + int ret; + + if (c && c->always_on) + return 0; + + if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) + return 0; + + regulator_lock(rdev); + + if (rdev->use_count) + goto unlock; + + /* If reading the status failed, assume that it's off. */ + if (_regulator_is_enabled(rdev) <= 0) + goto unlock; + + if (have_full_constraints()) { + /* We log since this may kill the system if it goes + * wrong. + */ + rdev_info(rdev, "disabling\n"); + ret = _regulator_do_disable(rdev); + if (ret != 0) + rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); + } else { + /* The intention is that in future we will + * assume that full constraints are provided + * so warn even if we aren't going to do + * anything here. + */ + rdev_warn(rdev, "incomplete constraints, leaving on\n"); + } + +unlock: + regulator_unlock(rdev); + + return 0; +} + +static bool regulator_ignore_unused; +static int __init regulator_ignore_unused_setup(char *__unused) +{ + regulator_ignore_unused = true; + return 1; +} +__setup("regulator_ignore_unused", regulator_ignore_unused_setup); + +static void regulator_init_complete_work_function(struct work_struct *work) +{ + /* + * Regulators may had failed to resolve their input supplies + * when were registered, either because the input supply was + * not registered yet or because its parent device was not + * bound yet. So attempt to resolve the input supplies for + * pending regulators before trying to disable unused ones. + */ + class_for_each_device(®ulator_class, NULL, NULL, + regulator_register_resolve_supply); + + /* + * For debugging purposes, it may be useful to prevent unused + * regulators from being disabled. + */ + if (regulator_ignore_unused) { + pr_warn("regulator: Not disabling unused regulators\n"); + return; + } + + /* If we have a full configuration then disable any regulators + * we have permission to change the status for and which are + * not in use or always_on. This is effectively the default + * for DT and ACPI as they have full constraints. + */ + class_for_each_device(®ulator_class, NULL, NULL, + regulator_late_cleanup); +} +static DECLARE_DELAYED_WORK(regulator_init_complete_work, + regulator_init_complete_work_function); + +static int __init regulator_init_complete(void) +{ /* * Since DT doesn't provide an idiomatic mechanism for * enabling full constraints and since it's much more natural @@ -3998,56 +6722,20 @@ static int __init regulator_init_complete(void) if (of_have_populated_dt()) has_full_constraints = true; - mutex_lock(®ulator_list_mutex); - - /* If we have a full configuration then disable any regulators - * which are not in use or always_on. This will become the - * default behaviour in the future. + /* + * We punt completion for an arbitrary amount of time since + * systems like distros will load many drivers from userspace + * so consumers might not always be ready yet, this is + * particularly an issue with laptops where this might bounce + * the display off then on. Ideally we'd get a notification + * from userspace when this happens but we don't so just wait + * a bit and hope we waited long enough. It'd be better if + * we'd only do this on systems that need it, and a kernel + * command line option might be useful. */ - list_for_each_entry(rdev, ®ulator_list, list) { - ops = rdev->desc->ops; - c = rdev->constraints; - - if (!ops->disable || (c && c->always_on)) - continue; - - mutex_lock(&rdev->mutex); - - if (rdev->use_count) - goto unlock; - - /* If we can't read the status assume it's on. */ - if (ops->is_enabled) - enabled = ops->is_enabled(rdev); - else - enabled = 1; - - if (!enabled) - goto unlock; - - if (has_full_constraints) { - /* We log since this may kill the system if it - * goes wrong. */ - rdev_info(rdev, "disabling\n"); - ret = ops->disable(rdev); - if (ret != 0) { - rdev_err(rdev, "couldn't disable: %d\n", ret); - } - } else { - /* The intention is that in future we will - * assume that full constraints are provided - * so warn even if we aren't going to do - * anything here. - */ - rdev_warn(rdev, "incomplete constraints, leaving on\n"); - } - -unlock: - mutex_unlock(&rdev->mutex); - } - - mutex_unlock(®ulator_list_mutex); + schedule_delayed_work(®ulator_init_complete_work, + msecs_to_jiffies(30000)); return 0; } -late_initcall(regulator_init_complete); +late_initcall_sync(regulator_init_complete); |
