summaryrefslogtreecommitdiff
path: root/fs/crypto/fscrypt_private.h
diff options
context:
space:
mode:
Diffstat (limited to 'fs/crypto/fscrypt_private.h')
-rw-r--r--fs/crypto/fscrypt_private.h296
1 files changed, 209 insertions, 87 deletions
diff --git a/fs/crypto/fscrypt_private.h b/fs/crypto/fscrypt_private.h
index 2d63da48635a..4e8e82a9ccf9 100644
--- a/fs/crypto/fscrypt_private.h
+++ b/fs/crypto/fscrypt_private.h
@@ -11,9 +11,10 @@
#ifndef _FSCRYPT_PRIVATE_H
#define _FSCRYPT_PRIVATE_H
+#include <crypto/sha2.h>
#include <linux/fscrypt.h>
+#include <linux/minmax.h>
#include <linux/siphash.h>
-#include <crypto/hash.h>
#include <linux/blk-crypto.h>
#define CONST_STRLEN(str) (sizeof(str) - 1)
@@ -27,6 +28,41 @@
*/
#define FSCRYPT_MIN_KEY_SIZE 16
+/* Maximum size of a raw fscrypt master key */
+#define FSCRYPT_MAX_RAW_KEY_SIZE 64
+
+/* Maximum size of a hardware-wrapped fscrypt master key */
+#define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE
+
+/* Maximum size of an fscrypt master key across both key types */
+#define FSCRYPT_MAX_ANY_KEY_SIZE \
+ MAX(FSCRYPT_MAX_RAW_KEY_SIZE, FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE)
+
+/*
+ * FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of
+ * hardware-wrapped keys has made it misleading as it's only for raw keys.
+ * Don't use it in kernel code; use one of the above constants instead.
+ */
+#undef FSCRYPT_MAX_KEY_SIZE
+
+/*
+ * This mask is passed as the third argument to the crypto_alloc_*() functions
+ * to prevent fscrypt from using the Crypto API drivers for non-inline crypto
+ * engines. Those drivers have been problematic for fscrypt. fscrypt users
+ * have reported hangs and even incorrect en/decryption with these drivers.
+ * Since going to the driver, off CPU, and back again is really slow, such
+ * drivers can be over 50 times slower than the CPU-based code for fscrypt's
+ * workload. Even on platforms that lack AES instructions on the CPU, using the
+ * offloads has been shown to be slower, even staying with AES. (Of course,
+ * Adiantum is faster still, and is the recommended option on such platforms...)
+ *
+ * Note that fscrypt also supports inline crypto engines. Those don't use the
+ * Crypto API and work much better than the old-style (non-inline) engines.
+ */
+#define FSCRYPT_CRYPTOAPI_MASK \
+ (CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | \
+ CRYPTO_ALG_KERN_DRIVER_ONLY)
+
#define FSCRYPT_CONTEXT_V1 1
#define FSCRYPT_CONTEXT_V2 2
@@ -47,7 +83,8 @@ struct fscrypt_context_v2 {
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
- u8 __reserved[4];
+ u8 log2_data_unit_size;
+ u8 __reserved[3];
u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
};
@@ -165,6 +202,26 @@ fscrypt_policy_flags(const union fscrypt_policy *policy)
BUG();
}
+static inline int
+fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
+ const struct inode *inode)
+{
+ return policy->log2_data_unit_size ?: inode->i_blkbits;
+}
+
+static inline int
+fscrypt_policy_du_bits(const union fscrypt_policy *policy,
+ const struct inode *inode)
+{
+ switch (policy->version) {
+ case FSCRYPT_POLICY_V1:
+ return inode->i_blkbits;
+ case FSCRYPT_POLICY_V2:
+ return fscrypt_policy_v2_du_bits(&policy->v2, inode);
+ }
+ BUG();
+}
+
/*
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
@@ -182,35 +239,51 @@ struct fscrypt_symlink_data {
* Normally only one of the fields will be non-NULL.
*/
struct fscrypt_prepared_key {
- struct crypto_skcipher *tfm;
+ struct crypto_sync_skcipher *tfm;
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
struct blk_crypto_key *blk_key;
#endif
};
/*
- * fscrypt_info - the "encryption key" for an inode
+ * fscrypt_inode_info - the "encryption key" for an inode
*
* When an encrypted file's key is made available, an instance of this struct is
- * allocated and stored in ->i_crypt_info. Once created, it remains until the
- * inode is evicted.
+ * allocated and a pointer to it is stored in the file's in-memory inode. Once
+ * created, it remains until the inode is evicted.
*/
-struct fscrypt_info {
+struct fscrypt_inode_info {
/* The key in a form prepared for actual encryption/decryption */
struct fscrypt_prepared_key ci_enc_key;
- /* True if ci_enc_key should be freed when this fscrypt_info is freed */
- bool ci_owns_key;
+ /* True if ci_enc_key should be freed when this struct is freed */
+ u8 ci_owns_key : 1;
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
/*
* True if this inode will use inline encryption (blk-crypto) instead of
* the traditional filesystem-layer encryption.
*/
- bool ci_inlinecrypt;
+ u8 ci_inlinecrypt : 1;
#endif
+ /* True if ci_dirhash_key is initialized */
+ u8 ci_dirhash_key_initialized : 1;
+
+ /*
+ * log2 of the data unit size (granularity of contents encryption) of
+ * this file. This is computable from ci_policy and ci_inode but is
+ * cached here for efficiency. Only used for regular files.
+ */
+ u8 ci_data_unit_bits;
+
+ /* Cached value: log2 of number of data units per FS block */
+ u8 ci_data_units_per_block_bits;
+
+ /* Hashed inode number. Only set for IV_INO_LBLK_32 */
+ u32 ci_hashed_ino;
+
/*
* Encryption mode used for this inode. It corresponds to either the
* contents or filenames encryption mode, depending on the inode type.
@@ -245,16 +318,12 @@ struct fscrypt_info {
* the plaintext filenames -- currently just casefolded directories.
*/
siphash_key_t ci_dirhash_key;
- bool ci_dirhash_key_initialized;
/* The encryption policy used by this inode */
union fscrypt_policy ci_policy;
/* This inode's nonce, copied from the fscrypt_context */
u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
-
- /* Hashed inode number. Only set for IV_INO_LBLK_32 */
- u32 ci_hashed_ino;
};
typedef enum {
@@ -263,12 +332,12 @@ typedef enum {
} fscrypt_direction_t;
/* crypto.c */
-extern struct kmem_cache *fscrypt_info_cachep;
+extern struct kmem_cache *fscrypt_inode_info_cachep;
int fscrypt_initialize(struct super_block *sb);
-int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
- u64 lblk_num, struct page *src_page,
- struct page *dest_page, unsigned int len,
- unsigned int offs, gfp_t gfp_flags);
+int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
+ fscrypt_direction_t rw, u64 index,
+ struct page *src_page, struct page *dest_page,
+ unsigned int len, unsigned int offs);
struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
void __printf(3, 4) __cold
@@ -283,8 +352,8 @@ fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
union fscrypt_iv {
struct {
- /* logical block number within the file */
- __le64 lblk_num;
+ /* zero-based index of data unit within the file */
+ __le64 index;
/* per-file nonce; only set in DIRECT_KEY mode */
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
@@ -293,8 +362,18 @@ union fscrypt_iv {
__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
};
-void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
- const struct fscrypt_info *ci);
+void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
+ const struct fscrypt_inode_info *ci);
+
+/*
+ * Return the number of bits used by the maximum file data unit index that is
+ * possible on the given filesystem, using the given log2 data unit size.
+ */
+static inline int
+fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
+{
+ return fls64(sb->s_maxbytes - 1) - du_bits;
+}
/* fname.c */
bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
@@ -302,12 +381,8 @@ bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
u32 *encrypted_len_ret);
/* hkdf.c */
-struct fscrypt_hkdf {
- struct crypto_shash *hmac_tfm;
-};
-
-int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
- unsigned int master_key_size);
+void fscrypt_init_hkdf(struct hmac_sha512_key *hkdf, const u8 *master_key,
+ unsigned int master_key_size);
/*
* The list of contexts in which fscrypt uses HKDF. These values are used as
@@ -316,44 +391,50 @@ int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
* outputs are unique and cryptographically isolated, i.e. knowledge of one
* output doesn't reveal another.
*/
-#define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */
+#define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY 1 /* info=<empty> */
#define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */
#define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */
#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */
#define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */
#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */
#define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */
+#define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY \
+ 8 /* info=<empty> */
-int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
- const u8 *info, unsigned int infolen,
- u8 *okm, unsigned int okmlen);
-
-void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
+void fscrypt_hkdf_expand(const struct hmac_sha512_key *hkdf, u8 context,
+ const u8 *info, unsigned int infolen,
+ u8 *okm, unsigned int okmlen);
/* inline_crypt.c */
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
-int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
+int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
+ bool is_hw_wrapped_key);
static inline bool
-fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
+fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
{
return ci->ci_inlinecrypt;
}
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
- const u8 *raw_key,
- const struct fscrypt_info *ci);
+ const u8 *key_bytes, size_t key_size,
+ bool is_hw_wrapped,
+ const struct fscrypt_inode_info *ci);
void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
struct fscrypt_prepared_key *prep_key);
+int fscrypt_derive_sw_secret(struct super_block *sb,
+ const u8 *wrapped_key, size_t wrapped_key_size,
+ u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]);
+
/*
* Check whether the crypto transform or blk-crypto key has been allocated in
* @prep_key, depending on which encryption implementation the file will use.
*/
static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
- const struct fscrypt_info *ci)
+ const struct fscrypt_inode_info *ci)
{
/*
* The two smp_load_acquire()'s here pair with the smp_store_release()'s
@@ -370,21 +451,23 @@ fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
-static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
+static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
+ bool is_hw_wrapped_key)
{
return 0;
}
static inline bool
-fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
+fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
{
return false;
}
static inline int
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
- const u8 *raw_key,
- const struct fscrypt_info *ci)
+ const u8 *key_bytes, size_t key_size,
+ bool is_hw_wrapped,
+ const struct fscrypt_inode_info *ci)
{
WARN_ON_ONCE(1);
return -EOPNOTSUPP;
@@ -396,9 +479,18 @@ fscrypt_destroy_inline_crypt_key(struct super_block *sb,
{
}
+static inline int
+fscrypt_derive_sw_secret(struct super_block *sb,
+ const u8 *wrapped_key, size_t wrapped_key_size,
+ u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
+{
+ fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys");
+ return -EOPNOTSUPP;
+}
+
static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
- const struct fscrypt_info *ci)
+ const struct fscrypt_inode_info *ci)
{
return smp_load_acquire(&prep_key->tfm) != NULL;
}
@@ -412,20 +504,38 @@ fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
struct fscrypt_master_key_secret {
/*
- * For v2 policy keys: HKDF context keyed by this master key.
- * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
+ * The KDF with which subkeys of this key can be derived.
+ *
+ * For v1 policy keys, this isn't applicable and won't be set.
+ * Otherwise, this KDF will be keyed by this master key if
+ * ->is_hw_wrapped=false, or by the "software secret" that hardware
+ * derived from this master key if ->is_hw_wrapped=true.
+ */
+ struct hmac_sha512_key hkdf;
+
+ /*
+ * True if this key is a hardware-wrapped key; false if this key is a
+ * raw key (i.e. a "software key"). For v1 policy keys this will always
+ * be false, as v1 policy support is a legacy feature which doesn't
+ * support newer functionality such as hardware-wrapped keys.
*/
- struct fscrypt_hkdf hkdf;
+ bool is_hw_wrapped;
/*
- * Size of the raw key in bytes. This remains set even if ->raw was
+ * Size of the key in bytes. This remains set even if ->bytes was
* zeroized due to no longer being needed. I.e. we still remember the
* size of the key even if we don't need to remember the key itself.
*/
u32 size;
- /* For v1 policy keys: the raw key. Wiped for v2 policy keys. */
- u8 raw[FSCRYPT_MAX_KEY_SIZE];
+ /*
+ * The bytes of the key, when still needed. This can be either a raw
+ * key or a hardware-wrapped key, as indicated by ->is_hw_wrapped. In
+ * the case of a raw, v2 policy key, there is no need to remember the
+ * actual key separately from ->hkdf so this field will be zeroized as
+ * soon as ->hkdf is initialized.
+ */
+ u8 bytes[FSCRYPT_MAX_ANY_KEY_SIZE];
} __randomize_layout;
@@ -433,8 +543,28 @@ struct fscrypt_master_key_secret {
* fscrypt_master_key - an in-use master key
*
* This represents a master encryption key which has been added to the
- * filesystem and can be used to "unlock" the encrypted files which were
- * encrypted with it.
+ * filesystem. There are three high-level states that a key can be in:
+ *
+ * FSCRYPT_KEY_STATUS_PRESENT
+ * Key is fully usable; it can be used to unlock inodes that are encrypted
+ * with it (this includes being able to create new inodes). ->mk_present
+ * indicates whether the key is in this state. ->mk_secret exists, the key
+ * is in the keyring, and ->mk_active_refs > 0 due to ->mk_present.
+ *
+ * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
+ * Removal of this key has been initiated, but some inodes that were
+ * unlocked with it are still in-use. Like ABSENT, ->mk_secret is wiped,
+ * and the key can no longer be used to unlock inodes. Unlike ABSENT, the
+ * key is still in the keyring; ->mk_decrypted_inodes is nonempty; and
+ * ->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes.
+ *
+ * This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty,
+ * or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key.
+ *
+ * FSCRYPT_KEY_STATUS_ABSENT
+ * Key is fully removed. The key is no longer in the keyring,
+ * ->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is
+ * wiped, and the key can no longer be used to unlock inodes.
*/
struct fscrypt_master_key {
@@ -444,7 +574,7 @@ struct fscrypt_master_key {
*/
struct hlist_node mk_node;
- /* Semaphore that protects ->mk_secret and ->mk_users */
+ /* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */
struct rw_semaphore mk_sem;
/*
@@ -454,8 +584,8 @@ struct fscrypt_master_key {
* ->mk_direct_keys) that have been prepared continue to exist.
* A structural ref only guarantees that the struct continues to exist.
*
- * There is one active ref associated with ->mk_secret being present,
- * and one active ref for each inode in ->mk_decrypted_inodes.
+ * There is one active ref associated with ->mk_present being true, and
+ * one active ref for each inode in ->mk_decrypted_inodes.
*
* There is one structural ref associated with the active refcount being
* nonzero. Finding a key in the keyring also takes a structural ref,
@@ -467,17 +597,10 @@ struct fscrypt_master_key {
struct rcu_head mk_rcu_head;
/*
- * The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
- * executed, this is wiped and no new inodes can be unlocked with this
- * key; however, there may still be inodes in ->mk_decrypted_inodes
- * which could not be evicted. As long as some inodes still remain,
- * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
- * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
+ * The secret key material. Wiped as soon as it is no longer needed;
+ * for details, see the fscrypt_master_key struct comment.
*
- * While ->mk_secret is present, one ref in ->mk_active_refs is held.
- *
- * Locking: protected by ->mk_sem. The manipulation of ->mk_active_refs
- * associated with this field is protected by ->mk_sem as well.
+ * Locking: protected by ->mk_sem.
*/
struct fscrypt_master_key_secret mk_secret;
@@ -500,7 +623,7 @@ struct fscrypt_master_key {
*
* Locking: protected by ->mk_sem. (We don't just rely on the keyrings
* subsystem semaphore ->mk_users->sem, as we need support for atomic
- * search+insert along with proper synchronization with ->mk_secret.)
+ * search+insert along with proper synchronization with other fields.)
*/
struct key *mk_users;
@@ -523,20 +646,17 @@ struct fscrypt_master_key {
siphash_key_t mk_ino_hash_key;
bool mk_ino_hash_key_initialized;
-} __randomize_layout;
-
-static inline bool
-is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
-{
/*
- * The READ_ONCE() is only necessary for fscrypt_drop_inode().
- * fscrypt_drop_inode() runs in atomic context, so it can't take the key
- * semaphore and thus 'secret' can change concurrently which would be a
- * data race. But fscrypt_drop_inode() only need to know whether the
- * secret *was* present at the time of check, so READ_ONCE() suffices.
+ * Whether this key is in the "present" state, i.e. fully usable. For
+ * details, see the fscrypt_master_key struct comment.
+ *
+ * Locking: protected by ->mk_sem, but can be read locklessly using
+ * READ_ONCE(). Writers must use WRITE_ONCE() when concurrent readers
+ * are possible.
*/
- return READ_ONCE(secret->size) != 0;
-}
+ bool mk_present;
+
+} __randomize_layout;
static inline const char *master_key_spec_type(
const struct fscrypt_key_specifier *spec)
@@ -570,7 +690,7 @@ struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block *sb,
const struct fscrypt_key_specifier *mk_spec);
-int fscrypt_get_test_dummy_key_identifier(
+void fscrypt_get_test_dummy_key_identifier(
u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
int fscrypt_add_test_dummy_key(struct super_block *sb,
@@ -598,17 +718,18 @@ struct fscrypt_mode {
extern struct fscrypt_mode fscrypt_modes[];
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
- const u8 *raw_key, const struct fscrypt_info *ci);
+ const u8 *raw_key, const struct fscrypt_inode_info *ci);
void fscrypt_destroy_prepared_key(struct super_block *sb,
struct fscrypt_prepared_key *prep_key);
-int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
+int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
+ const u8 *raw_key);
-int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
- const struct fscrypt_master_key *mk);
+void fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
+ const struct fscrypt_master_key *mk);
-void fscrypt_hash_inode_number(struct fscrypt_info *ci,
+void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
const struct fscrypt_master_key *mk);
int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
@@ -643,10 +764,11 @@ static inline int fscrypt_require_key(struct inode *inode)
void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
-int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
+int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
const u8 *raw_master_key);
-int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
+int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
+ struct fscrypt_inode_info *ci);
/* policy.c */