summaryrefslogtreecommitdiff
path: root/fs/crypto/keysetup.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/crypto/keysetup.c')
-rw-r--r--fs/crypto/keysetup.c405
1 files changed, 231 insertions, 174 deletions
diff --git a/fs/crypto/keysetup.c b/fs/crypto/keysetup.c
index eede186b04ce..40fa05688d3a 100644
--- a/fs/crypto/keysetup.c
+++ b/fs/crypto/keysetup.c
@@ -9,7 +9,7 @@
*/
#include <crypto/skcipher.h>
-#include <linux/key.h>
+#include <linux/export.h>
#include <linux/random.h>
#include "fscrypt_private.h"
@@ -24,7 +24,7 @@ struct fscrypt_mode fscrypt_modes[] = {
.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
},
[FSCRYPT_MODE_AES_256_CTS] = {
- .friendly_name = "AES-256-CTS-CBC",
+ .friendly_name = "AES-256-CBC-CTS",
.cipher_str = "cts(cbc(aes))",
.keysize = 32,
.security_strength = 32,
@@ -39,12 +39,27 @@ struct fscrypt_mode fscrypt_modes[] = {
.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
},
[FSCRYPT_MODE_AES_128_CTS] = {
- .friendly_name = "AES-128-CTS-CBC",
+ .friendly_name = "AES-128-CBC-CTS",
.cipher_str = "cts(cbc(aes))",
.keysize = 16,
.security_strength = 16,
.ivsize = 16,
},
+ [FSCRYPT_MODE_SM4_XTS] = {
+ .friendly_name = "SM4-XTS",
+ .cipher_str = "xts(sm4)",
+ .keysize = 32,
+ .security_strength = 16,
+ .ivsize = 16,
+ .blk_crypto_mode = BLK_ENCRYPTION_MODE_SM4_XTS,
+ },
+ [FSCRYPT_MODE_SM4_CTS] = {
+ .friendly_name = "SM4-CBC-CTS",
+ .cipher_str = "cts(cbc(sm4))",
+ .keysize = 16,
+ .security_strength = 16,
+ .ivsize = 16,
+ },
[FSCRYPT_MODE_ADIANTUM] = {
.friendly_name = "Adiantum",
.cipher_str = "adiantum(xchacha12,aes)",
@@ -53,6 +68,13 @@ struct fscrypt_mode fscrypt_modes[] = {
.ivsize = 32,
.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
},
+ [FSCRYPT_MODE_AES_256_HCTR2] = {
+ .friendly_name = "AES-256-HCTR2",
+ .cipher_str = "hctr2(aes)",
+ .keysize = 32,
+ .security_strength = 32,
+ .ivsize = 32,
+ },
};
static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
@@ -75,14 +97,15 @@ select_encryption_mode(const union fscrypt_policy *policy,
}
/* Create a symmetric cipher object for the given encryption mode and key */
-static struct crypto_skcipher *
+static struct crypto_sync_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
const struct inode *inode)
{
- struct crypto_skcipher *tfm;
+ struct crypto_sync_skcipher *tfm;
int err;
- tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
+ tfm = crypto_alloc_sync_skcipher(mode->cipher_str, 0,
+ FSCRYPT_CRYPTOAPI_MASK);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
fscrypt_warn(inode,
@@ -94,7 +117,7 @@ fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
mode->cipher_str, PTR_ERR(tfm));
return tfm;
}
- if (!xchg(&mode->logged_impl_name, 1)) {
+ if (!xchg(&mode->logged_cryptoapi_impl, 1)) {
/*
* fscrypt performance can vary greatly depending on which
* crypto algorithm implementation is used. Help people debug
@@ -102,21 +125,22 @@ fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
* first time a mode is used.
*/
pr_info("fscrypt: %s using implementation \"%s\"\n",
- mode->friendly_name, crypto_skcipher_driver_name(tfm));
+ mode->friendly_name,
+ crypto_skcipher_driver_name(&tfm->base));
}
- if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
+ if (WARN_ON_ONCE(crypto_sync_skcipher_ivsize(tfm) != mode->ivsize)) {
err = -EINVAL;
goto err_free_tfm;
}
- crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
- err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
+ crypto_sync_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
+ err = crypto_sync_skcipher_setkey(tfm, raw_key, mode->keysize);
if (err)
goto err_free_tfm;
return tfm;
err_free_tfm:
- crypto_free_skcipher(tfm);
+ crypto_free_sync_skcipher(tfm);
return ERR_PTR(err);
}
@@ -127,12 +151,14 @@ err_free_tfm:
* and IV generation method (@ci->ci_policy.flags).
*/
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
- const u8 *raw_key, const struct fscrypt_info *ci)
+ const u8 *raw_key, const struct fscrypt_inode_info *ci)
{
- struct crypto_skcipher *tfm;
+ struct crypto_sync_skcipher *tfm;
if (fscrypt_using_inline_encryption(ci))
- return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
+ return fscrypt_prepare_inline_crypt_key(prep_key, raw_key,
+ ci->ci_mode->keysize,
+ false, ci);
tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
if (IS_ERR(tfm))
@@ -148,20 +174,23 @@ int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
}
/* Destroy a crypto transform object and/or blk-crypto key. */
-void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
+void fscrypt_destroy_prepared_key(struct super_block *sb,
+ struct fscrypt_prepared_key *prep_key)
{
- crypto_free_skcipher(prep_key->tfm);
- fscrypt_destroy_inline_crypt_key(prep_key);
+ crypto_free_sync_skcipher(prep_key->tfm);
+ fscrypt_destroy_inline_crypt_key(sb, prep_key);
+ memzero_explicit(prep_key, sizeof(*prep_key));
}
/* Given a per-file encryption key, set up the file's crypto transform object */
-int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
+int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
+ const u8 *raw_key)
{
ci->ci_owns_key = true;
return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
}
-static int setup_per_mode_enc_key(struct fscrypt_info *ci,
+static int setup_per_mode_enc_key(struct fscrypt_inode_info *ci,
struct fscrypt_master_key *mk,
struct fscrypt_prepared_key *keys,
u8 hkdf_context, bool include_fs_uuid)
@@ -171,14 +200,29 @@ static int setup_per_mode_enc_key(struct fscrypt_info *ci,
struct fscrypt_mode *mode = ci->ci_mode;
const u8 mode_num = mode - fscrypt_modes;
struct fscrypt_prepared_key *prep_key;
- u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
+ u8 mode_key[FSCRYPT_MAX_RAW_KEY_SIZE];
u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
unsigned int hkdf_infolen = 0;
+ bool use_hw_wrapped_key = false;
int err;
- if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
+ if (WARN_ON_ONCE(mode_num > FSCRYPT_MODE_MAX))
return -EINVAL;
+ if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) {
+ /* Using a hardware-wrapped key for file contents encryption */
+ if (!fscrypt_using_inline_encryption(ci)) {
+ if (sb->s_flags & SB_INLINECRYPT)
+ fscrypt_warn(ci->ci_inode,
+ "Hardware-wrapped key required, but no suitable inline encryption capabilities are available");
+ else
+ fscrypt_warn(ci->ci_inode,
+ "Hardware-wrapped keys require inline encryption (-o inlinecrypt)");
+ return -EINVAL;
+ }
+ use_hw_wrapped_key = true;
+ }
+
prep_key = &keys[mode_num];
if (fscrypt_is_key_prepared(prep_key, ci)) {
ci->ci_enc_key = *prep_key;
@@ -190,6 +234,16 @@ static int setup_per_mode_enc_key(struct fscrypt_info *ci,
if (fscrypt_is_key_prepared(prep_key, ci))
goto done_unlock;
+ if (use_hw_wrapped_key) {
+ err = fscrypt_prepare_inline_crypt_key(prep_key,
+ mk->mk_secret.bytes,
+ mk->mk_secret.size, true,
+ ci);
+ if (err)
+ goto out_unlock;
+ goto done_unlock;
+ }
+
BUILD_BUG_ON(sizeof(mode_num) != 1);
BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
BUILD_BUG_ON(sizeof(hkdf_info) != 17);
@@ -199,11 +253,8 @@ static int setup_per_mode_enc_key(struct fscrypt_info *ci,
sizeof(sb->s_uuid));
hkdf_infolen += sizeof(sb->s_uuid);
}
- err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
- hkdf_context, hkdf_info, hkdf_infolen,
- mode_key, mode->keysize);
- if (err)
- goto out_unlock;
+ fscrypt_hkdf_expand(&mk->mk_secret.hkdf, hkdf_context, hkdf_info,
+ hkdf_infolen, mode_key, mode->keysize);
err = fscrypt_prepare_key(prep_key, mode_key, ci);
memzero_explicit(mode_key, mode->keysize);
if (err)
@@ -224,49 +275,38 @@ out_unlock:
* as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an
* endianness swap in order to get the same results as on little endian CPUs.
*/
-static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
- u8 context, const u8 *info,
- unsigned int infolen, siphash_key_t *key)
+static void fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
+ u8 context, const u8 *info,
+ unsigned int infolen, siphash_key_t *key)
{
- int err;
-
- err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
- (u8 *)key, sizeof(*key));
- if (err)
- return err;
-
+ fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
+ (u8 *)key, sizeof(*key));
BUILD_BUG_ON(sizeof(*key) != 16);
BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
le64_to_cpus(&key->key[0]);
le64_to_cpus(&key->key[1]);
- return 0;
}
-int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
- const struct fscrypt_master_key *mk)
+void fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
+ const struct fscrypt_master_key *mk)
{
- int err;
-
- err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
- ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
- &ci->ci_dirhash_key);
- if (err)
- return err;
+ fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
+ ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
+ &ci->ci_dirhash_key);
ci->ci_dirhash_key_initialized = true;
- return 0;
}
-void fscrypt_hash_inode_number(struct fscrypt_info *ci,
+void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
const struct fscrypt_master_key *mk)
{
- WARN_ON(ci->ci_inode->i_ino == 0);
- WARN_ON(!mk->mk_ino_hash_key_initialized);
+ WARN_ON_ONCE(ci->ci_inode->i_ino == 0);
+ WARN_ON_ONCE(!mk->mk_ino_hash_key_initialized);
ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
&mk->mk_ino_hash_key);
}
-static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
+static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_inode_info *ci,
struct fscrypt_master_key *mk)
{
int err;
@@ -284,17 +324,12 @@ static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
if (mk->mk_ino_hash_key_initialized)
goto unlock;
- err = fscrypt_derive_siphash_key(mk,
- HKDF_CONTEXT_INODE_HASH_KEY,
- NULL, 0, &mk->mk_ino_hash_key);
- if (err)
- goto unlock;
+ fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_INODE_HASH_KEY,
+ NULL, 0, &mk->mk_ino_hash_key);
/* pairs with smp_load_acquire() above */
smp_store_release(&mk->mk_ino_hash_key_initialized, true);
unlock:
mutex_unlock(&fscrypt_mode_key_setup_mutex);
- if (err)
- return err;
}
/*
@@ -306,12 +341,20 @@ unlock:
return 0;
}
-static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
+static int fscrypt_setup_v2_file_key(struct fscrypt_inode_info *ci,
struct fscrypt_master_key *mk,
bool need_dirhash_key)
{
int err;
+ if (mk->mk_secret.is_hw_wrapped &&
+ !(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 |
+ FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) {
+ fscrypt_warn(ci->ci_inode,
+ "Hardware-wrapped keys are only supported with IV_INO_LBLK policies");
+ return -EINVAL;
+ }
+
if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
/*
* DIRECT_KEY: instead of deriving per-file encryption keys, the
@@ -338,15 +381,12 @@ static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
} else {
- u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
-
- err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
- HKDF_CONTEXT_PER_FILE_ENC_KEY,
- ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
- derived_key, ci->ci_mode->keysize);
- if (err)
- return err;
+ u8 derived_key[FSCRYPT_MAX_RAW_KEY_SIZE];
+ fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
+ HKDF_CONTEXT_PER_FILE_ENC_KEY,
+ ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
+ derived_key, ci->ci_mode->keysize);
err = fscrypt_set_per_file_enc_key(ci, derived_key);
memzero_explicit(derived_key, ci->ci_mode->keysize);
}
@@ -354,11 +394,8 @@ static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
return err;
/* Derive a secret dirhash key for directories that need it. */
- if (need_dirhash_key) {
- err = fscrypt_derive_dirhash_key(ci, mk);
- if (err)
- return err;
- }
+ if (need_dirhash_key)
+ fscrypt_derive_dirhash_key(ci, mk);
return 0;
}
@@ -381,7 +418,7 @@ static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
* still allow 512-bit master keys if the user chooses to use them, though.)
*/
static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
- const struct fscrypt_info *ci)
+ const struct fscrypt_inode_info *ci)
{
unsigned int min_keysize;
@@ -405,49 +442,52 @@ static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
/*
* Find the master key, then set up the inode's actual encryption key.
*
- * If the master key is found in the filesystem-level keyring, then the
- * corresponding 'struct key' is returned in *master_key_ret with its semaphore
- * read-locked. This is needed to ensure that only one task links the
- * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create
- * an fscrypt_info for the same inode), and to synchronize the master key being
- * removed with a new inode starting to use it.
+ * If the master key is found in the filesystem-level keyring, then it is
+ * returned in *mk_ret with its semaphore read-locked. This is needed to ensure
+ * that only one task links the fscrypt_inode_info into ->mk_decrypted_inodes
+ * (as multiple tasks may race to create an fscrypt_inode_info for the same
+ * inode), and to synchronize the master key being removed with a new inode
+ * starting to use it.
*/
-static int setup_file_encryption_key(struct fscrypt_info *ci,
+static int setup_file_encryption_key(struct fscrypt_inode_info *ci,
bool need_dirhash_key,
- struct key **master_key_ret)
+ struct fscrypt_master_key **mk_ret)
{
- struct key *key;
- struct fscrypt_master_key *mk = NULL;
+ struct super_block *sb = ci->ci_inode->i_sb;
struct fscrypt_key_specifier mk_spec;
+ struct fscrypt_master_key *mk;
int err;
- err = fscrypt_select_encryption_impl(ci);
+ err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec);
if (err)
return err;
- switch (ci->ci_policy.version) {
- case FSCRYPT_POLICY_V1:
- mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
- memcpy(mk_spec.u.descriptor,
- ci->ci_policy.v1.master_key_descriptor,
- FSCRYPT_KEY_DESCRIPTOR_SIZE);
- break;
- case FSCRYPT_POLICY_V2:
- mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
- memcpy(mk_spec.u.identifier,
- ci->ci_policy.v2.master_key_identifier,
- FSCRYPT_KEY_IDENTIFIER_SIZE);
- break;
- default:
- WARN_ON(1);
- return -EINVAL;
+ mk = fscrypt_find_master_key(sb, &mk_spec);
+ if (unlikely(!mk)) {
+ const union fscrypt_policy *dummy_policy =
+ fscrypt_get_dummy_policy(sb);
+
+ /*
+ * Add the test_dummy_encryption key on-demand. In principle,
+ * it should be added at mount time. Do it here instead so that
+ * the individual filesystems don't need to worry about adding
+ * this key at mount time and cleaning up on mount failure.
+ */
+ if (dummy_policy &&
+ fscrypt_policies_equal(dummy_policy, &ci->ci_policy)) {
+ err = fscrypt_add_test_dummy_key(sb, &mk_spec);
+ if (err)
+ return err;
+ mk = fscrypt_find_master_key(sb, &mk_spec);
+ }
}
+ if (unlikely(!mk)) {
+ if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
+ return -ENOKEY;
- key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
- if (IS_ERR(key)) {
- if (key != ERR_PTR(-ENOKEY) ||
- ci->ci_policy.version != FSCRYPT_POLICY_V1)
- return PTR_ERR(key);
+ err = fscrypt_select_encryption_impl(ci, false);
+ if (err)
+ return err;
/*
* As a legacy fallback for v1 policies, search for the key in
@@ -457,12 +497,10 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
*/
return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
}
+ down_read(&mk->mk_sem);
- mk = key->payload.data[0];
- down_read(&key->sem);
-
- /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
- if (!is_master_key_secret_present(&mk->mk_secret)) {
+ if (!mk->mk_present) {
+ /* FS_IOC_REMOVE_ENCRYPTION_KEY has been executed on this key */
err = -ENOKEY;
goto out_release_key;
}
@@ -472,33 +510,45 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
goto out_release_key;
}
+ err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped);
+ if (err)
+ goto out_release_key;
+
switch (ci->ci_policy.version) {
case FSCRYPT_POLICY_V1:
- err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
+ if (WARN_ON_ONCE(mk->mk_secret.is_hw_wrapped)) {
+ /*
+ * This should never happen, as adding a v1 policy key
+ * that is hardware-wrapped isn't allowed.
+ */
+ err = -EINVAL;
+ goto out_release_key;
+ }
+ err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.bytes);
break;
case FSCRYPT_POLICY_V2:
err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
break;
default:
- WARN_ON(1);
+ WARN_ON_ONCE(1);
err = -EINVAL;
break;
}
if (err)
goto out_release_key;
- *master_key_ret = key;
+ *mk_ret = mk;
return 0;
out_release_key:
- up_read(&key->sem);
- key_put(key);
+ up_read(&mk->mk_sem);
+ fscrypt_put_master_key(mk);
return err;
}
-static void put_crypt_info(struct fscrypt_info *ci)
+static void put_crypt_info(struct fscrypt_inode_info *ci)
{
- struct key *key;
+ struct fscrypt_master_key *mk;
if (!ci)
return;
@@ -506,29 +556,24 @@ static void put_crypt_info(struct fscrypt_info *ci)
if (ci->ci_direct_key)
fscrypt_put_direct_key(ci->ci_direct_key);
else if (ci->ci_owns_key)
- fscrypt_destroy_prepared_key(&ci->ci_enc_key);
-
- key = ci->ci_master_key;
- if (key) {
- struct fscrypt_master_key *mk = key->payload.data[0];
+ fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
+ &ci->ci_enc_key);
+ mk = ci->ci_master_key;
+ if (mk) {
/*
* Remove this inode from the list of inodes that were unlocked
- * with the master key.
- *
- * In addition, if we're removing the last inode from a key that
- * already had its secret removed, invalidate the key so that it
- * gets removed from ->s_master_keys.
+ * with the master key. In addition, if we're removing the last
+ * inode from an incompletely removed key, then complete the
+ * full removal of the key.
*/
spin_lock(&mk->mk_decrypted_inodes_lock);
list_del(&ci->ci_master_key_link);
spin_unlock(&mk->mk_decrypted_inodes_lock);
- if (refcount_dec_and_test(&mk->mk_refcount))
- key_invalidate(key);
- key_put(key);
+ fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk);
}
memzero_explicit(ci, sizeof(*ci));
- kmem_cache_free(fscrypt_info_cachep, ci);
+ kmem_cache_free(fscrypt_inode_info_cachep, ci);
}
static int
@@ -537,16 +582,16 @@ fscrypt_setup_encryption_info(struct inode *inode,
const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
bool need_dirhash_key)
{
- struct fscrypt_info *crypt_info;
+ struct fscrypt_inode_info *crypt_info;
struct fscrypt_mode *mode;
- struct key *master_key = NULL;
+ struct fscrypt_master_key *mk = NULL;
int res;
- res = fscrypt_initialize(inode->i_sb->s_cop->flags);
+ res = fscrypt_initialize(inode->i_sb);
if (res)
return res;
- crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
+ crypt_info = kmem_cache_zalloc(fscrypt_inode_info_cachep, GFP_KERNEL);
if (!crypt_info)
return -ENOMEM;
@@ -559,31 +604,33 @@ fscrypt_setup_encryption_info(struct inode *inode,
res = PTR_ERR(mode);
goto out;
}
- WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
+ WARN_ON_ONCE(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
crypt_info->ci_mode = mode;
- res = setup_file_encryption_key(crypt_info, need_dirhash_key,
- &master_key);
+ crypt_info->ci_data_unit_bits =
+ fscrypt_policy_du_bits(&crypt_info->ci_policy, inode);
+ crypt_info->ci_data_units_per_block_bits =
+ inode->i_blkbits - crypt_info->ci_data_unit_bits;
+
+ res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
if (res)
goto out;
/*
- * For existing inodes, multiple tasks may race to set ->i_crypt_info.
- * So use cmpxchg_release(). This pairs with the smp_load_acquire() in
- * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a
- * RELEASE barrier so that other tasks can ACQUIRE it.
+ * For existing inodes, multiple tasks may race to set the inode's
+ * fscrypt info pointer. So use cmpxchg_release(). This pairs with the
+ * smp_load_acquire() in fscrypt_get_inode_info(). I.e., publish the
+ * pointer with a RELEASE barrier so that other tasks can ACQUIRE it.
*/
- if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
+ if (cmpxchg_release(fscrypt_inode_info_addr(inode), NULL, crypt_info) ==
+ NULL) {
/*
- * We won the race and set ->i_crypt_info to our crypt_info.
- * Now link it into the master key's inode list.
+ * We won the race and set the inode's fscrypt info to our
+ * crypt_info. Now link it into the master key's inode list.
*/
- if (master_key) {
- struct fscrypt_master_key *mk =
- master_key->payload.data[0];
-
- refcount_inc(&mk->mk_refcount);
- crypt_info->ci_master_key = key_get(master_key);
+ if (mk) {
+ crypt_info->ci_master_key = mk;
+ refcount_inc(&mk->mk_active_refs);
spin_lock(&mk->mk_decrypted_inodes_lock);
list_add(&crypt_info->ci_master_key_link,
&mk->mk_decrypted_inodes);
@@ -593,9 +640,9 @@ fscrypt_setup_encryption_info(struct inode *inode,
}
res = 0;
out:
- if (master_key) {
- up_read(&master_key->sem);
- key_put(master_key);
+ if (mk) {
+ up_read(&mk->mk_sem);
+ fscrypt_put_master_key(mk);
}
put_crypt_info(crypt_info);
return res;
@@ -610,13 +657,13 @@ out:
* %false unless the operation being performed is needed in
* order for files (or directories) to be deleted.
*
- * Set up ->i_crypt_info, if it hasn't already been done.
+ * Set up the inode's encryption key, if it hasn't already been done.
*
- * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So
+ * Note: unless the key setup was already done, this isn't %GFP_NOFS-safe. So
* generally this shouldn't be called from within a filesystem transaction.
*
- * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
- * encryption key is unavailable. (Use fscrypt_has_encryption_key() to
+ * Return: 0 if the key is now set up, *or* if it couldn't be set up because the
+ * needed master key is absent. (Use fscrypt_has_encryption_key() to
* distinguish these cases.) Also can return another -errno code.
*/
int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
@@ -666,13 +713,13 @@ int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
/**
* fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
* @dir: a possibly-encrypted directory
- * @inode: the new inode. ->i_mode must be set already.
+ * @inode: the new inode. ->i_mode and ->i_blkbits must be set already.
* ->i_ino doesn't need to be set yet.
* @encrypt_ret: (output) set to %true if the new inode will be encrypted
*
- * If the directory is encrypted, set up its ->i_crypt_info in preparation for
+ * If the directory is encrypted, set up its encryption key in preparation for
* encrypting the name of the new file. Also, if the new inode will be
- * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
+ * encrypted, set up its encryption key too and set *encrypt_ret=true.
*
* This isn't %GFP_NOFS-safe, and therefore it should be called before starting
* any filesystem transaction to create the inode. For this reason, ->i_ino
@@ -681,8 +728,8 @@ int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
* This doesn't persist the new inode's encryption context. That still needs to
* be done later by calling fscrypt_set_context().
*
- * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
- * -errno code
+ * Return: 0 on success, -ENOKEY if a key needs to be set up for @dir or @inode
+ * but the needed master key is absent, or another -errno code
*/
int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
bool *encrypt_ret)
@@ -696,6 +743,9 @@ int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
if (IS_ERR(policy))
return PTR_ERR(policy);
+ if (WARN_ON_ONCE(inode->i_blkbits == 0))
+ return -EINVAL;
+
if (WARN_ON_ONCE(inode->i_mode == 0))
return -EINVAL;
@@ -721,13 +771,21 @@ EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
* fscrypt_put_encryption_info() - free most of an inode's fscrypt data
* @inode: an inode being evicted
*
- * Free the inode's fscrypt_info. Filesystems must call this when the inode is
- * being evicted. An RCU grace period need not have elapsed yet.
+ * Free the inode's fscrypt_inode_info. Filesystems must call this when the
+ * inode is being evicted. An RCU grace period need not have elapsed yet.
*/
void fscrypt_put_encryption_info(struct inode *inode)
{
- put_crypt_info(inode->i_crypt_info);
- inode->i_crypt_info = NULL;
+ /*
+ * Ideally we'd start with a lightweight IS_ENCRYPTED() check here
+ * before proceeding to retrieve and check the pointer. However, during
+ * inode creation, the fscrypt_inode_info is set before S_ENCRYPTED. If
+ * an error occurs, it needs to be cleaned up regardless.
+ */
+ struct fscrypt_inode_info **ci_addr = fscrypt_inode_info_addr(inode);
+
+ put_crypt_info(*ci_addr);
+ *ci_addr = NULL;
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);
@@ -759,8 +817,7 @@ EXPORT_SYMBOL(fscrypt_free_inode);
*/
int fscrypt_drop_inode(struct inode *inode)
{
- const struct fscrypt_info *ci = fscrypt_get_info(inode);
- const struct fscrypt_master_key *mk;
+ const struct fscrypt_inode_info *ci = fscrypt_get_inode_info(inode);
/*
* If ci is NULL, then the inode doesn't have an encryption key set up
@@ -770,7 +827,6 @@ int fscrypt_drop_inode(struct inode *inode)
*/
if (!ci || !ci->ci_master_key)
return 0;
- mk = ci->ci_master_key->payload.data[0];
/*
* With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
@@ -778,17 +834,18 @@ int fscrypt_drop_inode(struct inode *inode)
* userspace is still using the files, inodes can be dirtied between
* then and now. We mustn't lose any writes, so skip dirty inodes here.
*/
- if (inode->i_state & I_DIRTY_ALL)
+ if (inode_state_read(inode) & I_DIRTY_ALL)
return 0;
/*
- * Note: since we aren't holding the key semaphore, the result here can
+ * We can't take ->mk_sem here, since this runs in atomic context.
+ * Therefore, ->mk_present can change concurrently, and our result may
* immediately become outdated. But there's no correctness problem with
* unnecessarily evicting. Nor is there a correctness problem with not
* evicting while iput() is racing with the key being removed, since
* then the thread removing the key will either evict the inode itself
* or will correctly detect that it wasn't evicted due to the race.
*/
- return !is_master_key_secret_present(&mk->mk_secret);
+ return !READ_ONCE(ci->ci_master_key->mk_present);
}
EXPORT_SYMBOL_GPL(fscrypt_drop_inode);