summaryrefslogtreecommitdiff
path: root/fs/btrfs/scrub.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/scrub.c')
-rw-r--r--fs/btrfs/scrub.c5302
1 files changed, 2304 insertions, 2998 deletions
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c
index 6dcd36d7b849..a40ee41f42c6 100644
--- a/fs/btrfs/scrub.c
+++ b/fs/btrfs/scrub.c
@@ -6,7 +6,9 @@
#include <linux/blkdev.h>
#include <linux/ratelimit.h>
#include <linux/sched/mm.h>
+#include <crypto/hash.h>
#include "ctree.h"
+#include "discard.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
@@ -14,9 +16,14 @@
#include "backref.h"
#include "extent_io.h"
#include "dev-replace.h"
-#include "check-integrity.h"
-#include "rcu-string.h"
#include "raid56.h"
+#include "block-group.h"
+#include "zoned.h"
+#include "fs.h"
+#include "accessors.h"
+#include "file-item.h"
+#include "scrub.h"
+#include "raid-stripe-tree.h"
/*
* This is only the first step towards a full-features scrub. It reads all
@@ -31,146 +38,179 @@
* - add a mode to also read unallocated space
*/
-struct scrub_block;
struct scrub_ctx;
/*
- * the following three values only influence the performance.
- * The last one configures the number of parallel and outstanding I/O
- * operations. The first two values configure an upper limit for the number
- * of (dynamically allocated) pages that are added to a bio.
+ * The following value only influences the performance.
+ *
+ * This determines how many stripes would be submitted in one go,
+ * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
+ */
+#define SCRUB_STRIPES_PER_GROUP 8
+
+/*
+ * How many groups we have for each sctx.
+ *
+ * This would be 8M per device, the same value as the old scrub in-flight bios
+ * size limit.
*/
-#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
-#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
-#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
+#define SCRUB_GROUPS_PER_SCTX 16
+
+#define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
/*
- * the following value times PAGE_SIZE needs to be large enough to match the
+ * The following value times PAGE_SIZE needs to be large enough to match the
* largest node/leaf/sector size that shall be supported.
- * Values larger than BTRFS_STRIPE_LEN are not supported.
*/
-#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
+#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
-struct scrub_recover {
- refcount_t refs;
- struct btrfs_bio *bbio;
- u64 map_length;
-};
+/* Represent one sector and its needed info to verify the content. */
+struct scrub_sector_verification {
+ union {
+ /*
+ * Csum pointer for data csum verification. Should point to a
+ * sector csum inside scrub_stripe::csums.
+ *
+ * NULL if this data sector has no csum.
+ */
+ u8 *csum;
-struct scrub_page {
- struct scrub_block *sblock;
- struct page *page;
- struct btrfs_device *dev;
- struct list_head list;
- u64 flags; /* extent flags */
- u64 generation;
- u64 logical;
- u64 physical;
- u64 physical_for_dev_replace;
- atomic_t refs;
- struct {
- unsigned int mirror_num:8;
- unsigned int have_csum:1;
- unsigned int io_error:1;
+ /*
+ * Extra info for metadata verification. All sectors inside a
+ * tree block share the same generation.
+ */
+ u64 generation;
};
- u8 csum[BTRFS_CSUM_SIZE];
-
- struct scrub_recover *recover;
};
-struct scrub_bio {
- int index;
- struct scrub_ctx *sctx;
- struct btrfs_device *dev;
- struct bio *bio;
- blk_status_t status;
- u64 logical;
- u64 physical;
-#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
- struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
-#else
- struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
-#endif
- int page_count;
- int next_free;
- struct btrfs_work work;
+enum scrub_stripe_flags {
+ /* Set when @mirror_num, @dev, @physical and @logical are set. */
+ SCRUB_STRIPE_FLAG_INITIALIZED,
+
+ /* Set when the read-repair is finished. */
+ SCRUB_STRIPE_FLAG_REPAIR_DONE,
+
+ /*
+ * Set for data stripes if it's triggered from P/Q stripe.
+ * During such scrub, we should not report errors in data stripes, nor
+ * update the accounting.
+ */
+ SCRUB_STRIPE_FLAG_NO_REPORT,
};
-struct scrub_block {
- struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
- int page_count;
- atomic_t outstanding_pages;
- refcount_t refs; /* free mem on transition to zero */
- struct scrub_ctx *sctx;
- struct scrub_parity *sparity;
- struct {
- unsigned int header_error:1;
- unsigned int checksum_error:1;
- unsigned int no_io_error_seen:1;
- unsigned int generation_error:1; /* also sets header_error */
-
- /* The following is for the data used to check parity */
- /* It is for the data with checksum */
- unsigned int data_corrected:1;
- };
- struct btrfs_work work;
+/*
+ * We have multiple bitmaps for one scrub_stripe.
+ * However each bitmap has at most (BTRFS_STRIPE_LEN / blocksize) bits,
+ * which is normally 16, and much smaller than BITS_PER_LONG (32 or 64).
+ *
+ * So to reduce memory usage for each scrub_stripe, we pack those bitmaps
+ * into a larger one.
+ *
+ * These enum records where the sub-bitmap are inside the larger one.
+ * Each subbitmap starts at scrub_bitmap_nr_##name * nr_sectors bit.
+ */
+enum {
+ /* Which blocks are covered by extent items. */
+ scrub_bitmap_nr_has_extent = 0,
+
+ /* Which blocks are metadata. */
+ scrub_bitmap_nr_is_metadata,
+
+ /*
+ * Which blocks have errors, including IO, csum, and metadata
+ * errors.
+ * This sub-bitmap is the OR results of the next few error related
+ * sub-bitmaps.
+ */
+ scrub_bitmap_nr_error,
+ scrub_bitmap_nr_io_error,
+ scrub_bitmap_nr_csum_error,
+ scrub_bitmap_nr_meta_error,
+ scrub_bitmap_nr_meta_gen_error,
+ scrub_bitmap_nr_last,
};
-/* Used for the chunks with parity stripe such RAID5/6 */
-struct scrub_parity {
- struct scrub_ctx *sctx;
+#define SCRUB_STRIPE_MAX_FOLIOS (BTRFS_STRIPE_LEN / PAGE_SIZE)
- struct btrfs_device *scrub_dev;
+/*
+ * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
+ */
+struct scrub_stripe {
+ struct scrub_ctx *sctx;
+ struct btrfs_block_group *bg;
+
+ struct folio *folios[SCRUB_STRIPE_MAX_FOLIOS];
+ struct scrub_sector_verification *sectors;
+
+ struct btrfs_device *dev;
+ u64 logical;
+ u64 physical;
- u64 logic_start;
+ u16 mirror_num;
- u64 logic_end;
+ /* Should be BTRFS_STRIPE_LEN / sectorsize. */
+ u16 nr_sectors;
- int nsectors;
+ /*
+ * How many data/meta extents are in this stripe. Only for scrub status
+ * reporting purposes.
+ */
+ u16 nr_data_extents;
+ u16 nr_meta_extents;
- u64 stripe_len;
+ atomic_t pending_io;
+ wait_queue_head_t io_wait;
+ wait_queue_head_t repair_wait;
- refcount_t refs;
+ /*
+ * Indicate the states of the stripe. Bits are defined in
+ * scrub_stripe_flags enum.
+ */
+ unsigned long state;
- struct list_head spages;
+ /* The large bitmap contains all the sub-bitmaps. */
+ unsigned long bitmaps[BITS_TO_LONGS(scrub_bitmap_nr_last *
+ (BTRFS_STRIPE_LEN / BTRFS_MIN_BLOCKSIZE))];
- /* Work of parity check and repair */
- struct btrfs_work work;
+ /*
+ * For writeback (repair or replace) error reporting.
+ * This one is protected by a spinlock, thus can not be packed into
+ * the larger bitmap.
+ */
+ unsigned long write_error_bitmap;
- /* Mark the parity blocks which have data */
- unsigned long *dbitmap;
+ /* Writeback can be concurrent, thus we need to protect the bitmap. */
+ spinlock_t write_error_lock;
/*
- * Mark the parity blocks which have data, but errors happen when
- * read data or check data
+ * Checksum for the whole stripe if this stripe is inside a data block
+ * group.
*/
- unsigned long *ebitmap;
+ u8 *csums;
- unsigned long bitmap[0];
+ struct work_struct work;
};
struct scrub_ctx {
- struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
+ struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
+ struct scrub_stripe *raid56_data_stripes;
struct btrfs_fs_info *fs_info;
+ struct btrfs_path extent_path;
+ struct btrfs_path csum_path;
int first_free;
- int curr;
- atomic_t bios_in_flight;
- atomic_t workers_pending;
- spinlock_t list_lock;
- wait_queue_head_t list_wait;
- u16 csum_size;
- struct list_head csum_list;
+ int cur_stripe;
atomic_t cancel_req;
int readonly;
- int pages_per_rd_bio;
- int is_dev_replace;
+ /* State of IO submission throttling affecting the associated device */
+ ktime_t throttle_deadline;
+ u64 throttle_sent;
+
+ bool is_dev_replace;
+ u64 write_pointer;
- struct scrub_bio *wr_curr_bio;
struct mutex wr_lock;
- int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
struct btrfs_device *wr_tgtdev;
- bool flush_all_writes;
/*
* statistics
@@ -188,6 +228,90 @@ struct scrub_ctx {
refcount_t refs;
};
+#define scrub_calc_start_bit(stripe, name, block_nr) \
+({ \
+ unsigned int __start_bit; \
+ \
+ ASSERT(block_nr < stripe->nr_sectors, \
+ "nr_sectors=%u block_nr=%u", stripe->nr_sectors, block_nr); \
+ __start_bit = scrub_bitmap_nr_##name * stripe->nr_sectors + block_nr; \
+ __start_bit; \
+})
+
+#define IMPLEMENT_SCRUB_BITMAP_OPS(name) \
+static inline void scrub_bitmap_set_##name(struct scrub_stripe *stripe, \
+ unsigned int block_nr, \
+ unsigned int nr_blocks) \
+{ \
+ const unsigned int start_bit = scrub_calc_start_bit(stripe, \
+ name, block_nr); \
+ \
+ bitmap_set(stripe->bitmaps, start_bit, nr_blocks); \
+} \
+static inline void scrub_bitmap_clear_##name(struct scrub_stripe *stripe, \
+ unsigned int block_nr, \
+ unsigned int nr_blocks) \
+{ \
+ const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
+ block_nr); \
+ \
+ bitmap_clear(stripe->bitmaps, start_bit, nr_blocks); \
+} \
+static inline bool scrub_bitmap_test_bit_##name(struct scrub_stripe *stripe, \
+ unsigned int block_nr) \
+{ \
+ const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
+ block_nr); \
+ \
+ return test_bit(start_bit, stripe->bitmaps); \
+} \
+static inline void scrub_bitmap_set_bit_##name(struct scrub_stripe *stripe, \
+ unsigned int block_nr) \
+{ \
+ const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
+ block_nr); \
+ \
+ set_bit(start_bit, stripe->bitmaps); \
+} \
+static inline void scrub_bitmap_clear_bit_##name(struct scrub_stripe *stripe, \
+ unsigned int block_nr) \
+{ \
+ const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
+ block_nr); \
+ \
+ clear_bit(start_bit, stripe->bitmaps); \
+} \
+static inline unsigned long scrub_bitmap_read_##name(struct scrub_stripe *stripe) \
+{ \
+ const unsigned int nr_blocks = stripe->nr_sectors; \
+ \
+ ASSERT(nr_blocks > 0 && nr_blocks <= BITS_PER_LONG, \
+ "nr_blocks=%u BITS_PER_LONG=%u", \
+ nr_blocks, BITS_PER_LONG); \
+ \
+ return bitmap_read(stripe->bitmaps, nr_blocks * scrub_bitmap_nr_##name, \
+ stripe->nr_sectors); \
+} \
+static inline bool scrub_bitmap_empty_##name(struct scrub_stripe *stripe) \
+{ \
+ unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
+ \
+ return bitmap_empty(&bitmap, stripe->nr_sectors); \
+} \
+static inline unsigned int scrub_bitmap_weight_##name(struct scrub_stripe *stripe) \
+{ \
+ unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
+ \
+ return bitmap_weight(&bitmap, stripe->nr_sectors); \
+}
+IMPLEMENT_SCRUB_BITMAP_OPS(has_extent);
+IMPLEMENT_SCRUB_BITMAP_OPS(is_metadata);
+IMPLEMENT_SCRUB_BITMAP_OPS(error);
+IMPLEMENT_SCRUB_BITMAP_OPS(io_error);
+IMPLEMENT_SCRUB_BITMAP_OPS(csum_error);
+IMPLEMENT_SCRUB_BITMAP_OPS(meta_error);
+IMPLEMENT_SCRUB_BITMAP_OPS(meta_gen_error);
+
struct scrub_warning {
struct btrfs_path *path;
u64 extent_item_size;
@@ -197,81 +321,82 @@ struct scrub_warning {
struct btrfs_device *dev;
};
-struct full_stripe_lock {
- struct rb_node node;
- u64 logical;
- u64 refs;
- struct mutex mutex;
-};
+struct scrub_error_records {
+ /*
+ * Bitmap recording which blocks hit errors (IO/csum/...) during the
+ * initial read.
+ */
+ unsigned long init_error_bitmap;
-static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
-static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
-static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
-static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
- struct scrub_block *sblocks_for_recheck);
-static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
- struct scrub_block *sblock,
- int retry_failed_mirror);
-static void scrub_recheck_block_checksum(struct scrub_block *sblock);
-static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
- struct scrub_block *sblock_good);
-static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
- struct scrub_block *sblock_good,
- int page_num, int force_write);
-static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
-static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
- int page_num);
-static int scrub_checksum_data(struct scrub_block *sblock);
-static int scrub_checksum_tree_block(struct scrub_block *sblock);
-static int scrub_checksum_super(struct scrub_block *sblock);
-static void scrub_block_get(struct scrub_block *sblock);
-static void scrub_block_put(struct scrub_block *sblock);
-static void scrub_page_get(struct scrub_page *spage);
-static void scrub_page_put(struct scrub_page *spage);
-static void scrub_parity_get(struct scrub_parity *sparity);
-static void scrub_parity_put(struct scrub_parity *sparity);
-static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
- struct scrub_page *spage);
-static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
- u64 physical, struct btrfs_device *dev, u64 flags,
- u64 gen, int mirror_num, u8 *csum, int force,
- u64 physical_for_dev_replace);
-static void scrub_bio_end_io(struct bio *bio);
-static void scrub_bio_end_io_worker(struct btrfs_work *work);
-static void scrub_block_complete(struct scrub_block *sblock);
-static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
- u64 extent_logical, u64 extent_len,
- u64 *extent_physical,
- struct btrfs_device **extent_dev,
- int *extent_mirror_num);
-static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
- struct scrub_page *spage);
-static void scrub_wr_submit(struct scrub_ctx *sctx);
-static void scrub_wr_bio_end_io(struct bio *bio);
-static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
-static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
-static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
-static void scrub_put_ctx(struct scrub_ctx *sctx);
+ unsigned int nr_io_errors;
+ unsigned int nr_csum_errors;
+ unsigned int nr_meta_errors;
+ unsigned int nr_meta_gen_errors;
+};
-static inline int scrub_is_page_on_raid56(struct scrub_page *page)
+static void release_scrub_stripe(struct scrub_stripe *stripe)
{
- return page->recover &&
- (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
+ if (!stripe)
+ return;
+
+ for (int i = 0; i < SCRUB_STRIPE_MAX_FOLIOS; i++) {
+ if (stripe->folios[i])
+ folio_put(stripe->folios[i]);
+ stripe->folios[i] = NULL;
+ }
+ kfree(stripe->sectors);
+ kfree(stripe->csums);
+ stripe->sectors = NULL;
+ stripe->csums = NULL;
+ stripe->sctx = NULL;
+ stripe->state = 0;
}
-static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
+static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
+ struct scrub_stripe *stripe)
{
- refcount_inc(&sctx->refs);
- atomic_inc(&sctx->bios_in_flight);
+ const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
+ int ret;
+
+ memset(stripe, 0, sizeof(*stripe));
+
+ stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
+ stripe->state = 0;
+
+ init_waitqueue_head(&stripe->io_wait);
+ init_waitqueue_head(&stripe->repair_wait);
+ atomic_set(&stripe->pending_io, 0);
+ spin_lock_init(&stripe->write_error_lock);
+
+ ASSERT(BTRFS_STRIPE_LEN >> min_folio_shift <= SCRUB_STRIPE_MAX_FOLIOS);
+ ret = btrfs_alloc_folio_array(BTRFS_STRIPE_LEN >> min_folio_shift,
+ fs_info->block_min_order, stripe->folios);
+ if (ret < 0)
+ goto error;
+
+ stripe->sectors = kcalloc(stripe->nr_sectors,
+ sizeof(struct scrub_sector_verification),
+ GFP_KERNEL);
+ if (!stripe->sectors)
+ goto error;
+
+ stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
+ fs_info->csum_size, GFP_KERNEL);
+ if (!stripe->csums)
+ goto error;
+ return 0;
+error:
+ release_scrub_stripe(stripe);
+ return -ENOMEM;
}
-static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
+static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
{
- atomic_dec(&sctx->bios_in_flight);
- wake_up(&sctx->list_wait);
- scrub_put_ctx(sctx);
+ wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
}
+static void scrub_put_ctx(struct scrub_ctx *sctx);
+
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
while (atomic_read(&fs_info->scrub_pause_req)) {
@@ -304,235 +429,6 @@ static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
scrub_pause_off(fs_info);
}
-/*
- * Insert new full stripe lock into full stripe locks tree
- *
- * Return pointer to existing or newly inserted full_stripe_lock structure if
- * everything works well.
- * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
- *
- * NOTE: caller must hold full_stripe_locks_root->lock before calling this
- * function
- */
-static struct full_stripe_lock *insert_full_stripe_lock(
- struct btrfs_full_stripe_locks_tree *locks_root,
- u64 fstripe_logical)
-{
- struct rb_node **p;
- struct rb_node *parent = NULL;
- struct full_stripe_lock *entry;
- struct full_stripe_lock *ret;
-
- lockdep_assert_held(&locks_root->lock);
-
- p = &locks_root->root.rb_node;
- while (*p) {
- parent = *p;
- entry = rb_entry(parent, struct full_stripe_lock, node);
- if (fstripe_logical < entry->logical) {
- p = &(*p)->rb_left;
- } else if (fstripe_logical > entry->logical) {
- p = &(*p)->rb_right;
- } else {
- entry->refs++;
- return entry;
- }
- }
-
- /*
- * Insert new lock.
- */
- ret = kmalloc(sizeof(*ret), GFP_KERNEL);
- if (!ret)
- return ERR_PTR(-ENOMEM);
- ret->logical = fstripe_logical;
- ret->refs = 1;
- mutex_init(&ret->mutex);
-
- rb_link_node(&ret->node, parent, p);
- rb_insert_color(&ret->node, &locks_root->root);
- return ret;
-}
-
-/*
- * Search for a full stripe lock of a block group
- *
- * Return pointer to existing full stripe lock if found
- * Return NULL if not found
- */
-static struct full_stripe_lock *search_full_stripe_lock(
- struct btrfs_full_stripe_locks_tree *locks_root,
- u64 fstripe_logical)
-{
- struct rb_node *node;
- struct full_stripe_lock *entry;
-
- lockdep_assert_held(&locks_root->lock);
-
- node = locks_root->root.rb_node;
- while (node) {
- entry = rb_entry(node, struct full_stripe_lock, node);
- if (fstripe_logical < entry->logical)
- node = node->rb_left;
- else if (fstripe_logical > entry->logical)
- node = node->rb_right;
- else
- return entry;
- }
- return NULL;
-}
-
-/*
- * Helper to get full stripe logical from a normal bytenr.
- *
- * Caller must ensure @cache is a RAID56 block group.
- */
-static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
- u64 bytenr)
-{
- u64 ret;
-
- /*
- * Due to chunk item size limit, full stripe length should not be
- * larger than U32_MAX. Just a sanity check here.
- */
- WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
-
- /*
- * round_down() can only handle power of 2, while RAID56 full
- * stripe length can be 64KiB * n, so we need to manually round down.
- */
- ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
- cache->full_stripe_len + cache->key.objectid;
- return ret;
-}
-
-/*
- * Lock a full stripe to avoid concurrency of recovery and read
- *
- * It's only used for profiles with parities (RAID5/6), for other profiles it
- * does nothing.
- *
- * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
- * So caller must call unlock_full_stripe() at the same context.
- *
- * Return <0 if encounters error.
- */
-static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
- bool *locked_ret)
-{
- struct btrfs_block_group_cache *bg_cache;
- struct btrfs_full_stripe_locks_tree *locks_root;
- struct full_stripe_lock *existing;
- u64 fstripe_start;
- int ret = 0;
-
- *locked_ret = false;
- bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
- if (!bg_cache) {
- ASSERT(0);
- return -ENOENT;
- }
-
- /* Profiles not based on parity don't need full stripe lock */
- if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
- goto out;
- locks_root = &bg_cache->full_stripe_locks_root;
-
- fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
-
- /* Now insert the full stripe lock */
- mutex_lock(&locks_root->lock);
- existing = insert_full_stripe_lock(locks_root, fstripe_start);
- mutex_unlock(&locks_root->lock);
- if (IS_ERR(existing)) {
- ret = PTR_ERR(existing);
- goto out;
- }
- mutex_lock(&existing->mutex);
- *locked_ret = true;
-out:
- btrfs_put_block_group(bg_cache);
- return ret;
-}
-
-/*
- * Unlock a full stripe.
- *
- * NOTE: Caller must ensure it's the same context calling corresponding
- * lock_full_stripe().
- *
- * Return 0 if we unlock full stripe without problem.
- * Return <0 for error
- */
-static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
- bool locked)
-{
- struct btrfs_block_group_cache *bg_cache;
- struct btrfs_full_stripe_locks_tree *locks_root;
- struct full_stripe_lock *fstripe_lock;
- u64 fstripe_start;
- bool freeit = false;
- int ret = 0;
-
- /* If we didn't acquire full stripe lock, no need to continue */
- if (!locked)
- return 0;
-
- bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
- if (!bg_cache) {
- ASSERT(0);
- return -ENOENT;
- }
- if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
- goto out;
-
- locks_root = &bg_cache->full_stripe_locks_root;
- fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
-
- mutex_lock(&locks_root->lock);
- fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
- /* Unpaired unlock_full_stripe() detected */
- if (!fstripe_lock) {
- WARN_ON(1);
- ret = -ENOENT;
- mutex_unlock(&locks_root->lock);
- goto out;
- }
-
- if (fstripe_lock->refs == 0) {
- WARN_ON(1);
- btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
- fstripe_lock->logical);
- } else {
- fstripe_lock->refs--;
- }
-
- if (fstripe_lock->refs == 0) {
- rb_erase(&fstripe_lock->node, &locks_root->root);
- freeit = true;
- }
- mutex_unlock(&locks_root->lock);
-
- mutex_unlock(&fstripe_lock->mutex);
- if (freeit)
- kfree(fstripe_lock);
-out:
- btrfs_put_block_group(bg_cache);
- return ret;
-}
-
-static void scrub_free_csums(struct scrub_ctx *sctx)
-{
- while (!list_empty(&sctx->csum_list)) {
- struct btrfs_ordered_sum *sum;
- sum = list_first_entry(&sctx->csum_list,
- struct btrfs_ordered_sum, list);
- list_del(&sum->list);
- kfree(sum);
- }
-}
-
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
{
int i;
@@ -540,28 +436,10 @@ static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
if (!sctx)
return;
- /* this can happen when scrub is cancelled */
- if (sctx->curr != -1) {
- struct scrub_bio *sbio = sctx->bios[sctx->curr];
-
- for (i = 0; i < sbio->page_count; i++) {
- WARN_ON(!sbio->pagev[i]->page);
- scrub_block_put(sbio->pagev[i]->sblock);
- }
- bio_put(sbio->bio);
- }
-
- for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
- struct scrub_bio *sbio = sctx->bios[i];
+ for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
+ release_scrub_stripe(&sctx->stripes[i]);
- if (!sbio)
- break;
- kfree(sbio);
- }
-
- kfree(sctx->wr_curr_bio);
- scrub_free_csums(sctx);
- kfree(sctx);
+ kvfree(sctx);
}
static void scrub_put_ctx(struct scrub_ctx *sctx)
@@ -571,57 +449,42 @@ static void scrub_put_ctx(struct scrub_ctx *sctx)
}
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
- struct btrfs_fs_info *fs_info, int is_dev_replace)
+ struct btrfs_fs_info *fs_info, bool is_dev_replace)
{
struct scrub_ctx *sctx;
int i;
- sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
+ /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
+ * kvzalloc().
+ */
+ sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
if (!sctx)
goto nomem;
refcount_set(&sctx->refs, 1);
sctx->is_dev_replace = is_dev_replace;
- sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
- sctx->curr = -1;
sctx->fs_info = fs_info;
- for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
- struct scrub_bio *sbio;
+ sctx->extent_path.search_commit_root = true;
+ sctx->extent_path.skip_locking = true;
+ sctx->csum_path.search_commit_root = true;
+ sctx->csum_path.skip_locking = true;
+ for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
+ int ret;
- sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
- if (!sbio)
+ ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
+ if (ret < 0)
goto nomem;
- sctx->bios[i] = sbio;
-
- sbio->index = i;
- sbio->sctx = sctx;
- sbio->page_count = 0;
- btrfs_init_work(&sbio->work, btrfs_scrub_helper,
- scrub_bio_end_io_worker, NULL, NULL);
-
- if (i != SCRUB_BIOS_PER_SCTX - 1)
- sctx->bios[i]->next_free = i + 1;
- else
- sctx->bios[i]->next_free = -1;
+ sctx->stripes[i].sctx = sctx;
}
sctx->first_free = 0;
- atomic_set(&sctx->bios_in_flight, 0);
- atomic_set(&sctx->workers_pending, 0);
atomic_set(&sctx->cancel_req, 0);
- sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
- INIT_LIST_HEAD(&sctx->csum_list);
- spin_lock_init(&sctx->list_lock);
spin_lock_init(&sctx->stat_lock);
- init_waitqueue_head(&sctx->list_wait);
+ sctx->throttle_deadline = 0;
- WARN_ON(sctx->wr_curr_bio != NULL);
mutex_init(&sctx->wr_lock);
- sctx->wr_curr_bio = NULL;
if (is_dev_replace) {
WARN_ON(!fs_info->dev_replace.tgtdev);
- sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
- sctx->flush_all_writes = false;
}
return sctx;
@@ -631,10 +494,9 @@ nomem:
return ERR_PTR(-ENOMEM);
}
-static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
- void *warn_ctx)
+static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
+ u64 root, void *warn_ctx)
{
- u64 isize;
u32 nlink;
int ret;
int i;
@@ -643,15 +505,11 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
struct btrfs_inode_item *inode_item;
struct scrub_warning *swarn = warn_ctx;
struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
- struct inode_fs_paths *ipath = NULL;
+ struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
struct btrfs_root *local_root;
- struct btrfs_key root_key;
struct btrfs_key key;
- root_key.objectid = root;
- root_key.type = BTRFS_ROOT_ITEM_KEY;
- root_key.offset = (u64)-1;
- local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
+ local_root = btrfs_get_fs_root(fs_info, root, true);
if (IS_ERR(local_root)) {
ret = PTR_ERR(local_root);
goto err;
@@ -666,6 +524,7 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
if (ret) {
+ btrfs_put_root(local_root);
btrfs_release_path(swarn->path);
goto err;
}
@@ -673,7 +532,6 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
eb = swarn->path->nodes[0];
inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
struct btrfs_inode_item);
- isize = btrfs_inode_size(eb, inode_item);
nlink = btrfs_inode_nlink(eb, inode_item);
btrfs_release_path(swarn->path);
@@ -686,6 +544,7 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
ipath = init_ipath(4096, local_root, swarn->path);
memalloc_nofs_restore(nofs_flag);
if (IS_ERR(ipath)) {
+ btrfs_put_root(local_root);
ret = PTR_ERR(ipath);
ipath = NULL;
goto err;
@@ -700,2770 +559,2120 @@ static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
* hold all of the paths here
*/
for (i = 0; i < ipath->fspath->elem_cnt; ++i)
- btrfs_warn_in_rcu(fs_info,
-"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
+ btrfs_warn(fs_info,
+"scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu length %u links %u (path: %s)",
swarn->errstr, swarn->logical,
- rcu_str_deref(swarn->dev->name),
+ btrfs_dev_name(swarn->dev),
swarn->physical,
root, inum, offset,
- min(isize - offset, (u64)PAGE_SIZE), nlink,
+ fs_info->sectorsize, nlink,
(char *)(unsigned long)ipath->fspath->val[i]);
- free_ipath(ipath);
+ btrfs_put_root(local_root);
return 0;
err:
- btrfs_warn_in_rcu(fs_info,
- "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
+ btrfs_warn(fs_info,
+ "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu: path resolving failed with ret=%d",
swarn->errstr, swarn->logical,
- rcu_str_deref(swarn->dev->name),
+ btrfs_dev_name(swarn->dev),
swarn->physical,
root, inum, offset, ret);
- free_ipath(ipath);
return 0;
}
-static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
+static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
+ bool is_super, u64 logical, u64 physical)
{
- struct btrfs_device *dev;
- struct btrfs_fs_info *fs_info;
- struct btrfs_path *path;
+ struct btrfs_fs_info *fs_info = dev->fs_info;
+ BTRFS_PATH_AUTO_FREE(path);
struct btrfs_key found_key;
struct extent_buffer *eb;
struct btrfs_extent_item *ei;
struct scrub_warning swarn;
- unsigned long ptr = 0;
- u64 extent_item_pos;
u64 flags = 0;
- u64 ref_root;
u32 item_size;
- u8 ref_level = 0;
int ret;
- WARN_ON(sblock->page_count < 1);
- dev = sblock->pagev[0]->dev;
- fs_info = sblock->sctx->fs_info;
-
+ /* Super block error, no need to search extent tree. */
+ if (is_super) {
+ btrfs_warn(fs_info, "scrub: %s on device %s, physical %llu",
+ errstr, btrfs_dev_name(dev), physical);
+ return;
+ }
path = btrfs_alloc_path();
if (!path)
return;
- swarn.physical = sblock->pagev[0]->physical;
- swarn.logical = sblock->pagev[0]->logical;
+ swarn.physical = physical;
+ swarn.logical = logical;
swarn.errstr = errstr;
swarn.dev = NULL;
ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
&flags);
if (ret < 0)
- goto out;
+ return;
- extent_item_pos = swarn.logical - found_key.objectid;
swarn.extent_item_size = found_key.offset;
eb = path->nodes[0];
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
- item_size = btrfs_item_size_nr(eb, path->slots[0]);
+ item_size = btrfs_item_size(eb, path->slots[0]);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
- do {
+ unsigned long ptr = 0;
+ u8 ref_level;
+ u64 ref_root;
+
+ while (true) {
ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
item_size, &ref_root,
&ref_level);
- btrfs_warn_in_rcu(fs_info,
-"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
- errstr, swarn.logical,
- rcu_str_deref(dev->name),
- swarn.physical,
- ref_level ? "node" : "leaf",
- ret < 0 ? -1 : ref_level,
- ret < 0 ? -1 : ref_root);
- } while (ret != 1);
+ if (ret < 0) {
+ btrfs_warn(fs_info,
+ "scrub: failed to resolve tree backref for logical %llu: %d",
+ swarn.logical, ret);
+ break;
+ }
+ if (ret > 0)
+ break;
+ btrfs_warn(fs_info,
+"scrub: %s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
+ errstr, swarn.logical, btrfs_dev_name(dev),
+ swarn.physical, (ref_level ? "node" : "leaf"),
+ ref_level, ref_root);
+ }
btrfs_release_path(path);
} else {
+ struct btrfs_backref_walk_ctx ctx = { 0 };
+
btrfs_release_path(path);
+
+ ctx.bytenr = found_key.objectid;
+ ctx.extent_item_pos = swarn.logical - found_key.objectid;
+ ctx.fs_info = fs_info;
+
swarn.path = path;
swarn.dev = dev;
- iterate_extent_inodes(fs_info, found_key.objectid,
- extent_item_pos, 1,
- scrub_print_warning_inode, &swarn, false);
- }
-out:
- btrfs_free_path(path);
+ iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
+ }
}
-static inline void scrub_get_recover(struct scrub_recover *recover)
+static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
- refcount_inc(&recover->refs);
+ int ret = 0;
+ u64 length;
+
+ if (!btrfs_is_zoned(sctx->fs_info))
+ return 0;
+
+ if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
+ return 0;
+
+ if (sctx->write_pointer < physical) {
+ length = physical - sctx->write_pointer;
+
+ ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
+ sctx->write_pointer, length);
+ if (!ret)
+ sctx->write_pointer = physical;
+ }
+ return ret;
}
-static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
- struct scrub_recover *recover)
+static void *scrub_stripe_get_kaddr(struct scrub_stripe *stripe, int sector_nr)
{
- if (refcount_dec_and_test(&recover->refs)) {
- btrfs_bio_counter_dec(fs_info);
- btrfs_put_bbio(recover->bbio);
- kfree(recover);
- }
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
+ u32 offset = (sector_nr << fs_info->sectorsize_bits);
+ const struct folio *folio = stripe->folios[offset >> min_folio_shift];
+
+ /* stripe->folios[] is allocated by us and no highmem is allowed. */
+ ASSERT(folio);
+ ASSERT(!folio_test_highmem(folio));
+ return folio_address(folio) + offset_in_folio(folio, offset);
}
-/*
- * scrub_handle_errored_block gets called when either verification of the
- * pages failed or the bio failed to read, e.g. with EIO. In the latter
- * case, this function handles all pages in the bio, even though only one
- * may be bad.
- * The goal of this function is to repair the errored block by using the
- * contents of one of the mirrors.
- */
-static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
+static phys_addr_t scrub_stripe_get_paddr(struct scrub_stripe *stripe, int sector_nr)
{
- struct scrub_ctx *sctx = sblock_to_check->sctx;
- struct btrfs_device *dev;
- struct btrfs_fs_info *fs_info;
- u64 logical;
- unsigned int failed_mirror_index;
- unsigned int is_metadata;
- unsigned int have_csum;
- struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
- struct scrub_block *sblock_bad;
- int ret;
- int mirror_index;
- int page_num;
- int success;
- bool full_stripe_locked;
- unsigned int nofs_flag;
- static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
+ u32 offset = (sector_nr << fs_info->sectorsize_bits);
+ const struct folio *folio = stripe->folios[offset >> min_folio_shift];
- BUG_ON(sblock_to_check->page_count < 1);
- fs_info = sctx->fs_info;
- if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
- /*
- * if we find an error in a super block, we just report it.
- * They will get written with the next transaction commit
- * anyway
- */
- spin_lock(&sctx->stat_lock);
- ++sctx->stat.super_errors;
- spin_unlock(&sctx->stat_lock);
- return 0;
- }
- logical = sblock_to_check->pagev[0]->logical;
- BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
- failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
- is_metadata = !(sblock_to_check->pagev[0]->flags &
- BTRFS_EXTENT_FLAG_DATA);
- have_csum = sblock_to_check->pagev[0]->have_csum;
- dev = sblock_to_check->pagev[0]->dev;
+ /* stripe->folios[] is allocated by us and no highmem is allowed. */
+ ASSERT(folio);
+ ASSERT(!folio_test_highmem(folio));
+ /* And the range must be contained inside the folio. */
+ ASSERT(offset_in_folio(folio, offset) + fs_info->sectorsize <= folio_size(folio));
+ return page_to_phys(folio_page(folio, 0)) + offset_in_folio(folio, offset);
+}
- /*
- * We must use GFP_NOFS because the scrub task might be waiting for a
- * worker task executing this function and in turn a transaction commit
- * might be waiting the scrub task to pause (which needs to wait for all
- * the worker tasks to complete before pausing).
- * We do allocations in the workers through insert_full_stripe_lock()
- * and scrub_add_page_to_wr_bio(), which happens down the call chain of
- * this function.
- */
- nofs_flag = memalloc_nofs_save();
- /*
- * For RAID5/6, race can happen for a different device scrub thread.
- * For data corruption, Parity and Data threads will both try
- * to recovery the data.
- * Race can lead to doubly added csum error, or even unrecoverable
- * error.
- */
- ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
- if (ret < 0) {
- memalloc_nofs_restore(nofs_flag);
- spin_lock(&sctx->stat_lock);
- if (ret == -ENOMEM)
- sctx->stat.malloc_errors++;
- sctx->stat.read_errors++;
- sctx->stat.uncorrectable_errors++;
- spin_unlock(&sctx->stat_lock);
- return ret;
- }
+static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
+ const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
+ void *first_kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
+ struct btrfs_header *header = first_kaddr;
+ SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
+ u8 on_disk_csum[BTRFS_CSUM_SIZE];
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
/*
- * read all mirrors one after the other. This includes to
- * re-read the extent or metadata block that failed (that was
- * the cause that this fixup code is called) another time,
- * page by page this time in order to know which pages
- * caused I/O errors and which ones are good (for all mirrors).
- * It is the goal to handle the situation when more than one
- * mirror contains I/O errors, but the errors do not
- * overlap, i.e. the data can be repaired by selecting the
- * pages from those mirrors without I/O error on the
- * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
- * would be that mirror #1 has an I/O error on the first page,
- * the second page is good, and mirror #2 has an I/O error on
- * the second page, but the first page is good.
- * Then the first page of the first mirror can be repaired by
- * taking the first page of the second mirror, and the
- * second page of the second mirror can be repaired by
- * copying the contents of the 2nd page of the 1st mirror.
- * One more note: if the pages of one mirror contain I/O
- * errors, the checksum cannot be verified. In order to get
- * the best data for repairing, the first attempt is to find
- * a mirror without I/O errors and with a validated checksum.
- * Only if this is not possible, the pages are picked from
- * mirrors with I/O errors without considering the checksum.
- * If the latter is the case, at the end, the checksum of the
- * repaired area is verified in order to correctly maintain
- * the statistics.
+ * Here we don't have a good way to attach the pages (and subpages)
+ * to a dummy extent buffer, thus we have to directly grab the members
+ * from pages.
*/
-
- sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
- sizeof(*sblocks_for_recheck), GFP_KERNEL);
- if (!sblocks_for_recheck) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- sctx->stat.read_errors++;
- sctx->stat.uncorrectable_errors++;
- spin_unlock(&sctx->stat_lock);
- btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
- goto out;
+ memcpy(on_disk_csum, header->csum, fs_info->csum_size);
+
+ if (logical != btrfs_stack_header_bytenr(header)) {
+ scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "scrub: tree block %llu mirror %u has bad bytenr, has %llu want %llu",
+ logical, stripe->mirror_num,
+ btrfs_stack_header_bytenr(header), logical);
+ return;
}
-
- /* setup the context, map the logical blocks and alloc the pages */
- ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
- if (ret) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.read_errors++;
- sctx->stat.uncorrectable_errors++;
- spin_unlock(&sctx->stat_lock);
- btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
- goto out;
+ if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
+ BTRFS_FSID_SIZE) != 0) {
+ scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "scrub: tree block %llu mirror %u has bad fsid, has %pU want %pU",
+ logical, stripe->mirror_num,
+ header->fsid, fs_info->fs_devices->fsid);
+ return;
+ }
+ if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
+ BTRFS_UUID_SIZE) != 0) {
+ scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "scrub: tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
+ logical, stripe->mirror_num,
+ header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
+ return;
}
- BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
- sblock_bad = sblocks_for_recheck + failed_mirror_index;
-
- /* build and submit the bios for the failed mirror, check checksums */
- scrub_recheck_block(fs_info, sblock_bad, 1);
- if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
- sblock_bad->no_io_error_seen) {
- /*
- * the error disappeared after reading page by page, or
- * the area was part of a huge bio and other parts of the
- * bio caused I/O errors, or the block layer merged several
- * read requests into one and the error is caused by a
- * different bio (usually one of the two latter cases is
- * the cause)
- */
- spin_lock(&sctx->stat_lock);
- sctx->stat.unverified_errors++;
- sblock_to_check->data_corrected = 1;
- spin_unlock(&sctx->stat_lock);
+ /* Now check tree block csum. */
+ shash->tfm = fs_info->csum_shash;
+ crypto_shash_init(shash);
+ crypto_shash_update(shash, first_kaddr + BTRFS_CSUM_SIZE,
+ fs_info->sectorsize - BTRFS_CSUM_SIZE);
- if (sctx->is_dev_replace)
- scrub_write_block_to_dev_replace(sblock_bad);
- goto out;
+ for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
+ crypto_shash_update(shash, scrub_stripe_get_kaddr(stripe, i),
+ fs_info->sectorsize);
}
- if (!sblock_bad->no_io_error_seen) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.read_errors++;
- spin_unlock(&sctx->stat_lock);
- if (__ratelimit(&_rs))
- scrub_print_warning("i/o error", sblock_to_check);
- btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
- } else if (sblock_bad->checksum_error) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.csum_errors++;
- spin_unlock(&sctx->stat_lock);
- if (__ratelimit(&_rs))
- scrub_print_warning("checksum error", sblock_to_check);
- btrfs_dev_stat_inc_and_print(dev,
- BTRFS_DEV_STAT_CORRUPTION_ERRS);
- } else if (sblock_bad->header_error) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.verify_errors++;
- spin_unlock(&sctx->stat_lock);
- if (__ratelimit(&_rs))
- scrub_print_warning("checksum/header error",
- sblock_to_check);
- if (sblock_bad->generation_error)
- btrfs_dev_stat_inc_and_print(dev,
- BTRFS_DEV_STAT_GENERATION_ERRS);
- else
- btrfs_dev_stat_inc_and_print(dev,
- BTRFS_DEV_STAT_CORRUPTION_ERRS);
- }
-
- if (sctx->readonly) {
- ASSERT(!sctx->is_dev_replace);
- goto out;
+ crypto_shash_final(shash, calculated_csum);
+ if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
+ scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+"scrub: tree block %llu mirror %u has bad csum, has " BTRFS_CSUM_FMT " want " BTRFS_CSUM_FMT,
+ logical, stripe->mirror_num,
+ BTRFS_CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
+ BTRFS_CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
+ return;
}
+ if (stripe->sectors[sector_nr].generation !=
+ btrfs_stack_header_generation(header)) {
+ scrub_bitmap_set_meta_gen_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "scrub: tree block %llu mirror %u has bad generation, has %llu want %llu",
+ logical, stripe->mirror_num,
+ btrfs_stack_header_generation(header),
+ stripe->sectors[sector_nr].generation);
+ return;
+ }
+ scrub_bitmap_clear_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_clear_csum_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_clear_meta_error(stripe, sector_nr, sectors_per_tree);
+ scrub_bitmap_clear_meta_gen_error(stripe, sector_nr, sectors_per_tree);
+}
- /*
- * now build and submit the bios for the other mirrors, check
- * checksums.
- * First try to pick the mirror which is completely without I/O
- * errors and also does not have a checksum error.
- * If one is found, and if a checksum is present, the full block
- * that is known to contain an error is rewritten. Afterwards
- * the block is known to be corrected.
- * If a mirror is found which is completely correct, and no
- * checksum is present, only those pages are rewritten that had
- * an I/O error in the block to be repaired, since it cannot be
- * determined, which copy of the other pages is better (and it
- * could happen otherwise that a correct page would be
- * overwritten by a bad one).
- */
- for (mirror_index = 0; ;mirror_index++) {
- struct scrub_block *sblock_other;
-
- if (mirror_index == failed_mirror_index)
- continue;
-
- /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
- if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
- if (mirror_index >= BTRFS_MAX_MIRRORS)
- break;
- if (!sblocks_for_recheck[mirror_index].page_count)
- break;
-
- sblock_other = sblocks_for_recheck + mirror_index;
- } else {
- struct scrub_recover *r = sblock_bad->pagev[0]->recover;
- int max_allowed = r->bbio->num_stripes -
- r->bbio->num_tgtdevs;
+static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
+ const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
+ phys_addr_t paddr = scrub_stripe_get_paddr(stripe, sector_nr);
+ u8 csum_buf[BTRFS_CSUM_SIZE];
+ int ret;
- if (mirror_index >= max_allowed)
- break;
- if (!sblocks_for_recheck[1].page_count)
- break;
+ ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
- ASSERT(failed_mirror_index == 0);
- sblock_other = sblocks_for_recheck + 1;
- sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
- }
+ /* Sector not utilized, skip it. */
+ if (!scrub_bitmap_test_bit_has_extent(stripe, sector_nr))
+ return;
- /* build and submit the bios, check checksums */
- scrub_recheck_block(fs_info, sblock_other, 0);
+ /* IO error, no need to check. */
+ if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
+ return;
- if (!sblock_other->header_error &&
- !sblock_other->checksum_error &&
- sblock_other->no_io_error_seen) {
- if (sctx->is_dev_replace) {
- scrub_write_block_to_dev_replace(sblock_other);
- goto corrected_error;
- } else {
- ret = scrub_repair_block_from_good_copy(
- sblock_bad, sblock_other);
- if (!ret)
- goto corrected_error;
- }
+ /* Metadata, verify the full tree block. */
+ if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
+ /*
+ * Check if the tree block crosses the stripe boundary. If
+ * crossed the boundary, we cannot verify it but only give a
+ * warning.
+ *
+ * This can only happen on a very old filesystem where chunks
+ * are not ensured to be stripe aligned.
+ */
+ if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
+ btrfs_warn_rl(fs_info,
+ "scrub: tree block at %llu crosses stripe boundary %llu",
+ stripe->logical +
+ (sector_nr << fs_info->sectorsize_bits),
+ stripe->logical);
+ return;
}
+ scrub_verify_one_metadata(stripe, sector_nr);
+ return;
}
- if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
- goto did_not_correct_error;
-
/*
- * In case of I/O errors in the area that is supposed to be
- * repaired, continue by picking good copies of those pages.
- * Select the good pages from mirrors to rewrite bad pages from
- * the area to fix. Afterwards verify the checksum of the block
- * that is supposed to be repaired. This verification step is
- * only done for the purpose of statistic counting and for the
- * final scrub report, whether errors remain.
- * A perfect algorithm could make use of the checksum and try
- * all possible combinations of pages from the different mirrors
- * until the checksum verification succeeds. For example, when
- * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
- * of mirror #2 is readable but the final checksum test fails,
- * then the 2nd page of mirror #3 could be tried, whether now
- * the final checksum succeeds. But this would be a rare
- * exception and is therefore not implemented. At least it is
- * avoided that the good copy is overwritten.
- * A more useful improvement would be to pick the sectors
- * without I/O error based on sector sizes (512 bytes on legacy
- * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
- * mirror could be repaired by taking 512 byte of a different
- * mirror, even if other 512 byte sectors in the same PAGE_SIZE
- * area are unreadable.
+ * Data is easier, we just verify the data csum (if we have it). For
+ * cases without csum, we have no other choice but to trust it.
*/
- success = 1;
- for (page_num = 0; page_num < sblock_bad->page_count;
- page_num++) {
- struct scrub_page *page_bad = sblock_bad->pagev[page_num];
- struct scrub_block *sblock_other = NULL;
-
- /* skip no-io-error page in scrub */
- if (!page_bad->io_error && !sctx->is_dev_replace)
- continue;
-
- if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
- /*
- * In case of dev replace, if raid56 rebuild process
- * didn't work out correct data, then copy the content
- * in sblock_bad to make sure target device is identical
- * to source device, instead of writing garbage data in
- * sblock_for_recheck array to target device.
- */
- sblock_other = NULL;
- } else if (page_bad->io_error) {
- /* try to find no-io-error page in mirrors */
- for (mirror_index = 0;
- mirror_index < BTRFS_MAX_MIRRORS &&
- sblocks_for_recheck[mirror_index].page_count > 0;
- mirror_index++) {
- if (!sblocks_for_recheck[mirror_index].
- pagev[page_num]->io_error) {
- sblock_other = sblocks_for_recheck +
- mirror_index;
- break;
- }
- }
- if (!sblock_other)
- success = 0;
- }
-
- if (sctx->is_dev_replace) {
- /*
- * did not find a mirror to fetch the page
- * from. scrub_write_page_to_dev_replace()
- * handles this case (page->io_error), by
- * filling the block with zeros before
- * submitting the write request
- */
- if (!sblock_other)
- sblock_other = sblock_bad;
-
- if (scrub_write_page_to_dev_replace(sblock_other,
- page_num) != 0) {
- atomic64_inc(
- &fs_info->dev_replace.num_write_errors);
- success = 0;
- }
- } else if (sblock_other) {
- ret = scrub_repair_page_from_good_copy(sblock_bad,
- sblock_other,
- page_num, 0);
- if (0 == ret)
- page_bad->io_error = 0;
- else
- success = 0;
- }
+ if (!sector->csum) {
+ scrub_bitmap_clear_bit_error(stripe, sector_nr);
+ return;
}
- if (success && !sctx->is_dev_replace) {
- if (is_metadata || have_csum) {
- /*
- * need to verify the checksum now that all
- * sectors on disk are repaired (the write
- * request for data to be repaired is on its way).
- * Just be lazy and use scrub_recheck_block()
- * which re-reads the data before the checksum
- * is verified, but most likely the data comes out
- * of the page cache.
- */
- scrub_recheck_block(fs_info, sblock_bad, 1);
- if (!sblock_bad->header_error &&
- !sblock_bad->checksum_error &&
- sblock_bad->no_io_error_seen)
- goto corrected_error;
- else
- goto did_not_correct_error;
- } else {
-corrected_error:
- spin_lock(&sctx->stat_lock);
- sctx->stat.corrected_errors++;
- sblock_to_check->data_corrected = 1;
- spin_unlock(&sctx->stat_lock);
- btrfs_err_rl_in_rcu(fs_info,
- "fixed up error at logical %llu on dev %s",
- logical, rcu_str_deref(dev->name));
- }
+ ret = btrfs_check_block_csum(fs_info, paddr, csum_buf, sector->csum);
+ if (ret < 0) {
+ scrub_bitmap_set_bit_csum_error(stripe, sector_nr);
+ scrub_bitmap_set_bit_error(stripe, sector_nr);
} else {
-did_not_correct_error:
- spin_lock(&sctx->stat_lock);
- sctx->stat.uncorrectable_errors++;
- spin_unlock(&sctx->stat_lock);
- btrfs_err_rl_in_rcu(fs_info,
- "unable to fixup (regular) error at logical %llu on dev %s",
- logical, rcu_str_deref(dev->name));
- }
-
-out:
- if (sblocks_for_recheck) {
- for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
- mirror_index++) {
- struct scrub_block *sblock = sblocks_for_recheck +
- mirror_index;
- struct scrub_recover *recover;
- int page_index;
-
- for (page_index = 0; page_index < sblock->page_count;
- page_index++) {
- sblock->pagev[page_index]->sblock = NULL;
- recover = sblock->pagev[page_index]->recover;
- if (recover) {
- scrub_put_recover(fs_info, recover);
- sblock->pagev[page_index]->recover =
- NULL;
- }
- scrub_page_put(sblock->pagev[page_index]);
- }
- }
- kfree(sblocks_for_recheck);
+ scrub_bitmap_clear_bit_csum_error(stripe, sector_nr);
+ scrub_bitmap_clear_bit_error(stripe, sector_nr);
}
-
- ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
- memalloc_nofs_restore(nofs_flag);
- if (ret < 0)
- return ret;
- return 0;
}
-static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
+/* Verify specified sectors of a stripe. */
+static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
{
- if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
- return 2;
- else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
- return 3;
- else
- return (int)bbio->num_stripes;
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
+ int sector_nr;
+
+ for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
+ scrub_verify_one_sector(stripe, sector_nr);
+ if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr))
+ sector_nr += sectors_per_tree - 1;
+ }
}
-static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
- u64 *raid_map,
- u64 mapped_length,
- int nstripes, int mirror,
- int *stripe_index,
- u64 *stripe_offset)
+static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
{
int i;
- if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
- /* RAID5/6 */
- for (i = 0; i < nstripes; i++) {
- if (raid_map[i] == RAID6_Q_STRIPE ||
- raid_map[i] == RAID5_P_STRIPE)
- continue;
-
- if (logical >= raid_map[i] &&
- logical < raid_map[i] + mapped_length)
- break;
- }
-
- *stripe_index = i;
- *stripe_offset = logical - raid_map[i];
- } else {
- /* The other RAID type */
- *stripe_index = mirror;
- *stripe_offset = 0;
+ for (i = 0; i < stripe->nr_sectors; i++) {
+ if (scrub_stripe_get_kaddr(stripe, i) == bvec_virt(first_bvec))
+ break;
}
+ ASSERT(i < stripe->nr_sectors);
+ return i;
}
-static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
- struct scrub_block *sblocks_for_recheck)
+/*
+ * Repair read is different to the regular read:
+ *
+ * - Only reads the failed sectors
+ * - May have extra blocksize limits
+ */
+static void scrub_repair_read_endio(struct btrfs_bio *bbio)
{
- struct scrub_ctx *sctx = original_sblock->sctx;
- struct btrfs_fs_info *fs_info = sctx->fs_info;
- u64 length = original_sblock->page_count * PAGE_SIZE;
- u64 logical = original_sblock->pagev[0]->logical;
- u64 generation = original_sblock->pagev[0]->generation;
- u64 flags = original_sblock->pagev[0]->flags;
- u64 have_csum = original_sblock->pagev[0]->have_csum;
- struct scrub_recover *recover;
- struct btrfs_bio *bbio;
- u64 sublen;
- u64 mapped_length;
- u64 stripe_offset;
- int stripe_index;
- int page_index = 0;
- int mirror_index;
- int nmirrors;
- int ret;
-
- /*
- * note: the two members refs and outstanding_pages
- * are not used (and not set) in the blocks that are used for
- * the recheck procedure
- */
-
- while (length > 0) {
- sublen = min_t(u64, length, PAGE_SIZE);
- mapped_length = sublen;
- bbio = NULL;
-
- /*
- * with a length of PAGE_SIZE, each returned stripe
- * represents one mirror
- */
- btrfs_bio_counter_inc_blocked(fs_info);
- ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
- logical, &mapped_length, &bbio);
- if (ret || !bbio || mapped_length < sublen) {
- btrfs_put_bbio(bbio);
- btrfs_bio_counter_dec(fs_info);
- return -EIO;
- }
-
- recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
- if (!recover) {
- btrfs_put_bbio(bbio);
- btrfs_bio_counter_dec(fs_info);
- return -ENOMEM;
- }
-
- refcount_set(&recover->refs, 1);
- recover->bbio = bbio;
- recover->map_length = mapped_length;
-
- BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
-
- nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
+ struct scrub_stripe *stripe = bbio->private;
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct bio_vec *bvec;
+ int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
+ u32 bio_size = 0;
+ int i;
- for (mirror_index = 0; mirror_index < nmirrors;
- mirror_index++) {
- struct scrub_block *sblock;
- struct scrub_page *page;
+ ASSERT(sector_nr < stripe->nr_sectors);
- sblock = sblocks_for_recheck + mirror_index;
- sblock->sctx = sctx;
+ bio_for_each_bvec_all(bvec, &bbio->bio, i)
+ bio_size += bvec->bv_len;
- page = kzalloc(sizeof(*page), GFP_NOFS);
- if (!page) {
-leave_nomem:
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
- scrub_put_recover(fs_info, recover);
- return -ENOMEM;
- }
- scrub_page_get(page);
- sblock->pagev[page_index] = page;
- page->sblock = sblock;
- page->flags = flags;
- page->generation = generation;
- page->logical = logical;
- page->have_csum = have_csum;
- if (have_csum)
- memcpy(page->csum,
- original_sblock->pagev[0]->csum,
- sctx->csum_size);
-
- scrub_stripe_index_and_offset(logical,
- bbio->map_type,
- bbio->raid_map,
- mapped_length,
- bbio->num_stripes -
- bbio->num_tgtdevs,
- mirror_index,
- &stripe_index,
- &stripe_offset);
- page->physical = bbio->stripes[stripe_index].physical +
- stripe_offset;
- page->dev = bbio->stripes[stripe_index].dev;
-
- BUG_ON(page_index >= original_sblock->page_count);
- page->physical_for_dev_replace =
- original_sblock->pagev[page_index]->
- physical_for_dev_replace;
- /* for missing devices, dev->bdev is NULL */
- page->mirror_num = mirror_index + 1;
- sblock->page_count++;
- page->page = alloc_page(GFP_NOFS);
- if (!page->page)
- goto leave_nomem;
-
- scrub_get_recover(recover);
- page->recover = recover;
- }
- scrub_put_recover(fs_info, recover);
- length -= sublen;
- logical += sublen;
- page_index++;
+ if (bbio->bio.bi_status) {
+ scrub_bitmap_set_io_error(stripe, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
+ scrub_bitmap_set_error(stripe, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
+ } else {
+ scrub_bitmap_clear_io_error(stripe, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
}
-
- return 0;
+ bio_put(&bbio->bio);
+ if (atomic_dec_and_test(&stripe->pending_io))
+ wake_up(&stripe->io_wait);
}
-static void scrub_bio_wait_endio(struct bio *bio)
+static int calc_next_mirror(int mirror, int num_copies)
{
- complete(bio->bi_private);
+ ASSERT(mirror <= num_copies);
+ return (mirror + 1 > num_copies) ? 1 : mirror + 1;
}
-static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
- struct bio *bio,
- struct scrub_page *page)
+static void scrub_bio_add_sector(struct btrfs_bio *bbio, struct scrub_stripe *stripe,
+ int sector_nr)
{
- DECLARE_COMPLETION_ONSTACK(done);
+ struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
+ void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
int ret;
- int mirror_num;
- bio->bi_iter.bi_sector = page->logical >> 9;
- bio->bi_private = &done;
- bio->bi_end_io = scrub_bio_wait_endio;
+ ret = bio_add_page(&bbio->bio, virt_to_page(kaddr), fs_info->sectorsize,
+ offset_in_page(kaddr));
+ /*
+ * Caller should ensure the bbio has enough size.
+ * And we cannot use __bio_add_page(), which doesn't do any merge.
+ *
+ * Meanwhile for scrub_submit_initial_read() we fully rely on the merge
+ * to create the minimal amount of bio vectors, for fs block size < page
+ * size cases.
+ */
+ ASSERT(ret == fs_info->sectorsize);
+}
- mirror_num = page->sblock->pagev[0]->mirror_num;
- ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
- page->recover->map_length,
- mirror_num, 0);
- if (ret)
- return ret;
+static struct btrfs_bio *alloc_scrub_bbio(struct btrfs_fs_info *fs_info,
+ unsigned int nr_vecs, blk_opf_t opf,
+ u64 logical,
+ btrfs_bio_end_io_t end_io, void *private)
+{
+ struct btrfs_bio *bbio;
- wait_for_completion_io(&done);
- return blk_status_to_errno(bio->bi_status);
+ bbio = btrfs_bio_alloc(nr_vecs, opf, BTRFS_I(fs_info->btree_inode),
+ logical, end_io, private);
+ bbio->is_scrub = true;
+ bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
+ return bbio;
}
-static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
- struct scrub_block *sblock)
+static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
+ int mirror, int blocksize, bool wait)
{
- struct scrub_page *first_page = sblock->pagev[0];
- struct bio *bio;
- int page_num;
-
- /* All pages in sblock belong to the same stripe on the same device. */
- ASSERT(first_page->dev);
- if (!first_page->dev->bdev)
- goto out;
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct btrfs_bio *bbio = NULL;
+ const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
+ int i;
- bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
- bio_set_dev(bio, first_page->dev->bdev);
+ ASSERT(stripe->mirror_num >= 1, "stripe->mirror_num=%d", stripe->mirror_num);
+ ASSERT(atomic_read(&stripe->pending_io) == 0,
+ "atomic_read(&stripe->pending_io)=%d", atomic_read(&stripe->pending_io));
+
+ for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
+ /* The current sector cannot be merged, submit the bio. */
+ if (bbio && ((i > 0 && !test_bit(i - 1, &old_error_bitmap)) ||
+ bbio->bio.bi_iter.bi_size >= blocksize)) {
+ ASSERT(bbio->bio.bi_iter.bi_size);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_bbio(bbio, mirror);
+ if (wait)
+ wait_scrub_stripe_io(stripe);
+ bbio = NULL;
+ }
- for (page_num = 0; page_num < sblock->page_count; page_num++) {
- struct scrub_page *page = sblock->pagev[page_num];
+ if (!bbio)
+ bbio = alloc_scrub_bbio(fs_info, stripe->nr_sectors, REQ_OP_READ,
+ stripe->logical + (i << fs_info->sectorsize_bits),
+ scrub_repair_read_endio, stripe);
- WARN_ON(!page->page);
- bio_add_page(bio, page->page, PAGE_SIZE, 0);
+ scrub_bio_add_sector(bbio, stripe, i);
}
-
- if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
- bio_put(bio);
- goto out;
+ if (bbio) {
+ ASSERT(bbio->bio.bi_iter.bi_size);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_bbio(bbio, mirror);
+ if (wait)
+ wait_scrub_stripe_io(stripe);
}
-
- bio_put(bio);
-
- scrub_recheck_block_checksum(sblock);
-
- return;
-out:
- for (page_num = 0; page_num < sblock->page_count; page_num++)
- sblock->pagev[page_num]->io_error = 1;
-
- sblock->no_io_error_seen = 0;
}
-/*
- * this function will check the on disk data for checksum errors, header
- * errors and read I/O errors. If any I/O errors happen, the exact pages
- * which are errored are marked as being bad. The goal is to enable scrub
- * to take those pages that are not errored from all the mirrors so that
- * the pages that are errored in the just handled mirror can be repaired.
- */
-static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
- struct scrub_block *sblock,
- int retry_failed_mirror)
+static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
+ struct scrub_stripe *stripe,
+ const struct scrub_error_records *errors)
{
- int page_num;
+ static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_device *dev = NULL;
+ const unsigned long extent_bitmap = scrub_bitmap_read_has_extent(stripe);
+ const unsigned long error_bitmap = scrub_bitmap_read_error(stripe);
+ u64 physical = 0;
+ int nr_data_sectors = 0;
+ int nr_meta_sectors = 0;
+ int nr_nodatacsum_sectors = 0;
+ int nr_repaired_sectors = 0;
+ int sector_nr;
+
+ if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
+ return;
- sblock->no_io_error_seen = 1;
+ /*
+ * Init needed infos for error reporting.
+ *
+ * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
+ * thus no need for dev/physical, error reporting still needs dev and physical.
+ */
+ if (!bitmap_empty(&errors->init_error_bitmap, stripe->nr_sectors)) {
+ u64 mapped_len = fs_info->sectorsize;
+ struct btrfs_io_context *bioc = NULL;
+ int stripe_index = stripe->mirror_num - 1;
+ int ret;
- /* short cut for raid56 */
- if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
- return scrub_recheck_block_on_raid56(fs_info, sblock);
+ /* For scrub, our mirror_num should always start at 1. */
+ ASSERT(stripe->mirror_num >= 1, "stripe->mirror_num=%d", stripe->mirror_num);
+ ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
+ stripe->logical, &mapped_len, &bioc,
+ NULL, NULL);
+ /*
+ * If we failed, dev will be NULL, and later detailed reports
+ * will just be skipped.
+ */
+ if (ret < 0)
+ goto skip;
+ physical = bioc->stripes[stripe_index].physical;
+ dev = bioc->stripes[stripe_index].dev;
+ btrfs_put_bioc(bioc);
+ }
- for (page_num = 0; page_num < sblock->page_count; page_num++) {
- struct bio *bio;
- struct scrub_page *page = sblock->pagev[page_num];
+skip:
+ for_each_set_bit(sector_nr, &extent_bitmap, stripe->nr_sectors) {
+ bool repaired = false;
- if (page->dev->bdev == NULL) {
- page->io_error = 1;
- sblock->no_io_error_seen = 0;
- continue;
+ if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
+ nr_meta_sectors++;
+ } else {
+ nr_data_sectors++;
+ if (!stripe->sectors[sector_nr].csum)
+ nr_nodatacsum_sectors++;
}
- WARN_ON(!page->page);
- bio = btrfs_io_bio_alloc(1);
- bio_set_dev(bio, page->dev->bdev);
-
- bio_add_page(bio, page->page, PAGE_SIZE, 0);
- bio->bi_iter.bi_sector = page->physical >> 9;
- bio->bi_opf = REQ_OP_READ;
-
- if (btrfsic_submit_bio_wait(bio)) {
- page->io_error = 1;
- sblock->no_io_error_seen = 0;
+ if (test_bit(sector_nr, &errors->init_error_bitmap) &&
+ !test_bit(sector_nr, &error_bitmap)) {
+ nr_repaired_sectors++;
+ repaired = true;
}
- bio_put(bio);
- }
-
- if (sblock->no_io_error_seen)
- scrub_recheck_block_checksum(sblock);
-}
+ /* Good sector from the beginning, nothing need to be done. */
+ if (!test_bit(sector_nr, &errors->init_error_bitmap))
+ continue;
-static inline int scrub_check_fsid(u8 fsid[],
- struct scrub_page *spage)
-{
- struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
- int ret;
+ /*
+ * Report error for the corrupted sectors. If repaired, just
+ * output the message of repaired message.
+ */
+ if (repaired) {
+ if (dev) {
+ btrfs_err_rl(fs_info,
+ "scrub: fixed up error at logical %llu on dev %s physical %llu",
+ stripe->logical, btrfs_dev_name(dev),
+ physical);
+ } else {
+ btrfs_err_rl(fs_info,
+ "scrub: fixed up error at logical %llu on mirror %u",
+ stripe->logical, stripe->mirror_num);
+ }
+ continue;
+ }
- ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
- return !ret;
-}
+ /* The remaining are all for unrepaired. */
+ if (dev) {
+ btrfs_err_rl(fs_info,
+"scrub: unable to fixup (regular) error at logical %llu on dev %s physical %llu",
+ stripe->logical, btrfs_dev_name(dev),
+ physical);
+ } else {
+ btrfs_err_rl(fs_info,
+ "scrub: unable to fixup (regular) error at logical %llu on mirror %u",
+ stripe->logical, stripe->mirror_num);
+ }
-static void scrub_recheck_block_checksum(struct scrub_block *sblock)
-{
- sblock->header_error = 0;
- sblock->checksum_error = 0;
- sblock->generation_error = 0;
+ if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
+ if (__ratelimit(&rs) && dev)
+ scrub_print_common_warning("i/o error", dev, false,
+ stripe->logical, physical);
+ if (scrub_bitmap_test_bit_csum_error(stripe, sector_nr))
+ if (__ratelimit(&rs) && dev)
+ scrub_print_common_warning("checksum error", dev, false,
+ stripe->logical, physical);
+ if (scrub_bitmap_test_bit_meta_error(stripe, sector_nr))
+ if (__ratelimit(&rs) && dev)
+ scrub_print_common_warning("header error", dev, false,
+ stripe->logical, physical);
+ if (scrub_bitmap_test_bit_meta_gen_error(stripe, sector_nr))
+ if (__ratelimit(&rs) && dev)
+ scrub_print_common_warning("generation error", dev, false,
+ stripe->logical, physical);
+ }
+
+ /* Update the device stats. */
+ for (int i = 0; i < errors->nr_io_errors; i++)
+ btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS);
+ for (int i = 0; i < errors->nr_csum_errors; i++)
+ btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
+ /* Generation mismatch error is based on each metadata, not each block. */
+ for (int i = 0; i < errors->nr_meta_gen_errors;
+ i += (fs_info->nodesize >> fs_info->sectorsize_bits))
+ btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS);
- if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
- scrub_checksum_data(sblock);
- else
- scrub_checksum_tree_block(sblock);
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
+ sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
+ sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
+ sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
+ sctx->stat.no_csum += nr_nodatacsum_sectors;
+ sctx->stat.read_errors += errors->nr_io_errors;
+ sctx->stat.csum_errors += errors->nr_csum_errors;
+ sctx->stat.verify_errors += errors->nr_meta_errors +
+ errors->nr_meta_gen_errors;
+ sctx->stat.uncorrectable_errors +=
+ bitmap_weight(&error_bitmap, stripe->nr_sectors);
+ sctx->stat.corrected_errors += nr_repaired_sectors;
+ spin_unlock(&sctx->stat_lock);
}
-static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
- struct scrub_block *sblock_good)
-{
- int page_num;
- int ret = 0;
-
- for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
- int ret_sub;
-
- ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
- sblock_good,
- page_num, 1);
- if (ret_sub)
- ret = ret_sub;
- }
-
- return ret;
-}
+static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
+ unsigned long write_bitmap, bool dev_replace);
-static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
- struct scrub_block *sblock_good,
- int page_num, int force_write)
+/*
+ * The main entrance for all read related scrub work, including:
+ *
+ * - Wait for the initial read to finish
+ * - Verify and locate any bad sectors
+ * - Go through the remaining mirrors and try to read as large blocksize as
+ * possible
+ * - Go through all mirrors (including the failed mirror) sector-by-sector
+ * - Submit writeback for repaired sectors
+ *
+ * Writeback for dev-replace does not happen here, it needs extra
+ * synchronization for zoned devices.
+ */
+static void scrub_stripe_read_repair_worker(struct work_struct *work)
{
- struct scrub_page *page_bad = sblock_bad->pagev[page_num];
- struct scrub_page *page_good = sblock_good->pagev[page_num];
- struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
-
- BUG_ON(page_bad->page == NULL);
- BUG_ON(page_good->page == NULL);
- if (force_write || sblock_bad->header_error ||
- sblock_bad->checksum_error || page_bad->io_error) {
- struct bio *bio;
- int ret;
-
- if (!page_bad->dev->bdev) {
- btrfs_warn_rl(fs_info,
- "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
- return -EIO;
- }
-
- bio = btrfs_io_bio_alloc(1);
- bio_set_dev(bio, page_bad->dev->bdev);
- bio->bi_iter.bi_sector = page_bad->physical >> 9;
- bio->bi_opf = REQ_OP_WRITE;
+ struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
+ struct scrub_ctx *sctx = stripe->sctx;
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct scrub_error_records errors = { 0 };
+ int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
+ stripe->bg->length);
+ unsigned long repaired;
+ unsigned long error;
+ int mirror;
+ int i;
- ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
- if (PAGE_SIZE != ret) {
- bio_put(bio);
- return -EIO;
- }
+ ASSERT(stripe->mirror_num >= 1, "stripe->mirror_num=%d", stripe->mirror_num);
- if (btrfsic_submit_bio_wait(bio)) {
- btrfs_dev_stat_inc_and_print(page_bad->dev,
- BTRFS_DEV_STAT_WRITE_ERRS);
- atomic64_inc(&fs_info->dev_replace.num_write_errors);
- bio_put(bio);
- return -EIO;
- }
- bio_put(bio);
- }
+ wait_scrub_stripe_io(stripe);
+ scrub_verify_one_stripe(stripe, scrub_bitmap_read_has_extent(stripe));
+ /* Save the initial failed bitmap for later repair and report usage. */
+ errors.init_error_bitmap = scrub_bitmap_read_error(stripe);
+ errors.nr_io_errors = scrub_bitmap_weight_io_error(stripe);
+ errors.nr_csum_errors = scrub_bitmap_weight_csum_error(stripe);
+ errors.nr_meta_errors = scrub_bitmap_weight_meta_error(stripe);
+ errors.nr_meta_gen_errors = scrub_bitmap_weight_meta_gen_error(stripe);
- return 0;
-}
-
-static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
-{
- struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
- int page_num;
+ if (bitmap_empty(&errors.init_error_bitmap, stripe->nr_sectors))
+ goto out;
/*
- * This block is used for the check of the parity on the source device,
- * so the data needn't be written into the destination device.
+ * Try all remaining mirrors.
+ *
+ * Here we still try to read as large block as possible, as this is
+ * faster and we have extra safety nets to rely on.
*/
- if (sblock->sparity)
- return;
-
- for (page_num = 0; page_num < sblock->page_count; page_num++) {
- int ret;
-
- ret = scrub_write_page_to_dev_replace(sblock, page_num);
- if (ret)
- atomic64_inc(&fs_info->dev_replace.num_write_errors);
+ for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
+ mirror != stripe->mirror_num;
+ mirror = calc_next_mirror(mirror, num_copies)) {
+ const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
+
+ scrub_stripe_submit_repair_read(stripe, mirror,
+ BTRFS_STRIPE_LEN, false);
+ wait_scrub_stripe_io(stripe);
+ scrub_verify_one_stripe(stripe, old_error_bitmap);
+ if (scrub_bitmap_empty_error(stripe))
+ goto out;
}
-}
-static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
- int page_num)
-{
- struct scrub_page *spage = sblock->pagev[page_num];
+ /*
+ * Last safety net, try re-checking all mirrors, including the failed
+ * one, sector-by-sector.
+ *
+ * As if one sector failed the drive's internal csum, the whole read
+ * containing the offending sector would be marked as error.
+ * Thus here we do sector-by-sector read.
+ *
+ * This can be slow, thus we only try it as the last resort.
+ */
- BUG_ON(spage->page == NULL);
- if (spage->io_error) {
- void *mapped_buffer = kmap_atomic(spage->page);
+ for (i = 0, mirror = stripe->mirror_num;
+ i < num_copies;
+ i++, mirror = calc_next_mirror(mirror, num_copies)) {
+ const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
- clear_page(mapped_buffer);
- flush_dcache_page(spage->page);
- kunmap_atomic(mapped_buffer);
+ scrub_stripe_submit_repair_read(stripe, mirror,
+ fs_info->sectorsize, true);
+ wait_scrub_stripe_io(stripe);
+ scrub_verify_one_stripe(stripe, old_error_bitmap);
+ if (scrub_bitmap_empty_error(stripe))
+ goto out;
}
- return scrub_add_page_to_wr_bio(sblock->sctx, spage);
-}
-
-static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
- struct scrub_page *spage)
-{
- struct scrub_bio *sbio;
- int ret;
-
- mutex_lock(&sctx->wr_lock);
-again:
- if (!sctx->wr_curr_bio) {
- sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
- GFP_KERNEL);
- if (!sctx->wr_curr_bio) {
- mutex_unlock(&sctx->wr_lock);
- return -ENOMEM;
- }
- sctx->wr_curr_bio->sctx = sctx;
- sctx->wr_curr_bio->page_count = 0;
- }
- sbio = sctx->wr_curr_bio;
- if (sbio->page_count == 0) {
- struct bio *bio;
-
- sbio->physical = spage->physical_for_dev_replace;
- sbio->logical = spage->logical;
- sbio->dev = sctx->wr_tgtdev;
- bio = sbio->bio;
- if (!bio) {
- bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
- sbio->bio = bio;
- }
-
- bio->bi_private = sbio;
- bio->bi_end_io = scrub_wr_bio_end_io;
- bio_set_dev(bio, sbio->dev->bdev);
- bio->bi_iter.bi_sector = sbio->physical >> 9;
- bio->bi_opf = REQ_OP_WRITE;
- sbio->status = 0;
- } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
- spage->physical_for_dev_replace ||
- sbio->logical + sbio->page_count * PAGE_SIZE !=
- spage->logical) {
- scrub_wr_submit(sctx);
- goto again;
- }
-
- ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
- if (ret != PAGE_SIZE) {
- if (sbio->page_count < 1) {
- bio_put(sbio->bio);
- sbio->bio = NULL;
- mutex_unlock(&sctx->wr_lock);
- return -EIO;
+out:
+ error = scrub_bitmap_read_error(stripe);
+ /*
+ * Submit the repaired sectors. For zoned case, we cannot do repair
+ * in-place, but queue the bg to be relocated.
+ */
+ bitmap_andnot(&repaired, &errors.init_error_bitmap, &error,
+ stripe->nr_sectors);
+ if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
+ if (btrfs_is_zoned(fs_info)) {
+ btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
+ } else {
+ scrub_write_sectors(sctx, stripe, repaired, false);
+ wait_scrub_stripe_io(stripe);
}
- scrub_wr_submit(sctx);
- goto again;
}
- sbio->pagev[sbio->page_count] = spage;
- scrub_page_get(spage);
- sbio->page_count++;
- if (sbio->page_count == sctx->pages_per_wr_bio)
- scrub_wr_submit(sctx);
- mutex_unlock(&sctx->wr_lock);
-
- return 0;
-}
-
-static void scrub_wr_submit(struct scrub_ctx *sctx)
-{
- struct scrub_bio *sbio;
-
- if (!sctx->wr_curr_bio)
- return;
-
- sbio = sctx->wr_curr_bio;
- sctx->wr_curr_bio = NULL;
- WARN_ON(!sbio->bio->bi_disk);
- scrub_pending_bio_inc(sctx);
- /* process all writes in a single worker thread. Then the block layer
- * orders the requests before sending them to the driver which
- * doubled the write performance on spinning disks when measured
- * with Linux 3.5 */
- btrfsic_submit_bio(sbio->bio);
+ scrub_stripe_report_errors(sctx, stripe, &errors);
+ set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
+ wake_up(&stripe->repair_wait);
}
-static void scrub_wr_bio_end_io(struct bio *bio)
+static void scrub_read_endio(struct btrfs_bio *bbio)
{
- struct scrub_bio *sbio = bio->bi_private;
- struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
+ struct scrub_stripe *stripe = bbio->private;
+ struct bio_vec *bvec;
+ int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
+ int num_sectors;
+ u32 bio_size = 0;
+ int i;
- sbio->status = bio->bi_status;
- sbio->bio = bio;
+ ASSERT(sector_nr < stripe->nr_sectors);
+ bio_for_each_bvec_all(bvec, &bbio->bio, i)
+ bio_size += bvec->bv_len;
+ num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
- btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
- scrub_wr_bio_end_io_worker, NULL, NULL);
- btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
+ if (bbio->bio.bi_status) {
+ scrub_bitmap_set_io_error(stripe, sector_nr, num_sectors);
+ scrub_bitmap_set_error(stripe, sector_nr, num_sectors);
+ } else {
+ scrub_bitmap_clear_io_error(stripe, sector_nr, num_sectors);
+ }
+ bio_put(&bbio->bio);
+ if (atomic_dec_and_test(&stripe->pending_io)) {
+ wake_up(&stripe->io_wait);
+ INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
+ queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
+ }
}
-static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
+static void scrub_write_endio(struct btrfs_bio *bbio)
{
- struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
- struct scrub_ctx *sctx = sbio->sctx;
+ struct scrub_stripe *stripe = bbio->private;
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct bio_vec *bvec;
+ int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
+ u32 bio_size = 0;
int i;
- WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
- if (sbio->status) {
- struct btrfs_dev_replace *dev_replace =
- &sbio->sctx->fs_info->dev_replace;
+ bio_for_each_bvec_all(bvec, &bbio->bio, i)
+ bio_size += bvec->bv_len;
- for (i = 0; i < sbio->page_count; i++) {
- struct scrub_page *spage = sbio->pagev[i];
+ if (bbio->bio.bi_status) {
+ unsigned long flags;
- spage->io_error = 1;
- atomic64_inc(&dev_replace->num_write_errors);
- }
+ spin_lock_irqsave(&stripe->write_error_lock, flags);
+ bitmap_set(&stripe->write_error_bitmap, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
+ spin_unlock_irqrestore(&stripe->write_error_lock, flags);
+ for (i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++)
+ btrfs_dev_stat_inc_and_print(stripe->dev,
+ BTRFS_DEV_STAT_WRITE_ERRS);
}
+ bio_put(&bbio->bio);
- for (i = 0; i < sbio->page_count; i++)
- scrub_page_put(sbio->pagev[i]);
-
- bio_put(sbio->bio);
- kfree(sbio);
- scrub_pending_bio_dec(sctx);
+ if (atomic_dec_and_test(&stripe->pending_io))
+ wake_up(&stripe->io_wait);
}
-static int scrub_checksum(struct scrub_block *sblock)
+static void scrub_submit_write_bio(struct scrub_ctx *sctx,
+ struct scrub_stripe *stripe,
+ struct btrfs_bio *bbio, bool dev_replace)
{
- u64 flags;
- int ret;
-
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ u32 bio_len = bbio->bio.bi_iter.bi_size;
+ u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
+ stripe->logical;
+
+ fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
+ if (!btrfs_is_zoned(fs_info))
+ return;
/*
- * No need to initialize these stats currently,
- * because this function only use return value
- * instead of these stats value.
- *
- * Todo:
- * always use stats
+ * For zoned writeback, queue depth must be 1, thus we must wait for
+ * the write to finish before the next write.
*/
- sblock->header_error = 0;
- sblock->generation_error = 0;
- sblock->checksum_error = 0;
-
- WARN_ON(sblock->page_count < 1);
- flags = sblock->pagev[0]->flags;
- ret = 0;
- if (flags & BTRFS_EXTENT_FLAG_DATA)
- ret = scrub_checksum_data(sblock);
- else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
- ret = scrub_checksum_tree_block(sblock);
- else if (flags & BTRFS_EXTENT_FLAG_SUPER)
- (void)scrub_checksum_super(sblock);
- else
- WARN_ON(1);
- if (ret)
- scrub_handle_errored_block(sblock);
+ wait_scrub_stripe_io(stripe);
- return ret;
+ /*
+ * And also need to update the write pointer if write finished
+ * successfully.
+ */
+ if (!test_bit(bio_off >> fs_info->sectorsize_bits,
+ &stripe->write_error_bitmap))
+ sctx->write_pointer += bio_len;
}
-static int scrub_checksum_data(struct scrub_block *sblock)
+/*
+ * Submit the write bio(s) for the sectors specified by @write_bitmap.
+ *
+ * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
+ *
+ * - Only needs logical bytenr and mirror_num
+ * Just like the scrub read path
+ *
+ * - Would only result in writes to the specified mirror
+ * Unlike the regular writeback path, which would write back to all stripes
+ *
+ * - Handle dev-replace and read-repair writeback differently
+ */
+static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
+ unsigned long write_bitmap, bool dev_replace)
{
- struct scrub_ctx *sctx = sblock->sctx;
- u8 csum[BTRFS_CSUM_SIZE];
- u8 *on_disk_csum;
- struct page *page;
- void *buffer;
- u32 crc = ~(u32)0;
- u64 len;
- int index;
-
- BUG_ON(sblock->page_count < 1);
- if (!sblock->pagev[0]->have_csum)
- return 0;
-
- on_disk_csum = sblock->pagev[0]->csum;
- page = sblock->pagev[0]->page;
- buffer = kmap_atomic(page);
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct btrfs_bio *bbio = NULL;
+ int sector_nr;
- len = sctx->fs_info->sectorsize;
- index = 0;
- for (;;) {
- u64 l = min_t(u64, len, PAGE_SIZE);
+ for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
+ /* We should only writeback sectors covered by an extent. */
+ ASSERT(scrub_bitmap_test_bit_has_extent(stripe, sector_nr));
- crc = btrfs_csum_data(buffer, crc, l);
- kunmap_atomic(buffer);
- len -= l;
- if (len == 0)
- break;
- index++;
- BUG_ON(index >= sblock->page_count);
- BUG_ON(!sblock->pagev[index]->page);
- page = sblock->pagev[index]->page;
- buffer = kmap_atomic(page);
+ /* Cannot merge with previous sector, submit the current one. */
+ if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
+ scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
+ bbio = NULL;
+ }
+ if (!bbio)
+ bbio = alloc_scrub_bbio(fs_info, stripe->nr_sectors, REQ_OP_WRITE,
+ stripe->logical + (sector_nr << fs_info->sectorsize_bits),
+ scrub_write_endio, stripe);
+ scrub_bio_add_sector(bbio, stripe, sector_nr);
}
-
- btrfs_csum_final(crc, csum);
- if (memcmp(csum, on_disk_csum, sctx->csum_size))
- sblock->checksum_error = 1;
-
- return sblock->checksum_error;
+ if (bbio)
+ scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
}
-static int scrub_checksum_tree_block(struct scrub_block *sblock)
+/*
+ * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
+ * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
+ */
+static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
+ unsigned int bio_size)
{
- struct scrub_ctx *sctx = sblock->sctx;
- struct btrfs_header *h;
- struct btrfs_fs_info *fs_info = sctx->fs_info;
- u8 calculated_csum[BTRFS_CSUM_SIZE];
- u8 on_disk_csum[BTRFS_CSUM_SIZE];
- struct page *page;
- void *mapped_buffer;
- u64 mapped_size;
- void *p;
- u32 crc = ~(u32)0;
- u64 len;
- int index;
+ const int time_slice = 1000;
+ s64 delta;
+ ktime_t now;
+ u32 div;
+ u64 bwlimit;
- BUG_ON(sblock->page_count < 1);
- page = sblock->pagev[0]->page;
- mapped_buffer = kmap_atomic(page);
- h = (struct btrfs_header *)mapped_buffer;
- memcpy(on_disk_csum, h->csum, sctx->csum_size);
+ bwlimit = READ_ONCE(device->scrub_speed_max);
+ if (bwlimit == 0)
+ return;
/*
- * we don't use the getter functions here, as we
- * a) don't have an extent buffer and
- * b) the page is already kmapped
+ * Slice is divided into intervals when the IO is submitted, adjust by
+ * bwlimit and maximum of 64 intervals.
*/
- if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
- sblock->header_error = 1;
+ div = clamp(bwlimit / (16 * 1024 * 1024), 1, 64);
- if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
- sblock->header_error = 1;
- sblock->generation_error = 1;
+ /* Start new epoch, set deadline */
+ now = ktime_get();
+ if (sctx->throttle_deadline == 0) {
+ sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
+ sctx->throttle_sent = 0;
}
- if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
- sblock->header_error = 1;
+ /* Still in the time to send? */
+ if (ktime_before(now, sctx->throttle_deadline)) {
+ /* If current bio is within the limit, send it */
+ sctx->throttle_sent += bio_size;
+ if (sctx->throttle_sent <= div_u64(bwlimit, div))
+ return;
- if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
- BTRFS_UUID_SIZE))
- sblock->header_error = 1;
-
- len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
- mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
- p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
- index = 0;
- for (;;) {
- u64 l = min_t(u64, len, mapped_size);
-
- crc = btrfs_csum_data(p, crc, l);
- kunmap_atomic(mapped_buffer);
- len -= l;
- if (len == 0)
- break;
- index++;
- BUG_ON(index >= sblock->page_count);
- BUG_ON(!sblock->pagev[index]->page);
- page = sblock->pagev[index]->page;
- mapped_buffer = kmap_atomic(page);
- mapped_size = PAGE_SIZE;
- p = mapped_buffer;
- }
-
- btrfs_csum_final(crc, calculated_csum);
- if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
- sblock->checksum_error = 1;
-
- return sblock->header_error || sblock->checksum_error;
-}
-
-static int scrub_checksum_super(struct scrub_block *sblock)
-{
- struct btrfs_super_block *s;
- struct scrub_ctx *sctx = sblock->sctx;
- u8 calculated_csum[BTRFS_CSUM_SIZE];
- u8 on_disk_csum[BTRFS_CSUM_SIZE];
- struct page *page;
- void *mapped_buffer;
- u64 mapped_size;
- void *p;
- u32 crc = ~(u32)0;
- int fail_gen = 0;
- int fail_cor = 0;
- u64 len;
- int index;
-
- BUG_ON(sblock->page_count < 1);
- page = sblock->pagev[0]->page;
- mapped_buffer = kmap_atomic(page);
- s = (struct btrfs_super_block *)mapped_buffer;
- memcpy(on_disk_csum, s->csum, sctx->csum_size);
-
- if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
- ++fail_cor;
-
- if (sblock->pagev[0]->generation != btrfs_super_generation(s))
- ++fail_gen;
-
- if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
- ++fail_cor;
-
- len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
- mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
- p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
- index = 0;
- for (;;) {
- u64 l = min_t(u64, len, mapped_size);
-
- crc = btrfs_csum_data(p, crc, l);
- kunmap_atomic(mapped_buffer);
- len -= l;
- if (len == 0)
- break;
- index++;
- BUG_ON(index >= sblock->page_count);
- BUG_ON(!sblock->pagev[index]->page);
- page = sblock->pagev[index]->page;
- mapped_buffer = kmap_atomic(page);
- mapped_size = PAGE_SIZE;
- p = mapped_buffer;
+ /* We're over the limit, sleep until the rest of the slice */
+ delta = ktime_ms_delta(sctx->throttle_deadline, now);
+ } else {
+ /* New request after deadline, start new epoch */
+ delta = 0;
}
- btrfs_csum_final(crc, calculated_csum);
- if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
- ++fail_cor;
+ if (delta) {
+ long timeout;
- if (fail_cor + fail_gen) {
- /*
- * if we find an error in a super block, we just report it.
- * They will get written with the next transaction commit
- * anyway
- */
- spin_lock(&sctx->stat_lock);
- ++sctx->stat.super_errors;
- spin_unlock(&sctx->stat_lock);
- if (fail_cor)
- btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
- BTRFS_DEV_STAT_CORRUPTION_ERRS);
- else
- btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
- BTRFS_DEV_STAT_GENERATION_ERRS);
+ timeout = div_u64(delta * HZ, 1000);
+ schedule_timeout_interruptible(timeout);
}
- return fail_cor + fail_gen;
+ /* Next call will start the deadline period */
+ sctx->throttle_deadline = 0;
}
-static void scrub_block_get(struct scrub_block *sblock)
+/*
+ * Given a physical address, this will calculate it's
+ * logical offset. if this is a parity stripe, it will return
+ * the most left data stripe's logical offset.
+ *
+ * return 0 if it is a data stripe, 1 means parity stripe.
+ */
+static int get_raid56_logic_offset(u64 physical, int num,
+ struct btrfs_chunk_map *map, u64 *offset,
+ u64 *stripe_start)
{
- refcount_inc(&sblock->refs);
-}
+ int i;
+ int j = 0;
+ u64 last_offset;
+ const int data_stripes = nr_data_stripes(map);
-static void scrub_block_put(struct scrub_block *sblock)
-{
- if (refcount_dec_and_test(&sblock->refs)) {
- int i;
+ last_offset = (physical - map->stripes[num].physical) * data_stripes;
+ if (stripe_start)
+ *stripe_start = last_offset;
- if (sblock->sparity)
- scrub_parity_put(sblock->sparity);
+ *offset = last_offset;
+ for (i = 0; i < data_stripes; i++) {
+ u32 stripe_nr;
+ u32 stripe_index;
+ u32 rot;
- for (i = 0; i < sblock->page_count; i++)
- scrub_page_put(sblock->pagev[i]);
- kfree(sblock);
- }
-}
+ *offset = last_offset + btrfs_stripe_nr_to_offset(i);
-static void scrub_page_get(struct scrub_page *spage)
-{
- atomic_inc(&spage->refs);
-}
+ stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
-static void scrub_page_put(struct scrub_page *spage)
-{
- if (atomic_dec_and_test(&spage->refs)) {
- if (spage->page)
- __free_page(spage->page);
- kfree(spage);
+ /* Work out the disk rotation on this stripe-set */
+ rot = stripe_nr % map->num_stripes;
+ /* calculate which stripe this data locates */
+ rot += i;
+ stripe_index = rot % map->num_stripes;
+ if (stripe_index == num)
+ return 0;
+ if (stripe_index < num)
+ j++;
}
+ *offset = last_offset + btrfs_stripe_nr_to_offset(j);
+ return 1;
}
-static void scrub_submit(struct scrub_ctx *sctx)
+/*
+ * Return 0 if the extent item range covers any byte of the range.
+ * Return <0 if the extent item is before @search_start.
+ * Return >0 if the extent item is after @start_start + @search_len.
+ */
+static int compare_extent_item_range(struct btrfs_path *path,
+ u64 search_start, u64 search_len)
{
- struct scrub_bio *sbio;
+ struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
+ u64 len;
+ struct btrfs_key key;
- if (sctx->curr == -1)
- return;
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
+ key.type == BTRFS_METADATA_ITEM_KEY, "key.type=%u", key.type);
+ if (key.type == BTRFS_METADATA_ITEM_KEY)
+ len = fs_info->nodesize;
+ else
+ len = key.offset;
- sbio = sctx->bios[sctx->curr];
- sctx->curr = -1;
- scrub_pending_bio_inc(sctx);
- btrfsic_submit_bio(sbio->bio);
+ if (key.objectid + len <= search_start)
+ return -1;
+ if (key.objectid >= search_start + search_len)
+ return 1;
+ return 0;
}
-static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
- struct scrub_page *spage)
+/*
+ * Locate one extent item which covers any byte in range
+ * [@search_start, @search_start + @search_length)
+ *
+ * If the path is not initialized, we will initialize the search by doing
+ * a btrfs_search_slot().
+ * If the path is already initialized, we will use the path as the initial
+ * slot, to avoid duplicated btrfs_search_slot() calls.
+ *
+ * NOTE: If an extent item starts before @search_start, we will still
+ * return the extent item. This is for data extent crossing stripe boundary.
+ *
+ * Return 0 if we found such extent item, and @path will point to the extent item.
+ * Return >0 if no such extent item can be found, and @path will be released.
+ * Return <0 if hit fatal error, and @path will be released.
+ */
+static int find_first_extent_item(struct btrfs_root *extent_root,
+ struct btrfs_path *path,
+ u64 search_start, u64 search_len)
{
- struct scrub_block *sblock = spage->sblock;
- struct scrub_bio *sbio;
+ struct btrfs_fs_info *fs_info = extent_root->fs_info;
+ struct btrfs_key key;
int ret;
-again:
+ /* Continue using the existing path */
+ if (path->nodes[0])
+ goto search_forward;
+
+ key.objectid = search_start;
+ if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
+ key.type = BTRFS_METADATA_ITEM_KEY;
+ else
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = (u64)-1;
+
+ ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+ if (ret < 0)
+ return ret;
+ if (unlikely(ret == 0)) {
+ /*
+ * Key with offset -1 found, there would have to exist an extent
+ * item with such offset, but this is out of the valid range.
+ */
+ btrfs_release_path(path);
+ return -EUCLEAN;
+ }
+
/*
- * grab a fresh bio or wait for one to become available
+ * Here we intentionally pass 0 as @min_objectid, as there could be
+ * an extent item starting before @search_start.
*/
- while (sctx->curr == -1) {
- spin_lock(&sctx->list_lock);
- sctx->curr = sctx->first_free;
- if (sctx->curr != -1) {
- sctx->first_free = sctx->bios[sctx->curr]->next_free;
- sctx->bios[sctx->curr]->next_free = -1;
- sctx->bios[sctx->curr]->page_count = 0;
- spin_unlock(&sctx->list_lock);
- } else {
- spin_unlock(&sctx->list_lock);
- wait_event(sctx->list_wait, sctx->first_free != -1);
- }
- }
- sbio = sctx->bios[sctx->curr];
- if (sbio->page_count == 0) {
- struct bio *bio;
-
- sbio->physical = spage->physical;
- sbio->logical = spage->logical;
- sbio->dev = spage->dev;
- bio = sbio->bio;
- if (!bio) {
- bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
- sbio->bio = bio;
- }
+ ret = btrfs_previous_extent_item(extent_root, path, 0);
+ if (ret < 0)
+ return ret;
+ /*
+ * No matter whether we have found an extent item, the next loop will
+ * properly do every check on the key.
+ */
+search_forward:
+ while (true) {
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ if (key.objectid >= search_start + search_len)
+ break;
+ if (key.type != BTRFS_METADATA_ITEM_KEY &&
+ key.type != BTRFS_EXTENT_ITEM_KEY)
+ goto next;
- bio->bi_private = sbio;
- bio->bi_end_io = scrub_bio_end_io;
- bio_set_dev(bio, sbio->dev->bdev);
- bio->bi_iter.bi_sector = sbio->physical >> 9;
- bio->bi_opf = REQ_OP_READ;
- sbio->status = 0;
- } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
- spage->physical ||
- sbio->logical + sbio->page_count * PAGE_SIZE !=
- spage->logical ||
- sbio->dev != spage->dev) {
- scrub_submit(sctx);
- goto again;
- }
-
- sbio->pagev[sbio->page_count] = spage;
- ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
- if (ret != PAGE_SIZE) {
- if (sbio->page_count < 1) {
- bio_put(sbio->bio);
- sbio->bio = NULL;
- return -EIO;
+ ret = compare_extent_item_range(path, search_start, search_len);
+ if (ret == 0)
+ return ret;
+ if (ret > 0)
+ break;
+next:
+ ret = btrfs_next_item(extent_root, path);
+ if (ret) {
+ /* Either no more items or a fatal error. */
+ btrfs_release_path(path);
+ return ret;
}
- scrub_submit(sctx);
- goto again;
}
-
- scrub_block_get(sblock); /* one for the page added to the bio */
- atomic_inc(&sblock->outstanding_pages);
- sbio->page_count++;
- if (sbio->page_count == sctx->pages_per_rd_bio)
- scrub_submit(sctx);
-
- return 0;
+ btrfs_release_path(path);
+ return 1;
}
-static void scrub_missing_raid56_end_io(struct bio *bio)
+static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
+ u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
- struct scrub_block *sblock = bio->bi_private;
- struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
-
- if (bio->bi_status)
- sblock->no_io_error_seen = 0;
-
- bio_put(bio);
+ struct btrfs_key key;
+ struct btrfs_extent_item *ei;
- btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
+ key.type == BTRFS_EXTENT_ITEM_KEY, "key.type=%u", key.type);
+ *extent_start_ret = key.objectid;
+ if (key.type == BTRFS_METADATA_ITEM_KEY)
+ *size_ret = path->nodes[0]->fs_info->nodesize;
+ else
+ *size_ret = key.offset;
+ ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
+ *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
+ *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}
-static void scrub_missing_raid56_worker(struct btrfs_work *work)
+static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
+ u64 physical, u64 physical_end)
{
- struct scrub_block *sblock = container_of(work, struct scrub_block, work);
- struct scrub_ctx *sctx = sblock->sctx;
struct btrfs_fs_info *fs_info = sctx->fs_info;
- u64 logical;
- struct btrfs_device *dev;
-
- logical = sblock->pagev[0]->logical;
- dev = sblock->pagev[0]->dev;
+ int ret = 0;
- if (sblock->no_io_error_seen)
- scrub_recheck_block_checksum(sblock);
+ if (!btrfs_is_zoned(fs_info))
+ return 0;
- if (!sblock->no_io_error_seen) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.read_errors++;
- spin_unlock(&sctx->stat_lock);
- btrfs_err_rl_in_rcu(fs_info,
- "IO error rebuilding logical %llu for dev %s",
- logical, rcu_str_deref(dev->name));
- } else if (sblock->header_error || sblock->checksum_error) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.uncorrectable_errors++;
- spin_unlock(&sctx->stat_lock);
- btrfs_err_rl_in_rcu(fs_info,
- "failed to rebuild valid logical %llu for dev %s",
- logical, rcu_str_deref(dev->name));
- } else {
- scrub_write_block_to_dev_replace(sblock);
+ mutex_lock(&sctx->wr_lock);
+ if (sctx->write_pointer < physical_end) {
+ ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
+ physical,
+ sctx->write_pointer);
+ if (ret)
+ btrfs_err(fs_info, "scrub: zoned: failed to recover write pointer");
}
+ mutex_unlock(&sctx->wr_lock);
+ btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
- scrub_block_put(sblock);
+ return ret;
+}
- if (sctx->is_dev_replace && sctx->flush_all_writes) {
- mutex_lock(&sctx->wr_lock);
- scrub_wr_submit(sctx);
- mutex_unlock(&sctx->wr_lock);
+static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
+ struct scrub_stripe *stripe,
+ u64 extent_start, u64 extent_len,
+ u64 extent_flags, u64 extent_gen)
+{
+ for (u64 cur_logical = max(stripe->logical, extent_start);
+ cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
+ extent_start + extent_len);
+ cur_logical += fs_info->sectorsize) {
+ const int nr_sector = (cur_logical - stripe->logical) >>
+ fs_info->sectorsize_bits;
+ struct scrub_sector_verification *sector =
+ &stripe->sectors[nr_sector];
+
+ scrub_bitmap_set_bit_has_extent(stripe, nr_sector);
+ if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ scrub_bitmap_set_bit_is_metadata(stripe, nr_sector);
+ sector->generation = extent_gen;
+ }
}
-
- scrub_pending_bio_dec(sctx);
}
-static void scrub_missing_raid56_pages(struct scrub_block *sblock)
+static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
{
- struct scrub_ctx *sctx = sblock->sctx;
- struct btrfs_fs_info *fs_info = sctx->fs_info;
- u64 length = sblock->page_count * PAGE_SIZE;
- u64 logical = sblock->pagev[0]->logical;
- struct btrfs_bio *bbio = NULL;
- struct bio *bio;
- struct btrfs_raid_bio *rbio;
- int ret;
- int i;
-
- btrfs_bio_counter_inc_blocked(fs_info);
- ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
- &length, &bbio);
- if (ret || !bbio || !bbio->raid_map)
- goto bbio_out;
-
- if (WARN_ON(!sctx->is_dev_replace ||
- !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
- /*
- * We shouldn't be scrubbing a missing device. Even for dev
- * replace, we should only get here for RAID 5/6. We either
- * managed to mount something with no mirrors remaining or
- * there's a bug in scrub_remap_extent()/btrfs_map_block().
- */
- goto bbio_out;
- }
-
- bio = btrfs_io_bio_alloc(0);
- bio->bi_iter.bi_sector = logical >> 9;
- bio->bi_private = sblock;
- bio->bi_end_io = scrub_missing_raid56_end_io;
-
- rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
- if (!rbio)
- goto rbio_out;
+ ASSERT(stripe->nr_sectors);
+ bitmap_zero(stripe->bitmaps, scrub_bitmap_nr_last * stripe->nr_sectors);
+}
- for (i = 0; i < sblock->page_count; i++) {
- struct scrub_page *spage = sblock->pagev[i];
+/*
+ * Locate one stripe which has at least one extent in its range.
+ *
+ * Return 0 if found such stripe, and store its info into @stripe.
+ * Return >0 if there is no such stripe in the specified range.
+ * Return <0 for error.
+ */
+static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
+ struct btrfs_path *extent_path,
+ struct btrfs_path *csum_path,
+ struct btrfs_device *dev, u64 physical,
+ int mirror_num, u64 logical_start,
+ u32 logical_len,
+ struct scrub_stripe *stripe)
+{
+ struct btrfs_fs_info *fs_info = bg->fs_info;
+ struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
+ struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
+ const u64 logical_end = logical_start + logical_len;
+ u64 cur_logical = logical_start;
+ u64 stripe_end;
+ u64 extent_start;
+ u64 extent_len;
+ u64 extent_flags;
+ u64 extent_gen;
+ int ret;
- raid56_add_scrub_pages(rbio, spage->page, spage->logical);
+ if (unlikely(!extent_root || !csum_root)) {
+ btrfs_err(fs_info, "scrub: no valid extent or csum root found");
+ return -EUCLEAN;
}
+ memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
+ stripe->nr_sectors);
+ scrub_stripe_reset_bitmaps(stripe);
- btrfs_init_work(&sblock->work, btrfs_scrub_helper,
- scrub_missing_raid56_worker, NULL, NULL);
- scrub_block_get(sblock);
- scrub_pending_bio_inc(sctx);
- raid56_submit_missing_rbio(rbio);
- return;
-
-rbio_out:
- bio_put(bio);
-bbio_out:
- btrfs_bio_counter_dec(fs_info);
- btrfs_put_bbio(bbio);
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
-}
+ /* The range must be inside the bg. */
+ ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length,
+ "bg->start=%llu logical_start=%llu logical_end=%llu end=%llu",
+ bg->start, logical_start, logical_end, bg->start + bg->length);
-static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
- u64 physical, struct btrfs_device *dev, u64 flags,
- u64 gen, int mirror_num, u8 *csum, int force,
- u64 physical_for_dev_replace)
-{
- struct scrub_block *sblock;
- int index;
+ ret = find_first_extent_item(extent_root, extent_path, logical_start,
+ logical_len);
+ /* Either error or not found. */
+ if (ret)
+ goto out;
+ get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
+ &extent_gen);
+ if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ stripe->nr_meta_extents++;
+ if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
+ stripe->nr_data_extents++;
+ cur_logical = max(extent_start, cur_logical);
- sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
- if (!sblock) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
- return -ENOMEM;
+ /*
+ * Round down to stripe boundary.
+ *
+ * The extra calculation against bg->start is to handle block groups
+ * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
+ */
+ stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
+ bg->start;
+ stripe->physical = physical + stripe->logical - logical_start;
+ stripe->dev = dev;
+ stripe->bg = bg;
+ stripe->mirror_num = mirror_num;
+ stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
+
+ /* Fill the first extent info into stripe->sectors[] array. */
+ fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
+ extent_flags, extent_gen);
+ cur_logical = extent_start + extent_len;
+
+ /* Fill the extent info for the remaining sectors. */
+ while (cur_logical <= stripe_end) {
+ ret = find_first_extent_item(extent_root, extent_path, cur_logical,
+ stripe_end - cur_logical + 1);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = 0;
+ break;
+ }
+ get_extent_info(extent_path, &extent_start, &extent_len,
+ &extent_flags, &extent_gen);
+ if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ stripe->nr_meta_extents++;
+ if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
+ stripe->nr_data_extents++;
+ fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
+ extent_flags, extent_gen);
+ cur_logical = extent_start + extent_len;
}
- /* one ref inside this function, plus one for each page added to
- * a bio later on */
- refcount_set(&sblock->refs, 1);
- sblock->sctx = sctx;
- sblock->no_io_error_seen = 1;
+ /* Now fill the data csum. */
+ if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
+ int sector_nr;
+ unsigned long csum_bitmap = 0;
- for (index = 0; len > 0; index++) {
- struct scrub_page *spage;
- u64 l = min_t(u64, len, PAGE_SIZE);
+ /* Csum space should have already been allocated. */
+ ASSERT(stripe->csums);
- spage = kzalloc(sizeof(*spage), GFP_KERNEL);
- if (!spage) {
-leave_nomem:
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
- scrub_block_put(sblock);
- return -ENOMEM;
- }
- BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
- scrub_page_get(spage);
- sblock->pagev[index] = spage;
- spage->sblock = sblock;
- spage->dev = dev;
- spage->flags = flags;
- spage->generation = gen;
- spage->logical = logical;
- spage->physical = physical;
- spage->physical_for_dev_replace = physical_for_dev_replace;
- spage->mirror_num = mirror_num;
- if (csum) {
- spage->have_csum = 1;
- memcpy(spage->csum, csum, sctx->csum_size);
- } else {
- spage->have_csum = 0;
- }
- sblock->page_count++;
- spage->page = alloc_page(GFP_KERNEL);
- if (!spage->page)
- goto leave_nomem;
- len -= l;
- logical += l;
- physical += l;
- physical_for_dev_replace += l;
- }
-
- WARN_ON(sblock->page_count == 0);
- if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
/*
- * This case should only be hit for RAID 5/6 device replace. See
- * the comment in scrub_missing_raid56_pages() for details.
+ * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
+ * should contain at most 16 sectors.
*/
- scrub_missing_raid56_pages(sblock);
- } else {
- for (index = 0; index < sblock->page_count; index++) {
- struct scrub_page *spage = sblock->pagev[index];
- int ret;
+ ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
- ret = scrub_add_page_to_rd_bio(sctx, spage);
- if (ret) {
- scrub_block_put(sblock);
- return ret;
- }
- }
+ ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
+ stripe->logical, stripe_end,
+ stripe->csums, &csum_bitmap);
+ if (ret < 0)
+ goto out;
+ if (ret > 0)
+ ret = 0;
- if (force)
- scrub_submit(sctx);
+ for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
+ stripe->sectors[sector_nr].csum = stripe->csums +
+ sector_nr * fs_info->csum_size;
+ }
}
-
- /* last one frees, either here or in bio completion for last page */
- scrub_block_put(sblock);
- return 0;
+ set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
+out:
+ return ret;
}
-static void scrub_bio_end_io(struct bio *bio)
+static void scrub_reset_stripe(struct scrub_stripe *stripe)
{
- struct scrub_bio *sbio = bio->bi_private;
- struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
+ scrub_stripe_reset_bitmaps(stripe);
- sbio->status = bio->bi_status;
- sbio->bio = bio;
+ stripe->nr_meta_extents = 0;
+ stripe->nr_data_extents = 0;
+ stripe->state = 0;
- btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
+ for (int i = 0; i < stripe->nr_sectors; i++) {
+ stripe->sectors[i].csum = NULL;
+ stripe->sectors[i].generation = 0;
+ }
}
-static void scrub_bio_end_io_worker(struct btrfs_work *work)
+static u32 stripe_length(const struct scrub_stripe *stripe)
{
- struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
- struct scrub_ctx *sctx = sbio->sctx;
- int i;
-
- BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
- if (sbio->status) {
- for (i = 0; i < sbio->page_count; i++) {
- struct scrub_page *spage = sbio->pagev[i];
-
- spage->io_error = 1;
- spage->sblock->no_io_error_seen = 0;
- }
- }
-
- /* now complete the scrub_block items that have all pages completed */
- for (i = 0; i < sbio->page_count; i++) {
- struct scrub_page *spage = sbio->pagev[i];
- struct scrub_block *sblock = spage->sblock;
-
- if (atomic_dec_and_test(&sblock->outstanding_pages))
- scrub_block_complete(sblock);
- scrub_block_put(sblock);
- }
-
- bio_put(sbio->bio);
- sbio->bio = NULL;
- spin_lock(&sctx->list_lock);
- sbio->next_free = sctx->first_free;
- sctx->first_free = sbio->index;
- spin_unlock(&sctx->list_lock);
-
- if (sctx->is_dev_replace && sctx->flush_all_writes) {
- mutex_lock(&sctx->wr_lock);
- scrub_wr_submit(sctx);
- mutex_unlock(&sctx->wr_lock);
- }
+ ASSERT(stripe->bg);
- scrub_pending_bio_dec(sctx);
+ return min(BTRFS_STRIPE_LEN,
+ stripe->bg->start + stripe->bg->length - stripe->logical);
}
-static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
- unsigned long *bitmap,
- u64 start, u64 len)
+static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe)
{
- u64 offset;
- u64 nsectors64;
- u32 nsectors;
- int sectorsize = sparity->sctx->fs_info->sectorsize;
-
- if (len >= sparity->stripe_len) {
- bitmap_set(bitmap, 0, sparity->nsectors);
- return;
- }
-
- start -= sparity->logic_start;
- start = div64_u64_rem(start, sparity->stripe_len, &offset);
- offset = div_u64(offset, sectorsize);
- nsectors64 = div_u64(len, sectorsize);
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct btrfs_bio *bbio = NULL;
+ unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
+ const unsigned long has_extent = scrub_bitmap_read_has_extent(stripe);
+ u64 stripe_len = BTRFS_STRIPE_LEN;
+ int mirror = stripe->mirror_num;
+ int i;
- ASSERT(nsectors64 < UINT_MAX);
- nsectors = (u32)nsectors64;
+ atomic_inc(&stripe->pending_io);
- if (offset + nsectors <= sparity->nsectors) {
- bitmap_set(bitmap, offset, nsectors);
- return;
- }
+ for_each_set_bit(i, &has_extent, stripe->nr_sectors) {
+ /* We're beyond the chunk boundary, no need to read anymore. */
+ if (i >= nr_sectors)
+ break;
- bitmap_set(bitmap, offset, sparity->nsectors - offset);
- bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
-}
+ /* The current sector cannot be merged, submit the bio. */
+ if (bbio &&
+ ((i > 0 && !test_bit(i - 1, &has_extent)) ||
+ bbio->bio.bi_iter.bi_size >= stripe_len)) {
+ ASSERT(bbio->bio.bi_iter.bi_size);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_bbio(bbio, mirror);
+ bbio = NULL;
+ }
-static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
- u64 start, u64 len)
-{
- __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
-}
+ if (!bbio) {
+ struct btrfs_io_stripe io_stripe = {};
+ struct btrfs_io_context *bioc = NULL;
+ const u64 logical = stripe->logical +
+ (i << fs_info->sectorsize_bits);
+ int ret;
-static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
- u64 start, u64 len)
-{
- __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
-}
+ io_stripe.rst_search_commit_root = true;
+ stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
+ /*
+ * For RST cases, we need to manually split the bbio to
+ * follow the RST boundary.
+ */
+ ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
+ &stripe_len, &bioc, &io_stripe, &mirror);
+ btrfs_put_bioc(bioc);
+ if (ret < 0) {
+ if (ret != -ENODATA) {
+ /*
+ * Earlier btrfs_get_raid_extent_offset()
+ * returned -ENODATA, which means there's
+ * no entry for the corresponding range
+ * in the stripe tree. But if it's in
+ * the extent tree, then it's a preallocated
+ * extent and not an error.
+ */
+ scrub_bitmap_set_bit_io_error(stripe, i);
+ scrub_bitmap_set_bit_error(stripe, i);
+ }
+ continue;
+ }
-static void scrub_block_complete(struct scrub_block *sblock)
-{
- int corrupted = 0;
+ bbio = alloc_scrub_bbio(fs_info, stripe->nr_sectors, REQ_OP_READ,
+ logical, scrub_read_endio, stripe);
+ }
- if (!sblock->no_io_error_seen) {
- corrupted = 1;
- scrub_handle_errored_block(sblock);
- } else {
- /*
- * if has checksum error, write via repair mechanism in
- * dev replace case, otherwise write here in dev replace
- * case.
- */
- corrupted = scrub_checksum(sblock);
- if (!corrupted && sblock->sctx->is_dev_replace)
- scrub_write_block_to_dev_replace(sblock);
+ scrub_bio_add_sector(bbio, stripe, i);
}
- if (sblock->sparity && corrupted && !sblock->data_corrected) {
- u64 start = sblock->pagev[0]->logical;
- u64 end = sblock->pagev[sblock->page_count - 1]->logical +
- PAGE_SIZE;
+ if (bbio) {
+ ASSERT(bbio->bio.bi_iter.bi_size);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_bbio(bbio, mirror);
+ }
- scrub_parity_mark_sectors_error(sblock->sparity,
- start, end - start);
+ if (atomic_dec_and_test(&stripe->pending_io)) {
+ wake_up(&stripe->io_wait);
+ INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
+ queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
}
}
-static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
+static void scrub_submit_initial_read(struct scrub_ctx *sctx,
+ struct scrub_stripe *stripe)
{
- struct btrfs_ordered_sum *sum = NULL;
- unsigned long index;
- unsigned long num_sectors;
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_bio *bbio;
+ const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
+ unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
+ int mirror = stripe->mirror_num;
- while (!list_empty(&sctx->csum_list)) {
- sum = list_first_entry(&sctx->csum_list,
- struct btrfs_ordered_sum, list);
- if (sum->bytenr > logical)
- return 0;
- if (sum->bytenr + sum->len > logical)
- break;
+ ASSERT(stripe->bg);
+ ASSERT(stripe->mirror_num > 0);
+ ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
- ++sctx->stat.csum_discards;
- list_del(&sum->list);
- kfree(sum);
- sum = NULL;
+ if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
+ scrub_submit_extent_sector_read(stripe);
+ return;
}
- if (!sum)
- return 0;
- index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
- ASSERT(index < UINT_MAX);
+ bbio = alloc_scrub_bbio(fs_info, BTRFS_STRIPE_LEN >> min_folio_shift, REQ_OP_READ,
+ stripe->logical, scrub_read_endio, stripe);
+ /* Read the whole range inside the chunk boundary. */
+ for (unsigned int cur = 0; cur < nr_sectors; cur++)
+ scrub_bio_add_sector(bbio, stripe, cur);
+ atomic_inc(&stripe->pending_io);
+
+ /*
+ * For dev-replace, either user asks to avoid the source dev, or
+ * the device is missing, we try the next mirror instead.
+ */
+ if (sctx->is_dev_replace &&
+ (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
+ BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
+ !stripe->dev->bdev)) {
+ int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
+ stripe->bg->length);
- num_sectors = sum->len / sctx->fs_info->sectorsize;
- memcpy(csum, sum->sums + index, sctx->csum_size);
- if (index == num_sectors - 1) {
- list_del(&sum->list);
- kfree(sum);
+ mirror = calc_next_mirror(mirror, num_copies);
}
- return 1;
+ btrfs_submit_bbio(bbio, mirror);
}
-/* scrub extent tries to collect up to 64 kB for each bio */
-static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
- u64 logical, u64 len,
- u64 physical, struct btrfs_device *dev, u64 flags,
- u64 gen, int mirror_num, u64 physical_for_dev_replace)
+static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
{
- int ret;
- u8 csum[BTRFS_CSUM_SIZE];
- u32 blocksize;
-
- if (flags & BTRFS_EXTENT_FLAG_DATA) {
- if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
- blocksize = map->stripe_len;
- else
- blocksize = sctx->fs_info->sectorsize;
- spin_lock(&sctx->stat_lock);
- sctx->stat.data_extents_scrubbed++;
- sctx->stat.data_bytes_scrubbed += len;
- spin_unlock(&sctx->stat_lock);
- } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
- if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
- blocksize = map->stripe_len;
- else
- blocksize = sctx->fs_info->nodesize;
- spin_lock(&sctx->stat_lock);
- sctx->stat.tree_extents_scrubbed++;
- sctx->stat.tree_bytes_scrubbed += len;
- spin_unlock(&sctx->stat_lock);
- } else {
- blocksize = sctx->fs_info->sectorsize;
- WARN_ON(1);
- }
+ const unsigned long error = scrub_bitmap_read_error(stripe);
+ int i;
- while (len) {
- u64 l = min_t(u64, len, blocksize);
- int have_csum = 0;
+ for_each_set_bit(i, &error, stripe->nr_sectors) {
+ if (scrub_bitmap_test_bit_is_metadata(stripe, i)) {
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
- if (flags & BTRFS_EXTENT_FLAG_DATA) {
- /* push csums to sbio */
- have_csum = scrub_find_csum(sctx, logical, csum);
- if (have_csum == 0)
- ++sctx->stat.no_csum;
+ btrfs_err(fs_info,
+ "scrub: stripe %llu has unrepaired metadata sector at logical %llu",
+ stripe->logical,
+ stripe->logical + (i << fs_info->sectorsize_bits));
+ return true;
}
- ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
- mirror_num, have_csum ? csum : NULL, 0,
- physical_for_dev_replace);
- if (ret)
- return ret;
- len -= l;
- logical += l;
- physical += l;
- physical_for_dev_replace += l;
}
- return 0;
+ return false;
}
-static int scrub_pages_for_parity(struct scrub_parity *sparity,
- u64 logical, u64 len,
- u64 physical, struct btrfs_device *dev,
- u64 flags, u64 gen, int mirror_num, u8 *csum)
+static void submit_initial_group_read(struct scrub_ctx *sctx,
+ unsigned int first_slot,
+ unsigned int nr_stripes)
{
- struct scrub_ctx *sctx = sparity->sctx;
- struct scrub_block *sblock;
- int index;
-
- sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
- if (!sblock) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
- return -ENOMEM;
- }
-
- /* one ref inside this function, plus one for each page added to
- * a bio later on */
- refcount_set(&sblock->refs, 1);
- sblock->sctx = sctx;
- sblock->no_io_error_seen = 1;
- sblock->sparity = sparity;
- scrub_parity_get(sparity);
+ struct blk_plug plug;
- for (index = 0; len > 0; index++) {
- struct scrub_page *spage;
- u64 l = min_t(u64, len, PAGE_SIZE);
+ ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
+ ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
- spage = kzalloc(sizeof(*spage), GFP_KERNEL);
- if (!spage) {
-leave_nomem:
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
- scrub_block_put(sblock);
- return -ENOMEM;
- }
- BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
- /* For scrub block */
- scrub_page_get(spage);
- sblock->pagev[index] = spage;
- /* For scrub parity */
- scrub_page_get(spage);
- list_add_tail(&spage->list, &sparity->spages);
- spage->sblock = sblock;
- spage->dev = dev;
- spage->flags = flags;
- spage->generation = gen;
- spage->logical = logical;
- spage->physical = physical;
- spage->mirror_num = mirror_num;
- if (csum) {
- spage->have_csum = 1;
- memcpy(spage->csum, csum, sctx->csum_size);
- } else {
- spage->have_csum = 0;
- }
- sblock->page_count++;
- spage->page = alloc_page(GFP_KERNEL);
- if (!spage->page)
- goto leave_nomem;
- len -= l;
- logical += l;
- physical += l;
- }
-
- WARN_ON(sblock->page_count == 0);
- for (index = 0; index < sblock->page_count; index++) {
- struct scrub_page *spage = sblock->pagev[index];
- int ret;
+ scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
+ btrfs_stripe_nr_to_offset(nr_stripes));
+ blk_start_plug(&plug);
+ for (int i = 0; i < nr_stripes; i++) {
+ struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
- ret = scrub_add_page_to_rd_bio(sctx, spage);
- if (ret) {
- scrub_block_put(sblock);
- return ret;
- }
+ /* Those stripes should be initialized. */
+ ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
+ scrub_submit_initial_read(sctx, stripe);
}
-
- /* last one frees, either here or in bio completion for last page */
- scrub_block_put(sblock);
- return 0;
+ blk_finish_plug(&plug);
}
-static int scrub_extent_for_parity(struct scrub_parity *sparity,
- u64 logical, u64 len,
- u64 physical, struct btrfs_device *dev,
- u64 flags, u64 gen, int mirror_num)
+static int flush_scrub_stripes(struct scrub_ctx *sctx)
{
- struct scrub_ctx *sctx = sparity->sctx;
- int ret;
- u8 csum[BTRFS_CSUM_SIZE];
- u32 blocksize;
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct scrub_stripe *stripe;
+ const int nr_stripes = sctx->cur_stripe;
+ int ret = 0;
- if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
- scrub_parity_mark_sectors_error(sparity, logical, len);
+ if (!nr_stripes)
return 0;
- }
- if (flags & BTRFS_EXTENT_FLAG_DATA) {
- blocksize = sparity->stripe_len;
- } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
- blocksize = sparity->stripe_len;
- } else {
- blocksize = sctx->fs_info->sectorsize;
- WARN_ON(1);
- }
+ ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
- while (len) {
- u64 l = min_t(u64, len, blocksize);
- int have_csum = 0;
+ /* Submit the stripes which are populated but not submitted. */
+ if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
+ const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
- if (flags & BTRFS_EXTENT_FLAG_DATA) {
- /* push csums to sbio */
- have_csum = scrub_find_csum(sctx, logical, csum);
- if (have_csum == 0)
- goto skip;
- }
- ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
- flags, gen, mirror_num,
- have_csum ? csum : NULL);
- if (ret)
- return ret;
-skip:
- len -= l;
- logical += l;
- physical += l;
+ submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
}
- return 0;
-}
-/*
- * Given a physical address, this will calculate it's
- * logical offset. if this is a parity stripe, it will return
- * the most left data stripe's logical offset.
- *
- * return 0 if it is a data stripe, 1 means parity stripe.
- */
-static int get_raid56_logic_offset(u64 physical, int num,
- struct map_lookup *map, u64 *offset,
- u64 *stripe_start)
-{
- int i;
- int j = 0;
- u64 stripe_nr;
- u64 last_offset;
- u32 stripe_index;
- u32 rot;
+ for (int i = 0; i < nr_stripes; i++) {
+ stripe = &sctx->stripes[i];
- last_offset = (physical - map->stripes[num].physical) *
- nr_data_stripes(map);
- if (stripe_start)
- *stripe_start = last_offset;
+ wait_event(stripe->repair_wait,
+ test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
+ }
- *offset = last_offset;
- for (i = 0; i < nr_data_stripes(map); i++) {
- *offset = last_offset + i * map->stripe_len;
+ /* Submit for dev-replace. */
+ if (sctx->is_dev_replace) {
+ /*
+ * For dev-replace, if we know there is something wrong with
+ * metadata, we should immediately abort.
+ */
+ for (int i = 0; i < nr_stripes; i++) {
+ if (unlikely(stripe_has_metadata_error(&sctx->stripes[i]))) {
+ ret = -EIO;
+ goto out;
+ }
+ }
+ for (int i = 0; i < nr_stripes; i++) {
+ unsigned long good;
+ unsigned long has_extent;
+ unsigned long error;
- stripe_nr = div64_u64(*offset, map->stripe_len);
- stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
+ stripe = &sctx->stripes[i];
- /* Work out the disk rotation on this stripe-set */
- stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
- /* calculate which stripe this data locates */
- rot += i;
- stripe_index = rot % map->num_stripes;
- if (stripe_index == num)
- return 0;
- if (stripe_index < num)
- j++;
+ ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
+
+ has_extent = scrub_bitmap_read_has_extent(stripe);
+ error = scrub_bitmap_read_error(stripe);
+ bitmap_andnot(&good, &has_extent, &error, stripe->nr_sectors);
+ scrub_write_sectors(sctx, stripe, good, true);
+ }
}
- *offset = last_offset + j * map->stripe_len;
- return 1;
-}
-static void scrub_free_parity(struct scrub_parity *sparity)
-{
- struct scrub_ctx *sctx = sparity->sctx;
- struct scrub_page *curr, *next;
- int nbits;
+ /* Wait for the above writebacks to finish. */
+ for (int i = 0; i < nr_stripes; i++) {
+ stripe = &sctx->stripes[i];
- nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
- if (nbits) {
+ wait_scrub_stripe_io(stripe);
spin_lock(&sctx->stat_lock);
- sctx->stat.read_errors += nbits;
- sctx->stat.uncorrectable_errors += nbits;
+ sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
spin_unlock(&sctx->stat_lock);
+ scrub_reset_stripe(stripe);
}
+out:
+ sctx->cur_stripe = 0;
+ return ret;
+}
- list_for_each_entry_safe(curr, next, &sparity->spages, list) {
- list_del_init(&curr->list);
- scrub_page_put(curr);
- }
-
- kfree(sparity);
+static void raid56_scrub_wait_endio(struct bio *bio)
+{
+ complete(bio->bi_private);
}
-static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
+static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
+ struct btrfs_device *dev, int mirror_num,
+ u64 logical, u32 length, u64 physical,
+ u64 *found_logical_ret)
{
- struct scrub_parity *sparity = container_of(work, struct scrub_parity,
- work);
- struct scrub_ctx *sctx = sparity->sctx;
+ struct scrub_stripe *stripe;
+ int ret;
- scrub_free_parity(sparity);
- scrub_pending_bio_dec(sctx);
+ /*
+ * There should always be one slot left, as caller filling the last
+ * slot should flush them all.
+ */
+ ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
+
+ /* @found_logical_ret must be specified. */
+ ASSERT(found_logical_ret);
+
+ stripe = &sctx->stripes[sctx->cur_stripe];
+ scrub_reset_stripe(stripe);
+ ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
+ &sctx->csum_path, dev, physical,
+ mirror_num, logical, length, stripe);
+ /* Either >0 as no more extents or <0 for error. */
+ if (ret)
+ return ret;
+ *found_logical_ret = stripe->logical;
+ sctx->cur_stripe++;
+
+ /* We filled one group, submit it. */
+ if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
+ const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
+
+ submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
+ }
+
+ /* Last slot used, flush them all. */
+ if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
+ return flush_scrub_stripes(sctx);
+ return 0;
}
-static void scrub_parity_bio_endio(struct bio *bio)
+/*
+ * Return 0 if we should not cancel the scrub.
+ * Return <0 if we need to cancel the scrub, returned value will
+ * indicate the reason:
+ * - -ECANCELED - Being explicitly canceled through ioctl.
+ * - -EINTR - Being interrupted by signal or fs/process freezing.
+ */
+static int should_cancel_scrub(const struct scrub_ctx *sctx)
{
- struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
- struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
-
- if (bio->bi_status)
- bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
- sparity->nsectors);
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
- bio_put(bio);
+ if (atomic_read(&fs_info->scrub_cancel_req) ||
+ atomic_read(&sctx->cancel_req))
+ return -ECANCELED;
- btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
- scrub_parity_bio_endio_worker, NULL, NULL);
- btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
+ /*
+ * The user (e.g. fsfreeze command) or power management (PM)
+ * suspend/hibernate can freeze the fs. And PM suspend/hibernate will
+ * also freeze all user processes.
+ *
+ * A user process can only be frozen when it is in user space, thus we
+ * have to cancel the run so that the process can return to the user
+ * space.
+ *
+ * Furthermore we have to check both filesystem and process freezing,
+ * as PM can be configured to freeze the filesystems before processes.
+ *
+ * If we only check fs freezing, then suspend without fs freezing
+ * will timeout, as the process is still in kernel space.
+ *
+ * If we only check process freezing, then suspend with fs freezing
+ * will timeout, as the running scrub will prevent the fs from being frozen.
+ */
+ if (fs_info->sb->s_writers.frozen > SB_UNFROZEN ||
+ freezing(current) || signal_pending(current))
+ return -EINTR;
+ return 0;
}
-static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
+static int scrub_raid56_cached_parity(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev,
+ struct btrfs_chunk_map *map,
+ u64 full_stripe_start,
+ unsigned long *extent_bitmap)
{
- struct scrub_ctx *sctx = sparity->sctx;
+ DECLARE_COMPLETION_ONSTACK(io_done);
struct btrfs_fs_info *fs_info = sctx->fs_info;
- struct bio *bio;
+ struct btrfs_io_context *bioc = NULL;
struct btrfs_raid_bio *rbio;
- struct btrfs_bio *bbio = NULL;
- u64 length;
+ struct bio bio;
+ const int data_stripes = nr_data_stripes(map);
+ u64 length = btrfs_stripe_nr_to_offset(data_stripes);
int ret;
- if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
- sparity->nsectors))
- goto out;
-
- length = sparity->logic_end - sparity->logic_start;
+ bio_init(&bio, NULL, NULL, 0, REQ_OP_READ);
+ bio.bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
+ bio.bi_private = &io_done;
+ bio.bi_end_io = raid56_scrub_wait_endio;
btrfs_bio_counter_inc_blocked(fs_info);
- ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
- &length, &bbio);
- if (ret || !bbio || !bbio->raid_map)
- goto bbio_out;
-
- bio = btrfs_io_bio_alloc(0);
- bio->bi_iter.bi_sector = sparity->logic_start >> 9;
- bio->bi_private = sparity;
- bio->bi_end_io = scrub_parity_bio_endio;
-
- rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
- length, sparity->scrub_dev,
- sparity->dbitmap,
- sparity->nsectors);
- if (!rbio)
- goto rbio_out;
-
- scrub_pending_bio_inc(sctx);
- raid56_parity_submit_scrub_rbio(rbio);
- return;
+ ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
+ &length, &bioc, NULL, NULL);
+ if (ret < 0)
+ goto out;
+ /* For RAID56 write there must be an @bioc allocated. */
+ ASSERT(bioc);
+ rbio = raid56_parity_alloc_scrub_rbio(&bio, bioc, scrub_dev, extent_bitmap,
+ BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
+ btrfs_put_bioc(bioc);
+ if (!rbio) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ /* Use the recovered stripes as cache to avoid read them from disk again. */
+ for (int i = 0; i < data_stripes; i++) {
+ struct scrub_stripe *stripe = &sctx->raid56_data_stripes[i];
-rbio_out:
- bio_put(bio);
-bbio_out:
- btrfs_bio_counter_dec(fs_info);
- btrfs_put_bbio(bbio);
- bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
- sparity->nsectors);
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
+ raid56_parity_cache_data_folios(rbio, stripe->folios,
+ full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
+ }
+ raid56_parity_submit_scrub_rbio(rbio);
+ wait_for_completion_io(&io_done);
+ ret = blk_status_to_errno(bio.bi_status);
out:
- scrub_free_parity(sparity);
+ btrfs_bio_counter_dec(fs_info);
+ bio_uninit(&bio);
+ return ret;
}
-static inline int scrub_calc_parity_bitmap_len(int nsectors)
+static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev,
+ struct btrfs_block_group *bg,
+ struct btrfs_chunk_map *map,
+ u64 full_stripe_start)
{
- return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
-}
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_path extent_path = { 0 };
+ struct btrfs_path csum_path = { 0 };
+ struct scrub_stripe *stripe;
+ bool all_empty = true;
+ const int data_stripes = nr_data_stripes(map);
+ unsigned long extent_bitmap = 0;
+ int ret;
-static void scrub_parity_get(struct scrub_parity *sparity)
-{
- refcount_inc(&sparity->refs);
-}
+ ASSERT(sctx->raid56_data_stripes);
-static void scrub_parity_put(struct scrub_parity *sparity)
-{
- if (!refcount_dec_and_test(&sparity->refs))
- return;
+ ret = should_cancel_scrub(sctx);
+ if (ret < 0)
+ return ret;
- scrub_parity_check_and_repair(sparity);
-}
+ if (atomic_read(&fs_info->scrub_pause_req))
+ scrub_blocked_if_needed(fs_info);
-static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
- struct map_lookup *map,
- struct btrfs_device *sdev,
- struct btrfs_path *path,
- u64 logic_start,
- u64 logic_end)
-{
- struct btrfs_fs_info *fs_info = sctx->fs_info;
- struct btrfs_root *root = fs_info->extent_root;
- struct btrfs_root *csum_root = fs_info->csum_root;
- struct btrfs_extent_item *extent;
- struct btrfs_bio *bbio = NULL;
- u64 flags;
- int ret;
- int slot;
- struct extent_buffer *l;
- struct btrfs_key key;
- u64 generation;
- u64 extent_logical;
- u64 extent_physical;
- u64 extent_len;
- u64 mapped_length;
- struct btrfs_device *extent_dev;
- struct scrub_parity *sparity;
- int nsectors;
- int bitmap_len;
- int extent_mirror_num;
- int stop_loop = 0;
-
- nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
- bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
- sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
- GFP_NOFS);
- if (!sparity) {
- spin_lock(&sctx->stat_lock);
- sctx->stat.malloc_errors++;
- spin_unlock(&sctx->stat_lock);
- return -ENOMEM;
+ spin_lock(&bg->lock);
+ if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
+ spin_unlock(&bg->lock);
+ return 0;
}
+ spin_unlock(&bg->lock);
- sparity->stripe_len = map->stripe_len;
- sparity->nsectors = nsectors;
- sparity->sctx = sctx;
- sparity->scrub_dev = sdev;
- sparity->logic_start = logic_start;
- sparity->logic_end = logic_end;
- refcount_set(&sparity->refs, 1);
- INIT_LIST_HEAD(&sparity->spages);
- sparity->dbitmap = sparity->bitmap;
- sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
-
- ret = 0;
- while (logic_start < logic_end) {
- if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
- key.type = BTRFS_METADATA_ITEM_KEY;
- else
- key.type = BTRFS_EXTENT_ITEM_KEY;
- key.objectid = logic_start;
- key.offset = (u64)-1;
-
- ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ /*
+ * For data stripe search, we cannot reuse the same extent/csum paths,
+ * as the data stripe bytenr may be smaller than previous extent. Thus
+ * we have to use our own extent/csum paths.
+ */
+ extent_path.search_commit_root = true;
+ extent_path.skip_locking = true;
+ csum_path.search_commit_root = true;
+ csum_path.skip_locking = true;
+
+ for (int i = 0; i < data_stripes; i++) {
+ int stripe_index;
+ int rot;
+ u64 physical;
+
+ stripe = &sctx->raid56_data_stripes[i];
+ rot = div_u64(full_stripe_start - bg->start,
+ data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
+ stripe_index = (i + rot) % map->num_stripes;
+ physical = map->stripes[stripe_index].physical +
+ btrfs_stripe_nr_to_offset(rot);
+
+ scrub_reset_stripe(stripe);
+ set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
+ ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
+ map->stripes[stripe_index].dev, physical, 1,
+ full_stripe_start + btrfs_stripe_nr_to_offset(i),
+ BTRFS_STRIPE_LEN, stripe);
if (ret < 0)
goto out;
-
+ /*
+ * No extent in this data stripe, need to manually mark them
+ * initialized to make later read submission happy.
+ */
if (ret > 0) {
- ret = btrfs_previous_extent_item(root, path, 0);
- if (ret < 0)
- goto out;
- if (ret > 0) {
- btrfs_release_path(path);
- ret = btrfs_search_slot(NULL, root, &key,
- path, 0, 0);
- if (ret < 0)
- goto out;
- }
+ stripe->logical = full_stripe_start +
+ btrfs_stripe_nr_to_offset(i);
+ stripe->dev = map->stripes[stripe_index].dev;
+ stripe->mirror_num = 1;
+ set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
}
+ }
- stop_loop = 0;
- while (1) {
- u64 bytes;
+ /* Check if all data stripes are empty. */
+ for (int i = 0; i < data_stripes; i++) {
+ stripe = &sctx->raid56_data_stripes[i];
+ if (!scrub_bitmap_empty_has_extent(stripe)) {
+ all_empty = false;
+ break;
+ }
+ }
+ if (all_empty) {
+ ret = 0;
+ goto out;
+ }
- l = path->nodes[0];
- slot = path->slots[0];
- if (slot >= btrfs_header_nritems(l)) {
- ret = btrfs_next_leaf(root, path);
- if (ret == 0)
- continue;
- if (ret < 0)
- goto out;
+ for (int i = 0; i < data_stripes; i++) {
+ stripe = &sctx->raid56_data_stripes[i];
+ scrub_submit_initial_read(sctx, stripe);
+ }
+ for (int i = 0; i < data_stripes; i++) {
+ stripe = &sctx->raid56_data_stripes[i];
- stop_loop = 1;
- break;
- }
- btrfs_item_key_to_cpu(l, &key, slot);
+ wait_event(stripe->repair_wait,
+ test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
+ }
+ /* For now, no zoned support for RAID56. */
+ ASSERT(!btrfs_is_zoned(sctx->fs_info));
- if (key.type != BTRFS_EXTENT_ITEM_KEY &&
- key.type != BTRFS_METADATA_ITEM_KEY)
- goto next;
+ /*
+ * Now all data stripes are properly verified. Check if we have any
+ * unrepaired, if so abort immediately or we could further corrupt the
+ * P/Q stripes.
+ *
+ * During the loop, also populate extent_bitmap.
+ */
+ for (int i = 0; i < data_stripes; i++) {
+ unsigned long error;
+ unsigned long has_extent;
- if (key.type == BTRFS_METADATA_ITEM_KEY)
- bytes = fs_info->nodesize;
- else
- bytes = key.offset;
+ stripe = &sctx->raid56_data_stripes[i];
- if (key.objectid + bytes <= logic_start)
- goto next;
+ error = scrub_bitmap_read_error(stripe);
+ has_extent = scrub_bitmap_read_has_extent(stripe);
- if (key.objectid >= logic_end) {
- stop_loop = 1;
- break;
- }
+ /*
+ * We should only check the errors where there is an extent.
+ * As we may hit an empty data stripe while it's missing.
+ */
+ bitmap_and(&error, &error, &has_extent, stripe->nr_sectors);
+ if (unlikely(!bitmap_empty(&error, stripe->nr_sectors))) {
+ btrfs_err(fs_info,
+"scrub: unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
+ full_stripe_start, i, stripe->nr_sectors,
+ &error);
+ ret = -EIO;
+ goto out;
+ }
+ bitmap_or(&extent_bitmap, &extent_bitmap, &has_extent,
+ stripe->nr_sectors);
+ }
- while (key.objectid >= logic_start + map->stripe_len)
- logic_start += map->stripe_len;
-
- extent = btrfs_item_ptr(l, slot,
- struct btrfs_extent_item);
- flags = btrfs_extent_flags(l, extent);
- generation = btrfs_extent_generation(l, extent);
-
- if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
- (key.objectid < logic_start ||
- key.objectid + bytes >
- logic_start + map->stripe_len)) {
- btrfs_err(fs_info,
- "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
- key.objectid, logic_start);
- spin_lock(&sctx->stat_lock);
- sctx->stat.uncorrectable_errors++;
- spin_unlock(&sctx->stat_lock);
- goto next;
- }
-again:
- extent_logical = key.objectid;
- extent_len = bytes;
+ /* Now we can check and regenerate the P/Q stripe. */
+ ret = scrub_raid56_cached_parity(sctx, scrub_dev, map, full_stripe_start,
+ &extent_bitmap);
+out:
+ btrfs_release_path(&extent_path);
+ btrfs_release_path(&csum_path);
+ return ret;
+}
- if (extent_logical < logic_start) {
- extent_len -= logic_start - extent_logical;
- extent_logical = logic_start;
- }
+/*
+ * Scrub one range which can only has simple mirror based profile.
+ * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
+ * RAID0/RAID10).
+ *
+ * Since we may need to handle a subset of block group, we need @logical_start
+ * and @logical_length parameter.
+ */
+static int scrub_simple_mirror(struct scrub_ctx *sctx,
+ struct btrfs_block_group *bg,
+ u64 logical_start, u64 logical_length,
+ struct btrfs_device *device,
+ u64 physical, int mirror_num)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ const u64 logical_end = logical_start + logical_length;
+ u64 cur_logical = logical_start;
+ int ret = 0;
- if (extent_logical + extent_len >
- logic_start + map->stripe_len)
- extent_len = logic_start + map->stripe_len -
- extent_logical;
+ /* The range must be inside the bg */
+ ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
- scrub_parity_mark_sectors_data(sparity, extent_logical,
- extent_len);
+ /* Go through each extent items inside the logical range */
+ while (cur_logical < logical_end) {
+ u64 found_logical = U64_MAX;
+ u64 cur_physical = physical + cur_logical - logical_start;
- mapped_length = extent_len;
- bbio = NULL;
- ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
- extent_logical, &mapped_length, &bbio,
- 0);
- if (!ret) {
- if (!bbio || mapped_length < extent_len)
- ret = -EIO;
- }
- if (ret) {
- btrfs_put_bbio(bbio);
- goto out;
- }
- extent_physical = bbio->stripes[0].physical;
- extent_mirror_num = bbio->mirror_num;
- extent_dev = bbio->stripes[0].dev;
- btrfs_put_bbio(bbio);
-
- ret = btrfs_lookup_csums_range(csum_root,
- extent_logical,
- extent_logical + extent_len - 1,
- &sctx->csum_list, 1);
- if (ret)
- goto out;
+ ret = should_cancel_scrub(sctx);
+ if (ret < 0)
+ break;
- ret = scrub_extent_for_parity(sparity, extent_logical,
- extent_len,
- extent_physical,
- extent_dev, flags,
- generation,
- extent_mirror_num);
+ if (atomic_read(&fs_info->scrub_pause_req))
+ scrub_blocked_if_needed(fs_info);
- scrub_free_csums(sctx);
+ spin_lock(&bg->lock);
+ if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
+ spin_unlock(&bg->lock);
+ ret = 0;
+ break;
+ }
+ spin_unlock(&bg->lock);
- if (ret)
- goto out;
+ ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
+ cur_logical, logical_end - cur_logical,
+ cur_physical, &found_logical);
+ if (ret > 0) {
+ /* No more extent, just update the accounting */
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.last_physical = physical + logical_length;
+ spin_unlock(&sctx->stat_lock);
+ ret = 0;
+ break;
+ }
+ if (ret < 0)
+ break;
- if (extent_logical + extent_len <
- key.objectid + bytes) {
- logic_start += map->stripe_len;
+ /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
+ ASSERT(found_logical != U64_MAX);
+ cur_logical = found_logical + BTRFS_STRIPE_LEN;
- if (logic_start >= logic_end) {
- stop_loop = 1;
- break;
- }
+ /* Don't hold CPU for too long time */
+ cond_resched();
+ }
+ return ret;
+}
- if (logic_start < key.objectid + bytes) {
- cond_resched();
- goto again;
- }
- }
-next:
- path->slots[0]++;
- }
+/* Calculate the full stripe length for simple stripe based profiles */
+static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
+{
+ ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID10));
- btrfs_release_path(path);
+ return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
+}
- if (stop_loop)
- break;
+/* Get the logical bytenr for the stripe */
+static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
+ struct btrfs_block_group *bg,
+ int stripe_index)
+{
+ ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID10));
+ ASSERT(stripe_index < map->num_stripes);
- logic_start += map->stripe_len;
- }
-out:
- if (ret < 0)
- scrub_parity_mark_sectors_error(sparity, logic_start,
- logic_end - logic_start);
- scrub_parity_put(sparity);
- scrub_submit(sctx);
- mutex_lock(&sctx->wr_lock);
- scrub_wr_submit(sctx);
- mutex_unlock(&sctx->wr_lock);
+ /*
+ * (stripe_index / sub_stripes) gives how many data stripes we need to
+ * skip.
+ */
+ return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
+ bg->start;
+}
- btrfs_release_path(path);
- return ret < 0 ? ret : 0;
+/* Get the mirror number for the stripe */
+static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
+{
+ ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID10));
+ ASSERT(stripe_index < map->num_stripes);
+
+ /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
+ return stripe_index % map->sub_stripes + 1;
+}
+
+static int scrub_simple_stripe(struct scrub_ctx *sctx,
+ struct btrfs_block_group *bg,
+ struct btrfs_chunk_map *map,
+ struct btrfs_device *device,
+ int stripe_index)
+{
+ const u64 logical_increment = simple_stripe_full_stripe_len(map);
+ const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
+ const u64 orig_physical = map->stripes[stripe_index].physical;
+ const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
+ u64 cur_logical = orig_logical;
+ u64 cur_physical = orig_physical;
+ int ret = 0;
+
+ while (cur_logical < bg->start + bg->length) {
+ /*
+ * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
+ * just RAID1, so we can reuse scrub_simple_mirror() to scrub
+ * this stripe.
+ */
+ ret = scrub_simple_mirror(sctx, bg, cur_logical,
+ BTRFS_STRIPE_LEN, device, cur_physical,
+ mirror_num);
+ if (ret)
+ return ret;
+ /* Skip to next stripe which belongs to the target device */
+ cur_logical += logical_increment;
+ /* For physical offset, we just go to next stripe */
+ cur_physical += BTRFS_STRIPE_LEN;
+ }
+ return ret;
}
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
- struct map_lookup *map,
+ struct btrfs_block_group *bg,
+ struct btrfs_chunk_map *map,
struct btrfs_device *scrub_dev,
- int num, u64 base, u64 length)
+ int stripe_index)
{
- struct btrfs_path *path, *ppath;
struct btrfs_fs_info *fs_info = sctx->fs_info;
- struct btrfs_root *root = fs_info->extent_root;
- struct btrfs_root *csum_root = fs_info->csum_root;
- struct btrfs_extent_item *extent;
- struct blk_plug plug;
- u64 flags;
+ const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
+ const u64 chunk_logical = bg->start;
int ret;
- int slot;
- u64 nstripes;
- struct extent_buffer *l;
- u64 physical;
+ int ret2;
+ u64 physical = map->stripes[stripe_index].physical;
+ const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
+ const u64 physical_end = physical + dev_stripe_len;
u64 logical;
u64 logic_end;
- u64 physical_end;
- u64 generation;
- int mirror_num;
- struct reada_control *reada1;
- struct reada_control *reada2;
- struct btrfs_key key;
- struct btrfs_key key_end;
- u64 increment = map->stripe_len;
+ /* The logical increment after finishing one stripe */
+ u64 increment;
+ /* Offset inside the chunk */
u64 offset;
- u64 extent_logical;
- u64 extent_physical;
- u64 extent_len;
u64 stripe_logical;
- u64 stripe_end;
- struct btrfs_device *extent_dev;
- int extent_mirror_num;
- int stop_loop = 0;
-
- physical = map->stripes[num].physical;
- offset = 0;
- nstripes = div64_u64(length, map->stripe_len);
- if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
- offset = map->stripe_len * num;
- increment = map->stripe_len * map->num_stripes;
- mirror_num = 1;
- } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
- int factor = map->num_stripes / map->sub_stripes;
- offset = map->stripe_len * (num / map->sub_stripes);
- increment = map->stripe_len * factor;
- mirror_num = num % map->sub_stripes + 1;
- } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
- increment = map->stripe_len;
- mirror_num = num % map->num_stripes + 1;
- } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
- increment = map->stripe_len;
- mirror_num = num % map->num_stripes + 1;
- } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
- get_raid56_logic_offset(physical, num, map, &offset, NULL);
- increment = map->stripe_len * nr_data_stripes(map);
- mirror_num = 1;
- } else {
- increment = map->stripe_len;
- mirror_num = 1;
- }
- path = btrfs_alloc_path();
- if (!path)
- return -ENOMEM;
+ /* Extent_path should be released by now. */
+ ASSERT(sctx->extent_path.nodes[0] == NULL);
- ppath = btrfs_alloc_path();
- if (!ppath) {
- btrfs_free_path(path);
- return -ENOMEM;
+ scrub_blocked_if_needed(fs_info);
+
+ if (sctx->is_dev_replace &&
+ btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
+ mutex_lock(&sctx->wr_lock);
+ sctx->write_pointer = physical;
+ mutex_unlock(&sctx->wr_lock);
}
- /*
- * work on commit root. The related disk blocks are static as
- * long as COW is applied. This means, it is save to rewrite
- * them to repair disk errors without any race conditions
- */
- path->search_commit_root = 1;
- path->skip_locking = 1;
+ /* Prepare the extra data stripes used by RAID56. */
+ if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
+ ASSERT(sctx->raid56_data_stripes == NULL);
- ppath->search_commit_root = 1;
- ppath->skip_locking = 1;
+ sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
+ sizeof(struct scrub_stripe),
+ GFP_KERNEL);
+ if (!sctx->raid56_data_stripes) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ for (int i = 0; i < nr_data_stripes(map); i++) {
+ ret = init_scrub_stripe(fs_info,
+ &sctx->raid56_data_stripes[i]);
+ if (ret < 0)
+ goto out;
+ sctx->raid56_data_stripes[i].bg = bg;
+ sctx->raid56_data_stripes[i].sctx = sctx;
+ }
+ }
/*
- * trigger the readahead for extent tree csum tree and wait for
- * completion. During readahead, the scrub is officially paused
- * to not hold off transaction commits
+ * There used to be a big double loop to handle all profiles using the
+ * same routine, which grows larger and more gross over time.
+ *
+ * So here we handle each profile differently, so simpler profiles
+ * have simpler scrubbing function.
*/
- logical = base + offset;
- physical_end = physical + nstripes * map->stripe_len;
- if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
- get_raid56_logic_offset(physical_end, num,
- map, &logic_end, NULL);
- logic_end += base;
- } else {
- logic_end = logical + increment * nstripes;
+ if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_RAID56_MASK))) {
+ /*
+ * Above check rules out all complex profile, the remaining
+ * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
+ * mirrored duplication without stripe.
+ *
+ * Only @physical and @mirror_num needs to calculated using
+ * @stripe_index.
+ */
+ ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length,
+ scrub_dev, map->stripes[stripe_index].physical,
+ stripe_index + 1);
+ offset = 0;
+ goto out;
+ }
+ if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
+ ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
+ offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
+ goto out;
}
- wait_event(sctx->list_wait,
- atomic_read(&sctx->bios_in_flight) == 0);
- scrub_blocked_if_needed(fs_info);
- /* FIXME it might be better to start readahead at commit root */
- key.objectid = logical;
- key.type = BTRFS_EXTENT_ITEM_KEY;
- key.offset = (u64)0;
- key_end.objectid = logic_end;
- key_end.type = BTRFS_METADATA_ITEM_KEY;
- key_end.offset = (u64)-1;
- reada1 = btrfs_reada_add(root, &key, &key_end);
-
- key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
- key.type = BTRFS_EXTENT_CSUM_KEY;
- key.offset = logical;
- key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
- key_end.type = BTRFS_EXTENT_CSUM_KEY;
- key_end.offset = logic_end;
- reada2 = btrfs_reada_add(csum_root, &key, &key_end);
-
- if (!IS_ERR(reada1))
- btrfs_reada_wait(reada1);
- if (!IS_ERR(reada2))
- btrfs_reada_wait(reada2);
+ /* Only RAID56 goes through the old code */
+ ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
+ ret = 0;
+ /* Calculate the logical end of the stripe */
+ get_raid56_logic_offset(physical_end, stripe_index,
+ map, &logic_end, NULL);
+ logic_end += chunk_logical;
- /*
- * collect all data csums for the stripe to avoid seeking during
- * the scrub. This might currently (crc32) end up to be about 1MB
- */
- blk_start_plug(&plug);
+ /* Initialize @offset in case we need to go to out: label */
+ get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
+ increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
/*
- * now find all extents for each stripe and scrub them
+ * Due to the rotation, for RAID56 it's better to iterate each stripe
+ * using their physical offset.
*/
- ret = 0;
while (physical < physical_end) {
- /*
- * canceled?
- */
- if (atomic_read(&fs_info->scrub_cancel_req) ||
- atomic_read(&sctx->cancel_req)) {
- ret = -ECANCELED;
- goto out;
+ ret = get_raid56_logic_offset(physical, stripe_index, map,
+ &logical, &stripe_logical);
+ logical += chunk_logical;
+ if (ret) {
+ /* it is parity strip */
+ stripe_logical += chunk_logical;
+ ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
+ map, stripe_logical);
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
+ physical_end);
+ spin_unlock(&sctx->stat_lock);
+ if (ret)
+ goto out;
+ goto next;
}
+
/*
- * check to see if we have to pause
+ * Now we're at a data stripe, scrub each extents in the range.
+ *
+ * At this stage, if we ignore the repair part, inside each data
+ * stripe it is no different than SINGLE profile.
+ * We can reuse scrub_simple_mirror() here, as the repair part
+ * is still based on @mirror_num.
*/
- if (atomic_read(&fs_info->scrub_pause_req)) {
- /* push queued extents */
- sctx->flush_all_writes = true;
- scrub_submit(sctx);
- mutex_lock(&sctx->wr_lock);
- scrub_wr_submit(sctx);
- mutex_unlock(&sctx->wr_lock);
- wait_event(sctx->list_wait,
- atomic_read(&sctx->bios_in_flight) == 0);
- sctx->flush_all_writes = false;
- scrub_blocked_if_needed(fs_info);
- }
-
- if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
- ret = get_raid56_logic_offset(physical, num, map,
- &logical,
- &stripe_logical);
- logical += base;
- if (ret) {
- /* it is parity strip */
- stripe_logical += base;
- stripe_end = stripe_logical + increment;
- ret = scrub_raid56_parity(sctx, map, scrub_dev,
- ppath, stripe_logical,
- stripe_end);
- if (ret)
- goto out;
- goto skip;
- }
- }
-
- if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
- key.type = BTRFS_METADATA_ITEM_KEY;
- else
- key.type = BTRFS_EXTENT_ITEM_KEY;
- key.objectid = logical;
- key.offset = (u64)-1;
-
- ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN,
+ scrub_dev, physical, 1);
if (ret < 0)
goto out;
-
- if (ret > 0) {
- ret = btrfs_previous_extent_item(root, path, 0);
- if (ret < 0)
- goto out;
- if (ret > 0) {
- /* there's no smaller item, so stick with the
- * larger one */
- btrfs_release_path(path);
- ret = btrfs_search_slot(NULL, root, &key,
- path, 0, 0);
- if (ret < 0)
- goto out;
- }
- }
-
- stop_loop = 0;
- while (1) {
- u64 bytes;
-
- l = path->nodes[0];
- slot = path->slots[0];
- if (slot >= btrfs_header_nritems(l)) {
- ret = btrfs_next_leaf(root, path);
- if (ret == 0)
- continue;
- if (ret < 0)
- goto out;
-
- stop_loop = 1;
- break;
- }
- btrfs_item_key_to_cpu(l, &key, slot);
-
- if (key.type != BTRFS_EXTENT_ITEM_KEY &&
- key.type != BTRFS_METADATA_ITEM_KEY)
- goto next;
-
- if (key.type == BTRFS_METADATA_ITEM_KEY)
- bytes = fs_info->nodesize;
- else
- bytes = key.offset;
-
- if (key.objectid + bytes <= logical)
- goto next;
-
- if (key.objectid >= logical + map->stripe_len) {
- /* out of this device extent */
- if (key.objectid >= logic_end)
- stop_loop = 1;
- break;
- }
-
- extent = btrfs_item_ptr(l, slot,
- struct btrfs_extent_item);
- flags = btrfs_extent_flags(l, extent);
- generation = btrfs_extent_generation(l, extent);
-
- if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
- (key.objectid < logical ||
- key.objectid + bytes >
- logical + map->stripe_len)) {
- btrfs_err(fs_info,
- "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
- key.objectid, logical);
- spin_lock(&sctx->stat_lock);
- sctx->stat.uncorrectable_errors++;
- spin_unlock(&sctx->stat_lock);
- goto next;
- }
-
-again:
- extent_logical = key.objectid;
- extent_len = bytes;
-
- /*
- * trim extent to this stripe
- */
- if (extent_logical < logical) {
- extent_len -= logical - extent_logical;
- extent_logical = logical;
- }
- if (extent_logical + extent_len >
- logical + map->stripe_len) {
- extent_len = logical + map->stripe_len -
- extent_logical;
- }
-
- extent_physical = extent_logical - logical + physical;
- extent_dev = scrub_dev;
- extent_mirror_num = mirror_num;
- if (sctx->is_dev_replace)
- scrub_remap_extent(fs_info, extent_logical,
- extent_len, &extent_physical,
- &extent_dev,
- &extent_mirror_num);
-
- ret = btrfs_lookup_csums_range(csum_root,
- extent_logical,
- extent_logical +
- extent_len - 1,
- &sctx->csum_list, 1);
- if (ret)
- goto out;
-
- ret = scrub_extent(sctx, map, extent_logical, extent_len,
- extent_physical, extent_dev, flags,
- generation, extent_mirror_num,
- extent_logical - logical + physical);
-
- scrub_free_csums(sctx);
-
- if (ret)
- goto out;
-
- if (extent_logical + extent_len <
- key.objectid + bytes) {
- if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
- /*
- * loop until we find next data stripe
- * or we have finished all stripes.
- */
-loop:
- physical += map->stripe_len;
- ret = get_raid56_logic_offset(physical,
- num, map, &logical,
- &stripe_logical);
- logical += base;
-
- if (ret && physical < physical_end) {
- stripe_logical += base;
- stripe_end = stripe_logical +
- increment;
- ret = scrub_raid56_parity(sctx,
- map, scrub_dev, ppath,
- stripe_logical,
- stripe_end);
- if (ret)
- goto out;
- goto loop;
- }
- } else {
- physical += map->stripe_len;
- logical += increment;
- }
- if (logical < key.objectid + bytes) {
- cond_resched();
- goto again;
- }
-
- if (physical >= physical_end) {
- stop_loop = 1;
- break;
- }
- }
next:
- path->slots[0]++;
- }
- btrfs_release_path(path);
-skip:
logical += increment;
- physical += map->stripe_len;
+ physical += BTRFS_STRIPE_LEN;
spin_lock(&sctx->stat_lock);
- if (stop_loop)
- sctx->stat.last_physical = map->stripes[num].physical +
- length;
- else
- sctx->stat.last_physical = physical;
+ sctx->stat.last_physical = physical;
spin_unlock(&sctx->stat_lock);
- if (stop_loop)
- break;
}
out:
- /* push queued extents */
- scrub_submit(sctx);
- mutex_lock(&sctx->wr_lock);
- scrub_wr_submit(sctx);
- mutex_unlock(&sctx->wr_lock);
+ ret2 = flush_scrub_stripes(sctx);
+ if (!ret)
+ ret = ret2;
+ btrfs_release_path(&sctx->extent_path);
+ btrfs_release_path(&sctx->csum_path);
+
+ if (sctx->raid56_data_stripes) {
+ for (int i = 0; i < nr_data_stripes(map); i++)
+ release_scrub_stripe(&sctx->raid56_data_stripes[i]);
+ kfree(sctx->raid56_data_stripes);
+ sctx->raid56_data_stripes = NULL;
+ }
+
+ if (sctx->is_dev_replace && ret >= 0) {
+ ret2 = sync_write_pointer_for_zoned(sctx,
+ chunk_logical + offset,
+ map->stripes[stripe_index].physical,
+ physical_end);
+ if (ret2)
+ ret = ret2;
+ }
- blk_finish_plug(&plug);
- btrfs_free_path(path);
- btrfs_free_path(ppath);
return ret < 0 ? ret : 0;
}
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
+ struct btrfs_block_group *bg,
struct btrfs_device *scrub_dev,
- u64 chunk_offset, u64 length,
u64 dev_offset,
- struct btrfs_block_group_cache *cache)
+ u64 dev_extent_len)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
- struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
- struct map_lookup *map;
- struct extent_map *em;
+ struct btrfs_chunk_map *map;
int i;
int ret = 0;
- read_lock(&map_tree->map_tree.lock);
- em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
- read_unlock(&map_tree->map_tree.lock);
-
- if (!em) {
+ map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
+ if (!map) {
/*
* Might have been an unused block group deleted by the cleaner
* kthread or relocation.
*/
- spin_lock(&cache->lock);
- if (!cache->removed)
+ spin_lock(&bg->lock);
+ if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
ret = -EINVAL;
- spin_unlock(&cache->lock);
+ spin_unlock(&bg->lock);
return ret;
}
-
- map = em->map_lookup;
- if (em->start != chunk_offset)
+ if (map->start != bg->start)
goto out;
-
- if (em->len < length)
+ if (map->chunk_len < dev_extent_len)
goto out;
for (i = 0; i < map->num_stripes; ++i) {
if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
map->stripes[i].physical == dev_offset) {
- ret = scrub_stripe(sctx, map, scrub_dev, i,
- chunk_offset, length);
+ ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
if (ret)
goto out;
}
}
out:
- free_extent_map(em);
+ btrfs_free_chunk_map(map);
return ret;
}
+static int finish_extent_writes_for_zoned(struct btrfs_root *root,
+ struct btrfs_block_group *cache)
+{
+ struct btrfs_fs_info *fs_info = cache->fs_info;
+
+ if (!btrfs_is_zoned(fs_info))
+ return 0;
+
+ btrfs_wait_block_group_reservations(cache);
+ btrfs_wait_nocow_writers(cache);
+ btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
+
+ return btrfs_commit_current_transaction(root);
+}
+
static noinline_for_stack
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
struct btrfs_device *scrub_dev, u64 start, u64 end)
{
struct btrfs_dev_extent *dev_extent = NULL;
- struct btrfs_path *path;
+ BTRFS_PATH_AUTO_FREE(path);
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct btrfs_root *root = fs_info->dev_root;
- u64 length;
u64 chunk_offset;
int ret = 0;
int ro_set;
@@ -3471,7 +2680,7 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
struct extent_buffer *l;
struct btrfs_key key;
struct btrfs_key found_key;
- struct btrfs_block_group_cache *cache;
+ struct btrfs_block_group *cache;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
path = btrfs_alloc_path();
@@ -3479,14 +2688,16 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
return -ENOMEM;
path->reada = READA_FORWARD;
- path->search_commit_root = 1;
- path->skip_locking = 1;
+ path->search_commit_root = true;
+ path->skip_locking = true;
key.objectid = scrub_dev->devid;
- key.offset = 0ull;
key.type = BTRFS_DEV_EXTENT_KEY;
+ key.offset = 0ull;
while (1) {
+ u64 dev_extent_len;
+
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
break;
@@ -3523,9 +2734,9 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
break;
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
- length = btrfs_dev_extent_length(l, dev_extent);
+ dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
- if (found_key.offset + length <= start)
+ if (found_key.offset + dev_extent_len <= start)
goto skip;
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
@@ -3541,6 +2752,55 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
if (!cache)
goto skip;
+ ASSERT(cache->start <= chunk_offset);
+ /*
+ * We are using the commit root to search for device extents, so
+ * that means we could have found a device extent item from a
+ * block group that was deleted in the current transaction. The
+ * logical start offset of the deleted block group, stored at
+ * @chunk_offset, might be part of the logical address range of
+ * a new block group (which uses different physical extents).
+ * In this case btrfs_lookup_block_group() has returned the new
+ * block group, and its start address is less than @chunk_offset.
+ *
+ * We skip such new block groups, because it's pointless to
+ * process them, as we won't find their extents because we search
+ * for them using the commit root of the extent tree. For a device
+ * replace it's also fine to skip it, we won't miss copying them
+ * to the target device because we have the write duplication
+ * setup through the regular write path (by btrfs_map_block()),
+ * and we have committed a transaction when we started the device
+ * replace, right after setting up the device replace state.
+ */
+ if (cache->start < chunk_offset) {
+ btrfs_put_block_group(cache);
+ goto skip;
+ }
+
+ if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
+ if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
+ btrfs_put_block_group(cache);
+ goto skip;
+ }
+ }
+
+ /*
+ * Make sure that while we are scrubbing the corresponding block
+ * group doesn't get its logical address and its device extents
+ * reused for another block group, which can possibly be of a
+ * different type and different profile. We do this to prevent
+ * false error detections and crashes due to bogus attempts to
+ * repair extents.
+ */
+ spin_lock(&cache->lock);
+ if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
+ spin_unlock(&cache->lock);
+ btrfs_put_block_group(cache);
+ goto skip;
+ }
+ btrfs_freeze_block_group(cache);
+ spin_unlock(&cache->lock);
+
/*
* we need call btrfs_inc_block_group_ro() with scrubs_paused,
* to avoid deadlock caused by:
@@ -3550,111 +2810,110 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
* -> btrfs_scrub_pause()
*/
scrub_pause_on(fs_info);
- ret = btrfs_inc_block_group_ro(cache);
+
+ /*
+ * Don't do chunk preallocation for scrub.
+ *
+ * This is especially important for SYSTEM bgs, or we can hit
+ * -EFBIG from btrfs_finish_chunk_alloc() like:
+ * 1. The only SYSTEM bg is marked RO.
+ * Since SYSTEM bg is small, that's pretty common.
+ * 2. New SYSTEM bg will be allocated
+ * Due to regular version will allocate new chunk.
+ * 3. New SYSTEM bg is empty and will get cleaned up
+ * Before cleanup really happens, it's marked RO again.
+ * 4. Empty SYSTEM bg get scrubbed
+ * We go back to 2.
+ *
+ * This can easily boost the amount of SYSTEM chunks if cleaner
+ * thread can't be triggered fast enough, and use up all space
+ * of btrfs_super_block::sys_chunk_array
+ *
+ * While for dev replace, we need to try our best to mark block
+ * group RO, to prevent race between:
+ * - Write duplication
+ * Contains latest data
+ * - Scrub copy
+ * Contains data from commit tree
+ *
+ * If target block group is not marked RO, nocow writes can
+ * be overwritten by scrub copy, causing data corruption.
+ * So for dev-replace, it's not allowed to continue if a block
+ * group is not RO.
+ */
+ ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
if (!ret && sctx->is_dev_replace) {
- /*
- * If we are doing a device replace wait for any tasks
- * that started delalloc right before we set the block
- * group to RO mode, as they might have just allocated
- * an extent from it or decided they could do a nocow
- * write. And if any such tasks did that, wait for their
- * ordered extents to complete and then commit the
- * current transaction, so that we can later see the new
- * extent items in the extent tree - the ordered extents
- * create delayed data references (for cow writes) when
- * they complete, which will be run and insert the
- * corresponding extent items into the extent tree when
- * we commit the transaction they used when running
- * inode.c:btrfs_finish_ordered_io(). We later use
- * the commit root of the extent tree to find extents
- * to copy from the srcdev into the tgtdev, and we don't
- * want to miss any new extents.
- */
- btrfs_wait_block_group_reservations(cache);
- btrfs_wait_nocow_writers(cache);
- ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
- cache->key.objectid,
- cache->key.offset);
- if (ret > 0) {
- struct btrfs_trans_handle *trans;
-
- trans = btrfs_join_transaction(root);
- if (IS_ERR(trans))
- ret = PTR_ERR(trans);
- else
- ret = btrfs_commit_transaction(trans);
- if (ret) {
- scrub_pause_off(fs_info);
- btrfs_put_block_group(cache);
- break;
- }
+ ret = finish_extent_writes_for_zoned(root, cache);
+ if (ret) {
+ btrfs_dec_block_group_ro(cache);
+ scrub_pause_off(fs_info);
+ btrfs_put_block_group(cache);
+ break;
}
}
- scrub_pause_off(fs_info);
if (ret == 0) {
ro_set = 1;
- } else if (ret == -ENOSPC) {
+ } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
+ !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
/*
* btrfs_inc_block_group_ro return -ENOSPC when it
* failed in creating new chunk for metadata.
- * It is not a problem for scrub/replace, because
+ * It is not a problem for scrub, because
* metadata are always cowed, and our scrub paused
* commit_transactions.
+ *
+ * For RAID56 chunks, we have to mark them read-only
+ * for scrub, as later we would use our own cache
+ * out of RAID56 realm.
+ * Thus we want the RAID56 bg to be marked RO to
+ * prevent RMW from screwing up out cache.
*/
ro_set = 0;
- } else {
+ } else if (ret == -ETXTBSY) {
btrfs_warn(fs_info,
- "failed setting block group ro: %d", ret);
+ "scrub: skipping scrub of block group %llu due to active swapfile",
+ cache->start);
+ scrub_pause_off(fs_info);
+ ret = 0;
+ goto skip_unfreeze;
+ } else {
+ btrfs_warn(fs_info, "scrub: failed setting block group ro: %d",
+ ret);
+ btrfs_unfreeze_block_group(cache);
btrfs_put_block_group(cache);
+ scrub_pause_off(fs_info);
break;
}
- down_write(&fs_info->dev_replace.rwsem);
- dev_replace->cursor_right = found_key.offset + length;
- dev_replace->cursor_left = found_key.offset;
- dev_replace->item_needs_writeback = 1;
- up_write(&dev_replace->rwsem);
-
- ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
- found_key.offset, cache);
-
/*
- * flush, submit all pending read and write bios, afterwards
- * wait for them.
- * Note that in the dev replace case, a read request causes
- * write requests that are submitted in the read completion
- * worker. Therefore in the current situation, it is required
- * that all write requests are flushed, so that all read and
- * write requests are really completed when bios_in_flight
- * changes to 0.
+ * Now the target block is marked RO, wait for nocow writes to
+ * finish before dev-replace.
+ * COW is fine, as COW never overwrites extents in commit tree.
*/
- sctx->flush_all_writes = true;
- scrub_submit(sctx);
- mutex_lock(&sctx->wr_lock);
- scrub_wr_submit(sctx);
- mutex_unlock(&sctx->wr_lock);
-
- wait_event(sctx->list_wait,
- atomic_read(&sctx->bios_in_flight) == 0);
-
- scrub_pause_on(fs_info);
-
- /*
- * must be called before we decrease @scrub_paused.
- * make sure we don't block transaction commit while
- * we are waiting pending workers finished.
- */
- wait_event(sctx->list_wait,
- atomic_read(&sctx->workers_pending) == 0);
- sctx->flush_all_writes = false;
+ if (sctx->is_dev_replace) {
+ btrfs_wait_nocow_writers(cache);
+ btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
+ }
scrub_pause_off(fs_info);
+ down_write(&dev_replace->rwsem);
+ dev_replace->cursor_right = found_key.offset + dev_extent_len;
+ dev_replace->cursor_left = found_key.offset;
+ dev_replace->item_needs_writeback = 1;
+ up_write(&dev_replace->rwsem);
- down_write(&fs_info->dev_replace.rwsem);
+ ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
+ dev_extent_len);
+ if (sctx->is_dev_replace &&
+ !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
+ cache, found_key.offset))
+ ro_set = 0;
+
+ down_write(&dev_replace->rwsem);
dev_replace->cursor_left = dev_replace->cursor_right;
dev_replace->item_needs_writeback = 1;
- up_write(&fs_info->dev_replace.rwsem);
+ up_write(&dev_replace->rwsem);
if (ro_set)
btrfs_dec_block_group_ro(cache);
@@ -3667,19 +2926,24 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
* balance is triggered or it becomes used and unused again.
*/
spin_lock(&cache->lock);
- if (!cache->removed && !cache->ro && cache->reserved == 0 &&
- btrfs_block_group_used(&cache->item) == 0) {
+ if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
+ !cache->ro && cache->reserved == 0 && cache->used == 0) {
spin_unlock(&cache->lock);
- btrfs_mark_bg_unused(cache);
+ if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
+ btrfs_discard_queue_work(&fs_info->discard_ctl,
+ cache);
+ else
+ btrfs_mark_bg_unused(cache);
} else {
spin_unlock(&cache->lock);
}
-
+skip_unfreeze:
+ btrfs_unfreeze_block_group(cache);
btrfs_put_block_group(cache);
if (ret)
break;
- if (sctx->is_dev_replace &&
- atomic64_read(&dev_replace->num_write_errors) > 0) {
+ if (unlikely(sctx->is_dev_replace &&
+ atomic64_read(&dev_replace->num_write_errors) > 0)) {
ret = -EIO;
break;
}
@@ -3688,177 +2952,212 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
break;
}
skip:
- key.offset = found_key.offset + length;
+ key.offset = found_key.offset + dev_extent_len;
btrfs_release_path(path);
}
- btrfs_free_path(path);
-
return ret;
}
+static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
+ struct page *page, u64 physical, u64 generation)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_super_block *sb = page_address(page);
+ int ret;
+
+ ret = bdev_rw_virt(dev->bdev, physical >> SECTOR_SHIFT, sb,
+ BTRFS_SUPER_INFO_SIZE, REQ_OP_READ);
+ if (ret < 0)
+ return ret;
+ ret = btrfs_check_super_csum(fs_info, sb);
+ if (unlikely(ret != 0)) {
+ btrfs_err_rl(fs_info,
+ "scrub: super block at physical %llu devid %llu has bad csum",
+ physical, dev->devid);
+ return -EIO;
+ }
+ if (unlikely(btrfs_super_generation(sb) != generation)) {
+ btrfs_err_rl(fs_info,
+"scrub: super block at physical %llu devid %llu has bad generation %llu expect %llu",
+ physical, dev->devid,
+ btrfs_super_generation(sb), generation);
+ return -EUCLEAN;
+ }
+
+ return btrfs_validate_super(fs_info, sb, -1);
+}
+
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
struct btrfs_device *scrub_dev)
{
int i;
u64 bytenr;
u64 gen;
- int ret;
+ int ret = 0;
+ struct page *page;
struct btrfs_fs_info *fs_info = sctx->fs_info;
- if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
- return -EIO;
+ if (BTRFS_FS_ERROR(fs_info))
+ return -EROFS;
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ return -ENOMEM;
+ }
/* Seed devices of a new filesystem has their own generation. */
if (scrub_dev->fs_devices != fs_info->fs_devices)
gen = scrub_dev->generation;
else
- gen = fs_info->last_trans_committed;
+ gen = btrfs_get_last_trans_committed(fs_info);
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
- bytenr = btrfs_sb_offset(i);
+ ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
+ if (ret == -ENOENT)
+ break;
+
+ if (ret) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.super_errors++;
+ spin_unlock(&sctx->stat_lock);
+ continue;
+ }
+
if (bytenr + BTRFS_SUPER_INFO_SIZE >
scrub_dev->commit_total_bytes)
break;
+ if (!btrfs_check_super_location(scrub_dev, bytenr))
+ continue;
- ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
- scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
- NULL, 1, bytenr);
- if (ret)
- return ret;
+ ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
+ if (ret) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.super_errors++;
+ spin_unlock(&sctx->stat_lock);
+ }
}
- wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
-
+ __free_page(page);
return 0;
}
+static void scrub_workers_put(struct btrfs_fs_info *fs_info)
+{
+ if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
+ &fs_info->scrub_lock)) {
+ struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
+
+ fs_info->scrub_workers = NULL;
+ mutex_unlock(&fs_info->scrub_lock);
+
+ if (scrub_workers)
+ destroy_workqueue(scrub_workers);
+ }
+}
+
/*
* get a reference count on fs_info->scrub_workers. start worker if necessary
*/
-static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
- int is_dev_replace)
+static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
{
+ struct workqueue_struct *scrub_workers = NULL;
unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
int max_active = fs_info->thread_pool_size;
+ int ret = -ENOMEM;
- if (fs_info->scrub_workers_refcnt == 0) {
- fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
- flags, is_dev_replace ? 1 : max_active, 4);
- if (!fs_info->scrub_workers)
- goto fail_scrub_workers;
-
- fs_info->scrub_wr_completion_workers =
- btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
- max_active, 2);
- if (!fs_info->scrub_wr_completion_workers)
- goto fail_scrub_wr_completion_workers;
-
- fs_info->scrub_parity_workers =
- btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
- max_active, 2);
- if (!fs_info->scrub_parity_workers)
- goto fail_scrub_parity_workers;
- }
- ++fs_info->scrub_workers_refcnt;
- return 0;
+ if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
+ return 0;
-fail_scrub_parity_workers:
- btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
-fail_scrub_wr_completion_workers:
- btrfs_destroy_workqueue(fs_info->scrub_workers);
-fail_scrub_workers:
- return -ENOMEM;
-}
+ scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
+ if (!scrub_workers)
+ return -ENOMEM;
-static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
-{
- if (--fs_info->scrub_workers_refcnt == 0) {
- btrfs_destroy_workqueue(fs_info->scrub_workers);
- btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
- btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
+ mutex_lock(&fs_info->scrub_lock);
+ if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
+ ASSERT(fs_info->scrub_workers == NULL);
+ fs_info->scrub_workers = scrub_workers;
+ refcount_set(&fs_info->scrub_workers_refcnt, 1);
+ mutex_unlock(&fs_info->scrub_lock);
+ return 0;
}
- WARN_ON(fs_info->scrub_workers_refcnt < 0);
+ /* Other thread raced in and created the workers for us */
+ refcount_inc(&fs_info->scrub_workers_refcnt);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ ret = 0;
+
+ destroy_workqueue(scrub_workers);
+ return ret;
}
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
u64 end, struct btrfs_scrub_progress *progress,
- int readonly, int is_dev_replace)
+ bool readonly, bool is_dev_replace)
{
+ struct btrfs_dev_lookup_args args = { .devid = devid };
struct scrub_ctx *sctx;
int ret;
struct btrfs_device *dev;
unsigned int nofs_flag;
+ bool need_commit = false;
- if (btrfs_fs_closing(fs_info))
- return -EINVAL;
+ /* Set the basic fallback @last_physical before we got a sctx. */
+ if (progress)
+ progress->last_physical = start;
- if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
- /*
- * in this case scrub is unable to calculate the checksum
- * the way scrub is implemented. Do not handle this
- * situation at all because it won't ever happen.
- */
- btrfs_err(fs_info,
- "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
- fs_info->nodesize,
- BTRFS_STRIPE_LEN);
- return -EINVAL;
- }
+ if (btrfs_fs_closing(fs_info))
+ return -EAGAIN;
- if (fs_info->sectorsize != PAGE_SIZE) {
- /* not supported for data w/o checksums */
- btrfs_err_rl(fs_info,
- "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
- fs_info->sectorsize, PAGE_SIZE);
- return -EINVAL;
- }
+ /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
+ ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
- if (fs_info->nodesize >
- PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
- fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
- /*
- * would exhaust the array bounds of pagev member in
- * struct scrub_block
- */
- btrfs_err(fs_info,
- "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
- fs_info->nodesize,
- SCRUB_MAX_PAGES_PER_BLOCK,
- fs_info->sectorsize,
- SCRUB_MAX_PAGES_PER_BLOCK);
- return -EINVAL;
- }
+ /*
+ * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
+ * value (max nodesize / min sectorsize), thus nodesize should always
+ * be fine.
+ */
+ ASSERT(fs_info->nodesize <=
+ SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
/* Allocate outside of device_list_mutex */
sctx = scrub_setup_ctx(fs_info, is_dev_replace);
if (IS_ERR(sctx))
return PTR_ERR(sctx);
+ sctx->stat.last_physical = start;
+
+ ret = scrub_workers_get(fs_info);
+ if (ret)
+ goto out_free_ctx;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
- dev = btrfs_find_device(fs_info, devid, NULL, NULL);
+ dev = btrfs_find_device(fs_info->fs_devices, &args);
if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
!is_dev_replace)) {
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ret = -ENODEV;
- goto out_free_ctx;
+ goto out;
}
if (!is_dev_replace && !readonly &&
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
- btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
- rcu_str_deref(dev->name));
+ btrfs_err(fs_info,
+ "scrub: devid %llu: filesystem on %s is not writable",
+ devid, btrfs_dev_name(dev));
ret = -EROFS;
- goto out_free_ctx;
+ goto out;
}
mutex_lock(&fs_info->scrub_lock);
- if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
- test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
+ if (unlikely(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
+ test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state))) {
mutex_unlock(&fs_info->scrub_lock);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ret = -EIO;
- goto out_free_ctx;
+ goto out;
}
down_read(&fs_info->dev_replace.rwsem);
@@ -3869,17 +3168,10 @@ int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
mutex_unlock(&fs_info->scrub_lock);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ret = -EINPROGRESS;
- goto out_free_ctx;
+ goto out;
}
up_read(&fs_info->dev_replace.rwsem);
- ret = scrub_workers_get(fs_info, is_dev_replace);
- if (ret) {
- mutex_unlock(&fs_info->scrub_lock);
- mutex_unlock(&fs_info->fs_devices->device_list_mutex);
- goto out_free_ctx;
- }
-
sctx->readonly = readonly;
dev->scrub_ctx = sctx;
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
@@ -3895,7 +3187,7 @@ int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
/*
* In order to avoid deadlock with reclaim when there is a transaction
* trying to pause scrub, make sure we use GFP_NOFS for all the
- * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
+ * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
* invoked by our callees. The pausing request is done when the
* transaction commit starts, and it blocks the transaction until scrub
* is paused (done at specific points at scrub_stripe() or right above
@@ -3903,6 +3195,13 @@ int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
*/
nofs_flag = memalloc_nofs_save();
if (!is_dev_replace) {
+ u64 old_super_errors;
+
+ spin_lock(&sctx->stat_lock);
+ old_super_errors = sctx->stat.super_errors;
+ spin_unlock(&sctx->stat_lock);
+
+ btrfs_info(fs_info, "scrub: started on devid %llu", devid);
/*
* by holding device list mutex, we can
* kick off writing super in log tree sync.
@@ -3910,30 +3209,61 @@ int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
mutex_lock(&fs_info->fs_devices->device_list_mutex);
ret = scrub_supers(sctx, dev);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+ spin_lock(&sctx->stat_lock);
+ /*
+ * Super block errors found, but we can not commit transaction
+ * at current context, since btrfs_commit_transaction() needs
+ * to pause the current running scrub (hold by ourselves).
+ */
+ if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
+ need_commit = true;
+ spin_unlock(&sctx->stat_lock);
}
if (!ret)
ret = scrub_enumerate_chunks(sctx, dev, start, end);
memalloc_nofs_restore(nofs_flag);
- wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
atomic_dec(&fs_info->scrubs_running);
wake_up(&fs_info->scrub_pause_wait);
- wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
-
if (progress)
memcpy(progress, &sctx->stat, sizeof(*progress));
+ if (!is_dev_replace)
+ btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
+ ret ? "not finished" : "finished", devid, ret);
+
mutex_lock(&fs_info->scrub_lock);
dev->scrub_ctx = NULL;
- scrub_workers_put(fs_info);
mutex_unlock(&fs_info->scrub_lock);
+ scrub_workers_put(fs_info);
scrub_put_ctx(sctx);
+ /*
+ * We found some super block errors before, now try to force a
+ * transaction commit, as scrub has finished.
+ */
+ if (need_commit) {
+ struct btrfs_trans_handle *trans;
+
+ trans = btrfs_start_transaction(fs_info->tree_root, 0);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ btrfs_err(fs_info,
+ "scrub: failed to start transaction to fix super block errors: %d", ret);
+ return ret;
+ }
+ ret = btrfs_commit_transaction(trans);
+ if (ret < 0)
+ btrfs_err(fs_info,
+ "scrub: failed to commit transaction to fix super block errors: %d", ret);
+ }
return ret;
-
+out:
+ scrub_workers_put(fs_info);
out_free_ctx:
scrub_free_ctx(sctx);
@@ -3982,9 +3312,9 @@ int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
return 0;
}
-int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
- struct btrfs_device *dev)
+int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
{
+ struct btrfs_fs_info *fs_info = dev->fs_info;
struct scrub_ctx *sctx;
mutex_lock(&fs_info->scrub_lock);
@@ -4008,11 +3338,12 @@ int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
struct btrfs_scrub_progress *progress)
{
+ struct btrfs_dev_lookup_args args = { .devid = devid };
struct btrfs_device *dev;
struct scrub_ctx *sctx = NULL;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
- dev = btrfs_find_device(fs_info, devid, NULL, NULL);
+ dev = btrfs_find_device(fs_info->fs_devices, &args);
if (dev)
sctx = dev->scrub_ctx;
if (sctx)
@@ -4021,28 +3352,3 @@ int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
}
-
-static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
- u64 extent_logical, u64 extent_len,
- u64 *extent_physical,
- struct btrfs_device **extent_dev,
- int *extent_mirror_num)
-{
- u64 mapped_length;
- struct btrfs_bio *bbio = NULL;
- int ret;
-
- mapped_length = extent_len;
- ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
- &mapped_length, &bbio, 0);
- if (ret || !bbio || mapped_length < extent_len ||
- !bbio->stripes[0].dev->bdev) {
- btrfs_put_bbio(bbio);
- return;
- }
-
- *extent_physical = bbio->stripes[0].physical;
- *extent_mirror_num = bbio->mirror_num;
- *extent_dev = bbio->stripes[0].dev;
- btrfs_put_bbio(bbio);
-}