diff options
Diffstat (limited to 'fs/crypto/hkdf.c')
| -rw-r--r-- | fs/crypto/hkdf.c | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/fs/crypto/hkdf.c b/fs/crypto/hkdf.c new file mode 100644 index 000000000000..706f56d0076e --- /dev/null +++ b/fs/crypto/hkdf.c @@ -0,0 +1,100 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation + * Function"), aka RFC 5869. See also the original paper (Krawczyk 2010): + * "Cryptographic Extraction and Key Derivation: The HKDF Scheme". + * + * This is used to derive keys from the fscrypt master keys (or from the + * "software secrets" which hardware derives from the fscrypt master keys, in + * the case that the fscrypt master keys are hardware-wrapped keys). + * + * Copyright 2019 Google LLC + */ + +#include "fscrypt_private.h" + +/* + * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses + * SHA-512 because it is well-established, secure, and reasonably efficient. + * + * HKDF-SHA256 was also considered, as its 256-bit security strength would be + * sufficient here. A 512-bit security strength is "nice to have", though. + * Also, on 64-bit CPUs, SHA-512 is usually just as fast as SHA-256. In the + * common case of deriving an AES-256-XTS key (512 bits), that can result in + * HKDF-SHA512 being much faster than HKDF-SHA256, as the longer digest size of + * SHA-512 causes HKDF-Expand to only need to do one iteration rather than two. + */ +#define HKDF_HASHLEN SHA512_DIGEST_SIZE + +/* + * HKDF consists of two steps: + * + * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from + * the input keying material and optional salt. + * 2. HKDF-Expand: expand the pseudorandom key into output keying material of + * any length, parameterized by an application-specific info string. + * + * HKDF-Extract can be skipped if the input is already a pseudorandom key of + * length HKDF_HASHLEN bytes. However, cipher modes other than AES-256-XTS take + * shorter keys, and we don't want to force users of those modes to provide + * unnecessarily long master keys. Thus fscrypt still does HKDF-Extract. No + * salt is used, since fscrypt master keys should already be pseudorandom and + * there's no way to persist a random salt per master key from kernel mode. + */ + +/* + * Compute HKDF-Extract using 'master_key' as the input keying material, and + * prepare the resulting HMAC key in 'hkdf'. Afterwards, 'hkdf' can be used for + * HKDF-Expand many times without having to recompute HKDF-Extract each time. + */ +void fscrypt_init_hkdf(struct hmac_sha512_key *hkdf, const u8 *master_key, + unsigned int master_key_size) +{ + static const u8 default_salt[HKDF_HASHLEN]; + u8 prk[HKDF_HASHLEN]; + + hmac_sha512_usingrawkey(default_salt, sizeof(default_salt), + master_key, master_key_size, prk); + hmac_sha512_preparekey(hkdf, prk, sizeof(prk)); + memzero_explicit(prk, sizeof(prk)); +} + +/* + * HKDF-Expand (RFC 5869 section 2.3). Expand the HMAC key 'hkdf' into 'okmlen' + * bytes of output keying material parameterized by the application-specific + * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context' + * byte. This is thread-safe and may be called by multiple threads in parallel. + * + * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt + * adds to its application-specific info strings to guarantee that it doesn't + * accidentally repeat an info string when using HKDF for different purposes.) + */ +void fscrypt_hkdf_expand(const struct hmac_sha512_key *hkdf, u8 context, + const u8 *info, unsigned int infolen, + u8 *okm, unsigned int okmlen) +{ + struct hmac_sha512_ctx ctx; + u8 counter = 1; + u8 tmp[HKDF_HASHLEN]; + + WARN_ON_ONCE(okmlen > 255 * HKDF_HASHLEN); + + for (unsigned int i = 0; i < okmlen; i += HKDF_HASHLEN) { + hmac_sha512_init(&ctx, hkdf); + if (i != 0) + hmac_sha512_update(&ctx, &okm[i - HKDF_HASHLEN], + HKDF_HASHLEN); + hmac_sha512_update(&ctx, "fscrypt\0", 8); + hmac_sha512_update(&ctx, &context, 1); + hmac_sha512_update(&ctx, info, infolen); + hmac_sha512_update(&ctx, &counter, 1); + if (okmlen - i < HKDF_HASHLEN) { + hmac_sha512_final(&ctx, tmp); + memcpy(&okm[i], tmp, okmlen - i); + memzero_explicit(tmp, sizeof(tmp)); + } else { + hmac_sha512_final(&ctx, &okm[i]); + } + counter++; + } +} |
