diff options
Diffstat (limited to 'drivers/remoteproc/ti_k3_m4_remoteproc.c')
-rw-r--r-- | drivers/remoteproc/ti_k3_m4_remoteproc.c | 667 |
1 files changed, 667 insertions, 0 deletions
diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c new file mode 100644 index 000000000000..09f0484a90e1 --- /dev/null +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c @@ -0,0 +1,667 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * TI K3 Cortex-M4 Remote Processor(s) driver + * + * Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/ + * Hari Nagalla <hnagalla@ti.com> + */ + +#include <linux/io.h> +#include <linux/mailbox_client.h> +#include <linux/module.h> +#include <linux/of_address.h> +#include <linux/of_reserved_mem.h> +#include <linux/platform_device.h> +#include <linux/remoteproc.h> +#include <linux/reset.h> +#include <linux/slab.h> + +#include "omap_remoteproc.h" +#include "remoteproc_internal.h" +#include "ti_sci_proc.h" + +#define K3_M4_IRAM_DEV_ADDR 0x00000 +#define K3_M4_DRAM_DEV_ADDR 0x30000 + +/** + * struct k3_m4_rproc_mem - internal memory structure + * @cpu_addr: MPU virtual address of the memory region + * @bus_addr: Bus address used to access the memory region + * @dev_addr: Device address of the memory region from remote processor view + * @size: Size of the memory region + */ +struct k3_m4_rproc_mem { + void __iomem *cpu_addr; + phys_addr_t bus_addr; + u32 dev_addr; + size_t size; +}; + +/** + * struct k3_m4_rproc_mem_data - memory definitions for a remote processor + * @name: name for this memory entry + * @dev_addr: device address for the memory entry + */ +struct k3_m4_rproc_mem_data { + const char *name; + const u32 dev_addr; +}; + +/** + * struct k3_m4_rproc - k3 remote processor driver structure + * @dev: cached device pointer + * @mem: internal memory regions data + * @num_mems: number of internal memory regions + * @rmem: reserved memory regions data + * @num_rmems: number of reserved memory regions + * @reset: reset control handle + * @tsp: TI-SCI processor control handle + * @ti_sci: TI-SCI handle + * @ti_sci_id: TI-SCI device identifier + * @mbox: mailbox channel handle + * @client: mailbox client to request the mailbox channel + */ +struct k3_m4_rproc { + struct device *dev; + struct k3_m4_rproc_mem *mem; + int num_mems; + struct k3_m4_rproc_mem *rmem; + int num_rmems; + struct reset_control *reset; + struct ti_sci_proc *tsp; + const struct ti_sci_handle *ti_sci; + u32 ti_sci_id; + struct mbox_chan *mbox; + struct mbox_client client; +}; + +/** + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler + * @client: mailbox client pointer used for requesting the mailbox channel + * @data: mailbox payload + * + * This handler is invoked by the K3 mailbox driver whenever a mailbox + * message is received. Usually, the mailbox payload simply contains + * the index of the virtqueue that is kicked by the remote processor, + * and we let remoteproc core handle it. + * + * In addition to virtqueue indices, we also have some out-of-band values + * that indicate different events. Those values are deliberately very + * large so they don't coincide with virtqueue indices. + */ +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) +{ + struct device *dev = client->dev; + struct rproc *rproc = dev_get_drvdata(dev); + u32 msg = (u32)(uintptr_t)(data); + + dev_dbg(dev, "mbox msg: 0x%x\n", msg); + + switch (msg) { + case RP_MBOX_CRASH: + /* + * remoteproc detected an exception, but error recovery is not + * supported. So, just log this for now + */ + dev_err(dev, "K3 rproc %s crashed\n", rproc->name); + break; + case RP_MBOX_ECHO_REPLY: + dev_info(dev, "received echo reply from %s\n", rproc->name); + break; + default: + /* silently handle all other valid messages */ + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) + return; + if (msg > rproc->max_notifyid) { + dev_dbg(dev, "dropping unknown message 0x%x", msg); + return; + } + /* msg contains the index of the triggered vring */ + if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE) + dev_dbg(dev, "no message was found in vqid %d\n", msg); + } +} + +/* + * Kick the remote processor to notify about pending unprocessed messages. + * The vqid usage is not used and is inconsequential, as the kick is performed + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), + * the remote processor is expected to process both its Tx and Rx virtqueues. + */ +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + u32 msg = (u32)vqid; + int ret; + + /* + * Send the index of the triggered virtqueue in the mailbox payload. + * NOTE: msg is cast to uintptr_t to prevent compiler warnings when + * void* is 64bit. It is safely cast back to u32 in the mailbox driver. + */ + ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg); + if (ret < 0) + dev_err(dev, "failed to send mailbox message, status = %d\n", + ret); +} + +static int k3_m4_rproc_ping_mbox(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + int ret; + + /* + * Ping the remote processor, this is only for sanity-sake for now; + * there is no functional effect whatsoever. + * + * Note that the reply will _not_ arrive immediately: this message + * will wait in the mailbox fifo until the remote processor is booted. + */ + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); + if (ret < 0) { + dev_err(dev, "mbox_send_message failed: %d\n", ret); + return ret; + } + + return 0; +} + +/* + * The M4 cores have a local reset that affects only the CPU, and a + * generic module reset that powers on the device and allows the internal + * memories to be accessed while the local reset is asserted. This function is + * used to release the global reset on remote cores to allow loading into the + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any + * firmware loading, and is followed by the .start() ops after loading to + * actually let the remote cores to run. + */ +static int k3_m4_rproc_prepare(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + /* If the core is running already no need to deassert the module reset */ + if (rproc->state == RPROC_DETACHED) + return 0; + + /* + * Ensure the local reset is asserted so the core doesn't + * execute bogus code when the module reset is released. + */ + ret = reset_control_assert(kproc->reset); + if (ret) { + dev_err(dev, "could not assert local reset\n"); + return ret; + } + + ret = reset_control_status(kproc->reset); + if (ret <= 0) { + dev_err(dev, "local reset still not asserted\n"); + return ret; + } + + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) { + dev_err(dev, "could not deassert module-reset for internal RAM loading\n"); + return ret; + } + + return 0; +} + +/* + * This function implements the .unprepare() ops and performs the complimentary + * operations to that of the .prepare() ops. The function is used to assert the + * global reset on applicable cores. This completes the second portion of + * powering down the remote core. The cores themselves are only halted in the + * .stop() callback through the local reset, and the .unprepare() ops is invoked + * by the remoteproc core after the remoteproc is stopped to balance the global + * reset. + */ +static int k3_m4_rproc_unprepare(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + /* If the core is going to be detached do not assert the module reset */ + if (rproc->state == RPROC_ATTACHED) + return 0; + + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) { + dev_err(dev, "module-reset assert failed\n"); + return ret; + } + + return 0; +} + +/* + * This function implements the .get_loaded_rsc_table() callback and is used + * to provide the resource table for a booted remote processor in IPC-only + * mode. The remote processor firmwares follow a design-by-contract approach + * and are expected to have the resource table at the base of the DDR region + * reserved for firmware usage. This provides flexibility for the remote + * processor to be booted by different bootloaders that may or may not have the + * ability to publish the resource table address and size through a DT + * property. + */ +static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, + size_t *rsc_table_sz) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + + if (!kproc->rmem[0].cpu_addr) { + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); + return ERR_PTR(-ENOMEM); + } + + /* + * NOTE: The resource table size is currently hard-coded to a maximum + * of 256 bytes. The most common resource table usage for K3 firmwares + * is to only have the vdev resource entry and an optional trace entry. + * The exact size could be computed based on resource table address, but + * the hard-coded value suffices to support the IPC-only mode. + */ + *rsc_table_sz = 256; + return (__force struct resource_table *)kproc->rmem[0].cpu_addr; +} + +/* + * Custom function to translate a remote processor device address (internal + * RAMs only) to a kernel virtual address. The remote processors can access + * their RAMs at either an internal address visible only from a remote + * processor, or at the SoC-level bus address. Both these addresses need to be + * looked through for translation. The translated addresses can be used either + * by the remoteproc core for loading (when using kernel remoteproc loader), or + * by any rpmsg bus drivers. + */ +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) +{ + struct k3_m4_rproc *kproc = rproc->priv; + void __iomem *va = NULL; + phys_addr_t bus_addr; + u32 dev_addr, offset; + size_t size; + int i; + + if (len == 0) + return NULL; + + for (i = 0; i < kproc->num_mems; i++) { + bus_addr = kproc->mem[i].bus_addr; + dev_addr = kproc->mem[i].dev_addr; + size = kproc->mem[i].size; + + /* handle M4-view addresses */ + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { + offset = da - dev_addr; + va = kproc->mem[i].cpu_addr + offset; + return (__force void *)va; + } + + /* handle SoC-view addresses */ + if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { + offset = da - bus_addr; + va = kproc->mem[i].cpu_addr + offset; + return (__force void *)va; + } + } + + /* handle static DDR reserved memory regions */ + for (i = 0; i < kproc->num_rmems; i++) { + dev_addr = kproc->rmem[i].dev_addr; + size = kproc->rmem[i].size; + + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { + offset = da - dev_addr; + va = kproc->rmem[i].cpu_addr + offset; + return (__force void *)va; + } + } + + return NULL; +} + +static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, + struct k3_m4_rproc *kproc) +{ + static const char * const mem_names[] = { "iram", "dram" }; + static const u32 mem_addrs[] = { K3_M4_IRAM_DEV_ADDR, K3_M4_DRAM_DEV_ADDR }; + struct device *dev = &pdev->dev; + struct resource *res; + int num_mems; + int i; + + num_mems = ARRAY_SIZE(mem_names); + kproc->mem = devm_kcalloc(kproc->dev, num_mems, + sizeof(*kproc->mem), GFP_KERNEL); + if (!kproc->mem) + return -ENOMEM; + + for (i = 0; i < num_mems; i++) { + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + mem_names[i]); + if (!res) { + dev_err(dev, "found no memory resource for %s\n", + mem_names[i]); + return -EINVAL; + } + if (!devm_request_mem_region(dev, res->start, + resource_size(res), + dev_name(dev))) { + dev_err(dev, "could not request %s region for resource\n", + mem_names[i]); + return -EBUSY; + } + + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, + resource_size(res)); + if (!kproc->mem[i].cpu_addr) { + dev_err(dev, "failed to map %s memory\n", + mem_names[i]); + return -ENOMEM; + } + kproc->mem[i].bus_addr = res->start; + kproc->mem[i].dev_addr = mem_addrs[i]; + kproc->mem[i].size = resource_size(res); + + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", + mem_names[i], &kproc->mem[i].bus_addr, + kproc->mem[i].size, kproc->mem[i].cpu_addr, + kproc->mem[i].dev_addr); + } + kproc->num_mems = num_mems; + + return 0; +} + +static void k3_m4_rproc_dev_mem_release(void *data) +{ + struct device *dev = data; + + of_reserved_mem_device_release(dev); +} + +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + struct device_node *np = dev->of_node; + struct device_node *rmem_np; + struct reserved_mem *rmem; + int num_rmems; + int ret, i; + + num_rmems = of_property_count_elems_of_size(np, "memory-region", + sizeof(phandle)); + if (num_rmems < 0) { + dev_err(dev, "device does not reserved memory regions (%d)\n", + num_rmems); + return -EINVAL; + } + if (num_rmems < 2) { + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", + num_rmems); + return -EINVAL; + } + + /* use reserved memory region 0 for vring DMA allocations */ + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); + if (ret) { + dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret); + return ret; + } + ret = devm_add_action_or_reset(dev, k3_m4_rproc_dev_mem_release, dev); + if (ret) + return ret; + + num_rmems--; + kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); + if (!kproc->rmem) + return -ENOMEM; + + /* use remaining reserved memory regions for static carveouts */ + for (i = 0; i < num_rmems; i++) { + rmem_np = of_parse_phandle(np, "memory-region", i + 1); + if (!rmem_np) + return -EINVAL; + + rmem = of_reserved_mem_lookup(rmem_np); + if (!rmem) { + of_node_put(rmem_np); + return -EINVAL; + } + of_node_put(rmem_np); + + kproc->rmem[i].bus_addr = rmem->base; + /* 64-bit address regions currently not supported */ + kproc->rmem[i].dev_addr = (u32)rmem->base; + kproc->rmem[i].size = rmem->size; + kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size); + if (!kproc->rmem[i].cpu_addr) { + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", + i + 1, &rmem->base, &rmem->size); + return -ENOMEM; + } + + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", + i + 1, &kproc->rmem[i].bus_addr, + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, + kproc->rmem[i].dev_addr); + } + kproc->num_rmems = num_rmems; + + return 0; +} + +static void k3_m4_release_tsp(void *data) +{ + struct ti_sci_proc *tsp = data; + + ti_sci_proc_release(tsp); +} + +/* + * Power up the M4 remote processor. + * + * This function will be invoked only after the firmware for this rproc + * was loaded, parsed successfully, and all of its resource requirements + * were met. This callback is invoked only in remoteproc mode. + */ +static int k3_m4_rproc_start(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + ret = k3_m4_rproc_ping_mbox(kproc); + if (ret) + return ret; + + ret = reset_control_deassert(kproc->reset); + if (ret) { + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); + return ret; + } + + return 0; +} + +/* + * Stop the M4 remote processor. + * + * This function puts the M4 processor into reset, and finishes processing + * of any pending messages. This callback is invoked only in remoteproc mode. + */ +static int k3_m4_rproc_stop(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + ret = reset_control_assert(kproc->reset); + if (ret) { + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); + return ret; + } + + return 0; +} + +/* + * Attach to a running M4 remote processor (IPC-only mode) + * + * The remote processor is already booted, so there is no need to issue any + * TI-SCI commands to boot the M4 core. This callback is used only in IPC-only + * mode. + */ +static int k3_m4_rproc_attach(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + int ret; + + ret = k3_m4_rproc_ping_mbox(kproc); + if (ret) + return ret; + + return 0; +} + +/* + * Detach from a running M4 remote processor (IPC-only mode) + * + * This rproc detach callback performs the opposite operation to attach + * callback, the M4 core is not stopped and will be left to continue to + * run its booted firmware. This callback is invoked only in IPC-only mode. + */ +static int k3_m4_rproc_detach(struct rproc *rproc) +{ + return 0; +} + +static const struct rproc_ops k3_m4_rproc_ops = { + .prepare = k3_m4_rproc_prepare, + .unprepare = k3_m4_rproc_unprepare, + .start = k3_m4_rproc_start, + .stop = k3_m4_rproc_stop, + .attach = k3_m4_rproc_attach, + .detach = k3_m4_rproc_detach, + .kick = k3_m4_rproc_kick, + .da_to_va = k3_m4_rproc_da_to_va, + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, +}; + +static int k3_m4_rproc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct k3_m4_rproc *kproc; + struct rproc *rproc; + const char *fw_name; + bool r_state = false; + bool p_state = false; + int ret; + + ret = rproc_of_parse_firmware(dev, 0, &fw_name); + if (ret) + return dev_err_probe(dev, ret, "failed to parse firmware-name property\n"); + + rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, + sizeof(*kproc)); + if (!rproc) + return -ENOMEM; + + rproc->has_iommu = false; + rproc->recovery_disabled = true; + kproc = rproc->priv; + kproc->dev = dev; + platform_set_drvdata(pdev, rproc); + + kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); + if (IS_ERR(kproc->ti_sci)) + return dev_err_probe(dev, PTR_ERR(kproc->ti_sci), + "failed to get ti-sci handle\n"); + + ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id", &kproc->ti_sci_id); + if (ret) + return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n"); + + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); + if (IS_ERR(kproc->reset)) + return dev_err_probe(dev, PTR_ERR(kproc->reset), "failed to get reset\n"); + + kproc->tsp = ti_sci_proc_of_get_tsp(dev, kproc->ti_sci); + if (IS_ERR(kproc->tsp)) + return dev_err_probe(dev, PTR_ERR(kproc->tsp), + "failed to construct ti-sci proc control\n"); + + ret = ti_sci_proc_request(kproc->tsp); + if (ret < 0) + return dev_err_probe(dev, ret, "ti_sci_proc_request failed\n"); + ret = devm_add_action_or_reset(dev, k3_m4_release_tsp, kproc->tsp); + if (ret) + return ret; + + ret = k3_m4_rproc_of_get_memories(pdev, kproc); + if (ret) + return ret; + + ret = k3_m4_reserved_mem_init(kproc); + if (ret) + return dev_err_probe(dev, ret, "reserved memory init failed\n"); + + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, + &r_state, &p_state); + if (ret) + return dev_err_probe(dev, ret, + "failed to get initial state, mode cannot be determined\n"); + + /* configure devices for either remoteproc or IPC-only mode */ + if (p_state) { + rproc->state = RPROC_DETACHED; + dev_info(dev, "configured M4F for IPC-only mode\n"); + } else { + dev_info(dev, "configured M4F for remoteproc mode\n"); + } + + kproc->client.dev = dev; + kproc->client.tx_done = NULL; + kproc->client.rx_callback = k3_m4_rproc_mbox_callback; + kproc->client.tx_block = false; + kproc->client.knows_txdone = false; + kproc->mbox = mbox_request_channel(&kproc->client, 0); + if (IS_ERR(kproc->mbox)) + return dev_err_probe(dev, PTR_ERR(kproc->mbox), + "mbox_request_channel failed\n"); + + ret = devm_rproc_add(dev, rproc); + if (ret) + return dev_err_probe(dev, ret, + "failed to register device with remoteproc core\n"); + + return 0; +} + +static const struct of_device_id k3_m4_of_match[] = { + { .compatible = "ti,am64-m4fss", }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, k3_m4_of_match); + +static struct platform_driver k3_m4_rproc_driver = { + .probe = k3_m4_rproc_probe, + .driver = { + .name = "k3-m4-rproc", + .of_match_table = k3_m4_of_match, + }, +}; +module_platform_driver(k3_m4_rproc_driver); + +MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); +MODULE_LICENSE("GPL"); |