summaryrefslogtreecommitdiff
path: root/drivers/vfio/pci/nvgrace-gpu/main.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/vfio/pci/nvgrace-gpu/main.c')
-rw-r--r--drivers/vfio/pci/nvgrace-gpu/main.c1187
1 files changed, 1187 insertions, 0 deletions
diff --git a/drivers/vfio/pci/nvgrace-gpu/main.c b/drivers/vfio/pci/nvgrace-gpu/main.c
new file mode 100644
index 000000000000..84d142a47ec6
--- /dev/null
+++ b/drivers/vfio/pci/nvgrace-gpu/main.c
@@ -0,0 +1,1187 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved
+ */
+
+#include <linux/sizes.h>
+#include <linux/vfio_pci_core.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/pci-p2pdma.h>
+#include <linux/pm_runtime.h>
+
+/*
+ * The device memory usable to the workloads running in the VM is cached
+ * and showcased as a 64b device BAR (comprising of BAR4 and BAR5 region)
+ * to the VM and is represented as usemem.
+ * Moreover, the VM GPU device driver needs a non-cacheable region to
+ * support the MIG feature. This region is also exposed as a 64b BAR
+ * (comprising of BAR2 and BAR3 region) and represented as resmem.
+ */
+#define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX
+#define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX
+
+/* A hardwired and constant ABI value between the GPU FW and VFIO driver. */
+#define MEMBLK_SIZE SZ_512M
+
+#define DVSEC_BITMAP_OFFSET 0xA
+#define MIG_SUPPORTED_WITH_CACHED_RESMEM BIT(0)
+
+#define GPU_CAP_DVSEC_REGISTER 3
+
+#define C2C_LINK_BAR0_OFFSET 0x1498
+#define HBM_TRAINING_BAR0_OFFSET 0x200BC
+#define STATUS_READY 0xFF
+
+#define POLL_QUANTUM_MS 1000
+#define POLL_TIMEOUT_MS (30 * 1000)
+
+/*
+ * The state of the two device memory region - resmem and usemem - is
+ * saved as struct mem_region.
+ */
+struct mem_region {
+ phys_addr_t memphys; /* Base physical address of the region */
+ size_t memlength; /* Region size */
+ size_t bar_size; /* Reported region BAR size */
+ __le64 bar_val; /* Emulated BAR offset registers */
+ union {
+ void *memaddr;
+ void __iomem *ioaddr;
+ }; /* Base virtual address of the region */
+};
+
+struct nvgrace_gpu_pci_core_device {
+ struct vfio_pci_core_device core_device;
+ /* Cached and usable memory for the VM. */
+ struct mem_region usemem;
+ /* Non cached memory carved out from the end of device memory */
+ struct mem_region resmem;
+ /* Lock to control device memory kernel mapping */
+ struct mutex remap_lock;
+ bool has_mig_hw_bug;
+ /* GPU has just been reset */
+ bool reset_done;
+};
+
+static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+
+ nvdev->resmem.bar_val = 0;
+ nvdev->usemem.bar_val = 0;
+}
+
+/* Choose the structure corresponding to the fake BAR with a given index. */
+static struct mem_region *
+nvgrace_gpu_memregion(int index,
+ struct nvgrace_gpu_pci_core_device *nvdev)
+{
+ if (index == USEMEM_REGION_INDEX)
+ return &nvdev->usemem;
+
+ if (nvdev->resmem.memlength && index == RESMEM_REGION_INDEX)
+ return &nvdev->resmem;
+
+ return NULL;
+}
+
+static int nvgrace_gpu_open_device(struct vfio_device *core_vdev)
+{
+ struct vfio_pci_core_device *vdev =
+ container_of(core_vdev, struct vfio_pci_core_device, vdev);
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+ int ret;
+
+ ret = vfio_pci_core_enable(vdev);
+ if (ret)
+ return ret;
+
+ if (nvdev->usemem.memlength) {
+ nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
+ mutex_init(&nvdev->remap_lock);
+ }
+
+ /*
+ * GPU readiness is checked by reading the BAR0 registers.
+ *
+ * ioremap BAR0 to ensure that the BAR0 mapping is present before
+ * register reads on first fault before establishing any GPU
+ * memory mapping.
+ */
+ ret = vfio_pci_core_setup_barmap(vdev, 0);
+ if (ret) {
+ vfio_pci_core_disable(vdev);
+ return ret;
+ }
+
+ vfio_pci_core_finish_enable(vdev);
+
+ return 0;
+}
+
+static void nvgrace_gpu_close_device(struct vfio_device *core_vdev)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+
+ /* Unmap the mapping to the device memory cached region */
+ if (nvdev->usemem.memaddr) {
+ memunmap(nvdev->usemem.memaddr);
+ nvdev->usemem.memaddr = NULL;
+ }
+
+ /* Unmap the mapping to the device memory non-cached region */
+ if (nvdev->resmem.ioaddr) {
+ iounmap(nvdev->resmem.ioaddr);
+ nvdev->resmem.ioaddr = NULL;
+ }
+
+ mutex_destroy(&nvdev->remap_lock);
+
+ vfio_pci_core_close_device(core_vdev);
+}
+
+static int nvgrace_gpu_wait_device_ready(void __iomem *io)
+{
+ unsigned long timeout = jiffies + msecs_to_jiffies(POLL_TIMEOUT_MS);
+
+ do {
+ if ((ioread32(io + C2C_LINK_BAR0_OFFSET) == STATUS_READY) &&
+ (ioread32(io + HBM_TRAINING_BAR0_OFFSET) == STATUS_READY))
+ return 0;
+ msleep(POLL_QUANTUM_MS);
+ } while (!time_after(jiffies, timeout));
+
+ return -ETIME;
+}
+
+/*
+ * If the GPU memory is accessed by the CPU while the GPU is not ready
+ * after reset, it can cause harmless corrected RAS events to be logged.
+ * Make sure the GPU is ready before establishing the mappings.
+ */
+static int
+nvgrace_gpu_check_device_ready(struct nvgrace_gpu_pci_core_device *nvdev)
+{
+ struct vfio_pci_core_device *vdev = &nvdev->core_device;
+ int ret;
+
+ lockdep_assert_held_read(&vdev->memory_lock);
+
+ if (!nvdev->reset_done)
+ return 0;
+
+ if (!__vfio_pci_memory_enabled(vdev))
+ return -EIO;
+
+ ret = nvgrace_gpu_wait_device_ready(vdev->barmap[0]);
+ if (ret)
+ return ret;
+
+ nvdev->reset_done = false;
+
+ return 0;
+}
+
+static unsigned long addr_to_pgoff(struct vm_area_struct *vma,
+ unsigned long addr)
+{
+ u64 pgoff = vma->vm_pgoff &
+ ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
+
+ return ((addr - vma->vm_start) >> PAGE_SHIFT) + pgoff;
+}
+
+static vm_fault_t nvgrace_gpu_vfio_pci_huge_fault(struct vm_fault *vmf,
+ unsigned int order)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct nvgrace_gpu_pci_core_device *nvdev = vma->vm_private_data;
+ struct vfio_pci_core_device *vdev = &nvdev->core_device;
+ unsigned int index =
+ vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
+ vm_fault_t ret = VM_FAULT_FALLBACK;
+ struct mem_region *memregion;
+ unsigned long pfn, addr;
+
+ memregion = nvgrace_gpu_memregion(index, nvdev);
+ if (!memregion)
+ return VM_FAULT_SIGBUS;
+
+ addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
+ pfn = PHYS_PFN(memregion->memphys) + addr_to_pgoff(vma, addr);
+
+ if (is_aligned_for_order(vma, addr, pfn, order)) {
+ scoped_guard(rwsem_read, &vdev->memory_lock) {
+ if (vdev->pm_runtime_engaged ||
+ nvgrace_gpu_check_device_ready(nvdev))
+ return VM_FAULT_SIGBUS;
+
+ ret = vfio_pci_vmf_insert_pfn(vdev, vmf, pfn, order);
+ }
+ }
+
+ dev_dbg_ratelimited(&vdev->pdev->dev,
+ "%s order = %d pfn 0x%lx: 0x%x\n",
+ __func__, order, pfn,
+ (unsigned int)ret);
+
+ return ret;
+}
+
+static vm_fault_t nvgrace_gpu_vfio_pci_fault(struct vm_fault *vmf)
+{
+ return nvgrace_gpu_vfio_pci_huge_fault(vmf, 0);
+}
+
+static const struct vm_operations_struct nvgrace_gpu_vfio_pci_mmap_ops = {
+ .fault = nvgrace_gpu_vfio_pci_fault,
+#ifdef CONFIG_ARCH_SUPPORTS_HUGE_PFNMAP
+ .huge_fault = nvgrace_gpu_vfio_pci_huge_fault,
+#endif
+};
+
+static int nvgrace_gpu_mmap(struct vfio_device *core_vdev,
+ struct vm_area_struct *vma)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+ struct mem_region *memregion;
+ u64 req_len, pgoff, end;
+ unsigned int index;
+
+ index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
+
+ memregion = nvgrace_gpu_memregion(index, nvdev);
+ if (!memregion)
+ return vfio_pci_core_mmap(core_vdev, vma);
+
+ /*
+ * Request to mmap the BAR. Map to the CPU accessible memory on the
+ * GPU using the memory information gathered from the system ACPI
+ * tables.
+ */
+ pgoff = vma->vm_pgoff &
+ ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
+
+ if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) ||
+ check_add_overflow(PFN_PHYS(pgoff), req_len, &end))
+ return -EOVERFLOW;
+
+ /*
+ * Check that the mapping request does not go beyond the exposed
+ * device memory size.
+ */
+ if (end > memregion->memlength)
+ return -EINVAL;
+
+ vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
+
+ /*
+ * The carved out region of the device memory needs the NORMAL_NC
+ * property. Communicate as such to the hypervisor.
+ */
+ if (index == RESMEM_REGION_INDEX) {
+ /*
+ * The nvgrace-gpu module has no issues with uncontained
+ * failures on NORMAL_NC accesses. VM_ALLOW_ANY_UNCACHED is
+ * set to communicate to the KVM to S2 map as NORMAL_NC.
+ * This opens up guest usage of NORMAL_NC for this mapping.
+ */
+ vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED);
+
+ vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
+ }
+
+ vma->vm_ops = &nvgrace_gpu_vfio_pci_mmap_ops;
+ vma->vm_private_data = nvdev;
+
+ return 0;
+}
+
+static int nvgrace_gpu_ioctl_get_region_info(struct vfio_device *core_vdev,
+ struct vfio_region_info *info,
+ struct vfio_info_cap *caps)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+ struct vfio_region_info_cap_sparse_mmap *sparse;
+ struct mem_region *memregion;
+ u32 size;
+ int ret;
+
+ /*
+ * Request to determine the BAR region information. Send the
+ * GPU memory information.
+ */
+ memregion = nvgrace_gpu_memregion(info->index, nvdev);
+ if (!memregion)
+ return vfio_pci_ioctl_get_region_info(core_vdev, info, caps);
+
+ size = struct_size(sparse, areas, 1);
+
+ /*
+ * Setup for sparse mapping for the device memory. Only the
+ * available device memory on the hardware is shown as a
+ * mappable region.
+ */
+ sparse = kzalloc(size, GFP_KERNEL);
+ if (!sparse)
+ return -ENOMEM;
+
+ sparse->nr_areas = 1;
+ sparse->areas[0].offset = 0;
+ sparse->areas[0].size = memregion->memlength;
+ sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
+ sparse->header.version = 1;
+
+ ret = vfio_info_add_capability(caps, &sparse->header, size);
+ kfree(sparse);
+ if (ret)
+ return ret;
+
+ info->offset = VFIO_PCI_INDEX_TO_OFFSET(info->index);
+ /*
+ * The region memory size may not be power-of-2 aligned.
+ * Given that the memory is a BAR and may not be
+ * aligned, roundup to the next power-of-2.
+ */
+ info->size = memregion->bar_size;
+ info->flags = VFIO_REGION_INFO_FLAG_READ |
+ VFIO_REGION_INFO_FLAG_WRITE |
+ VFIO_REGION_INFO_FLAG_MMAP;
+ return 0;
+}
+
+static long nvgrace_gpu_ioctl(struct vfio_device *core_vdev,
+ unsigned int cmd, unsigned long arg)
+{
+ switch (cmd) {
+ case VFIO_DEVICE_IOEVENTFD:
+ return -ENOTTY;
+ case VFIO_DEVICE_RESET:
+ nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
+ fallthrough;
+ default:
+ return vfio_pci_core_ioctl(core_vdev, cmd, arg);
+ }
+}
+
+static __le64
+nvgrace_gpu_get_read_value(size_t bar_size, u64 flags, __le64 val64)
+{
+ u64 tmp_val;
+
+ tmp_val = le64_to_cpu(val64);
+ tmp_val &= ~(bar_size - 1);
+ tmp_val |= flags;
+
+ return cpu_to_le64(tmp_val);
+}
+
+/*
+ * Both the usable (usemem) and the reserved (resmem) device memory region
+ * are exposed as a 64b fake device BARs in the VM. These fake BARs must
+ * respond to the accesses on their respective PCI config space offsets.
+ *
+ * resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3.
+ * usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5.
+ */
+static ssize_t
+nvgrace_gpu_read_config_emu(struct vfio_device *core_vdev,
+ char __user *buf, size_t count, loff_t *ppos)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+ u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
+ struct mem_region *memregion = NULL;
+ __le64 val64;
+ size_t register_offset;
+ loff_t copy_offset;
+ size_t copy_count;
+ int ret;
+
+ ret = vfio_pci_core_read(core_vdev, buf, count, ppos);
+ if (ret < 0)
+ return ret;
+
+ if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
+ sizeof(val64),
+ &copy_offset, &copy_count,
+ &register_offset))
+ memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
+ else if (vfio_pci_core_range_intersect_range(pos, count,
+ PCI_BASE_ADDRESS_4,
+ sizeof(val64),
+ &copy_offset, &copy_count,
+ &register_offset))
+ memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
+
+ if (memregion) {
+ val64 = nvgrace_gpu_get_read_value(memregion->bar_size,
+ PCI_BASE_ADDRESS_MEM_TYPE_64 |
+ PCI_BASE_ADDRESS_MEM_PREFETCH,
+ memregion->bar_val);
+ if (copy_to_user(buf + copy_offset,
+ (void *)&val64 + register_offset, copy_count)) {
+ /*
+ * The position has been incremented in
+ * vfio_pci_core_read. Reset the offset back to the
+ * starting position.
+ */
+ *ppos -= count;
+ return -EFAULT;
+ }
+ }
+
+ return count;
+}
+
+static ssize_t
+nvgrace_gpu_write_config_emu(struct vfio_device *core_vdev,
+ const char __user *buf, size_t count, loff_t *ppos)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+ u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
+ struct mem_region *memregion = NULL;
+ size_t register_offset;
+ loff_t copy_offset;
+ size_t copy_count;
+
+ if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
+ sizeof(u64), &copy_offset,
+ &copy_count, &register_offset))
+ memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
+ else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4,
+ sizeof(u64), &copy_offset,
+ &copy_count, &register_offset))
+ memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
+
+ if (memregion) {
+ if (copy_from_user((void *)&memregion->bar_val + register_offset,
+ buf + copy_offset, copy_count))
+ return -EFAULT;
+ *ppos += copy_count;
+ return copy_count;
+ }
+
+ return vfio_pci_core_write(core_vdev, buf, count, ppos);
+}
+
+/*
+ * Ad hoc map the device memory in the module kernel VA space. Primarily needed
+ * as vfio does not require the userspace driver to only perform accesses through
+ * mmaps of the vfio-pci BAR regions and such accesses should be supported using
+ * vfio_device_ops read/write implementations.
+ *
+ * The usemem region is cacheable memory and hence is memremaped.
+ * The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC).
+ */
+static int
+nvgrace_gpu_map_device_mem(int index,
+ struct nvgrace_gpu_pci_core_device *nvdev)
+{
+ struct mem_region *memregion;
+ int ret = 0;
+
+ memregion = nvgrace_gpu_memregion(index, nvdev);
+ if (!memregion)
+ return -EINVAL;
+
+ mutex_lock(&nvdev->remap_lock);
+
+ if (memregion->memaddr)
+ goto unlock;
+
+ if (index == USEMEM_REGION_INDEX)
+ memregion->memaddr = memremap(memregion->memphys,
+ memregion->memlength,
+ MEMREMAP_WB);
+ else
+ memregion->ioaddr = ioremap_wc(memregion->memphys,
+ memregion->memlength);
+
+ if (!memregion->memaddr)
+ ret = -ENOMEM;
+
+unlock:
+ mutex_unlock(&nvdev->remap_lock);
+
+ return ret;
+}
+
+/*
+ * Read the data from the device memory (mapped either through ioremap
+ * or memremap) into the user buffer.
+ */
+static int
+nvgrace_gpu_map_and_read(struct nvgrace_gpu_pci_core_device *nvdev,
+ char __user *buf, size_t mem_count, loff_t *ppos)
+{
+ unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
+ u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
+ int ret;
+
+ if (!mem_count)
+ return 0;
+
+ /*
+ * Handle read on the BAR regions. Map to the target device memory
+ * physical address and copy to the request read buffer.
+ */
+ ret = nvgrace_gpu_map_device_mem(index, nvdev);
+ if (ret)
+ return ret;
+
+ if (index == USEMEM_REGION_INDEX) {
+ if (copy_to_user(buf,
+ (u8 *)nvdev->usemem.memaddr + offset,
+ mem_count))
+ ret = -EFAULT;
+ } else {
+ /*
+ * The hardware ensures that the system does not crash when
+ * the device memory is accessed with the memory enable
+ * turned off. It synthesizes ~0 on such read. So there is
+ * no need to check or support the disablement/enablement of
+ * BAR through PCI_COMMAND config space register. Pass
+ * test_mem flag as false.
+ */
+ ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
+ nvdev->resmem.ioaddr,
+ buf, offset, mem_count,
+ 0, 0, false);
+ }
+
+ return ret;
+}
+
+/*
+ * Read count bytes from the device memory at an offset. The actual device
+ * memory size (available) may not be a power-of-2. So the driver fakes
+ * the size to a power-of-2 (reported) when exposing to a user space driver.
+ *
+ * Reads starting beyond the reported size generate -EINVAL; reads extending
+ * beyond the actual device size is filled with ~0; reads extending beyond
+ * the reported size are truncated.
+ */
+static ssize_t
+nvgrace_gpu_read_mem(struct nvgrace_gpu_pci_core_device *nvdev,
+ char __user *buf, size_t count, loff_t *ppos)
+{
+ struct vfio_pci_core_device *vdev = &nvdev->core_device;
+ u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
+ unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
+ struct mem_region *memregion;
+ size_t mem_count, i;
+ u8 val = 0xFF;
+ int ret;
+
+ /* No need to do NULL check as caller does. */
+ memregion = nvgrace_gpu_memregion(index, nvdev);
+
+ if (offset >= memregion->bar_size)
+ return -EINVAL;
+
+ /* Clip short the read request beyond reported BAR size */
+ count = min(count, memregion->bar_size - (size_t)offset);
+
+ /*
+ * Determine how many bytes to be actually read from the device memory.
+ * Read request beyond the actual device memory size is filled with ~0,
+ * while those beyond the actual reported size is skipped.
+ */
+ if (offset >= memregion->memlength)
+ mem_count = 0;
+ else
+ mem_count = min(count, memregion->memlength - (size_t)offset);
+
+ scoped_guard(rwsem_read, &vdev->memory_lock) {
+ ret = nvgrace_gpu_check_device_ready(nvdev);
+ if (ret)
+ return ret;
+
+ ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos);
+ if (ret)
+ return ret;
+ }
+
+ /*
+ * Only the device memory present on the hardware is mapped, which may
+ * not be power-of-2 aligned. A read to an offset beyond the device memory
+ * size is filled with ~0.
+ */
+ for (i = mem_count; i < count; i++) {
+ ret = put_user(val, (unsigned char __user *)(buf + i));
+ if (ret)
+ return ret;
+ }
+
+ *ppos += count;
+ return count;
+}
+
+static ssize_t
+nvgrace_gpu_read(struct vfio_device *core_vdev,
+ char __user *buf, size_t count, loff_t *ppos)
+{
+ unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+ struct vfio_pci_core_device *vdev = &nvdev->core_device;
+ int ret;
+
+ if (nvgrace_gpu_memregion(index, nvdev)) {
+ if (pm_runtime_resume_and_get(&vdev->pdev->dev))
+ return -EIO;
+ ret = nvgrace_gpu_read_mem(nvdev, buf, count, ppos);
+ pm_runtime_put(&vdev->pdev->dev);
+ return ret;
+ }
+
+ if (index == VFIO_PCI_CONFIG_REGION_INDEX)
+ return nvgrace_gpu_read_config_emu(core_vdev, buf, count, ppos);
+
+ return vfio_pci_core_read(core_vdev, buf, count, ppos);
+}
+
+/*
+ * Write the data to the device memory (mapped either through ioremap
+ * or memremap) from the user buffer.
+ */
+static int
+nvgrace_gpu_map_and_write(struct nvgrace_gpu_pci_core_device *nvdev,
+ const char __user *buf, size_t mem_count,
+ loff_t *ppos)
+{
+ unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
+ loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
+ int ret;
+
+ if (!mem_count)
+ return 0;
+
+ ret = nvgrace_gpu_map_device_mem(index, nvdev);
+ if (ret)
+ return ret;
+
+ if (index == USEMEM_REGION_INDEX) {
+ if (copy_from_user((u8 *)nvdev->usemem.memaddr + pos,
+ buf, mem_count))
+ return -EFAULT;
+ } else {
+ /*
+ * The hardware ensures that the system does not crash when
+ * the device memory is accessed with the memory enable
+ * turned off. It drops such writes. So there is no need to
+ * check or support the disablement/enablement of BAR
+ * through PCI_COMMAND config space register. Pass test_mem
+ * flag as false.
+ */
+ ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
+ nvdev->resmem.ioaddr,
+ (char __user *)buf, pos, mem_count,
+ 0, 0, true);
+ }
+
+ return ret;
+}
+
+/*
+ * Write count bytes to the device memory at a given offset. The actual device
+ * memory size (available) may not be a power-of-2. So the driver fakes the
+ * size to a power-of-2 (reported) when exposing to a user space driver.
+ *
+ * Writes extending beyond the reported size are truncated; writes starting
+ * beyond the reported size generate -EINVAL.
+ */
+static ssize_t
+nvgrace_gpu_write_mem(struct nvgrace_gpu_pci_core_device *nvdev,
+ size_t count, loff_t *ppos, const char __user *buf)
+{
+ struct vfio_pci_core_device *vdev = &nvdev->core_device;
+ unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
+ u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
+ struct mem_region *memregion;
+ size_t mem_count;
+ int ret = 0;
+
+ /* No need to do NULL check as caller does. */
+ memregion = nvgrace_gpu_memregion(index, nvdev);
+
+ if (offset >= memregion->bar_size)
+ return -EINVAL;
+
+ /* Clip short the write request beyond reported BAR size */
+ count = min(count, memregion->bar_size - (size_t)offset);
+
+ /*
+ * Determine how many bytes to be actually written to the device memory.
+ * Do not write to the offset beyond available size.
+ */
+ if (offset >= memregion->memlength)
+ goto exitfn;
+
+ /*
+ * Only the device memory present on the hardware is mapped, which may
+ * not be power-of-2 aligned. Drop access outside the available device
+ * memory on the hardware.
+ */
+ mem_count = min(count, memregion->memlength - (size_t)offset);
+
+ scoped_guard(rwsem_read, &vdev->memory_lock) {
+ ret = nvgrace_gpu_check_device_ready(nvdev);
+ if (ret)
+ return ret;
+
+ ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos);
+ if (ret)
+ return ret;
+ }
+
+exitfn:
+ *ppos += count;
+ return count;
+}
+
+static ssize_t
+nvgrace_gpu_write(struct vfio_device *core_vdev,
+ const char __user *buf, size_t count, loff_t *ppos)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
+ core_device.vdev);
+ struct vfio_pci_core_device *vdev = &nvdev->core_device;
+ unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
+ int ret;
+
+ if (nvgrace_gpu_memregion(index, nvdev)) {
+ if (pm_runtime_resume_and_get(&vdev->pdev->dev))
+ return -EIO;
+ ret = nvgrace_gpu_write_mem(nvdev, count, ppos, buf);
+ pm_runtime_put(&vdev->pdev->dev);
+ return ret;
+ }
+
+ if (index == VFIO_PCI_CONFIG_REGION_INDEX)
+ return nvgrace_gpu_write_config_emu(core_vdev, buf, count, ppos);
+
+ return vfio_pci_core_write(core_vdev, buf, count, ppos);
+}
+
+static int nvgrace_get_dmabuf_phys(struct vfio_pci_core_device *core_vdev,
+ struct p2pdma_provider **provider,
+ unsigned int region_index,
+ struct dma_buf_phys_vec *phys_vec,
+ struct vfio_region_dma_range *dma_ranges,
+ size_t nr_ranges)
+{
+ struct nvgrace_gpu_pci_core_device *nvdev = container_of(
+ core_vdev, struct nvgrace_gpu_pci_core_device, core_device);
+ struct pci_dev *pdev = core_vdev->pdev;
+ struct mem_region *mem_region;
+
+ /*
+ * if (nvdev->resmem.memlength && region_index == RESMEM_REGION_INDEX) {
+ * The P2P properties of the non-BAR memory is the same as the
+ * BAR memory, so just use the provider for index 0. Someday
+ * when CXL gets P2P support we could create CXLish providers
+ * for the non-BAR memory.
+ * } else if (region_index == USEMEM_REGION_INDEX) {
+ * This is actually cachable memory and isn't treated as P2P in
+ * the chip. For now we have no way to push cachable memory
+ * through everything and the Grace HW doesn't care what caching
+ * attribute is programmed into the SMMU. So use BAR 0.
+ * }
+ */
+ mem_region = nvgrace_gpu_memregion(region_index, nvdev);
+ if (mem_region) {
+ *provider = pcim_p2pdma_provider(pdev, 0);
+ if (!*provider)
+ return -EINVAL;
+ return vfio_pci_core_fill_phys_vec(phys_vec, dma_ranges,
+ nr_ranges,
+ mem_region->memphys,
+ mem_region->memlength);
+ }
+
+ return vfio_pci_core_get_dmabuf_phys(core_vdev, provider, region_index,
+ phys_vec, dma_ranges, nr_ranges);
+}
+
+static const struct vfio_pci_device_ops nvgrace_gpu_pci_dev_ops = {
+ .get_dmabuf_phys = nvgrace_get_dmabuf_phys,
+};
+
+static const struct vfio_device_ops nvgrace_gpu_pci_ops = {
+ .name = "nvgrace-gpu-vfio-pci",
+ .init = vfio_pci_core_init_dev,
+ .release = vfio_pci_core_release_dev,
+ .open_device = nvgrace_gpu_open_device,
+ .close_device = nvgrace_gpu_close_device,
+ .ioctl = nvgrace_gpu_ioctl,
+ .get_region_info_caps = nvgrace_gpu_ioctl_get_region_info,
+ .device_feature = vfio_pci_core_ioctl_feature,
+ .read = nvgrace_gpu_read,
+ .write = nvgrace_gpu_write,
+ .mmap = nvgrace_gpu_mmap,
+ .request = vfio_pci_core_request,
+ .match = vfio_pci_core_match,
+ .match_token_uuid = vfio_pci_core_match_token_uuid,
+ .bind_iommufd = vfio_iommufd_physical_bind,
+ .unbind_iommufd = vfio_iommufd_physical_unbind,
+ .attach_ioas = vfio_iommufd_physical_attach_ioas,
+ .detach_ioas = vfio_iommufd_physical_detach_ioas,
+};
+
+static const struct vfio_pci_device_ops nvgrace_gpu_pci_dev_core_ops = {
+ .get_dmabuf_phys = vfio_pci_core_get_dmabuf_phys,
+};
+
+static const struct vfio_device_ops nvgrace_gpu_pci_core_ops = {
+ .name = "nvgrace-gpu-vfio-pci-core",
+ .init = vfio_pci_core_init_dev,
+ .release = vfio_pci_core_release_dev,
+ .open_device = nvgrace_gpu_open_device,
+ .close_device = vfio_pci_core_close_device,
+ .ioctl = vfio_pci_core_ioctl,
+ .get_region_info_caps = vfio_pci_ioctl_get_region_info,
+ .device_feature = vfio_pci_core_ioctl_feature,
+ .read = vfio_pci_core_read,
+ .write = vfio_pci_core_write,
+ .mmap = vfio_pci_core_mmap,
+ .request = vfio_pci_core_request,
+ .match = vfio_pci_core_match,
+ .match_token_uuid = vfio_pci_core_match_token_uuid,
+ .bind_iommufd = vfio_iommufd_physical_bind,
+ .unbind_iommufd = vfio_iommufd_physical_unbind,
+ .attach_ioas = vfio_iommufd_physical_attach_ioas,
+ .detach_ioas = vfio_iommufd_physical_detach_ioas,
+};
+
+static int
+nvgrace_gpu_fetch_memory_property(struct pci_dev *pdev,
+ u64 *pmemphys, u64 *pmemlength)
+{
+ int ret;
+
+ /*
+ * The memory information is present in the system ACPI tables as DSD
+ * properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size.
+ */
+ ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa",
+ pmemphys);
+ if (ret)
+ return ret;
+
+ if (*pmemphys > type_max(phys_addr_t))
+ return -EOVERFLOW;
+
+ ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size",
+ pmemlength);
+ if (ret)
+ return ret;
+
+ if (*pmemlength > type_max(size_t))
+ return -EOVERFLOW;
+
+ /*
+ * If the C2C link is not up due to an error, the coherent device
+ * memory size is returned as 0. Fail in such case.
+ */
+ if (*pmemlength == 0)
+ return -ENOMEM;
+
+ return ret;
+}
+
+static int
+nvgrace_gpu_init_nvdev_struct(struct pci_dev *pdev,
+ struct nvgrace_gpu_pci_core_device *nvdev,
+ u64 memphys, u64 memlength)
+{
+ int ret = 0;
+ u64 resmem_size = 0;
+
+ /*
+ * On Grace Hopper systems, the VM GPU device driver needs a non-cacheable
+ * region to support the MIG feature owing to a hardware bug. Since the
+ * device memory is mapped as NORMAL cached, carve out a region from the end
+ * with a different NORMAL_NC property (called as reserved memory and
+ * represented as resmem). This region then is exposed as a 64b BAR
+ * (region 2 and 3) to the VM, while exposing the rest (termed as usable
+ * memory and represented using usemem) as cacheable 64b BAR (region 4 and 5).
+ *
+ * devmem (memlength)
+ * |-------------------------------------------------|
+ * | |
+ * usemem.memphys resmem.memphys
+ *
+ * This hardware bug is fixed on the Grace Blackwell platforms and the
+ * presence of the bug can be determined through nvdev->has_mig_hw_bug.
+ * Thus on systems with the hardware fix, there is no need to partition
+ * the GPU device memory and the entire memory is usable and mapped as
+ * NORMAL cached (i.e. resmem size is 0).
+ */
+ if (nvdev->has_mig_hw_bug)
+ resmem_size = SZ_1G;
+
+ nvdev->usemem.memphys = memphys;
+
+ /*
+ * The device memory exposed to the VM is added to the kernel by the
+ * VM driver module in chunks of memory block size. Note that only the
+ * usable memory (usemem) is added to the kernel for usage by the VM
+ * workloads.
+ */
+ if (check_sub_overflow(memlength, resmem_size,
+ &nvdev->usemem.memlength)) {
+ ret = -EOVERFLOW;
+ goto done;
+ }
+
+ /*
+ * The usemem region is exposed as a 64B Bar composed of region 4 and 5.
+ * Calculate and save the BAR size for the region.
+ */
+ nvdev->usemem.bar_size = roundup_pow_of_two(nvdev->usemem.memlength);
+
+ /*
+ * If the hardware has the fix for MIG, there is no requirement
+ * for splitting the device memory to create RESMEM. The entire
+ * device memory is usable and will be USEMEM. Return here for
+ * such case.
+ */
+ if (!nvdev->has_mig_hw_bug)
+ goto done;
+
+ /*
+ * When the device memory is split to workaround the MIG bug on
+ * Grace Hopper, the USEMEM part of the device memory has to be
+ * MEMBLK_SIZE aligned. This is a hardwired ABI value between the
+ * GPU FW and VFIO driver. The VM device driver is also aware of it
+ * and make use of the value for its calculation to determine USEMEM
+ * size. Note that the device memory may not be 512M aligned.
+ */
+ nvdev->usemem.memlength = round_down(nvdev->usemem.memlength,
+ MEMBLK_SIZE);
+ if (nvdev->usemem.memlength == 0) {
+ ret = -EINVAL;
+ goto done;
+ }
+
+ if ((check_add_overflow(nvdev->usemem.memphys,
+ nvdev->usemem.memlength,
+ &nvdev->resmem.memphys)) ||
+ (check_sub_overflow(memlength, nvdev->usemem.memlength,
+ &nvdev->resmem.memlength))) {
+ ret = -EOVERFLOW;
+ goto done;
+ }
+
+ /*
+ * The resmem region is exposed as a 64b BAR composed of region 2 and 3
+ * for Grace Hopper. Calculate and save the BAR size for the region.
+ */
+ nvdev->resmem.bar_size = roundup_pow_of_two(nvdev->resmem.memlength);
+done:
+ return ret;
+}
+
+static bool nvgrace_gpu_has_mig_hw_bug(struct pci_dev *pdev)
+{
+ int pcie_dvsec;
+ u16 dvsec_ctrl16;
+
+ pcie_dvsec = pci_find_dvsec_capability(pdev, PCI_VENDOR_ID_NVIDIA,
+ GPU_CAP_DVSEC_REGISTER);
+
+ if (pcie_dvsec) {
+ pci_read_config_word(pdev,
+ pcie_dvsec + DVSEC_BITMAP_OFFSET,
+ &dvsec_ctrl16);
+
+ if (dvsec_ctrl16 & MIG_SUPPORTED_WITH_CACHED_RESMEM)
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * To reduce the system bootup time, the HBM training has
+ * been moved out of the UEFI on the Grace-Blackwell systems.
+ *
+ * The onus of checking whether the HBM training has completed
+ * thus falls on the module. The HBM training status can be
+ * determined from a BAR0 register.
+ *
+ * Similarly, another BAR0 register exposes the status of the
+ * CPU-GPU chip-to-chip (C2C) cache coherent interconnect.
+ *
+ * Poll these register and check for 30s. If the HBM training is
+ * not complete or if the C2C link is not ready, fail the probe.
+ *
+ * While the wait is not required on Grace Hopper systems, it
+ * is beneficial to make the check to ensure the device is in an
+ * expected state.
+ *
+ * Ensure that the BAR0 region is enabled before accessing the
+ * registers.
+ */
+static int nvgrace_gpu_probe_check_device_ready(struct pci_dev *pdev)
+{
+ void __iomem *io;
+ int ret;
+
+ ret = pci_enable_device(pdev);
+ if (ret)
+ return ret;
+
+ ret = pci_request_selected_regions(pdev, 1 << 0, KBUILD_MODNAME);
+ if (ret)
+ goto request_region_exit;
+
+ io = pci_iomap(pdev, 0, 0);
+ if (!io) {
+ ret = -ENOMEM;
+ goto iomap_exit;
+ }
+
+ ret = nvgrace_gpu_wait_device_ready(io);
+
+ pci_iounmap(pdev, io);
+iomap_exit:
+ pci_release_selected_regions(pdev, 1 << 0);
+request_region_exit:
+ pci_disable_device(pdev);
+ return ret;
+}
+
+static int nvgrace_gpu_probe(struct pci_dev *pdev,
+ const struct pci_device_id *id)
+{
+ const struct vfio_device_ops *ops = &nvgrace_gpu_pci_core_ops;
+ struct nvgrace_gpu_pci_core_device *nvdev;
+ u64 memphys, memlength;
+ int ret;
+
+ ret = nvgrace_gpu_probe_check_device_ready(pdev);
+ if (ret)
+ return ret;
+
+ ret = nvgrace_gpu_fetch_memory_property(pdev, &memphys, &memlength);
+ if (!ret)
+ ops = &nvgrace_gpu_pci_ops;
+
+ nvdev = vfio_alloc_device(nvgrace_gpu_pci_core_device, core_device.vdev,
+ &pdev->dev, ops);
+ if (IS_ERR(nvdev))
+ return PTR_ERR(nvdev);
+
+ dev_set_drvdata(&pdev->dev, &nvdev->core_device);
+
+ if (ops == &nvgrace_gpu_pci_ops) {
+ nvdev->has_mig_hw_bug = nvgrace_gpu_has_mig_hw_bug(pdev);
+
+ /*
+ * Device memory properties are identified in the host ACPI
+ * table. Set the nvgrace_gpu_pci_core_device structure.
+ */
+ ret = nvgrace_gpu_init_nvdev_struct(pdev, nvdev,
+ memphys, memlength);
+ if (ret)
+ goto out_put_vdev;
+ nvdev->core_device.pci_ops = &nvgrace_gpu_pci_dev_ops;
+ } else {
+ nvdev->core_device.pci_ops = &nvgrace_gpu_pci_dev_core_ops;
+ }
+
+ ret = vfio_pci_core_register_device(&nvdev->core_device);
+ if (ret)
+ goto out_put_vdev;
+
+ return ret;
+
+out_put_vdev:
+ vfio_put_device(&nvdev->core_device.vdev);
+ return ret;
+}
+
+static void nvgrace_gpu_remove(struct pci_dev *pdev)
+{
+ struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
+
+ vfio_pci_core_unregister_device(core_device);
+ vfio_put_device(&core_device->vdev);
+}
+
+static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = {
+ /* GH200 120GB */
+ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) },
+ /* GH200 480GB */
+ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) },
+ /* GH200 SKU */
+ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2348) },
+ /* GB200 SKU */
+ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2941) },
+ /* GB300 SKU */
+ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x31C2) },
+ {}
+};
+
+MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table);
+
+/*
+ * The GPU reset is required to be serialized against the *first* mapping
+ * faults and read/writes accesses to prevent potential RAS events logging.
+ *
+ * First fault or access after a reset needs to poll device readiness,
+ * flag that a reset has occurred. The readiness test is done by holding
+ * the memory_lock read lock and we expect all vfio-pci initiated resets to
+ * hold the memory_lock write lock to avoid races. However, .reset_done
+ * extends beyond the scope of vfio-pci initiated resets therefore we
+ * cannot assert this behavior and use lockdep_assert_held_write.
+ */
+static void nvgrace_gpu_vfio_pci_reset_done(struct pci_dev *pdev)
+{
+ struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
+ struct nvgrace_gpu_pci_core_device *nvdev =
+ container_of(core_device, struct nvgrace_gpu_pci_core_device,
+ core_device);
+
+ nvdev->reset_done = true;
+}
+
+static const struct pci_error_handlers nvgrace_gpu_vfio_pci_err_handlers = {
+ .reset_done = nvgrace_gpu_vfio_pci_reset_done,
+ .error_detected = vfio_pci_core_aer_err_detected,
+};
+
+static struct pci_driver nvgrace_gpu_vfio_pci_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = nvgrace_gpu_vfio_pci_table,
+ .probe = nvgrace_gpu_probe,
+ .remove = nvgrace_gpu_remove,
+ .err_handler = &nvgrace_gpu_vfio_pci_err_handlers,
+ .driver_managed_dma = true,
+};
+
+module_pci_driver(nvgrace_gpu_vfio_pci_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ankit Agrawal <ankita@nvidia.com>");
+MODULE_AUTHOR("Aniket Agashe <aniketa@nvidia.com>");
+MODULE_DESCRIPTION("VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");