diff options
Diffstat (limited to 'fs/btrfs/delayed-inode.c')
| -rw-r--r-- | fs/btrfs/delayed-inode.c | 2212 |
1 files changed, 1257 insertions, 955 deletions
diff --git a/fs/btrfs/delayed-inode.c b/fs/btrfs/delayed-inode.c index 375510913fe7..ce6e9f8812e0 100644 --- a/fs/btrfs/delayed-inode.c +++ b/fs/btrfs/delayed-inode.c @@ -1,26 +1,24 @@ +// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2011 Fujitsu. All rights reserved. * Written by Miao Xie <miaox@cn.fujitsu.com> - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public - * License v2 as published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * General Public License for more details. - * - * You should have received a copy of the GNU General Public - * License along with this program; if not, write to the - * Free Software Foundation, Inc., 59 Temple Place - Suite 330, - * Boston, MA 021110-1307, USA. */ #include <linux/slab.h> +#include <linux/iversion.h> +#include "ctree.h" +#include "fs.h" +#include "messages.h" +#include "misc.h" #include "delayed-inode.h" #include "disk-io.h" #include "transaction.h" +#include "qgroup.h" +#include "locking.h" +#include "inode-item.h" +#include "space-info.h" +#include "accessors.h" +#include "file-item.h" #define BTRFS_DELAYED_WRITEBACK 512 #define BTRFS_DELAYED_BACKGROUND 128 @@ -30,20 +28,26 @@ static struct kmem_cache *delayed_node_cache; int __init btrfs_delayed_inode_init(void) { - delayed_node_cache = kmem_cache_create("btrfs_delayed_node", - sizeof(struct btrfs_delayed_node), - 0, - SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, - NULL); + delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); if (!delayed_node_cache) return -ENOMEM; return 0; } -void btrfs_delayed_inode_exit(void) +void __cold btrfs_delayed_inode_exit(void) +{ + kmem_cache_destroy(delayed_node_cache); +} + +void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) { - if (delayed_node_cache) - kmem_cache_destroy(delayed_node_cache); + atomic_set(&delayed_root->items, 0); + atomic_set(&delayed_root->items_seq, 0); + delayed_root->nodes = 0; + spin_lock_init(&delayed_root->lock); + init_waitqueue_head(&delayed_root->wait); + INIT_LIST_HEAD(&delayed_root->node_list); + INIT_LIST_HEAD(&delayed_root->prepare_list); } static inline void btrfs_init_delayed_node( @@ -52,111 +56,131 @@ static inline void btrfs_init_delayed_node( { delayed_node->root = root; delayed_node->inode_id = inode_id; - atomic_set(&delayed_node->refs, 0); - delayed_node->count = 0; - delayed_node->in_list = 0; - delayed_node->inode_dirty = 0; - delayed_node->ins_root = RB_ROOT; - delayed_node->del_root = RB_ROOT; + refcount_set(&delayed_node->refs, 0); + btrfs_delayed_node_ref_tracker_dir_init(delayed_node); + delayed_node->ins_root = RB_ROOT_CACHED; + delayed_node->del_root = RB_ROOT_CACHED; mutex_init(&delayed_node->mutex); - delayed_node->index_cnt = 0; INIT_LIST_HEAD(&delayed_node->n_list); INIT_LIST_HEAD(&delayed_node->p_list); - delayed_node->bytes_reserved = 0; - memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item)); -} - -static inline int btrfs_is_continuous_delayed_item( - struct btrfs_delayed_item *item1, - struct btrfs_delayed_item *item2) -{ - if (item1->key.type == BTRFS_DIR_INDEX_KEY && - item1->key.objectid == item2->key.objectid && - item1->key.type == item2->key.type && - item1->key.offset + 1 == item2->key.offset) - return 1; - return 0; -} - -static inline struct btrfs_delayed_root *btrfs_get_delayed_root( - struct btrfs_root *root) -{ - return root->fs_info->delayed_root; } -static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) +static struct btrfs_delayed_node *btrfs_get_delayed_node( + struct btrfs_inode *btrfs_inode, + struct btrfs_ref_tracker *tracker) { - struct btrfs_inode *btrfs_inode = BTRFS_I(inode); struct btrfs_root *root = btrfs_inode->root; - u64 ino = btrfs_ino(inode); + u64 ino = btrfs_ino(btrfs_inode); struct btrfs_delayed_node *node; - node = ACCESS_ONCE(btrfs_inode->delayed_node); + node = READ_ONCE(btrfs_inode->delayed_node); if (node) { - atomic_inc(&node->refs); + refcount_inc(&node->refs); + btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS); return node; } - spin_lock(&root->inode_lock); - node = radix_tree_lookup(&root->delayed_nodes_tree, ino); + xa_lock(&root->delayed_nodes); + node = xa_load(&root->delayed_nodes, ino); + if (node) { if (btrfs_inode->delayed_node) { - atomic_inc(&node->refs); /* can be accessed */ + refcount_inc(&node->refs); /* can be accessed */ + btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); BUG_ON(btrfs_inode->delayed_node != node); - spin_unlock(&root->inode_lock); + xa_unlock(&root->delayed_nodes); return node; } - btrfs_inode->delayed_node = node; - atomic_inc(&node->refs); /* can be accessed */ - atomic_inc(&node->refs); /* cached in the inode */ - spin_unlock(&root->inode_lock); + + /* + * It's possible that we're racing into the middle of removing + * this node from the xarray. In this case, the refcount + * was zero and it should never go back to one. Just return + * NULL like it was never in the xarray at all; our release + * function is in the process of removing it. + * + * Some implementations of refcount_inc refuse to bump the + * refcount once it has hit zero. If we don't do this dance + * here, refcount_inc() may decide to just WARN_ONCE() instead + * of actually bumping the refcount. + * + * If this node is properly in the xarray, we want to bump the + * refcount twice, once for the inode and once for this get + * operation. + */ + if (refcount_inc_not_zero(&node->refs)) { + refcount_inc(&node->refs); + btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); + btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, + GFP_ATOMIC); + btrfs_inode->delayed_node = node; + } else { + node = NULL; + } + + xa_unlock(&root->delayed_nodes); return node; } - spin_unlock(&root->inode_lock); + xa_unlock(&root->delayed_nodes); return NULL; } -/* Will return either the node or PTR_ERR(-ENOMEM) */ +/* + * Look up an existing delayed node associated with @btrfs_inode or create a new + * one and insert it to the delayed nodes of the root. + * + * Return the delayed node, or error pointer on failure. + */ static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( - struct inode *inode) + struct btrfs_inode *btrfs_inode, + struct btrfs_ref_tracker *tracker) { struct btrfs_delayed_node *node; - struct btrfs_inode *btrfs_inode = BTRFS_I(inode); struct btrfs_root *root = btrfs_inode->root; - u64 ino = btrfs_ino(inode); + u64 ino = btrfs_ino(btrfs_inode); int ret; + void *ptr; again: - node = btrfs_get_delayed_node(inode); + node = btrfs_get_delayed_node(btrfs_inode, tracker); if (node) return node; - node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS); + node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); if (!node) return ERR_PTR(-ENOMEM); btrfs_init_delayed_node(node, root, ino); - atomic_inc(&node->refs); /* cached in the btrfs inode */ - atomic_inc(&node->refs); /* can be accessed */ - - ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); - if (ret) { + /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ + ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); + if (ret == -ENOMEM) { + btrfs_delayed_node_ref_tracker_dir_exit(node); kmem_cache_free(delayed_node_cache, node); - return ERR_PTR(ret); + return ERR_PTR(-ENOMEM); } - - spin_lock(&root->inode_lock); - ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); - if (ret == -EEXIST) { + xa_lock(&root->delayed_nodes); + ptr = xa_load(&root->delayed_nodes, ino); + if (ptr) { + /* Somebody inserted it, go back and read it. */ + xa_unlock(&root->delayed_nodes); + btrfs_delayed_node_ref_tracker_dir_exit(node); kmem_cache_free(delayed_node_cache, node); - spin_unlock(&root->inode_lock); - radix_tree_preload_end(); + node = NULL; goto again; } + ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); + ASSERT(xa_err(ptr) != -EINVAL); + ASSERT(xa_err(ptr) != -ENOMEM); + ASSERT(ptr == NULL); + + /* Cached in the inode and can be accessed. */ + refcount_set(&node->refs, 2); + btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); + btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC); + btrfs_inode->delayed_node = node; - spin_unlock(&root->inode_lock); - radix_tree_preload_end(); + xa_unlock(&root->delayed_nodes); return node; } @@ -171,7 +195,7 @@ static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, int mod) { spin_lock(&root->lock); - if (node->in_list) { + if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { if (!list_empty(&node->p_list)) list_move_tail(&node->p_list, &root->prepare_list); else if (mod) @@ -179,9 +203,11 @@ static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, } else { list_add_tail(&node->n_list, &root->node_list); list_add_tail(&node->p_list, &root->prepare_list); - atomic_inc(&node->refs); /* inserted into list */ + refcount_inc(&node->refs); /* inserted into list */ + btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker, + GFP_ATOMIC); root->nodes++; - node->in_list = 1; + set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); } spin_unlock(&root->lock); } @@ -191,38 +217,39 @@ static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, struct btrfs_delayed_node *node) { spin_lock(&root->lock); - if (node->in_list) { + if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { root->nodes--; - atomic_dec(&node->refs); /* not in the list */ + btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker); + refcount_dec(&node->refs); /* not in the list */ list_del_init(&node->n_list); if (!list_empty(&node->p_list)) list_del_init(&node->p_list); - node->in_list = 0; + clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); } spin_unlock(&root->lock); } static struct btrfs_delayed_node *btrfs_first_delayed_node( - struct btrfs_delayed_root *delayed_root) + struct btrfs_delayed_root *delayed_root, + struct btrfs_ref_tracker *tracker) { - struct list_head *p; - struct btrfs_delayed_node *node = NULL; + struct btrfs_delayed_node *node; spin_lock(&delayed_root->lock); - if (list_empty(&delayed_root->node_list)) - goto out; - - p = delayed_root->node_list.next; - node = list_entry(p, struct btrfs_delayed_node, n_list); - atomic_inc(&node->refs); -out: + node = list_first_entry_or_null(&delayed_root->node_list, + struct btrfs_delayed_node, n_list); + if (node) { + refcount_inc(&node->refs); + btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); + } spin_unlock(&delayed_root->lock); return node; } static struct btrfs_delayed_node *btrfs_next_delayed_node( - struct btrfs_delayed_node *node) + struct btrfs_delayed_node *node, + struct btrfs_ref_tracker *tracker) { struct btrfs_delayed_root *delayed_root; struct list_head *p; @@ -230,7 +257,8 @@ static struct btrfs_delayed_node *btrfs_next_delayed_node( delayed_root = node->root->fs_info->delayed_root; spin_lock(&delayed_root->lock); - if (!node->in_list) { /* not in the list */ + if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { + /* not in the list */ if (list_empty(&delayed_root->node_list)) goto out; p = delayed_root->node_list.next; @@ -240,7 +268,8 @@ static struct btrfs_delayed_node *btrfs_next_delayed_node( p = node->n_list.next; next = list_entry(p, struct btrfs_delayed_node, n_list); - atomic_inc(&next->refs); + refcount_inc(&next->refs); + btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC); out: spin_unlock(&delayed_root->lock); @@ -249,7 +278,7 @@ out: static void __btrfs_release_delayed_node( struct btrfs_delayed_node *delayed_node, - int mod) + int mod, struct btrfs_ref_tracker *tracker) { struct btrfs_delayed_root *delayed_root; @@ -265,224 +294,172 @@ static void __btrfs_release_delayed_node( btrfs_dequeue_delayed_node(delayed_root, delayed_node); mutex_unlock(&delayed_node->mutex); - if (atomic_dec_and_test(&delayed_node->refs)) { + btrfs_delayed_node_ref_tracker_free(delayed_node, tracker); + if (refcount_dec_and_test(&delayed_node->refs)) { struct btrfs_root *root = delayed_node->root; - spin_lock(&root->inode_lock); - if (atomic_read(&delayed_node->refs) == 0) { - radix_tree_delete(&root->delayed_nodes_tree, - delayed_node->inode_id); - kmem_cache_free(delayed_node_cache, delayed_node); - } - spin_unlock(&root->inode_lock); + + xa_erase(&root->delayed_nodes, delayed_node->inode_id); + /* + * Once our refcount goes to zero, nobody is allowed to bump it + * back up. We can delete it now. + */ + ASSERT(refcount_read(&delayed_node->refs) == 0); + btrfs_delayed_node_ref_tracker_dir_exit(delayed_node); + kmem_cache_free(delayed_node_cache, delayed_node); } } -static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) +static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node, + struct btrfs_ref_tracker *tracker) { - __btrfs_release_delayed_node(node, 0); + __btrfs_release_delayed_node(node, 0, tracker); } static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( - struct btrfs_delayed_root *delayed_root) + struct btrfs_delayed_root *delayed_root, + struct btrfs_ref_tracker *tracker) { - struct list_head *p; - struct btrfs_delayed_node *node = NULL; + struct btrfs_delayed_node *node; spin_lock(&delayed_root->lock); - if (list_empty(&delayed_root->prepare_list)) - goto out; - - p = delayed_root->prepare_list.next; - list_del_init(p); - node = list_entry(p, struct btrfs_delayed_node, p_list); - atomic_inc(&node->refs); -out: + node = list_first_entry_or_null(&delayed_root->prepare_list, + struct btrfs_delayed_node, p_list); + if (node) { + list_del_init(&node->p_list); + refcount_inc(&node->refs); + btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); + } spin_unlock(&delayed_root->lock); return node; } static inline void btrfs_release_prepared_delayed_node( - struct btrfs_delayed_node *node) + struct btrfs_delayed_node *node, + struct btrfs_ref_tracker *tracker) { - __btrfs_release_delayed_node(node, 1); + __btrfs_release_delayed_node(node, 1, tracker); } -static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) +static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, + struct btrfs_delayed_node *node, + enum btrfs_delayed_item_type type) { struct btrfs_delayed_item *item; - item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); + + item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); if (item) { item->data_len = data_len; - item->ins_or_del = 0; + item->type = type; item->bytes_reserved = 0; - item->delayed_node = NULL; - atomic_set(&item->refs, 1); + item->delayed_node = node; + RB_CLEAR_NODE(&item->rb_node); + INIT_LIST_HEAD(&item->log_list); + item->logged = false; + refcount_set(&item->refs, 1); } return item; } +static int delayed_item_index_cmp(const void *key, const struct rb_node *node) +{ + const u64 *index = key; + const struct btrfs_delayed_item *delayed_item = rb_entry(node, + struct btrfs_delayed_item, rb_node); + + if (delayed_item->index < *index) + return 1; + else if (delayed_item->index > *index) + return -1; + + return 0; +} + /* - * __btrfs_lookup_delayed_item - look up the delayed item by key + * Look up the delayed item by key. + * * @delayed_node: pointer to the delayed node - * @key: the key to look up - * @prev: used to store the prev item if the right item isn't found - * @next: used to store the next item if the right item isn't found + * @index: the dir index value to lookup (offset of a dir index key) * * Note: if we don't find the right item, we will return the prev item and * the next item. */ static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( struct rb_root *root, - struct btrfs_key *key, - struct btrfs_delayed_item **prev, - struct btrfs_delayed_item **next) + u64 index) { - struct rb_node *node, *prev_node = NULL; - struct btrfs_delayed_item *delayed_item = NULL; - int ret = 0; - - node = root->rb_node; + struct rb_node *node; - while (node) { - delayed_item = rb_entry(node, struct btrfs_delayed_item, - rb_node); - prev_node = node; - ret = btrfs_comp_cpu_keys(&delayed_item->key, key); - if (ret < 0) - node = node->rb_right; - else if (ret > 0) - node = node->rb_left; - else - return delayed_item; - } - - if (prev) { - if (!prev_node) - *prev = NULL; - else if (ret < 0) - *prev = delayed_item; - else if ((node = rb_prev(prev_node)) != NULL) { - *prev = rb_entry(node, struct btrfs_delayed_item, - rb_node); - } else - *prev = NULL; - } - - if (next) { - if (!prev_node) - *next = NULL; - else if (ret > 0) - *next = delayed_item; - else if ((node = rb_next(prev_node)) != NULL) { - *next = rb_entry(node, struct btrfs_delayed_item, - rb_node); - } else - *next = NULL; - } - return NULL; + node = rb_find(&index, root, delayed_item_index_cmp); + return rb_entry_safe(node, struct btrfs_delayed_item, rb_node); } -static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( - struct btrfs_delayed_node *delayed_node, - struct btrfs_key *key) +static int btrfs_delayed_item_cmp(const struct rb_node *new, + const struct rb_node *exist) { - struct btrfs_delayed_item *item; + const struct btrfs_delayed_item *new_item = + rb_entry(new, struct btrfs_delayed_item, rb_node); - item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, - NULL, NULL); - return item; + return delayed_item_index_cmp(&new_item->index, exist); } static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, - struct btrfs_delayed_item *ins, - int action) + struct btrfs_delayed_item *ins) { - struct rb_node **p, *node; - struct rb_node *parent_node = NULL; - struct rb_root *root; - struct btrfs_delayed_item *item; - int cmp; + struct rb_root_cached *root; + struct rb_node *exist; - if (action == BTRFS_DELAYED_INSERTION_ITEM) + if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) root = &delayed_node->ins_root; - else if (action == BTRFS_DELAYED_DELETION_ITEM) - root = &delayed_node->del_root; else - BUG(); - p = &root->rb_node; - node = &ins->rb_node; - - while (*p) { - parent_node = *p; - item = rb_entry(parent_node, struct btrfs_delayed_item, - rb_node); - - cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); - if (cmp < 0) - p = &(*p)->rb_right; - else if (cmp > 0) - p = &(*p)->rb_left; - else - return -EEXIST; - } - - rb_link_node(node, parent_node, p); - rb_insert_color(node, root); - ins->delayed_node = delayed_node; - ins->ins_or_del = action; - - if (ins->key.type == BTRFS_DIR_INDEX_KEY && - action == BTRFS_DELAYED_INSERTION_ITEM && - ins->key.offset >= delayed_node->index_cnt) - delayed_node->index_cnt = ins->key.offset + 1; + root = &delayed_node->del_root; + + exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp); + if (exist) + return -EEXIST; + + if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && + ins->index >= delayed_node->index_cnt) + delayed_node->index_cnt = ins->index + 1; delayed_node->count++; atomic_inc(&delayed_node->root->fs_info->delayed_root->items); return 0; } -static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, - struct btrfs_delayed_item *item) -{ - return __btrfs_add_delayed_item(node, item, - BTRFS_DELAYED_INSERTION_ITEM); -} - -static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, - struct btrfs_delayed_item *item) -{ - return __btrfs_add_delayed_item(node, item, - BTRFS_DELAYED_DELETION_ITEM); -} - static void finish_one_item(struct btrfs_delayed_root *delayed_root) { int seq = atomic_inc_return(&delayed_root->items_seq); + + /* atomic_dec_return implies a barrier */ if ((atomic_dec_return(&delayed_root->items) < - BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && - waitqueue_active(&delayed_root->wait)) - wake_up(&delayed_root->wait); + BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) + cond_wake_up_nomb(&delayed_root->wait); } static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) { - struct rb_root *root; + struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; + struct rb_root_cached *root; struct btrfs_delayed_root *delayed_root; - delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; + /* Not inserted, ignore it. */ + if (RB_EMPTY_NODE(&delayed_item->rb_node)) + return; + + /* If it's in a rbtree, then we need to have delayed node locked. */ + lockdep_assert_held(&delayed_node->mutex); - BUG_ON(!delayed_root); - BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && - delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); + delayed_root = delayed_node->root->fs_info->delayed_root; - if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) - root = &delayed_item->delayed_node->ins_root; + if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) + root = &delayed_node->ins_root; else - root = &delayed_item->delayed_node->del_root; + root = &delayed_node->del_root; - rb_erase(&delayed_item->rb_node, root); - delayed_item->delayed_node->count--; + rb_erase_cached(&delayed_item->rb_node, root); + RB_CLEAR_NODE(&delayed_item->rb_node); + delayed_node->count--; finish_one_item(delayed_root); } @@ -491,7 +468,7 @@ static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) { if (item) { __btrfs_remove_delayed_item(item); - if (atomic_dec_and_test(&item->refs)) + if (refcount_dec_and_test(&item->refs)) kfree(item); } } @@ -499,48 +476,33 @@ static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( struct btrfs_delayed_node *delayed_node) { - struct rb_node *p; - struct btrfs_delayed_item *item = NULL; + struct rb_node *p = rb_first_cached(&delayed_node->ins_root); - p = rb_first(&delayed_node->ins_root); - if (p) - item = rb_entry(p, struct btrfs_delayed_item, rb_node); - - return item; + return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); } static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( struct btrfs_delayed_node *delayed_node) { - struct rb_node *p; - struct btrfs_delayed_item *item = NULL; + struct rb_node *p = rb_first_cached(&delayed_node->del_root); - p = rb_first(&delayed_node->del_root); - if (p) - item = rb_entry(p, struct btrfs_delayed_item, rb_node); - - return item; + return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); } static struct btrfs_delayed_item *__btrfs_next_delayed_item( struct btrfs_delayed_item *item) { - struct rb_node *p; - struct btrfs_delayed_item *next = NULL; + struct rb_node *p = rb_next(&item->rb_node); - p = rb_next(&item->rb_node); - if (p) - next = rb_entry(p, struct btrfs_delayed_item, rb_node); - - return next; + return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); } static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, - struct btrfs_root *root, struct btrfs_delayed_item *item) { struct btrfs_block_rsv *src_rsv; struct btrfs_block_rsv *dst_rsv; + struct btrfs_fs_info *fs_info = trans->fs_info; u64 num_bytes; int ret; @@ -548,15 +510,27 @@ static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, return 0; src_rsv = trans->block_rsv; - dst_rsv = &root->fs_info->delayed_block_rsv; + dst_rsv = &fs_info->delayed_block_rsv; - num_bytes = btrfs_calc_trans_metadata_size(root, 1); - ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); + num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); + + /* + * Here we migrate space rsv from transaction rsv, since have already + * reserved space when starting a transaction. So no need to reserve + * qgroup space here. + */ + ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); if (!ret) { - trace_btrfs_space_reservation(root->fs_info, "delayed_item", - item->key.objectid, + trace_btrfs_space_reservation(fs_info, "delayed_item", + item->delayed_node->inode_id, num_bytes, 1); - item->bytes_reserved = num_bytes; + /* + * For insertions we track reserved metadata space by accounting + * for the number of leaves that will be used, based on the delayed + * node's curr_index_batch_size and index_item_leaves fields. + */ + if (item->type == BTRFS_DELAYED_DELETION_ITEM) + item->bytes_reserved = num_bytes; } return ret; @@ -566,34 +540,52 @@ static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, struct btrfs_delayed_item *item) { struct btrfs_block_rsv *rsv; + struct btrfs_fs_info *fs_info = root->fs_info; if (!item->bytes_reserved) return; - rsv = &root->fs_info->delayed_block_rsv; - trace_btrfs_space_reservation(root->fs_info, "delayed_item", - item->key.objectid, item->bytes_reserved, - 0); - btrfs_block_rsv_release(root, rsv, - item->bytes_reserved); + rsv = &fs_info->delayed_block_rsv; + /* + * Check btrfs_delayed_item_reserve_metadata() to see why we don't need + * to release/reserve qgroup space. + */ + trace_btrfs_space_reservation(fs_info, "delayed_item", + item->delayed_node->inode_id, + item->bytes_reserved, 0); + btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); +} + +static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, + unsigned int num_leaves) +{ + struct btrfs_fs_info *fs_info = node->root->fs_info; + const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); + + /* There are no space reservations during log replay, bail out. */ + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + return; + + trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, + bytes, 0); + btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); } static int btrfs_delayed_inode_reserve_metadata( struct btrfs_trans_handle *trans, struct btrfs_root *root, - struct inode *inode, struct btrfs_delayed_node *node) { + struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_block_rsv *src_rsv; struct btrfs_block_rsv *dst_rsv; u64 num_bytes; int ret; - bool release = false; src_rsv = trans->block_rsv; - dst_rsv = &root->fs_info->delayed_block_rsv; + dst_rsv = &fs_info->delayed_block_rsv; - num_bytes = btrfs_calc_trans_metadata_size(root, 1); + num_bytes = btrfs_calc_metadata_size(fs_info, 1); /* * btrfs_dirty_inode will update the inode under btrfs_join_transaction @@ -602,293 +594,248 @@ static int btrfs_delayed_inode_reserve_metadata( * space. * * Now if src_rsv == delalloc_block_rsv we'll let it just steal since - * we're accounted for. + * we always reserve enough to update the inode item. */ if (!src_rsv || (!trans->bytes_reserved && src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { - ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, - BTRFS_RESERVE_NO_FLUSH); - /* - * Since we're under a transaction reserve_metadata_bytes could - * try to commit the transaction which will make it return - * EAGAIN to make us stop the transaction we have, so return - * ENOSPC instead so that btrfs_dirty_inode knows what to do. - */ - if (ret == -EAGAIN) - ret = -ENOSPC; - if (!ret) { - node->bytes_reserved = num_bytes; - trace_btrfs_space_reservation(root->fs_info, - "delayed_inode", - btrfs_ino(inode), - num_bytes, 1); - } - return ret; - } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { - spin_lock(&BTRFS_I(inode)->lock); - if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, - &BTRFS_I(inode)->runtime_flags)) { - spin_unlock(&BTRFS_I(inode)->lock); - release = true; - goto migrate; - } - spin_unlock(&BTRFS_I(inode)->lock); - - /* Ok we didn't have space pre-reserved. This shouldn't happen - * too often but it can happen if we do delalloc to an existing - * inode which gets dirtied because of the time update, and then - * isn't touched again until after the transaction commits and - * then we try to write out the data. First try to be nice and - * reserve something strictly for us. If not be a pain and try - * to steal from the delalloc block rsv. - */ - ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, + ret = btrfs_qgroup_reserve_meta(root, num_bytes, + BTRFS_QGROUP_RSV_META_PREALLOC, true); + if (ret < 0) + return ret; + ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, BTRFS_RESERVE_NO_FLUSH); - if (!ret) - goto out; - - ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); - if (!ret) - goto out; - - /* - * Ok this is a problem, let's just steal from the global rsv - * since this really shouldn't happen that often. - */ - WARN_ON(1); - ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, - dst_rsv, num_bytes); - goto out; + /* NO_FLUSH could only fail with -ENOSPC */ + ASSERT(ret == 0 || ret == -ENOSPC); + if (ret) + btrfs_qgroup_free_meta_prealloc(root, num_bytes); + } else { + ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); } -migrate: - ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); - -out: - /* - * Migrate only takes a reservation, it doesn't touch the size of the - * block_rsv. This is to simplify people who don't normally have things - * migrated from their block rsv. If they go to release their - * reservation, that will decrease the size as well, so if migrate - * reduced size we'd end up with a negative size. But for the - * delalloc_meta_reserved stuff we will only know to drop 1 reservation, - * but we could in fact do this reserve/migrate dance several times - * between the time we did the original reservation and we'd clean it - * up. So to take care of this, release the space for the meta - * reservation here. I think it may be time for a documentation page on - * how block rsvs. work. - */ if (!ret) { - trace_btrfs_space_reservation(root->fs_info, "delayed_inode", - btrfs_ino(inode), num_bytes, 1); + trace_btrfs_space_reservation(fs_info, "delayed_inode", + node->inode_id, num_bytes, 1); node->bytes_reserved = num_bytes; } - if (release) { - trace_btrfs_space_reservation(root->fs_info, "delalloc", - btrfs_ino(inode), num_bytes, 0); - btrfs_block_rsv_release(root, src_rsv, num_bytes); - } - return ret; } -static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, - struct btrfs_delayed_node *node) +static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, + struct btrfs_delayed_node *node, + bool qgroup_free) { struct btrfs_block_rsv *rsv; if (!node->bytes_reserved) return; - rsv = &root->fs_info->delayed_block_rsv; - trace_btrfs_space_reservation(root->fs_info, "delayed_inode", + rsv = &fs_info->delayed_block_rsv; + trace_btrfs_space_reservation(fs_info, "delayed_inode", node->inode_id, node->bytes_reserved, 0); - btrfs_block_rsv_release(root, rsv, + btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); + if (qgroup_free) + btrfs_qgroup_free_meta_prealloc(node->root, + node->bytes_reserved); + else + btrfs_qgroup_convert_reserved_meta(node->root, node->bytes_reserved); node->bytes_reserved = 0; } /* - * This helper will insert some continuous items into the same leaf according - * to the free space of the leaf. + * Insert a single delayed item or a batch of delayed items, as many as possible + * that fit in a leaf. The delayed items (dir index keys) are sorted by their key + * in the rbtree, and if there's a gap between two consecutive dir index items, + * then it means at some point we had delayed dir indexes to add but they got + * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them + * into the subvolume tree. Dir index keys also have their offsets coming from a + * monotonically increasing counter, so we can't get new keys with an offset that + * fits within a gap between delayed dir index items. */ -static int btrfs_batch_insert_items(struct btrfs_root *root, - struct btrfs_path *path, - struct btrfs_delayed_item *item) -{ - struct btrfs_delayed_item *curr, *next; - int free_space; - int total_data_size = 0, total_size = 0; - struct extent_buffer *leaf; - char *data_ptr; - struct btrfs_key *keys; - u32 *data_size; - struct list_head head; - int slot; - int nitems; - int i; - int ret = 0; - - BUG_ON(!path->nodes[0]); +static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_item *first_item) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_delayed_node *node = first_item->delayed_node; + LIST_HEAD(item_list); + struct btrfs_delayed_item *curr; + struct btrfs_delayed_item *next; + const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); + struct btrfs_item_batch batch; + struct btrfs_key first_key; + const u32 first_data_size = first_item->data_len; + int total_size; + char AUTO_KFREE(ins_data); + int ret; + bool continuous_keys_only = false; - leaf = path->nodes[0]; - free_space = btrfs_leaf_free_space(root, leaf); - INIT_LIST_HEAD(&head); + lockdep_assert_held(&node->mutex); - next = item; - nitems = 0; + /* + * During normal operation the delayed index offset is continuously + * increasing, so we can batch insert all items as there will not be any + * overlapping keys in the tree. + * + * The exception to this is log replay, where we may have interleaved + * offsets in the tree, so our batch needs to be continuous keys only in + * order to ensure we do not end up with out of order items in our leaf. + */ + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + continuous_keys_only = true; /* - * count the number of the continuous items that we can insert in batch + * For delayed items to insert, we track reserved metadata bytes based + * on the number of leaves that we will use. + * See btrfs_insert_delayed_dir_index() and + * btrfs_delayed_item_reserve_metadata()). */ - while (total_size + next->data_len + sizeof(struct btrfs_item) <= - free_space) { - total_data_size += next->data_len; - total_size += next->data_len + sizeof(struct btrfs_item); - list_add_tail(&next->tree_list, &head); - nitems++; + ASSERT(first_item->bytes_reserved == 0); + + list_add_tail(&first_item->tree_list, &item_list); + batch.total_data_size = first_data_size; + batch.nr = 1; + total_size = first_data_size + sizeof(struct btrfs_item); + curr = first_item; + + while (true) { + int next_size; - curr = next; next = __btrfs_next_delayed_item(curr); if (!next) break; - if (!btrfs_is_continuous_delayed_item(curr, next)) + /* + * We cannot allow gaps in the key space if we're doing log + * replay. + */ + if (continuous_keys_only && (next->index != curr->index + 1)) break; - } - if (!nitems) { - ret = 0; - goto out; - } + ASSERT(next->bytes_reserved == 0); - /* - * we need allocate some memory space, but it might cause the task - * to sleep, so we set all locked nodes in the path to blocking locks - * first. - */ - btrfs_set_path_blocking(path); + next_size = next->data_len + sizeof(struct btrfs_item); + if (total_size + next_size > max_size) + break; - keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS); - if (!keys) { - ret = -ENOMEM; - goto out; + list_add_tail(&next->tree_list, &item_list); + batch.nr++; + total_size += next_size; + batch.total_data_size += next->data_len; + curr = next; } - data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS); - if (!data_size) { - ret = -ENOMEM; - goto error; + if (batch.nr == 1) { + first_key.objectid = node->inode_id; + first_key.type = BTRFS_DIR_INDEX_KEY; + first_key.offset = first_item->index; + batch.keys = &first_key; + batch.data_sizes = &first_data_size; + } else { + struct btrfs_key *ins_keys; + u32 *ins_sizes; + int i = 0; + + ins_data = kmalloc_array(batch.nr, + sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS); + if (!ins_data) + return -ENOMEM; + ins_sizes = (u32 *)ins_data; + ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); + batch.keys = ins_keys; + batch.data_sizes = ins_sizes; + list_for_each_entry(curr, &item_list, tree_list) { + ins_keys[i].objectid = node->inode_id; + ins_keys[i].type = BTRFS_DIR_INDEX_KEY; + ins_keys[i].offset = curr->index; + ins_sizes[i] = curr->data_len; + i++; + } } - /* get keys of all the delayed items */ - i = 0; - list_for_each_entry(next, &head, tree_list) { - keys[i] = next->key; - data_size[i] = next->data_len; - i++; - } + ret = btrfs_insert_empty_items(trans, root, path, &batch); + if (ret) + return ret; - /* reset all the locked nodes in the patch to spinning locks. */ - btrfs_clear_path_blocking(path, NULL, 0); + list_for_each_entry(curr, &item_list, tree_list) { + char *data_ptr; - /* insert the keys of the items */ - setup_items_for_insert(root, path, keys, data_size, - total_data_size, total_size, nitems); + data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); + write_extent_buffer(path->nodes[0], &curr->data, + (unsigned long)data_ptr, curr->data_len); + path->slots[0]++; + } - /* insert the dir index items */ - slot = path->slots[0]; - list_for_each_entry_safe(curr, next, &head, tree_list) { - data_ptr = btrfs_item_ptr(leaf, slot, char); - write_extent_buffer(leaf, &curr->data, - (unsigned long)data_ptr, - curr->data_len); - slot++; + /* + * Now release our path before releasing the delayed items and their + * metadata reservations, so that we don't block other tasks for more + * time than needed. + */ + btrfs_release_path(path); - btrfs_delayed_item_release_metadata(root, curr); + ASSERT(node->index_item_leaves > 0); + + /* + * For normal operations we will batch an entire leaf's worth of delayed + * items, so if there are more items to process we can decrement + * index_item_leaves by 1 as we inserted 1 leaf's worth of items. + * + * However for log replay we may not have inserted an entire leaf's + * worth of items, we may have not had continuous items, so decrementing + * here would mess up the index_item_leaves accounting. For this case + * only clean up the accounting when there are no items left. + */ + if (next && !continuous_keys_only) { + /* + * We inserted one batch of items into a leaf a there are more + * items to flush in a future batch, now release one unit of + * metadata space from the delayed block reserve, corresponding + * the leaf we just flushed to. + */ + btrfs_delayed_item_release_leaves(node, 1); + node->index_item_leaves--; + } else if (!next) { + /* + * There are no more items to insert. We can have a number of + * reserved leaves > 1 here - this happens when many dir index + * items are added and then removed before they are flushed (file + * names with a very short life, never span a transaction). So + * release all remaining leaves. + */ + btrfs_delayed_item_release_leaves(node, node->index_item_leaves); + node->index_item_leaves = 0; + } + list_for_each_entry_safe(curr, next, &item_list, tree_list) { list_del(&curr->tree_list); btrfs_release_delayed_item(curr); } -error: - kfree(data_size); - kfree(keys); -out: - return ret; -} - -/* - * This helper can just do simple insertion that needn't extend item for new - * data, such as directory name index insertion, inode insertion. - */ -static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, - struct btrfs_root *root, - struct btrfs_path *path, - struct btrfs_delayed_item *delayed_item) -{ - struct extent_buffer *leaf; - char *ptr; - int ret; - - ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, - delayed_item->data_len); - if (ret < 0 && ret != -EEXIST) - return ret; - - leaf = path->nodes[0]; - - ptr = btrfs_item_ptr(leaf, path->slots[0], char); - - write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, - delayed_item->data_len); - btrfs_mark_buffer_dirty(leaf); - - btrfs_delayed_item_release_metadata(root, delayed_item); return 0; } -/* - * we insert an item first, then if there are some continuous items, we try - * to insert those items into the same leaf. - */ static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_root *root, struct btrfs_delayed_node *node) { - struct btrfs_delayed_item *curr, *prev; int ret = 0; -do_again: - mutex_lock(&node->mutex); - curr = __btrfs_first_delayed_insertion_item(node); - if (!curr) - goto insert_end; - - ret = btrfs_insert_delayed_item(trans, root, path, curr); - if (ret < 0) { - btrfs_release_path(path); - goto insert_end; - } + while (ret == 0) { + struct btrfs_delayed_item *curr; - prev = curr; - curr = __btrfs_next_delayed_item(prev); - if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { - /* insert the continuous items into the same leaf */ - path->slots[0]++; - btrfs_batch_insert_items(root, path, curr); + mutex_lock(&node->mutex); + curr = __btrfs_first_delayed_insertion_item(node); + if (!curr) { + mutex_unlock(&node->mutex); + break; + } + ret = btrfs_insert_delayed_item(trans, root, path, curr); + mutex_unlock(&node->mutex); } - btrfs_release_delayed_item(prev); - btrfs_mark_buffer_dirty(path->nodes[0]); - btrfs_release_path(path); - mutex_unlock(&node->mutex); - goto do_again; - -insert_end: - mutex_unlock(&node->mutex); return ret; } @@ -897,62 +844,77 @@ static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_delayed_item *item) { + const u64 ino = item->delayed_node->inode_id; + struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_delayed_item *curr, *next; - struct extent_buffer *leaf; - struct btrfs_key key; - struct list_head head; - int nitems, i, last_item; - int ret = 0; + struct extent_buffer *leaf = path->nodes[0]; + LIST_HEAD(batch_list); + int nitems, slot, last_slot; + int ret; + u64 total_reserved_size = item->bytes_reserved; - BUG_ON(!path->nodes[0]); + ASSERT(leaf != NULL); - leaf = path->nodes[0]; + slot = path->slots[0]; + last_slot = btrfs_header_nritems(leaf) - 1; + /* + * Our caller always gives us a path pointing to an existing item, so + * this can not happen. + */ + ASSERT(slot <= last_slot); + if (WARN_ON(slot > last_slot)) + return -ENOENT; - i = path->slots[0]; - last_item = btrfs_header_nritems(leaf) - 1; - if (i > last_item) - return -ENOENT; /* FIXME: Is errno suitable? */ + nitems = 1; + curr = item; + list_add_tail(&curr->tree_list, &batch_list); - next = item; - INIT_LIST_HEAD(&head); - btrfs_item_key_to_cpu(leaf, &key, i); - nitems = 0; /* - * count the number of the dir index items that we can delete in batch + * Keep checking if the next delayed item matches the next item in the + * leaf - if so, we can add it to the batch of items to delete from the + * leaf. */ - while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { - list_add_tail(&next->tree_list, &head); - nitems++; + while (slot < last_slot) { + struct btrfs_key key; - curr = next; next = __btrfs_next_delayed_item(curr); if (!next) break; - if (!btrfs_is_continuous_delayed_item(curr, next)) - break; - - i++; - if (i > last_item) + slot++; + btrfs_item_key_to_cpu(leaf, &key, slot); + if (key.objectid != ino || + key.type != BTRFS_DIR_INDEX_KEY || + key.offset != next->index) break; - btrfs_item_key_to_cpu(leaf, &key, i); + nitems++; + curr = next; + list_add_tail(&curr->tree_list, &batch_list); + total_reserved_size += curr->bytes_reserved; } - if (!nitems) - return 0; - ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); if (ret) - goto out; + return ret; - list_for_each_entry_safe(curr, next, &head, tree_list) { - btrfs_delayed_item_release_metadata(root, curr); + /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ + if (total_reserved_size > 0) { + /* + * Check btrfs_delayed_item_reserve_metadata() to see why we + * don't need to release/reserve qgroup space. + */ + trace_btrfs_space_reservation(fs_info, "delayed_item", ino, + total_reserved_size, 0); + btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, + total_reserved_size, NULL); + } + + list_for_each_entry_safe(curr, next, &batch_list, tree_list) { list_del(&curr->tree_list); btrfs_release_delayed_item(curr); } -out: - return ret; + return 0; } static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, @@ -960,43 +922,57 @@ static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_delayed_node *node) { - struct btrfs_delayed_item *curr, *prev; + struct btrfs_key key; int ret = 0; -do_again: - mutex_lock(&node->mutex); - curr = __btrfs_first_delayed_deletion_item(node); - if (!curr) - goto delete_fail; + key.objectid = node->inode_id; + key.type = BTRFS_DIR_INDEX_KEY; + + while (ret == 0) { + struct btrfs_delayed_item *item; + + mutex_lock(&node->mutex); + item = __btrfs_first_delayed_deletion_item(node); + if (!item) { + mutex_unlock(&node->mutex); + break; + } + + key.offset = item->index; + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret > 0) { + /* + * There's no matching item in the leaf. This means we + * have already deleted this item in a past run of the + * delayed items. We ignore errors when running delayed + * items from an async context, through a work queue job + * running btrfs_async_run_delayed_root(), and don't + * release delayed items that failed to complete. This + * is because we will retry later, and at transaction + * commit time we always run delayed items and will + * then deal with errors if they fail to run again. + * + * So just release delayed items for which we can't find + * an item in the tree, and move to the next item. + */ + btrfs_release_path(path); + btrfs_release_delayed_item(item); + ret = 0; + } else if (ret == 0) { + ret = btrfs_batch_delete_items(trans, root, path, item); + btrfs_release_path(path); + } - ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); - if (ret < 0) - goto delete_fail; - else if (ret > 0) { /* - * can't find the item which the node points to, so this node - * is invalid, just drop it. + * We unlock and relock on each iteration, this is to prevent + * blocking other tasks for too long while we are being run from + * the async context (work queue job). Those tasks are typically + * running system calls like creat/mkdir/rename/unlink/etc which + * need to add delayed items to this delayed node. */ - prev = curr; - curr = __btrfs_next_delayed_item(prev); - btrfs_release_delayed_item(prev); - ret = 0; - btrfs_release_path(path); - if (curr) { - mutex_unlock(&node->mutex); - goto do_again; - } else - goto delete_fail; + mutex_unlock(&node->mutex); } - btrfs_batch_delete_items(trans, root, path, curr); - btrfs_release_path(path); - mutex_unlock(&node->mutex); - goto do_again; - -delete_fail: - btrfs_release_path(path); - mutex_unlock(&node->mutex); return ret; } @@ -1004,9 +980,24 @@ static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) { struct btrfs_delayed_root *delayed_root; - if (delayed_node && delayed_node->inode_dirty) { - BUG_ON(!delayed_node->root); - delayed_node->inode_dirty = 0; + if (delayed_node && + test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + ASSERT(delayed_node->root); + clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); + delayed_node->count--; + + delayed_root = delayed_node->root->fs_info->delayed_root; + finish_one_item(delayed_root); + } +} + +static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) +{ + + if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { + struct btrfs_delayed_root *delayed_root; + + ASSERT(delayed_node->root); delayed_node->count--; delayed_root = delayed_node->root->fs_info->delayed_root; @@ -1019,36 +1010,93 @@ static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_delayed_node *node) { + struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key key; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; + int mod; int ret; key.objectid = node->inode_id; - btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); + key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; - ret = btrfs_lookup_inode(trans, root, path, &key, 1); - if (ret > 0) { - btrfs_release_path(path); - return -ENOENT; - } else if (ret < 0) { - return ret; + if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) + mod = -1; + else + mod = 1; + + ret = btrfs_lookup_inode(trans, root, path, &key, mod); + if (ret > 0) + ret = -ENOENT; + if (ret < 0) { + /* + * If we fail to update the delayed inode we need to abort the + * transaction, because we could leave the inode with the + * improper counts behind. + */ + if (unlikely(ret != -ENOENT)) + btrfs_abort_transaction(trans, ret); + goto out; } - btrfs_unlock_up_safe(path, 1); leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, sizeof(struct btrfs_inode_item)); - btrfs_mark_buffer_dirty(leaf); - btrfs_release_path(path); - btrfs_delayed_inode_release_metadata(root, node); - btrfs_release_delayed_inode(node); + if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) + goto out; - return 0; + /* + * Now we're going to delete the INODE_REF/EXTREF, which should be the + * only one ref left. Check if the next item is an INODE_REF/EXTREF. + * + * But if we're the last item already, release and search for the last + * INODE_REF/EXTREF. + */ + if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { + key.objectid = node->inode_id; + key.type = BTRFS_INODE_EXTREF_KEY; + key.offset = (u64)-1; + + btrfs_release_path(path); + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (unlikely(ret < 0)) { + btrfs_abort_transaction(trans, ret); + goto err_out; + } + ASSERT(ret > 0); + ASSERT(path->slots[0] > 0); + ret = 0; + path->slots[0]--; + leaf = path->nodes[0]; + } else { + path->slots[0]++; + } + btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + if (key.objectid != node->inode_id) + goto out; + if (key.type != BTRFS_INODE_REF_KEY && + key.type != BTRFS_INODE_EXTREF_KEY) + goto out; + + /* + * Delayed iref deletion is for the inode who has only one link, + * so there is only one iref. The case that several irefs are + * in the same item doesn't exist. + */ + ret = btrfs_del_item(trans, root, path); + if (ret < 0) + btrfs_abort_transaction(trans, ret); +out: + btrfs_release_delayed_iref(node); + btrfs_release_path(path); +err_out: + btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); + btrfs_release_delayed_inode(node); + return ret; } static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, @@ -1059,7 +1107,7 @@ static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, int ret; mutex_lock(&node->mutex); - if (!node->inode_dirty) { + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { mutex_unlock(&node->mutex); return 0; } @@ -1084,6 +1132,9 @@ __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, if (ret) return ret; + ret = btrfs_record_root_in_trans(trans, node->root); + if (ret) + return ret; ret = btrfs_update_delayed_inode(trans, node->root, path, node); return ret; } @@ -1094,70 +1145,84 @@ __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, * Returns < 0 on error and returns with an aborted transaction with any * outstanding delayed items cleaned up. */ -static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, - struct btrfs_root *root, int nr) +static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) { + struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_delayed_root *delayed_root; struct btrfs_delayed_node *curr_node, *prev_node; + struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; struct btrfs_path *path; struct btrfs_block_rsv *block_rsv; int ret = 0; bool count = (nr > 0); - if (trans->aborted) + if (TRANS_ABORTED(trans)) return -EIO; path = btrfs_alloc_path(); if (!path) return -ENOMEM; - path->leave_spinning = 1; block_rsv = trans->block_rsv; - trans->block_rsv = &root->fs_info->delayed_block_rsv; + trans->block_rsv = &fs_info->delayed_block_rsv; - delayed_root = btrfs_get_delayed_root(root); + delayed_root = fs_info->delayed_root; - curr_node = btrfs_first_delayed_node(delayed_root); - while (curr_node && (!count || (count && nr--))) { + curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker); + while (curr_node && (!count || nr--)) { ret = __btrfs_commit_inode_delayed_items(trans, path, curr_node); - if (ret) { - btrfs_release_delayed_node(curr_node); - curr_node = NULL; - btrfs_abort_transaction(trans, root, ret); + if (unlikely(ret)) { + btrfs_abort_transaction(trans, ret); break; } prev_node = curr_node; - curr_node = btrfs_next_delayed_node(curr_node); - btrfs_release_delayed_node(prev_node); + prev_delayed_node_tracker = curr_delayed_node_tracker; + curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); + /* + * See the comment below about releasing path before releasing + * node. If the commit of delayed items was successful the path + * should always be released, but in case of an error, it may + * point to locked extent buffers (a leaf at the very least). + */ + ASSERT(path->nodes[0] == NULL); + btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); } - if (curr_node) - btrfs_release_delayed_node(curr_node); + /* + * Release the path to avoid a potential deadlock and lockdep splat when + * releasing the delayed node, as that requires taking the delayed node's + * mutex. If another task starts running delayed items before we take + * the mutex, it will first lock the mutex and then it may try to lock + * the same btree path (leaf). + */ btrfs_free_path(path); + + if (curr_node) + btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker); trans->block_rsv = block_rsv; return ret; } -int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, - struct btrfs_root *root) +int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) { - return __btrfs_run_delayed_items(trans, root, -1); + return __btrfs_run_delayed_items(trans, -1); } -int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, - struct btrfs_root *root, int nr) +int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) { - return __btrfs_run_delayed_items(trans, root, nr); + return __btrfs_run_delayed_items(trans, nr); } int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, - struct inode *inode) + struct btrfs_inode *inode) { - struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); - struct btrfs_path *path; + struct btrfs_ref_tracker delayed_node_tracker; + struct btrfs_delayed_node *delayed_node = + btrfs_get_delayed_node(inode, &delayed_node_tracker); + BTRFS_PATH_AUTO_FREE(path); struct btrfs_block_rsv *block_rsv; int ret; @@ -1167,43 +1232,46 @@ int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, mutex_lock(&delayed_node->mutex); if (!delayed_node->count) { mutex_unlock(&delayed_node->mutex); - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return 0; } mutex_unlock(&delayed_node->mutex); path = btrfs_alloc_path(); - if (!path) + if (!path) { + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return -ENOMEM; - path->leave_spinning = 1; + } block_rsv = trans->block_rsv; trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); - btrfs_release_delayed_node(delayed_node); - btrfs_free_path(path); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); trans->block_rsv = block_rsv; return ret; } -int btrfs_commit_inode_delayed_inode(struct inode *inode) +int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) { + struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_trans_handle *trans; - struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + struct btrfs_ref_tracker delayed_node_tracker; + struct btrfs_delayed_node *delayed_node; struct btrfs_path *path; struct btrfs_block_rsv *block_rsv; int ret; + delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); if (!delayed_node) return 0; mutex_lock(&delayed_node->mutex); - if (!delayed_node->inode_dirty) { + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { mutex_unlock(&delayed_node->mutex); - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return 0; } mutex_unlock(&delayed_node->mutex); @@ -1219,13 +1287,12 @@ int btrfs_commit_inode_delayed_inode(struct inode *inode) ret = -ENOMEM; goto trans_out; } - path->leave_spinning = 1; block_rsv = trans->block_rsv; - trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; + trans->block_rsv = &fs_info->delayed_block_rsv; mutex_lock(&delayed_node->mutex); - if (delayed_node->inode_dirty) + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) ret = __btrfs_update_delayed_inode(trans, delayed_node->root, path, delayed_node); else @@ -1235,24 +1302,25 @@ int btrfs_commit_inode_delayed_inode(struct inode *inode) btrfs_free_path(path); trans->block_rsv = block_rsv; trans_out: - btrfs_end_transaction(trans, delayed_node->root); - btrfs_btree_balance_dirty(delayed_node->root); + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty(fs_info); out: - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return ret; } -void btrfs_remove_delayed_node(struct inode *inode) +void btrfs_remove_delayed_node(struct btrfs_inode *inode) { struct btrfs_delayed_node *delayed_node; - delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); + delayed_node = READ_ONCE(inode->delayed_node); if (!delayed_node) return; - BTRFS_I(inode)->delayed_node = NULL; - btrfs_release_delayed_node(delayed_node); + inode->delayed_node = NULL; + + btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker); } struct btrfs_async_delayed_work { @@ -1268,6 +1336,7 @@ static void btrfs_async_run_delayed_root(struct btrfs_work *work) struct btrfs_trans_handle *trans; struct btrfs_path *path; struct btrfs_delayed_node *delayed_node = NULL; + struct btrfs_ref_tracker delayed_node_tracker; struct btrfs_root *root; struct btrfs_block_rsv *block_rsv; int total_done = 0; @@ -1279,66 +1348,44 @@ static void btrfs_async_run_delayed_root(struct btrfs_work *work) if (!path) goto out; -again: - if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) - goto free_path; + do { + if (atomic_read(&delayed_root->items) < + BTRFS_DELAYED_BACKGROUND / 2) + break; - delayed_node = btrfs_first_prepared_delayed_node(delayed_root); - if (!delayed_node) - goto free_path; + delayed_node = btrfs_first_prepared_delayed_node(delayed_root, + &delayed_node_tracker); + if (!delayed_node) + break; - path->leave_spinning = 1; - root = delayed_node->root; + root = delayed_node->root; - trans = btrfs_join_transaction(root); - if (IS_ERR(trans)) - goto release_path; + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) { + btrfs_release_path(path); + btrfs_release_prepared_delayed_node(delayed_node, + &delayed_node_tracker); + total_done++; + continue; + } - block_rsv = trans->block_rsv; - trans->block_rsv = &root->fs_info->delayed_block_rsv; + block_rsv = trans->block_rsv; + trans->block_rsv = &root->fs_info->delayed_block_rsv; - __btrfs_commit_inode_delayed_items(trans, path, delayed_node); - /* - * Maybe new delayed items have been inserted, so we need requeue - * the work. Besides that, we must dequeue the empty delayed nodes - * to avoid the race between delayed items balance and the worker. - * The race like this: - * Task1 Worker thread - * count == 0, needn't requeue - * also needn't insert the - * delayed node into prepare - * list again. - * add lots of delayed items - * queue the delayed node - * already in the list, - * and not in the prepare - * list, it means the delayed - * node is being dealt with - * by the worker. - * do delayed items balance - * the delayed node is being - * dealt with by the worker - * now, just wait. - * the worker goto idle. - * Task1 will sleep until the transaction is commited. - */ - mutex_lock(&delayed_node->mutex); - btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node); - mutex_unlock(&delayed_node->mutex); + __btrfs_commit_inode_delayed_items(trans, path, delayed_node); - trans->block_rsv = block_rsv; - btrfs_end_transaction_dmeta(trans, root); - btrfs_btree_balance_dirty_nodelay(root); + trans->block_rsv = block_rsv; + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty_nodelay(root->fs_info); -release_path: - btrfs_release_path(path); - total_done++; + btrfs_release_path(path); + btrfs_release_prepared_delayed_node(delayed_node, + &delayed_node_tracker); + total_done++; - btrfs_release_prepared_delayed_node(delayed_node); - if (async_work->nr == 0 || total_done < async_work->nr) - goto again; + } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) + || total_done < async_work->nr); -free_path: btrfs_free_path(path); out: wake_up(&delayed_root->wait); @@ -1347,222 +1394,299 @@ out: static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, - struct btrfs_root *root, int nr) + struct btrfs_fs_info *fs_info, int nr) { struct btrfs_async_delayed_work *async_work; - if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) - return 0; - async_work = kmalloc(sizeof(*async_work), GFP_NOFS); if (!async_work) return -ENOMEM; async_work->delayed_root = delayed_root; - async_work->work.func = btrfs_async_run_delayed_root; - async_work->work.flags = 0; + btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); async_work->nr = nr; - btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work); + btrfs_queue_work(fs_info->delayed_workers, &async_work->work); return 0; } -void btrfs_assert_delayed_root_empty(struct btrfs_root *root) +void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) { - struct btrfs_delayed_root *delayed_root; - delayed_root = btrfs_get_delayed_root(root); - WARN_ON(btrfs_first_delayed_node(delayed_root)); + struct btrfs_ref_tracker delayed_node_tracker; + struct btrfs_delayed_node *node; + + node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker); + if (WARN_ON(node)) { + btrfs_delayed_node_ref_tracker_free(node, + &delayed_node_tracker); + refcount_dec(&node->refs); + } } -static int refs_newer(struct btrfs_delayed_root *delayed_root, - int seq, int count) +static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) { int val = atomic_read(&delayed_root->items_seq); - if (val < seq || val >= seq + count) - return 1; - return 0; + if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) + return true; + + if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) + return true; + + return false; } -void btrfs_balance_delayed_items(struct btrfs_root *root) +void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) { - struct btrfs_delayed_root *delayed_root; - int seq; - - delayed_root = btrfs_get_delayed_root(root); + struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; - if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) + if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || + btrfs_workqueue_normal_congested(fs_info->delayed_workers)) return; - seq = atomic_read(&delayed_root->items_seq); - if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { + int seq; int ret; - DEFINE_WAIT(__wait); - ret = btrfs_wq_run_delayed_node(delayed_root, root, 0); + seq = atomic_read(&delayed_root->items_seq); + + ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); if (ret) return; - while (1) { - prepare_to_wait(&delayed_root->wait, &__wait, - TASK_INTERRUPTIBLE); - - if (refs_newer(delayed_root, seq, - BTRFS_DELAYED_BATCH) || - atomic_read(&delayed_root->items) < - BTRFS_DELAYED_BACKGROUND) { - break; - } - if (!signal_pending(current)) - schedule(); - else - break; - } - finish_wait(&delayed_root->wait, &__wait); + wait_event_interruptible(delayed_root->wait, + could_end_wait(delayed_root, seq)); + return; } - btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH); + btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); +} + +static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); + + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + return; + + /* + * Adding the new dir index item does not require touching another + * leaf, so we can release 1 unit of metadata that was previously + * reserved when starting the transaction. This applies only to + * the case where we had a transaction start and excludes the + * transaction join case (when replaying log trees). + */ + trace_btrfs_space_reservation(fs_info, "transaction", + trans->transid, bytes, 0); + btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); + ASSERT(trans->bytes_reserved >= bytes); + trans->bytes_reserved -= bytes; } -/* Will return 0 or -ENOMEM */ +/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, - struct btrfs_root *root, const char *name, - int name_len, struct inode *dir, - struct btrfs_disk_key *disk_key, u8 type, + const char *name, int name_len, + struct btrfs_inode *dir, + const struct btrfs_disk_key *disk_key, u8 flags, u64 index) { + struct btrfs_fs_info *fs_info = trans->fs_info; + const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); struct btrfs_delayed_node *delayed_node; + struct btrfs_ref_tracker delayed_node_tracker; struct btrfs_delayed_item *delayed_item; struct btrfs_dir_item *dir_item; + bool reserve_leaf_space; + u32 data_len; int ret; - delayed_node = btrfs_get_or_create_delayed_node(dir); + delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); if (IS_ERR(delayed_node)) return PTR_ERR(delayed_node); - delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); + delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, + delayed_node, + BTRFS_DELAYED_INSERTION_ITEM); if (!delayed_item) { ret = -ENOMEM; goto release_node; } - delayed_item->key.objectid = btrfs_ino(dir); - btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY); - delayed_item->key.offset = index; + delayed_item->index = index; dir_item = (struct btrfs_dir_item *)delayed_item->data; dir_item->location = *disk_key; - dir_item->transid = cpu_to_le64(trans->transid); - dir_item->data_len = 0; - dir_item->name_len = cpu_to_le16(name_len); - dir_item->type = type; + btrfs_set_stack_dir_transid(dir_item, trans->transid); + btrfs_set_stack_dir_data_len(dir_item, 0); + btrfs_set_stack_dir_name_len(dir_item, name_len); + btrfs_set_stack_dir_flags(dir_item, flags); memcpy((char *)(dir_item + 1), name, name_len); - ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); + data_len = delayed_item->data_len + sizeof(struct btrfs_item); + + mutex_lock(&delayed_node->mutex); + /* - * we have reserved enough space when we start a new transaction, - * so reserving metadata failure is impossible + * First attempt to insert the delayed item. This is to make the error + * handling path simpler in case we fail (-EEXIST). There's no risk of + * any other task coming in and running the delayed item before we do + * the metadata space reservation below, because we are holding the + * delayed node's mutex and that mutex must also be locked before the + * node's delayed items can be run. */ - BUG_ON(ret); + ret = __btrfs_add_delayed_item(delayed_node, delayed_item); + if (unlikely(ret)) { + btrfs_err(trans->fs_info, +"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", + name_len, name, index, btrfs_root_id(delayed_node->root), + delayed_node->inode_id, dir->index_cnt, + delayed_node->index_cnt, ret); + btrfs_release_delayed_item(delayed_item); + btrfs_release_dir_index_item_space(trans); + mutex_unlock(&delayed_node->mutex); + goto release_node; + } + if (delayed_node->index_item_leaves == 0 || + delayed_node->curr_index_batch_size + data_len > leaf_data_size) { + delayed_node->curr_index_batch_size = data_len; + reserve_leaf_space = true; + } else { + delayed_node->curr_index_batch_size += data_len; + reserve_leaf_space = false; + } - mutex_lock(&delayed_node->mutex); - ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); - if (unlikely(ret)) { - printk(KERN_ERR "err add delayed dir index item(name: %s) into " - "the insertion tree of the delayed node" - "(root id: %llu, inode id: %llu, errno: %d)\n", - name, - (unsigned long long)delayed_node->root->objectid, - (unsigned long long)delayed_node->inode_id, - ret); - BUG(); + if (reserve_leaf_space) { + ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); + /* + * Space was reserved for a dir index item insertion when we + * started the transaction, so getting a failure here should be + * impossible. + */ + if (WARN_ON(ret)) { + btrfs_release_delayed_item(delayed_item); + mutex_unlock(&delayed_node->mutex); + goto release_node; + } + + delayed_node->index_item_leaves++; + } else { + btrfs_release_dir_index_item_space(trans); } mutex_unlock(&delayed_node->mutex); release_node: - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return ret; } -static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, - struct btrfs_delayed_node *node, - struct btrfs_key *key) +static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node, + u64 index) { struct btrfs_delayed_item *item; mutex_lock(&node->mutex); - item = __btrfs_lookup_delayed_insertion_item(node, key); + item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); if (!item) { mutex_unlock(&node->mutex); - return 1; + return false; + } + + /* + * For delayed items to insert, we track reserved metadata bytes based + * on the number of leaves that we will use. + * See btrfs_insert_delayed_dir_index() and + * btrfs_delayed_item_reserve_metadata()). + */ + ASSERT(item->bytes_reserved == 0); + ASSERT(node->index_item_leaves > 0); + + /* + * If there's only one leaf reserved, we can decrement this item from the + * current batch, otherwise we can not because we don't know which leaf + * it belongs to. With the current limit on delayed items, we rarely + * accumulate enough dir index items to fill more than one leaf (even + * when using a leaf size of 4K). + */ + if (node->index_item_leaves == 1) { + const u32 data_len = item->data_len + sizeof(struct btrfs_item); + + ASSERT(node->curr_index_batch_size >= data_len); + node->curr_index_batch_size -= data_len; } - btrfs_delayed_item_release_metadata(root, item); btrfs_release_delayed_item(item); + + /* If we now have no more dir index items, we can release all leaves. */ + if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { + btrfs_delayed_item_release_leaves(node, node->index_item_leaves); + node->index_item_leaves = 0; + } + mutex_unlock(&node->mutex); - return 0; + return true; } int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, - struct btrfs_root *root, struct inode *dir, - u64 index) + struct btrfs_inode *dir, u64 index) { struct btrfs_delayed_node *node; + struct btrfs_ref_tracker delayed_node_tracker; struct btrfs_delayed_item *item; - struct btrfs_key item_key; int ret; - node = btrfs_get_or_create_delayed_node(dir); + node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); if (IS_ERR(node)) return PTR_ERR(node); - item_key.objectid = btrfs_ino(dir); - btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY); - item_key.offset = index; - - ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); - if (!ret) + if (btrfs_delete_delayed_insertion_item(node, index)) { + ret = 0; goto end; + } - item = btrfs_alloc_delayed_item(0); + item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); if (!item) { ret = -ENOMEM; goto end; } - item->key = item_key; + item->index = index; - ret = btrfs_delayed_item_reserve_metadata(trans, root, item); + ret = btrfs_delayed_item_reserve_metadata(trans, item); /* * we have reserved enough space when we start a new transaction, * so reserving metadata failure is impossible. */ - BUG_ON(ret); + if (ret < 0) { + btrfs_err(trans->fs_info, +"metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d", + index, btrfs_root_id(node->root), node->inode_id, ret); + btrfs_release_delayed_item(item); + goto end; + } mutex_lock(&node->mutex); - ret = __btrfs_add_delayed_deletion_item(node, item); + ret = __btrfs_add_delayed_item(node, item); if (unlikely(ret)) { - printk(KERN_ERR "err add delayed dir index item(index: %llu) " - "into the deletion tree of the delayed node" - "(root id: %llu, inode id: %llu, errno: %d)\n", - (unsigned long long)index, - (unsigned long long)node->root->objectid, - (unsigned long long)node->inode_id, - ret); - BUG(); + btrfs_err(trans->fs_info, +"failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d", + index, btrfs_root_id(node->root), node->inode_id, ret); + btrfs_delayed_item_release_metadata(dir->root, item); + btrfs_release_delayed_item(item); } mutex_unlock(&node->mutex); end: - btrfs_release_delayed_node(node); + btrfs_release_delayed_node(node, &delayed_node_tracker); return ret; } -int btrfs_inode_delayed_dir_index_count(struct inode *inode) +int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) { - struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + struct btrfs_ref_tracker delayed_node_tracker; + struct btrfs_delayed_node *delayed_node; + delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); if (!delayed_node) return -ENOENT; @@ -1572,36 +1696,46 @@ int btrfs_inode_delayed_dir_index_count(struct inode *inode) * is updated now. So we needn't lock the delayed node. */ if (!delayed_node->index_cnt) { - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return -EINVAL; } - BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; - btrfs_release_delayed_node(delayed_node); + inode->index_cnt = delayed_node->index_cnt; + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return 0; } -void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, - struct list_head *del_list) +bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode, + u64 last_index, + struct list_head *ins_list, + struct list_head *del_list) { struct btrfs_delayed_node *delayed_node; struct btrfs_delayed_item *item; + struct btrfs_ref_tracker delayed_node_tracker; - delayed_node = btrfs_get_delayed_node(inode); + delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); if (!delayed_node) - return; + return false; + + /* + * We can only do one readdir with delayed items at a time because of + * item->readdir_list. + */ + btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); + btrfs_inode_lock(inode, 0); mutex_lock(&delayed_node->mutex); item = __btrfs_first_delayed_insertion_item(delayed_node); - while (item) { - atomic_inc(&item->refs); + while (item && item->index <= last_index) { + refcount_inc(&item->refs); list_add_tail(&item->readdir_list, ins_list); item = __btrfs_next_delayed_item(item); } item = __btrfs_first_delayed_deletion_item(delayed_node); - while (item) { - atomic_inc(&item->refs); + while (item && item->index <= last_index) { + refcount_inc(&item->refs); list_add_tail(&item->readdir_list, del_list); item = __btrfs_next_delayed_item(item); } @@ -1615,258 +1749,294 @@ void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, * insert/delete delayed items in this period. So we also needn't * requeue or dequeue this delayed node. */ - atomic_dec(&delayed_node->refs); + btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker); + refcount_dec(&delayed_node->refs); + + return true; } -void btrfs_put_delayed_items(struct list_head *ins_list, - struct list_head *del_list) +void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode, + struct list_head *ins_list, + struct list_head *del_list) { struct btrfs_delayed_item *curr, *next; list_for_each_entry_safe(curr, next, ins_list, readdir_list) { list_del(&curr->readdir_list); - if (atomic_dec_and_test(&curr->refs)) + if (refcount_dec_and_test(&curr->refs)) kfree(curr); } list_for_each_entry_safe(curr, next, del_list, readdir_list) { list_del(&curr->readdir_list); - if (atomic_dec_and_test(&curr->refs)) + if (refcount_dec_and_test(&curr->refs)) kfree(curr); } + + /* + * The VFS is going to do up_read(), so we need to downgrade back to a + * read lock. + */ + downgrade_write(&inode->vfs_inode.i_rwsem); } -int btrfs_should_delete_dir_index(struct list_head *del_list, - u64 index) +bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index) { - struct btrfs_delayed_item *curr, *next; - int ret; - - if (list_empty(del_list)) - return 0; + struct btrfs_delayed_item *curr; + bool ret = false; - list_for_each_entry_safe(curr, next, del_list, readdir_list) { - if (curr->key.offset > index) + list_for_each_entry(curr, del_list, readdir_list) { + if (curr->index > index) break; - - list_del(&curr->readdir_list); - ret = (curr->key.offset == index); - - if (atomic_dec_and_test(&curr->refs)) - kfree(curr); - - if (ret) - return 1; - else - continue; + if (curr->index == index) { + ret = true; + break; + } } - return 0; + return ret; } /* - * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree - * + * Read dir info stored in the delayed tree. */ -int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, - struct list_head *ins_list) +bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx, + const struct list_head *ins_list) { struct btrfs_dir_item *di; struct btrfs_delayed_item *curr, *next; struct btrfs_key location; char *name; int name_len; - int over = 0; unsigned char d_type; - if (list_empty(ins_list)) - return 0; - /* * Changing the data of the delayed item is impossible. So * we needn't lock them. And we have held i_mutex of the * directory, nobody can delete any directory indexes now. */ list_for_each_entry_safe(curr, next, ins_list, readdir_list) { + bool over; + list_del(&curr->readdir_list); - if (curr->key.offset < ctx->pos) { - if (atomic_dec_and_test(&curr->refs)) + if (curr->index < ctx->pos) { + if (refcount_dec_and_test(&curr->refs)) kfree(curr); continue; } - ctx->pos = curr->key.offset; + ctx->pos = curr->index; di = (struct btrfs_dir_item *)curr->data; name = (char *)(di + 1); - name_len = le16_to_cpu(di->name_len); + name_len = btrfs_stack_dir_name_len(di); - d_type = btrfs_filetype_table[di->type]; + d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); btrfs_disk_key_to_cpu(&location, &di->location); - over = !dir_emit(ctx, name, name_len, - location.objectid, d_type); + over = !dir_emit(ctx, name, name_len, location.objectid, d_type); - if (atomic_dec_and_test(&curr->refs)) + if (refcount_dec_and_test(&curr->refs)) kfree(curr); if (over) - return 1; + return true; + ctx->pos++; } - return 0; + return false; } -BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, - generation, 64); -BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, - sequence, 64); -BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, - transid, 64); -BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); -BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, - nbytes, 64); -BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, - block_group, 64); -BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); -BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); -BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); -BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); -BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); -BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); - -BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); -BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); - static void fill_stack_inode_item(struct btrfs_trans_handle *trans, struct btrfs_inode_item *inode_item, - struct inode *inode) -{ - btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); - btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); - btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); - btrfs_set_stack_inode_mode(inode_item, inode->i_mode); - btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); - btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); - btrfs_set_stack_inode_generation(inode_item, - BTRFS_I(inode)->generation); - btrfs_set_stack_inode_sequence(inode_item, inode->i_version); + struct btrfs_inode *inode) +{ + struct inode *vfs_inode = &inode->vfs_inode; + u64 flags; + + btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode)); + btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode)); + btrfs_set_stack_inode_size(inode_item, inode->disk_i_size); + btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode); + btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink); + btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode)); + btrfs_set_stack_inode_generation(inode_item, inode->generation); + btrfs_set_stack_inode_sequence(inode_item, + inode_peek_iversion(vfs_inode)); btrfs_set_stack_inode_transid(inode_item, trans->transid); - btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); - btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); + btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev); + flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags); + btrfs_set_stack_inode_flags(inode_item, flags); btrfs_set_stack_inode_block_group(inode_item, 0); - btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item), - inode->i_atime.tv_sec); - btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item), - inode->i_atime.tv_nsec); + btrfs_set_stack_timespec_sec(&inode_item->atime, + inode_get_atime_sec(vfs_inode)); + btrfs_set_stack_timespec_nsec(&inode_item->atime, + inode_get_atime_nsec(vfs_inode)); + + btrfs_set_stack_timespec_sec(&inode_item->mtime, + inode_get_mtime_sec(vfs_inode)); + btrfs_set_stack_timespec_nsec(&inode_item->mtime, + inode_get_mtime_nsec(vfs_inode)); - btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item), - inode->i_mtime.tv_sec); - btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item), - inode->i_mtime.tv_nsec); + btrfs_set_stack_timespec_sec(&inode_item->ctime, + inode_get_ctime_sec(vfs_inode)); + btrfs_set_stack_timespec_nsec(&inode_item->ctime, + inode_get_ctime_nsec(vfs_inode)); - btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item), - inode->i_ctime.tv_sec); - btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item), - inode->i_ctime.tv_nsec); + btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec); + btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec); } -int btrfs_fill_inode(struct inode *inode, u32 *rdev) +int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev) { struct btrfs_delayed_node *delayed_node; + struct btrfs_ref_tracker delayed_node_tracker; struct btrfs_inode_item *inode_item; - struct btrfs_timespec *tspec; + struct inode *vfs_inode = &inode->vfs_inode; - delayed_node = btrfs_get_delayed_node(inode); + delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); if (!delayed_node) return -ENOENT; mutex_lock(&delayed_node->mutex); - if (!delayed_node->inode_dirty) { + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { mutex_unlock(&delayed_node->mutex); - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return -ENOENT; } inode_item = &delayed_node->inode_item; - i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); - i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); + i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item)); + i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item)); btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); - inode->i_mode = btrfs_stack_inode_mode(inode_item); - set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); - inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); - BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); - inode->i_version = btrfs_stack_inode_sequence(inode_item); - inode->i_rdev = 0; + vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item); + set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item)); + inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item)); + inode->generation = btrfs_stack_inode_generation(inode_item); + inode->last_trans = btrfs_stack_inode_transid(inode_item); + + inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item)); + vfs_inode->i_rdev = 0; *rdev = btrfs_stack_inode_rdev(inode_item); - BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); + btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), + &inode->flags, &inode->ro_flags); - tspec = btrfs_inode_atime(inode_item); - inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec); - inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec); + inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime), + btrfs_stack_timespec_nsec(&inode_item->atime)); - tspec = btrfs_inode_mtime(inode_item); - inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec); - inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec); + inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime), + btrfs_stack_timespec_nsec(&inode_item->mtime)); - tspec = btrfs_inode_ctime(inode_item); - inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec); - inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec); + inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime), + btrfs_stack_timespec_nsec(&inode_item->ctime)); - inode->i_generation = BTRFS_I(inode)->generation; - BTRFS_I(inode)->index_cnt = (u64)-1; + inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); + inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); + + vfs_inode->i_generation = inode->generation; + if (S_ISDIR(vfs_inode->i_mode)) + inode->index_cnt = (u64)-1; mutex_unlock(&delayed_node->mutex); - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return 0; } int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, - struct btrfs_root *root, struct inode *inode) + struct btrfs_inode *inode) { + struct btrfs_root *root = inode->root; struct btrfs_delayed_node *delayed_node; + struct btrfs_ref_tracker delayed_node_tracker; int ret = 0; - delayed_node = btrfs_get_or_create_delayed_node(inode); + delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); if (IS_ERR(delayed_node)) return PTR_ERR(delayed_node); mutex_lock(&delayed_node->mutex); - if (delayed_node->inode_dirty) { + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { fill_stack_inode_item(trans, &delayed_node->inode_item, inode); goto release_node; } - ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, - delayed_node); + ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); if (ret) goto release_node; fill_stack_inode_item(trans, &delayed_node->inode_item, inode); - delayed_node->inode_dirty = 1; + set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); delayed_node->count++; atomic_inc(&root->fs_info->delayed_root->items); release_node: mutex_unlock(&delayed_node->mutex); - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); return ret; } +int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct btrfs_delayed_node *delayed_node; + struct btrfs_ref_tracker delayed_node_tracker; + + /* + * we don't do delayed inode updates during log recovery because it + * leads to enospc problems. This means we also can't do + * delayed inode refs + */ + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + return -EAGAIN; + + delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); + if (IS_ERR(delayed_node)) + return PTR_ERR(delayed_node); + + /* + * We don't reserve space for inode ref deletion is because: + * - We ONLY do async inode ref deletion for the inode who has only + * one link(i_nlink == 1), it means there is only one inode ref. + * And in most case, the inode ref and the inode item are in the + * same leaf, and we will deal with them at the same time. + * Since we are sure we will reserve the space for the inode item, + * it is unnecessary to reserve space for inode ref deletion. + * - If the inode ref and the inode item are not in the same leaf, + * We also needn't worry about enospc problem, because we reserve + * much more space for the inode update than it needs. + * - At the worst, we can steal some space from the global reservation. + * It is very rare. + */ + mutex_lock(&delayed_node->mutex); + if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { + delayed_node->count++; + atomic_inc(&fs_info->delayed_root->items); + } + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); + return 0; +} + static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) { struct btrfs_root *root = delayed_node->root; + struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_delayed_item *curr_item, *prev_item; mutex_lock(&delayed_node->mutex); curr_item = __btrfs_first_delayed_insertion_item(delayed_node); while (curr_item) { - btrfs_delayed_item_release_metadata(root, curr_item); prev_item = curr_item; curr_item = __btrfs_next_delayed_item(prev_item); btrfs_release_delayed_item(prev_item); } + if (delayed_node->index_item_leaves > 0) { + btrfs_delayed_item_release_leaves(delayed_node, + delayed_node->index_item_leaves); + delayed_node->index_item_leaves = 0; + } + curr_item = __btrfs_first_delayed_deletion_item(delayed_node); while (curr_item) { btrfs_delayed_item_release_metadata(root, curr_item); @@ -1875,68 +2045,200 @@ static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) btrfs_release_delayed_item(prev_item); } - if (delayed_node->inode_dirty) { - btrfs_delayed_inode_release_metadata(root, delayed_node); + btrfs_release_delayed_iref(delayed_node); + + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); btrfs_release_delayed_inode(delayed_node); } mutex_unlock(&delayed_node->mutex); } -void btrfs_kill_delayed_inode_items(struct inode *inode) +void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) { struct btrfs_delayed_node *delayed_node; + struct btrfs_ref_tracker delayed_node_tracker; - delayed_node = btrfs_get_delayed_node(inode); + delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); if (!delayed_node) return; __btrfs_kill_delayed_node(delayed_node); - btrfs_release_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); } void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) { - u64 inode_id = 0; + unsigned long index = 0; struct btrfs_delayed_node *delayed_nodes[8]; - int i, n; + struct btrfs_ref_tracker delayed_node_trackers[8]; while (1) { - spin_lock(&root->inode_lock); - n = radix_tree_gang_lookup(&root->delayed_nodes_tree, - (void **)delayed_nodes, inode_id, - ARRAY_SIZE(delayed_nodes)); - if (!n) { - spin_unlock(&root->inode_lock); - break; - } + struct btrfs_delayed_node *node; + int count; - inode_id = delayed_nodes[n - 1]->inode_id + 1; + xa_lock(&root->delayed_nodes); + if (xa_empty(&root->delayed_nodes)) { + xa_unlock(&root->delayed_nodes); + return; + } - for (i = 0; i < n; i++) - atomic_inc(&delayed_nodes[i]->refs); - spin_unlock(&root->inode_lock); + count = 0; + xa_for_each_start(&root->delayed_nodes, index, node, index) { + /* + * Don't increase refs in case the node is dead and + * about to be removed from the tree in the loop below + */ + if (refcount_inc_not_zero(&node->refs)) { + btrfs_delayed_node_ref_tracker_alloc(node, + &delayed_node_trackers[count], + GFP_ATOMIC); + delayed_nodes[count] = node; + count++; + } + if (count >= ARRAY_SIZE(delayed_nodes)) + break; + } + xa_unlock(&root->delayed_nodes); + index++; - for (i = 0; i < n; i++) { + for (int i = 0; i < count; i++) { __btrfs_kill_delayed_node(delayed_nodes[i]); - btrfs_release_delayed_node(delayed_nodes[i]); + btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]); + btrfs_release_delayed_node(delayed_nodes[i], + &delayed_node_trackers[i]); } } } -void btrfs_destroy_delayed_inodes(struct btrfs_root *root) +void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) { - struct btrfs_delayed_root *delayed_root; struct btrfs_delayed_node *curr_node, *prev_node; + struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; - delayed_root = btrfs_get_delayed_root(root); - - curr_node = btrfs_first_delayed_node(delayed_root); + curr_node = btrfs_first_delayed_node(fs_info->delayed_root, + &curr_delayed_node_tracker); while (curr_node) { __btrfs_kill_delayed_node(curr_node); prev_node = curr_node; - curr_node = btrfs_next_delayed_node(curr_node); - btrfs_release_delayed_node(prev_node); + prev_delayed_node_tracker = curr_delayed_node_tracker; + curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); + btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); + } +} + +void btrfs_log_get_delayed_items(struct btrfs_inode *inode, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_node *node; + struct btrfs_delayed_item *item; + struct btrfs_ref_tracker delayed_node_tracker; + + node = btrfs_get_delayed_node(inode, &delayed_node_tracker); + if (!node) + return; + + mutex_lock(&node->mutex); + item = __btrfs_first_delayed_insertion_item(node); + while (item) { + /* + * It's possible that the item is already in a log list. This + * can happen in case two tasks are trying to log the same + * directory. For example if we have tasks A and task B: + * + * Task A collected the delayed items into a log list while + * under the inode's log_mutex (at btrfs_log_inode()), but it + * only releases the items after logging the inodes they point + * to (if they are new inodes), which happens after unlocking + * the log mutex; + * + * Task B enters btrfs_log_inode() and acquires the log_mutex + * of the same directory inode, before task B releases the + * delayed items. This can happen for example when logging some + * inode we need to trigger logging of its parent directory, so + * logging two files that have the same parent directory can + * lead to this. + * + * If this happens, just ignore delayed items already in a log + * list. All the tasks logging the directory are under a log + * transaction and whichever finishes first can not sync the log + * before the other completes and leaves the log transaction. + */ + if (!item->logged && list_empty(&item->log_list)) { + refcount_inc(&item->refs); + list_add_tail(&item->log_list, ins_list); + } + item = __btrfs_next_delayed_item(item); + } + + item = __btrfs_first_delayed_deletion_item(node); + while (item) { + /* It may be non-empty, for the same reason mentioned above. */ + if (!item->logged && list_empty(&item->log_list)) { + refcount_inc(&item->refs); + list_add_tail(&item->log_list, del_list); + } + item = __btrfs_next_delayed_item(item); } + mutex_unlock(&node->mutex); + + /* + * We are called during inode logging, which means the inode is in use + * and can not be evicted before we finish logging the inode. So we never + * have the last reference on the delayed inode. + * Also, we don't use btrfs_release_delayed_node() because that would + * requeue the delayed inode (change its order in the list of prepared + * nodes) and we don't want to do such change because we don't create or + * delete delayed items. + */ + ASSERT(refcount_read(&node->refs) > 1); + btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); + refcount_dec(&node->refs); } +void btrfs_log_put_delayed_items(struct btrfs_inode *inode, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_node *node; + struct btrfs_delayed_item *item; + struct btrfs_delayed_item *next; + struct btrfs_ref_tracker delayed_node_tracker; + + node = btrfs_get_delayed_node(inode, &delayed_node_tracker); + if (!node) + return; + + mutex_lock(&node->mutex); + + list_for_each_entry_safe(item, next, ins_list, log_list) { + item->logged = true; + list_del_init(&item->log_list); + if (refcount_dec_and_test(&item->refs)) + kfree(item); + } + + list_for_each_entry_safe(item, next, del_list, log_list) { + item->logged = true; + list_del_init(&item->log_list); + if (refcount_dec_and_test(&item->refs)) + kfree(item); + } + + mutex_unlock(&node->mutex); + + /* + * We are called during inode logging, which means the inode is in use + * and can not be evicted before we finish logging the inode. So we never + * have the last reference on the delayed inode. + * Also, we don't use btrfs_release_delayed_node() because that would + * requeue the delayed inode (change its order in the list of prepared + * nodes) and we don't want to do such change because we don't create or + * delete delayed items. + */ + ASSERT(refcount_read(&node->refs) > 1); + btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); + refcount_dec(&node->refs); +} |
