diff options
Diffstat (limited to 'fs/fs-writeback.c')
| -rw-r--r-- | fs/fs-writeback.c | 1489 |
1 files changed, 975 insertions, 514 deletions
diff --git a/fs/fs-writeback.c b/fs/fs-writeback.c index b40168fcc94a..6800886c4d10 100644 --- a/fs/fs-writeback.c +++ b/fs/fs-writeback.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * fs/fs-writeback.c * @@ -13,6 +14,7 @@ * Additions for address_space-based writeback */ +#include <linux/sched/sysctl.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/spinlock.h> @@ -31,21 +33,11 @@ #include "internal.h" /* - * 4MB minimal write chunk size - */ -#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) - -struct wb_completion { - atomic_t cnt; -}; - -/* * Passed into wb_writeback(), essentially a subset of writeback_control */ struct wb_writeback_work { long nr_pages; struct super_block *sb; - unsigned long *older_than_this; enum writeback_sync_modes sync_mode; unsigned int tagged_writepages:1; unsigned int for_kupdate:1; @@ -60,19 +52,6 @@ struct wb_writeback_work { }; /* - * If one wants to wait for one or more wb_writeback_works, each work's - * ->done should be set to a wb_completion defined using the following - * macro. Once all work items are issued with wb_queue_work(), the caller - * can wait for the completion of all using wb_wait_for_completion(). Work - * items which are waited upon aren't freed automatically on completion. - */ -#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ - struct wb_completion cmpl = { \ - .cnt = ATOMIC_INIT(1), \ - } - - -/* * If an inode is constantly having its pages dirtied, but then the * updates stop dirtytime_expire_interval seconds in the past, it's * possible for the worst case time between when an inode has its @@ -82,7 +61,7 @@ struct wb_writeback_work { * timestamps written to disk after 12 hours, but in the worst case a * few inodes might not their timestamps updated for 24 hours. */ -unsigned int dirtytime_expire_interval = 12 * 60 * 60; +static unsigned int dirtytime_expire_interval = 12 * 60 * 60; static inline struct inode *wb_inode(struct list_head *head) { @@ -137,6 +116,8 @@ static bool inode_io_list_move_locked(struct inode *inode, struct list_head *head) { assert_spin_locked(&wb->list_lock); + assert_spin_locked(&inode->i_lock); + WARN_ON_ONCE(inode_state_read(inode) & I_FREEING); list_move(&inode->i_io_list, head); @@ -148,40 +129,52 @@ static bool inode_io_list_move_locked(struct inode *inode, return false; } -/** - * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list - * @inode: inode to be removed - * @wb: bdi_writeback @inode is being removed from - * - * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and - * clear %WB_has_dirty_io if all are empty afterwards. - */ -static void inode_io_list_del_locked(struct inode *inode, - struct bdi_writeback *wb) +static void wb_wakeup(struct bdi_writeback *wb) { - assert_spin_locked(&wb->list_lock); - - list_del_init(&inode->i_io_list); - wb_io_lists_depopulated(wb); + spin_lock_irq(&wb->work_lock); + if (test_bit(WB_registered, &wb->state)) + mod_delayed_work(bdi_wq, &wb->dwork, 0); + spin_unlock_irq(&wb->work_lock); } -static void wb_wakeup(struct bdi_writeback *wb) +/* + * This function is used when the first inode for this wb is marked dirty. It + * wakes-up the corresponding bdi thread which should then take care of the + * periodic background write-out of dirty inodes. Since the write-out would + * starts only 'dirty_writeback_interval' centisecs from now anyway, we just + * set up a timer which wakes the bdi thread up later. + * + * Note, we wouldn't bother setting up the timer, but this function is on the + * fast-path (used by '__mark_inode_dirty()'), so we save few context switches + * by delaying the wake-up. + * + * We have to be careful not to postpone flush work if it is scheduled for + * earlier. Thus we use queue_delayed_work(). + */ +static void wb_wakeup_delayed(struct bdi_writeback *wb) { - spin_lock_bh(&wb->work_lock); + unsigned long timeout; + + timeout = msecs_to_jiffies(dirty_writeback_interval * 10); + spin_lock_irq(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) - mod_delayed_work(bdi_wq, &wb->dwork, 0); - spin_unlock_bh(&wb->work_lock); + queue_delayed_work(bdi_wq, &wb->dwork, timeout); + spin_unlock_irq(&wb->work_lock); } -static void finish_writeback_work(struct bdi_writeback *wb, - struct wb_writeback_work *work) +static void finish_writeback_work(struct wb_writeback_work *work) { struct wb_completion *done = work->done; if (work->auto_free) kfree(work); - if (done && atomic_dec_and_test(&done->cnt)) - wake_up_all(&wb->bdi->wb_waitq); + if (done) { + wait_queue_head_t *waitq = done->waitq; + + /* @done can't be accessed after the following dec */ + if (atomic_dec_and_test(&done->cnt)) + wake_up_all(waitq); + } } static void wb_queue_work(struct bdi_writeback *wb, @@ -192,41 +185,71 @@ static void wb_queue_work(struct bdi_writeback *wb, if (work->done) atomic_inc(&work->done->cnt); - spin_lock_bh(&wb->work_lock); + spin_lock_irq(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) { list_add_tail(&work->list, &wb->work_list); mod_delayed_work(bdi_wq, &wb->dwork, 0); } else - finish_writeback_work(wb, work); + finish_writeback_work(work); - spin_unlock_bh(&wb->work_lock); + spin_unlock_irq(&wb->work_lock); +} + +static bool wb_wait_for_completion_cb(struct wb_completion *done) +{ + unsigned long waited_secs = (jiffies - done->wait_start) / HZ; + + done->progress_stamp = jiffies; + if (waited_secs > sysctl_hung_task_timeout_secs) + pr_info("INFO: The task %s:%d has been waiting for writeback " + "completion for more than %lu seconds.", + current->comm, current->pid, waited_secs); + + return !atomic_read(&done->cnt); } /** * wb_wait_for_completion - wait for completion of bdi_writeback_works - * @bdi: bdi work items were issued to * @done: target wb_completion * * Wait for one or more work items issued to @bdi with their ->done field - * set to @done, which should have been defined with - * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such - * work items are completed. Work items which are waited upon aren't freed + * set to @done, which should have been initialized with + * DEFINE_WB_COMPLETION(). This function returns after all such work items + * are completed. Work items which are waited upon aren't freed * automatically on completion. */ -static void wb_wait_for_completion(struct backing_dev_info *bdi, - struct wb_completion *done) +void wb_wait_for_completion(struct wb_completion *done) { + done->wait_start = jiffies; atomic_dec(&done->cnt); /* put down the initial count */ - wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); + wait_event(*done->waitq, wb_wait_for_completion_cb(done)); } #ifdef CONFIG_CGROUP_WRITEBACK -/* parameters for foreign inode detection, see wb_detach_inode() */ +/* + * Parameters for foreign inode detection, see wbc_detach_inode() to see + * how they're used. + * + * These paramters are inherently heuristical as the detection target + * itself is fuzzy. All we want to do is detaching an inode from the + * current owner if it's being written to by some other cgroups too much. + * + * The current cgroup writeback is built on the assumption that multiple + * cgroups writing to the same inode concurrently is very rare and a mode + * of operation which isn't well supported. As such, the goal is not + * taking too long when a different cgroup takes over an inode while + * avoiding too aggressive flip-flops from occasional foreign writes. + * + * We record, very roughly, 2s worth of IO time history and if more than + * half of that is foreign, trigger the switch. The recording is quantized + * to 16 slots. To avoid tiny writes from swinging the decision too much, + * writes smaller than 1/8 of avg size are ignored. + */ #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ -#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ +#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ @@ -236,11 +259,19 @@ static void wb_wait_for_completion(struct backing_dev_info *bdi, /* if foreign slots >= 8, switch */ #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) /* one round can affect upto 5 slots */ +#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ + +/* + * Maximum inodes per isw. A specific value has been chosen to make + * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. + */ +#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ + / sizeof(struct inode *)) static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); static struct workqueue_struct *isw_wq; -void __inode_attach_wb(struct inode *inode, struct page *page) +void __inode_attach_wb(struct inode *inode, struct folio *folio) { struct backing_dev_info *bdi = inode_to_bdi(inode); struct bdi_writeback *wb = NULL; @@ -248,8 +279,8 @@ void __inode_attach_wb(struct inode *inode, struct page *page) if (inode_cgwb_enabled(inode)) { struct cgroup_subsys_state *memcg_css; - if (page) { - memcg_css = mem_cgroup_css_from_page(page); + if (folio) { + memcg_css = mem_cgroup_css_from_folio(folio); wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); } else { /* must pin memcg_css, see wb_get_create() */ @@ -271,6 +302,29 @@ void __inode_attach_wb(struct inode *inode, struct page *page) } /** + * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list + * @inode: inode of interest with i_lock held + * @wb: target bdi_writeback + * + * Remove the inode from wb's io lists and if necessarily put onto b_attached + * list. Only inodes attached to cgwb's are kept on this list. + */ +static void inode_cgwb_move_to_attached(struct inode *inode, + struct bdi_writeback *wb) +{ + assert_spin_locked(&wb->list_lock); + assert_spin_locked(&inode->i_lock); + WARN_ON_ONCE(inode_state_read(inode) & I_FREEING); + + inode_state_clear(inode, I_SYNC_QUEUED); + if (wb != &wb->bdi->wb) + list_move(&inode->i_io_list, &wb->b_attached); + else + list_del_init(&inode->i_io_list); + wb_io_lists_depopulated(wb); +} + +/** * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it * @inode: inode of interest with i_lock held * @@ -324,89 +378,103 @@ static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) } struct inode_switch_wbs_context { - struct inode *inode; - struct bdi_writeback *new_wb; + /* List of queued switching contexts for the wb */ + struct llist_node list; - struct rcu_head rcu_head; - struct work_struct work; + /* + * Multiple inodes can be switched at once. The switching procedure + * consists of two parts, separated by a RCU grace period. To make + * sure that the second part is executed for each inode gone through + * the first part, all inode pointers are placed into a NULL-terminated + * array embedded into struct inode_switch_wbs_context. Otherwise + * an inode could be left in a non-consistent state. + */ + struct inode *inodes[]; }; -static void inode_switch_wbs_work_fn(struct work_struct *work) +static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) +{ + down_write(&bdi->wb_switch_rwsem); +} + +static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) +{ + up_write(&bdi->wb_switch_rwsem); +} + +static bool inode_do_switch_wbs(struct inode *inode, + struct bdi_writeback *old_wb, + struct bdi_writeback *new_wb) { - struct inode_switch_wbs_context *isw = - container_of(work, struct inode_switch_wbs_context, work); - struct inode *inode = isw->inode; struct address_space *mapping = inode->i_mapping; - struct bdi_writeback *old_wb = inode->i_wb; - struct bdi_writeback *new_wb = isw->new_wb; XA_STATE(xas, &mapping->i_pages, 0); - struct page *page; + struct folio *folio; bool switched = false; - /* - * By the time control reaches here, RCU grace period has passed - * since I_WB_SWITCH assertion and all wb stat update transactions - * between unlocked_inode_to_wb_begin/end() are guaranteed to be - * synchronizing against the i_pages lock. - * - * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock - * gives us exclusion against all wb related operations on @inode - * including IO list manipulations and stat updates. - */ - if (old_wb < new_wb) { - spin_lock(&old_wb->list_lock); - spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); - } else { - spin_lock(&new_wb->list_lock); - spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); - } spin_lock(&inode->i_lock); xa_lock_irq(&mapping->i_pages); /* - * Once I_FREEING is visible under i_lock, the eviction path owns - * the inode and we shouldn't modify ->i_io_list. + * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction + * path owns the inode and we shouldn't modify ->i_io_list. */ - if (unlikely(inode->i_state & I_FREEING)) + if (unlikely(inode_state_read(inode) & (I_FREEING | I_WILL_FREE))) goto skip_switch; + trace_inode_switch_wbs(inode, old_wb, new_wb); + /* * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points - * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to - * pages actually under writeback. + * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to + * folios actually under writeback. */ - xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { - if (PageDirty(page)) { - dec_wb_stat(old_wb, WB_RECLAIMABLE); - inc_wb_stat(new_wb, WB_RECLAIMABLE); + xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { + if (folio_test_dirty(folio)) { + long nr = folio_nr_pages(folio); + wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); + wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); } } xas_set(&xas, 0); - xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { - WARN_ON_ONCE(!PageWriteback(page)); - dec_wb_stat(old_wb, WB_WRITEBACK); - inc_wb_stat(new_wb, WB_WRITEBACK); + xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { + long nr = folio_nr_pages(folio); + WARN_ON_ONCE(!folio_test_writeback(folio)); + wb_stat_mod(old_wb, WB_WRITEBACK, -nr); + wb_stat_mod(new_wb, WB_WRITEBACK, nr); + } + + if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { + atomic_dec(&old_wb->writeback_inodes); + atomic_inc(&new_wb->writeback_inodes); } wb_get(new_wb); /* - * Transfer to @new_wb's IO list if necessary. The specific list - * @inode was on is ignored and the inode is put on ->b_dirty which - * is always correct including from ->b_dirty_time. The transfer - * preserves @inode->dirtied_when ordering. + * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, + * the specific list @inode was on is ignored and the @inode is put on + * ->b_dirty which is always correct including from ->b_dirty_time. + * If the @inode was clean, it means it was on the b_attached list, so + * move it onto the b_attached list of @new_wb. */ if (!list_empty(&inode->i_io_list)) { - struct inode *pos; - - inode_io_list_del_locked(inode, old_wb); inode->i_wb = new_wb; - list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) - if (time_after_eq(inode->dirtied_when, - pos->dirtied_when)) - break; - inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); + + if (inode_state_read(inode) & I_DIRTY_ALL) { + /* + * We need to keep b_dirty list sorted by + * dirtied_time_when. However properly sorting the + * inode in the list gets too expensive when switching + * many inodes. So just attach inode at the end of the + * dirty list and clobber the dirtied_time_when. + */ + inode->dirtied_time_when = jiffies; + inode_io_list_move_locked(inode, new_wb, + &new_wb->b_dirty); + } else { + inode_cgwb_move_to_attached(inode, new_wb); + } } else { inode->i_wb = new_wb; } @@ -418,36 +486,148 @@ static void inode_switch_wbs_work_fn(struct work_struct *work) switched = true; skip_switch: /* - * Paired with load_acquire in unlocked_inode_to_wb_begin() and + * Paired with an acquire fence in unlocked_inode_to_wb_begin() and * ensures that the new wb is visible if they see !I_WB_SWITCH. */ - smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); + smp_wmb(); + inode_state_clear(inode, I_WB_SWITCH); xa_unlock_irq(&mapping->i_pages); spin_unlock(&inode->i_lock); + + return switched; +} + +static void process_inode_switch_wbs(struct bdi_writeback *new_wb, + struct inode_switch_wbs_context *isw) +{ + struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); + struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; + unsigned long nr_switched = 0; + struct inode **inodep; + + /* + * If @inode switches cgwb membership while sync_inodes_sb() is + * being issued, sync_inodes_sb() might miss it. Synchronize. + */ + down_read(&bdi->wb_switch_rwsem); + + inodep = isw->inodes; + /* + * By the time control reaches here, RCU grace period has passed + * since I_WB_SWITCH assertion and all wb stat update transactions + * between unlocked_inode_to_wb_begin/end() are guaranteed to be + * synchronizing against the i_pages lock. + * + * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock + * gives us exclusion against all wb related operations on @inode + * including IO list manipulations and stat updates. + */ +relock: + if (old_wb < new_wb) { + spin_lock(&old_wb->list_lock); + spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); + } else { + spin_lock(&new_wb->list_lock); + spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); + } + + while (*inodep) { + WARN_ON_ONCE((*inodep)->i_wb != old_wb); + if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) + nr_switched++; + inodep++; + if (*inodep && need_resched()) { + spin_unlock(&new_wb->list_lock); + spin_unlock(&old_wb->list_lock); + cond_resched(); + goto relock; + } + } + spin_unlock(&new_wb->list_lock); spin_unlock(&old_wb->list_lock); - if (switched) { + up_read(&bdi->wb_switch_rwsem); + + if (nr_switched) { wb_wakeup(new_wb); - wb_put(old_wb); + wb_put_many(old_wb, nr_switched); } - wb_put(new_wb); - iput(inode); + for (inodep = isw->inodes; *inodep; inodep++) + iput(*inodep); + wb_put(new_wb); kfree(isw); - atomic_dec(&isw_nr_in_flight); } -static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) +void inode_switch_wbs_work_fn(struct work_struct *work) { - struct inode_switch_wbs_context *isw = container_of(rcu_head, - struct inode_switch_wbs_context, rcu_head); + struct bdi_writeback *new_wb = container_of(work, struct bdi_writeback, + switch_work); + struct inode_switch_wbs_context *isw, *next_isw; + struct llist_node *list; - /* needs to grab bh-unsafe locks, bounce to work item */ - INIT_WORK(&isw->work, inode_switch_wbs_work_fn); - queue_work(isw_wq, &isw->work); + /* + * Grab out reference to wb so that it cannot get freed under us + * after we process all the isw items. + */ + wb_get(new_wb); + while (1) { + list = llist_del_all(&new_wb->switch_wbs_ctxs); + /* Nothing to do? */ + if (!list) + break; + /* + * In addition to synchronizing among switchers, I_WB_SWITCH + * tells the RCU protected stat update paths to grab the i_page + * lock so that stat transfer can synchronize against them. + * Let's continue after I_WB_SWITCH is guaranteed to be + * visible. + */ + synchronize_rcu(); + + llist_for_each_entry_safe(isw, next_isw, list, list) + process_inode_switch_wbs(new_wb, isw); + } + wb_put(new_wb); +} + +static bool inode_prepare_wbs_switch(struct inode *inode, + struct bdi_writeback *new_wb) +{ + /* + * Paired with smp_mb() in cgroup_writeback_umount(). + * isw_nr_in_flight must be increased before checking SB_ACTIVE and + * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 + * in cgroup_writeback_umount() and the isw_wq will be not flushed. + */ + smp_mb(); + + if (IS_DAX(inode)) + return false; + + /* while holding I_WB_SWITCH, no one else can update the association */ + spin_lock(&inode->i_lock); + if (!(inode->i_sb->s_flags & SB_ACTIVE) || + inode_state_read(inode) & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || + inode_to_wb(inode) == new_wb) { + spin_unlock(&inode->i_lock); + return false; + } + inode_state_set(inode, I_WB_SWITCH); + __iget(inode); + spin_unlock(&inode->i_lock); + + return true; +} + +static void wb_queue_isw(struct bdi_writeback *wb, + struct inode_switch_wbs_context *isw) +{ + if (llist_add(&isw->list, &wb->switch_wbs_ctxs)) + queue_work(isw_wq, &wb->switch_work); } /** @@ -463,53 +643,131 @@ static void inode_switch_wbs(struct inode *inode, int new_wb_id) struct backing_dev_info *bdi = inode_to_bdi(inode); struct cgroup_subsys_state *memcg_css; struct inode_switch_wbs_context *isw; + struct bdi_writeback *new_wb = NULL; /* noop if seems to be already in progress */ - if (inode->i_state & I_WB_SWITCH) + if (inode_state_read_once(inode) & I_WB_SWITCH) return; - isw = kzalloc(sizeof(*isw), GFP_ATOMIC); + /* avoid queueing a new switch if too many are already in flight */ + if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) + return; + + isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); if (!isw) return; + atomic_inc(&isw_nr_in_flight); + /* find and pin the new wb */ rcu_read_lock(); memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); - if (memcg_css) - isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); + if (memcg_css && !css_tryget(memcg_css)) + memcg_css = NULL; rcu_read_unlock(); - if (!isw->new_wb) + if (!memcg_css) goto out_free; - /* while holding I_WB_SWITCH, no one else can update the association */ - spin_lock(&inode->i_lock); - if (!(inode->i_sb->s_flags & SB_ACTIVE) || - inode->i_state & (I_WB_SWITCH | I_FREEING) || - inode_to_wb(inode) == isw->new_wb) { - spin_unlock(&inode->i_lock); + new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); + css_put(memcg_css); + if (!new_wb) goto out_free; + + if (!inode_prepare_wbs_switch(inode, new_wb)) + goto out_free; + + isw->inodes[0] = inode; + + trace_inode_switch_wbs_queue(inode->i_wb, new_wb, 1); + wb_queue_isw(new_wb, isw); + return; + +out_free: + atomic_dec(&isw_nr_in_flight); + if (new_wb) + wb_put(new_wb); + kfree(isw); +} + +static bool isw_prepare_wbs_switch(struct bdi_writeback *new_wb, + struct inode_switch_wbs_context *isw, + struct list_head *list, int *nr) +{ + struct inode *inode; + + list_for_each_entry(inode, list, i_io_list) { + if (!inode_prepare_wbs_switch(inode, new_wb)) + continue; + + isw->inodes[*nr] = inode; + (*nr)++; + + if (*nr >= WB_MAX_INODES_PER_ISW - 1) + return true; } - inode->i_state |= I_WB_SWITCH; - __iget(inode); - spin_unlock(&inode->i_lock); + return false; +} - isw->inode = inode; +/** + * cleanup_offline_cgwb - detach associated inodes + * @wb: target wb + * + * Switch all inodes attached to @wb to a nearest living ancestor's wb in order + * to eventually release the dying @wb. Returns %true if not all inodes were + * switched and the function has to be restarted. + */ +bool cleanup_offline_cgwb(struct bdi_writeback *wb) +{ + struct cgroup_subsys_state *memcg_css; + struct inode_switch_wbs_context *isw; + struct bdi_writeback *new_wb; + int nr; + bool restart = false; + + isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), + GFP_KERNEL); + if (!isw) + return restart; atomic_inc(&isw_nr_in_flight); + for (memcg_css = wb->memcg_css->parent; memcg_css; + memcg_css = memcg_css->parent) { + new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); + if (new_wb) + break; + } + if (unlikely(!new_wb)) + new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ + + nr = 0; + spin_lock(&wb->list_lock); /* - * In addition to synchronizing among switchers, I_WB_SWITCH tells - * the RCU protected stat update paths to grab the i_page - * lock so that stat transfer can synchronize against them. - * Let's continue after I_WB_SWITCH is guaranteed to be visible. + * In addition to the inodes that have completed writeback, also switch + * cgwbs for those inodes only with dirty timestamps. Otherwise, those + * inodes won't be written back for a long time when lazytime is + * enabled, and thus pinning the dying cgwbs. It won't break the + * bandwidth restrictions, as writeback of inode metadata is not + * accounted for. */ - call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); - return; + restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_attached, &nr); + if (!restart) + restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_dirty_time, + &nr); + spin_unlock(&wb->list_lock); -out_free: - if (isw->new_wb) - wb_put(isw->new_wb); - kfree(isw); + /* no attached inodes? bail out */ + if (nr == 0) { + atomic_dec(&isw_nr_in_flight); + wb_put(new_wb); + kfree(isw); + return restart; + } + + trace_inode_switch_wbs_queue(wb, new_wb, nr); + wb_queue_isw(new_wb, isw); + + return restart; } /** @@ -522,8 +780,9 @@ out_free: * writeback completion, wbc_detach_inode() should be called. This is used * to track the cgroup writeback context. */ -void wbc_attach_and_unlock_inode(struct writeback_control *wbc, - struct inode *inode) +static void wbc_attach_and_unlock_inode(struct writeback_control *wbc, + struct inode *inode) + __releases(&inode->i_lock) { if (!inode_cgwb_enabled(inode)) { spin_unlock(&inode->i_lock); @@ -544,14 +803,35 @@ void wbc_attach_and_unlock_inode(struct writeback_control *wbc, spin_unlock(&inode->i_lock); /* - * A dying wb indicates that the memcg-blkcg mapping has changed - * and a new wb is already serving the memcg. Switch immediately. + * A dying wb indicates that either the blkcg associated with the + * memcg changed or the associated memcg is dying. In the first + * case, a replacement wb should already be available and we should + * refresh the wb immediately. In the second case, trying to + * refresh will keep failing. */ - if (unlikely(wb_dying(wbc->wb))) + if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) inode_switch_wbs(inode, wbc->wb_id); } /** + * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite + * @wbc: writeback_control of interest + * @inode: target inode + * + * This function is to be used by filemap_writeback(), which is an alternative + * entry point into writeback code, and first ensures @inode is associated with + * a bdi_writeback and attaches it to @wbc. + */ +void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, + struct inode *inode) +{ + spin_lock(&inode->i_lock); + inode_attach_wb(inode, NULL); + wbc_attach_and_unlock_inode(wbc, inode); +} +EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode); + +/** * wbc_detach_inode - disassociate wbc from inode and perform foreign detection * @wbc: writeback_control of the just finished writeback * @@ -569,7 +849,7 @@ void wbc_attach_and_unlock_inode(struct writeback_control *wbc, * incorrectly attributed). * * To resolve this issue, cgroup writeback detects the majority dirtier of - * an inode and transfers the ownership to it. To avoid unnnecessary + * an inode and transfers the ownership to it. To avoid unnecessary * oscillation, the detection mechanism keeps track of history and gives * out the switch verdict only if the foreign usage pattern is stable over * a certain amount of time and/or writeback attempts. @@ -647,6 +927,9 @@ void wbc_detach_inode(struct writeback_control *wbc) if (wbc->wb_id != max_id) history |= (1U << slots) - 1; + if (history) + trace_inode_foreign_history(inode, wbc, history); + /* * Switch if the current wb isn't the consistent winner. * If there are multiple closely competing dirtiers, the @@ -654,7 +937,7 @@ void wbc_detach_inode(struct writeback_control *wbc) * is okay. The main goal is avoiding keeping an inode on * the wrong wb for an extended period of time. */ - if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) + if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) inode_switch_wbs(inode, max_id); } @@ -669,20 +952,22 @@ void wbc_detach_inode(struct writeback_control *wbc) wb_put(wbc->wb); wbc->wb = NULL; } +EXPORT_SYMBOL_GPL(wbc_detach_inode); /** - * wbc_account_io - account IO issued during writeback + * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership * @wbc: writeback_control of the writeback in progress - * @page: page being written out + * @folio: folio being written out * @bytes: number of bytes being written out * - * @bytes from @page are about to written out during the writeback + * @bytes from @folio are about to written out during the writeback * controlled by @wbc. Keep the book for foreign inode detection. See * wbc_detach_inode(). */ -void wbc_account_io(struct writeback_control *wbc, struct page *page, - size_t bytes) +void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio, + size_t bytes) { + struct cgroup_subsys_state *css; int id; /* @@ -691,10 +976,15 @@ void wbc_account_io(struct writeback_control *wbc, struct page *page, * behind a slow cgroup. Ultimately, we want pageout() to kick off * regular writeback instead of writing things out itself. */ - if (!wbc->wb) + if (!wbc->wb || wbc->no_cgroup_owner) + return; + + css = mem_cgroup_css_from_folio(folio); + /* dead cgroups shouldn't contribute to inode ownership arbitration */ + if (!(css->flags & CSS_ONLINE)) return; - id = mem_cgroup_css_from_page(page)->id; + id = css->id; if (id == wbc->wb_id) { wbc->wb_bytes += bytes; @@ -712,44 +1002,7 @@ void wbc_account_io(struct writeback_control *wbc, struct page *page, else wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); } -EXPORT_SYMBOL_GPL(wbc_account_io); - -/** - * inode_congested - test whether an inode is congested - * @inode: inode to test for congestion (may be NULL) - * @cong_bits: mask of WB_[a]sync_congested bits to test - * - * Tests whether @inode is congested. @cong_bits is the mask of congestion - * bits to test and the return value is the mask of set bits. - * - * If cgroup writeback is enabled for @inode, the congestion state is - * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg - * associated with @inode is congested; otherwise, the root wb's congestion - * state is used. - * - * @inode is allowed to be NULL as this function is often called on - * mapping->host which is NULL for the swapper space. - */ -int inode_congested(struct inode *inode, int cong_bits) -{ - /* - * Once set, ->i_wb never becomes NULL while the inode is alive. - * Start transaction iff ->i_wb is visible. - */ - if (inode && inode_to_wb_is_valid(inode)) { - struct bdi_writeback *wb; - struct wb_lock_cookie lock_cookie = {}; - bool congested; - - wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); - congested = wb_congested(wb, cong_bits); - unlocked_inode_to_wb_end(inode, &lock_cookie); - return congested; - } - - return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); -} -EXPORT_SYMBOL_GPL(inode_congested); +EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); /** * wb_split_bdi_pages - split nr_pages to write according to bandwidth @@ -802,7 +1055,7 @@ static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, restart: rcu_read_lock(); list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { - DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); + DEFINE_WB_COMPLETION(fallback_work_done, bdi); struct wb_writeback_work fallback_work; struct wb_writeback_work *work; long nr_pages; @@ -831,6 +1084,16 @@ restart: continue; } + /* + * If wb_tryget fails, the wb has been shutdown, skip it. + * + * Pin @wb so that it stays on @bdi->wb_list. This allows + * continuing iteration from @wb after dropping and + * regrabbing rcu read lock. + */ + if (!wb_tryget(wb)) + continue; + /* alloc failed, execute synchronously using on-stack fallback */ work = &fallback_work; *work = *base_work; @@ -839,17 +1102,10 @@ restart: work->done = &fallback_work_done; wb_queue_work(wb, work); - - /* - * Pin @wb so that it stays on @bdi->wb_list. This allows - * continuing iteration from @wb after dropping and - * regrabbing rcu read lock. - */ - wb_get(wb); last_wb = wb; rcu_read_unlock(); - wb_wait_for_completion(bdi, &fallback_work_done); + wb_wait_for_completion(&fallback_work_done); goto restart; } rcu_read_unlock(); @@ -859,7 +1115,89 @@ restart: } /** + * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs + * @bdi_id: target bdi id + * @memcg_id: target memcg css id + * @reason: reason why some writeback work initiated + * @done: target wb_completion + * + * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id + * with the specified parameters. + */ +int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, + enum wb_reason reason, struct wb_completion *done) +{ + struct backing_dev_info *bdi; + struct cgroup_subsys_state *memcg_css; + struct bdi_writeback *wb; + struct wb_writeback_work *work; + unsigned long dirty; + int ret; + + /* lookup bdi and memcg */ + bdi = bdi_get_by_id(bdi_id); + if (!bdi) + return -ENOENT; + + rcu_read_lock(); + memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); + if (memcg_css && !css_tryget(memcg_css)) + memcg_css = NULL; + rcu_read_unlock(); + if (!memcg_css) { + ret = -ENOENT; + goto out_bdi_put; + } + + /* + * And find the associated wb. If the wb isn't there already + * there's nothing to flush, don't create one. + */ + wb = wb_get_lookup(bdi, memcg_css); + if (!wb) { + ret = -ENOENT; + goto out_css_put; + } + + /* + * The caller is attempting to write out most of + * the currently dirty pages. Let's take the current dirty page + * count and inflate it by 25% which should be large enough to + * flush out most dirty pages while avoiding getting livelocked by + * concurrent dirtiers. + * + * BTW the memcg stats are flushed periodically and this is best-effort + * estimation, so some potential error is ok. + */ + dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); + dirty = dirty * 10 / 8; + + /* issue the writeback work */ + work = kzalloc(sizeof(*work), GFP_NOWAIT); + if (work) { + work->nr_pages = dirty; + work->sync_mode = WB_SYNC_NONE; + work->range_cyclic = 1; + work->reason = reason; + work->done = done; + work->auto_free = 1; + wb_queue_work(wb, work); + ret = 0; + } else { + ret = -ENOMEM; + } + + wb_put(wb); +out_css_put: + css_put(memcg_css); +out_bdi_put: + bdi_put(bdi); + return ret; +} + +/** * cgroup_writeback_umount - flush inode wb switches for umount + * @sb: target super_block * * This function is called when a super_block is about to be destroyed and * flushes in-flight inode wb switches. An inode wb switch goes through @@ -868,17 +1206,31 @@ restart: * rare occurrences and synchronize_rcu() can take a while, perform * flushing iff wb switches are in flight. */ -void cgroup_writeback_umount(void) +void cgroup_writeback_umount(struct super_block *sb) { + + if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK)) + return; + + /* + * SB_ACTIVE should be reliably cleared before checking + * isw_nr_in_flight, see generic_shutdown_super(). + */ + smp_mb(); + if (atomic_read(&isw_nr_in_flight)) { - synchronize_rcu(); + /* + * Use rcu_barrier() to wait for all pending callbacks to + * ensure that all in-flight wb switches are in the workqueue. + */ + rcu_barrier(); flush_workqueue(isw_wq); } } static int __init cgroup_writeback_init(void) { - isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); + isw_wq = alloc_workqueue("inode_switch_wbs", WQ_PERCPU, 0); if (!isw_wq) return -ENOMEM; return 0; @@ -887,6 +1239,21 @@ fs_initcall(cgroup_writeback_init); #else /* CONFIG_CGROUP_WRITEBACK */ +static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } +static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } + +static void inode_cgwb_move_to_attached(struct inode *inode, + struct bdi_writeback *wb) +{ + assert_spin_locked(&wb->list_lock); + assert_spin_locked(&inode->i_lock); + WARN_ON_ONCE(inode_state_read(inode) & I_FREEING); + + inode_state_clear(inode, I_SYNC_QUEUED); + list_del_init(&inode->i_io_list); + wb_io_lists_depopulated(wb); +} + static struct bdi_writeback * locked_inode_to_wb_and_lock_list(struct inode *inode) __releases(&inode->i_lock) @@ -925,6 +1292,13 @@ static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, } } +static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, + struct inode *inode) + __releases(&inode->i_lock) +{ + spin_unlock(&inode->i_lock); +} + #endif /* CONFIG_CGROUP_WRITEBACK */ /* @@ -934,7 +1308,6 @@ static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, static unsigned long get_nr_dirty_pages(void) { return global_node_page_state(NR_FILE_DIRTY) + - global_node_page_state(NR_UNSTABLE_NFS) + get_nr_dirty_inodes(); } @@ -986,10 +1359,24 @@ void inode_io_list_del(struct inode *inode) { struct bdi_writeback *wb; + /* + * FIXME: ext4 can call here from ext4_evict_inode() after evict() already + * unlinked the inode. + */ + if (list_empty_careful(&inode->i_io_list)) + return; + wb = inode_to_wb_and_lock_list(inode); - inode_io_list_del_locked(inode, wb); + spin_lock(&inode->i_lock); + + inode_state_clear(inode, I_SYNC_QUEUED); + list_del_init(&inode->i_io_list); + wb_io_lists_depopulated(wb); + + spin_unlock(&inode->i_lock); spin_unlock(&wb->list_lock); } +EXPORT_SYMBOL(inode_io_list_del); /* * mark an inode as under writeback on the sb @@ -1036,8 +1423,21 @@ void sb_clear_inode_writeback(struct inode *inode) * the case then the inode must have been redirtied while it was being written * out and we don't reset its dirtied_when. */ -static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) +static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) { + assert_spin_locked(&inode->i_lock); + + inode_state_clear(inode, I_SYNC_QUEUED); + /* + * When the inode is being freed just don't bother with dirty list + * tracking. Flush worker will ignore this inode anyway and it will + * trigger assertions in inode_io_list_move_locked(). + */ + if (inode_state_read(inode) & I_FREEING) { + list_del_init(&inode->i_io_list); + wb_io_lists_depopulated(wb); + return; + } if (!list_empty(&wb->b_dirty)) { struct inode *tail; @@ -1048,6 +1448,13 @@ static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) inode_io_list_move_locked(inode, wb, &wb->b_dirty); } +static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) +{ + spin_lock(&inode->i_lock); + redirty_tail_locked(inode, wb); + spin_unlock(&inode->i_lock); +} + /* * requeue inode for re-scanning after bdi->b_io list is exhausted. */ @@ -1058,12 +1465,13 @@ static void requeue_io(struct inode *inode, struct bdi_writeback *wb) static void inode_sync_complete(struct inode *inode) { - inode->i_state &= ~I_SYNC; + assert_spin_locked(&inode->i_lock); + + inode_state_clear(inode, I_SYNC); /* If inode is clean an unused, put it into LRU now... */ - inode_add_lru(inode); - /* Waiters must see I_SYNC cleared before being woken up */ - smp_mb(); - wake_up_bit(&inode->i_state, __I_SYNC); + inode_lru_list_add(inode); + /* Called with inode->i_lock which ensures memory ordering. */ + inode_wake_up_bit(inode, __I_SYNC); } static bool inode_dirtied_after(struct inode *inode, unsigned long t) @@ -1081,19 +1489,14 @@ static bool inode_dirtied_after(struct inode *inode, unsigned long t) return ret; } -#define EXPIRE_DIRTY_ATIME 0x0001 - /* - * Move expired (dirtied before work->older_than_this) dirty inodes from + * Move expired (dirtied before dirtied_before) dirty inodes from * @delaying_queue to @dispatch_queue. */ static int move_expired_inodes(struct list_head *delaying_queue, struct list_head *dispatch_queue, - int flags, - struct wb_writeback_work *work) + unsigned long dirtied_before) { - unsigned long *older_than_this = NULL; - unsigned long expire_time; LIST_HEAD(tmp); struct list_head *pos, *node; struct super_block *sb = NULL; @@ -1101,21 +1504,15 @@ static int move_expired_inodes(struct list_head *delaying_queue, int do_sb_sort = 0; int moved = 0; - if ((flags & EXPIRE_DIRTY_ATIME) == 0) - older_than_this = work->older_than_this; - else if (!work->for_sync) { - expire_time = jiffies - (dirtytime_expire_interval * HZ); - older_than_this = &expire_time; - } while (!list_empty(delaying_queue)) { inode = wb_inode(delaying_queue->prev); - if (older_than_this && - inode_dirtied_after(inode, *older_than_this)) + if (inode_dirtied_after(inode, dirtied_before)) break; + spin_lock(&inode->i_lock); list_move(&inode->i_io_list, &tmp); moved++; - if (flags & EXPIRE_DIRTY_ATIME) - set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); + inode_state_set(inode, I_SYNC_QUEUED); + spin_unlock(&inode->i_lock); if (sb_is_blkdev_sb(inode->i_sb)) continue; if (sb && sb != inode->i_sb) @@ -1129,7 +1526,12 @@ static int move_expired_inodes(struct list_head *delaying_queue, goto out; } - /* Move inodes from one superblock together */ + /* + * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', + * we don't take inode->i_lock here because it is just a pointless overhead. + * Inode is already marked as I_SYNC_QUEUED so writeback list handling is + * fully under our control. + */ while (!list_empty(&tmp)) { sb = wb_inode(tmp.prev)->i_sb; list_for_each_prev_safe(pos, node, &tmp) { @@ -1153,18 +1555,22 @@ out: * | * +--> dequeue for IO */ -static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) +static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, + unsigned long dirtied_before) { int moved; + unsigned long time_expire_jif = dirtied_before; assert_spin_locked(&wb->list_lock); list_splice_init(&wb->b_more_io, &wb->b_io); - moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); + moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); + if (!work->for_sync) + time_expire_jif = jiffies - dirtytime_expire_interval * HZ; moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, - EXPIRE_DIRTY_ATIME, work); + time_expire_jif); if (moved) wb_io_lists_populated(wb); - trace_writeback_queue_io(wb, work, moved); + trace_writeback_queue_io(wb, work, dirtied_before, moved); } static int write_inode(struct inode *inode, struct writeback_control *wbc) @@ -1184,30 +1590,27 @@ static int write_inode(struct inode *inode, struct writeback_control *wbc) * Wait for writeback on an inode to complete. Called with i_lock held. * Caller must make sure inode cannot go away when we drop i_lock. */ -static void __inode_wait_for_writeback(struct inode *inode) - __releases(inode->i_lock) - __acquires(inode->i_lock) +void inode_wait_for_writeback(struct inode *inode) { - DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); - wait_queue_head_t *wqh; + struct wait_bit_queue_entry wqe; + struct wait_queue_head *wq_head; + + assert_spin_locked(&inode->i_lock); + + if (!(inode_state_read(inode) & I_SYNC)) + return; - wqh = bit_waitqueue(&inode->i_state, __I_SYNC); - while (inode->i_state & I_SYNC) { + wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); + for (;;) { + prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); + /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ + if (!(inode_state_read(inode) & I_SYNC)) + break; spin_unlock(&inode->i_lock); - __wait_on_bit(wqh, &wq, bit_wait, - TASK_UNINTERRUPTIBLE); + schedule(); spin_lock(&inode->i_lock); } -} - -/* - * Wait for writeback on an inode to complete. Caller must have inode pinned. - */ -void inode_wait_for_writeback(struct inode *inode) -{ - spin_lock(&inode->i_lock); - __inode_wait_for_writeback(inode); - spin_unlock(&inode->i_lock); + finish_wait(wq_head, &wqe.wq_entry); } /* @@ -1218,16 +1621,20 @@ void inode_wait_for_writeback(struct inode *inode) static void inode_sleep_on_writeback(struct inode *inode) __releases(inode->i_lock) { - DEFINE_WAIT(wait); - wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); - int sleep; + struct wait_bit_queue_entry wqe; + struct wait_queue_head *wq_head; + bool sleep; + + assert_spin_locked(&inode->i_lock); - prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); - sleep = inode->i_state & I_SYNC; + wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); + prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); + /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ + sleep = !!(inode_state_read(inode) & I_SYNC); spin_unlock(&inode->i_lock); if (sleep) schedule(); - finish_wait(wqh, &wait); + finish_wait(wq_head, &wqe.wq_entry); } /* @@ -1239,9 +1646,10 @@ static void inode_sleep_on_writeback(struct inode *inode) * thread's back can have unexpected consequences. */ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, - struct writeback_control *wbc) + struct writeback_control *wbc, + unsigned long dirtied_before) { - if (inode->i_state & I_FREEING) + if (inode_state_read(inode) & I_FREEING) return; /* @@ -1249,16 +1657,21 @@ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, * shot. If still dirty, it will be redirty_tail()'ed below. Update * the dirty time to prevent enqueue and sync it again. */ - if ((inode->i_state & I_DIRTY) && + if ((inode_state_read(inode) & I_DIRTY) && (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) inode->dirtied_when = jiffies; if (wbc->pages_skipped) { /* - * writeback is not making progress due to locked - * buffers. Skip this inode for now. + * Writeback is not making progress due to locked buffers. + * Skip this inode for now. Although having skipped pages + * is odd for clean inodes, it can happen for some + * filesystems so handle that gracefully. */ - redirty_tail(inode, wb); + if (inode_state_read(inode) & I_DIRTY_ALL) + redirty_tail_locked(inode, wb); + else + inode_cgwb_move_to_attached(inode, wb); return; } @@ -1267,7 +1680,8 @@ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, * We didn't write back all the pages. nfs_writepages() * sometimes bales out without doing anything. */ - if (wbc->nr_to_write <= 0) { + if (wbc->nr_to_write <= 0 && + !inode_dirtied_after(inode, dirtied_before)) { /* Slice used up. Queue for next turn. */ requeue_io(inode, wb); } else { @@ -1278,28 +1692,35 @@ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, * retrying writeback of the dirty page/inode * that cannot be performed immediately. */ - redirty_tail(inode, wb); + redirty_tail_locked(inode, wb); } - } else if (inode->i_state & I_DIRTY) { + } else if (inode_state_read(inode) & I_DIRTY) { /* * Filesystems can dirty the inode during writeback operations, * such as delayed allocation during submission or metadata * updates after data IO completion. */ - redirty_tail(inode, wb); - } else if (inode->i_state & I_DIRTY_TIME) { + redirty_tail_locked(inode, wb); + } else if (inode_state_read(inode) & I_DIRTY_TIME) { inode->dirtied_when = jiffies; inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); + inode_state_clear(inode, I_SYNC_QUEUED); } else { /* The inode is clean. Remove from writeback lists. */ - inode_io_list_del_locked(inode, wb); + inode_cgwb_move_to_attached(inode, wb); } } /* - * Write out an inode and its dirty pages. Do not update the writeback list - * linkage. That is left to the caller. The caller is also responsible for - * setting I_SYNC flag and calling inode_sync_complete() to clear it. + * Write out an inode and its dirty pages (or some of its dirty pages, depending + * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. + * + * This doesn't remove the inode from the writeback list it is on, except + * potentially to move it from b_dirty_time to b_dirty due to timestamp + * expiration. The caller is otherwise responsible for writeback list handling. + * + * The caller is also responsible for setting the I_SYNC flag beforehand and + * calling inode_sync_complete() to clear it afterwards. */ static int __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) @@ -1309,7 +1730,7 @@ __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) unsigned dirty; int ret; - WARN_ON(!(inode->i_state & I_SYNC)); + WARN_ON(!(inode_state_read_once(inode) & I_SYNC)); trace_writeback_single_inode_start(inode, wbc, nr_to_write); @@ -1329,26 +1750,27 @@ __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) } /* - * Some filesystems may redirty the inode during the writeback - * due to delalloc, clear dirty metadata flags right before - * write_inode() + * If the inode has dirty timestamps and we need to write them, call + * mark_inode_dirty_sync() to notify the filesystem about it and to + * change I_DIRTY_TIME into I_DIRTY_SYNC. */ - spin_lock(&inode->i_lock); + if ((inode_state_read_once(inode) & I_DIRTY_TIME) && + (wbc->sync_mode == WB_SYNC_ALL || + time_after(jiffies, inode->dirtied_time_when + + dirtytime_expire_interval * HZ))) { + trace_writeback_lazytime(inode); + mark_inode_dirty_sync(inode); + } - dirty = inode->i_state & I_DIRTY; - if (inode->i_state & I_DIRTY_TIME) { - if ((dirty & I_DIRTY_INODE) || - wbc->sync_mode == WB_SYNC_ALL || - unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || - unlikely(time_after(jiffies, - (inode->dirtied_time_when + - dirtytime_expire_interval * HZ)))) { - dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; - trace_writeback_lazytime(inode); - } - } else - inode->i_state &= ~I_DIRTY_TIME_EXPIRED; - inode->i_state &= ~dirty; + /* + * Get and clear the dirty flags from i_state. This needs to be done + * after calling writepages because some filesystems may redirty the + * inode during writepages due to delalloc. It also needs to be done + * after handling timestamp expiration, as that may dirty the inode too. + */ + spin_lock(&inode->i_lock); + dirty = inode_state_read(inode) & I_DIRTY; + inode_state_clear(inode, dirty); /* * Paired with smp_mb() in __mark_inode_dirty(). This allows @@ -1364,29 +1786,36 @@ __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) smp_mb(); if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) - inode->i_state |= I_DIRTY_PAGES; + inode_state_set(inode, I_DIRTY_PAGES); + else if (unlikely(inode_state_read(inode) & I_PINNING_NETFS_WB)) { + if (!(inode_state_read(inode) & I_DIRTY_PAGES)) { + inode_state_clear(inode, I_PINNING_NETFS_WB); + wbc->unpinned_netfs_wb = true; + dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ + } + } spin_unlock(&inode->i_lock); - if (dirty & I_DIRTY_TIME) - mark_inode_dirty_sync(inode); /* Don't write the inode if only I_DIRTY_PAGES was set */ if (dirty & ~I_DIRTY_PAGES) { int err = write_inode(inode, wbc); if (ret == 0) ret = err; } + wbc->unpinned_netfs_wb = false; trace_writeback_single_inode(inode, wbc, nr_to_write); return ret; } /* - * Write out an inode's dirty pages. Either the caller has an active reference - * on the inode or the inode has I_WILL_FREE set. + * Write out an inode's dirty data and metadata on-demand, i.e. separately from + * the regular batched writeback done by the flusher threads in + * writeback_sb_inodes(). @wbc controls various aspects of the write, such as + * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). * - * This function is designed to be called for writing back one inode which - * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() - * and does more profound writeback list handling in writeback_sb_inodes(). + * To prevent the inode from going away, either the caller must have a reference + * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. */ static int writeback_single_inode(struct inode *inode, struct writeback_control *wbc) @@ -1395,35 +1824,35 @@ static int writeback_single_inode(struct inode *inode, int ret = 0; spin_lock(&inode->i_lock); - if (!atomic_read(&inode->i_count)) - WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); + if (!icount_read(inode)) + WARN_ON(!(inode_state_read(inode) & (I_WILL_FREE | I_FREEING))); else - WARN_ON(inode->i_state & I_WILL_FREE); + WARN_ON(inode_state_read(inode) & I_WILL_FREE); - if (inode->i_state & I_SYNC) { - if (wbc->sync_mode != WB_SYNC_ALL) - goto out; + if (inode_state_read(inode) & I_SYNC) { /* - * It's a data-integrity sync. We must wait. Since callers hold - * inode reference or inode has I_WILL_FREE set, it cannot go - * away under us. + * Writeback is already running on the inode. For WB_SYNC_NONE, + * that's enough and we can just return. For WB_SYNC_ALL, we + * must wait for the existing writeback to complete, then do + * writeback again if there's anything left. */ - __inode_wait_for_writeback(inode); + if (wbc->sync_mode != WB_SYNC_ALL) + goto out; + inode_wait_for_writeback(inode); } - WARN_ON(inode->i_state & I_SYNC); + WARN_ON(inode_state_read(inode) & I_SYNC); /* - * Skip inode if it is clean and we have no outstanding writeback in - * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this - * function since flusher thread may be doing for example sync in - * parallel and if we move the inode, it could get skipped. So here we - * make sure inode is on some writeback list and leave it there unless - * we have completely cleaned the inode. + * If the inode is already fully clean, then there's nothing to do. + * + * For data-integrity syncs we also need to check whether any pages are + * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If + * there are any such pages, we'll need to wait for them. */ - if (!(inode->i_state & I_DIRTY_ALL) && + if (!(inode_state_read(inode) & I_DIRTY_ALL) && (wbc->sync_mode != WB_SYNC_ALL || !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) goto out; - inode->i_state |= I_SYNC; + inode_state_set(inode, I_SYNC); wbc_attach_and_unlock_inode(wbc, inode); ret = __writeback_single_inode(inode, wbc); @@ -1433,11 +1862,29 @@ static int writeback_single_inode(struct inode *inode, wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); /* - * If inode is clean, remove it from writeback lists. Otherwise don't - * touch it. See comment above for explanation. + * If the inode is freeing, its i_io_list shoudn't be updated + * as it can be finally deleted at this moment. */ - if (!(inode->i_state & I_DIRTY_ALL)) - inode_io_list_del_locked(inode, wb); + if (!(inode_state_read(inode) & I_FREEING)) { + /* + * If the inode is now fully clean, then it can be safely + * removed from its writeback list (if any). Otherwise the + * flusher threads are responsible for the writeback lists. + */ + if (!(inode_state_read(inode) & I_DIRTY_ALL)) + inode_cgwb_move_to_attached(inode, wb); + else if (!(inode_state_read(inode) & I_SYNC_QUEUED)) { + if ((inode_state_read(inode) & I_DIRTY)) + redirty_tail_locked(inode, wb); + else if (inode_state_read(inode) & I_DIRTY_TIME) { + inode->dirtied_when = jiffies; + inode_io_list_move_locked(inode, + wb, + &wb->b_dirty_time); + } + } + } + spin_unlock(&wb->list_lock); inode_sync_complete(inode); out: @@ -1445,8 +1892,8 @@ out: return ret; } -static long writeback_chunk_size(struct bdi_writeback *wb, - struct wb_writeback_work *work) +static long writeback_chunk_size(struct super_block *sb, + struct bdi_writeback *wb, struct wb_writeback_work *work) { long pages; @@ -1464,16 +1911,13 @@ static long writeback_chunk_size(struct bdi_writeback *wb, * (maybe slowly) sync all tagged pages */ if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) - pages = LONG_MAX; - else { - pages = min(wb->avg_write_bandwidth / 2, - global_wb_domain.dirty_limit / DIRTY_SCOPE); - pages = min(pages, work->nr_pages); - pages = round_down(pages + MIN_WRITEBACK_PAGES, - MIN_WRITEBACK_PAGES); - } + return LONG_MAX; - return pages; + pages = min(wb->avg_write_bandwidth / 2, + global_wb_domain.dirty_limit / DIRTY_SCOPE); + pages = min(pages, work->nr_pages); + return round_down(pages + sb->s_min_writeback_pages, + sb->s_min_writeback_pages); } /* @@ -1501,11 +1945,17 @@ static long writeback_sb_inodes(struct super_block *sb, }; unsigned long start_time = jiffies; long write_chunk; - long wrote = 0; /* count both pages and inodes */ + long total_wrote = 0; /* count both pages and inodes */ + unsigned long dirtied_before = jiffies; + + if (work->for_kupdate) + dirtied_before = jiffies - + msecs_to_jiffies(dirty_expire_interval * 10); while (!list_empty(&wb->b_io)) { struct inode *inode = wb_inode(wb->b_io.prev); struct bdi_writeback *tmp_wb; + long wrote; if (inode->i_sb != sb) { if (work->sb) { @@ -1532,12 +1982,12 @@ static long writeback_sb_inodes(struct super_block *sb, * kind writeout is handled by the freer. */ spin_lock(&inode->i_lock); - if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { + if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) { + redirty_tail_locked(inode, wb); spin_unlock(&inode->i_lock); - redirty_tail(inode, wb); continue; } - if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { + if ((inode_state_read(inode) & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { /* * If this inode is locked for writeback and we are not * doing writeback-for-data-integrity, move it to @@ -1547,8 +1997,8 @@ static long writeback_sb_inodes(struct super_block *sb, * We'll have another go at writing back this inode * when we completed a full scan of b_io. */ - spin_unlock(&inode->i_lock); requeue_io(inode, wb); + spin_unlock(&inode->i_lock); trace_writeback_sb_inodes_requeue(inode); continue; } @@ -1559,17 +2009,17 @@ static long writeback_sb_inodes(struct super_block *sb, * are doing WB_SYNC_NONE writeback. So this catches only the * WB_SYNC_ALL case. */ - if (inode->i_state & I_SYNC) { + if (inode_state_read(inode) & I_SYNC) { /* Wait for I_SYNC. This function drops i_lock... */ inode_sleep_on_writeback(inode); /* Inode may be gone, start again */ spin_lock(&wb->list_lock); continue; } - inode->i_state |= I_SYNC; + inode_state_set(inode, I_SYNC); wbc_attach_and_unlock_inode(&wbc, inode); - write_chunk = writeback_chunk_size(wb, work); + write_chunk = writeback_chunk_size(inode->i_sb, wb, work); wbc.nr_to_write = write_chunk; wbc.pages_skipped = 0; @@ -1579,9 +2029,17 @@ static long writeback_sb_inodes(struct super_block *sb, */ __writeback_single_inode(inode, &wbc); + /* Report progress to inform the hung task detector of the progress. */ + if (work->done && work->done->progress_stamp && + (jiffies - work->done->progress_stamp) > HZ * + sysctl_hung_task_timeout_secs / 2) + wake_up_all(work->done->waitq); + wbc_detach_inode(&wbc); work->nr_pages -= write_chunk - wbc.nr_to_write; - wrote += write_chunk - wbc.nr_to_write; + wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; + wrote = wrote < 0 ? 0 : wrote; + total_wrote += wrote; if (need_resched()) { /* @@ -1592,7 +2050,7 @@ static long writeback_sb_inodes(struct super_block *sb, * unplug, so get our IOs out the door before we * give up the CPU. */ - blk_flush_plug(current); + blk_flush_plug(current->plug, false); cond_resched(); } @@ -1602,9 +2060,9 @@ static long writeback_sb_inodes(struct super_block *sb, */ tmp_wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); - if (!(inode->i_state & I_DIRTY_ALL)) - wrote++; - requeue_inode(inode, tmp_wb, &wbc); + if (!(inode_state_read(inode) & I_DIRTY_ALL)) + total_wrote++; + requeue_inode(inode, tmp_wb, &wbc, dirtied_before); inode_sync_complete(inode); spin_unlock(&inode->i_lock); @@ -1617,14 +2075,14 @@ static long writeback_sb_inodes(struct super_block *sb, * bail out to wb_writeback() often enough to check * background threshold and other termination conditions. */ - if (wrote) { + if (total_wrote) { if (time_is_before_jiffies(start_time + HZ / 10UL)) break; if (work->nr_pages <= 0) break; } } - return wrote; + return total_wrote; } static long __writeback_inodes_wb(struct bdi_writeback *wb, @@ -1637,9 +2095,9 @@ static long __writeback_inodes_wb(struct bdi_writeback *wb, struct inode *inode = wb_inode(wb->b_io.prev); struct super_block *sb = inode->i_sb; - if (!trylock_super(sb)) { + if (!super_trylock_shared(sb)) { /* - * trylock_super() may fail consistently due to + * super_trylock_shared() may fail consistently due to * s_umount being grabbed by someone else. Don't use * requeue_io() to avoid busy retrying the inode/sb. */ @@ -1675,7 +2133,7 @@ static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, blk_start_plug(&plug); spin_lock(&wb->list_lock); if (list_empty(&wb->b_io)) - queue_io(wb, &work); + queue_io(wb, &work, jiffies); __writeback_inodes_wb(wb, &work); spin_unlock(&wb->list_lock); blk_finish_plug(&plug); @@ -1695,24 +2153,20 @@ static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, * takes longer than a dirty_writeback_interval interval, then leave a * one-second gap. * - * older_than_this takes precedence over nr_to_write. So we'll only write back + * dirtied_before takes precedence over nr_to_write. So we'll only write back * all dirty pages if they are all attached to "old" mappings. */ static long wb_writeback(struct bdi_writeback *wb, struct wb_writeback_work *work) { - unsigned long wb_start = jiffies; long nr_pages = work->nr_pages; - unsigned long oldest_jif; + unsigned long dirtied_before = jiffies; struct inode *inode; long progress; struct blk_plug plug; - - oldest_jif = jiffies; - work->older_than_this = &oldest_jif; + bool queued = false; blk_start_plug(&plug); - spin_lock(&wb->list_lock); for (;;) { /* * Stop writeback when nr_pages has been consumed @@ -1737,29 +2191,33 @@ static long wb_writeback(struct bdi_writeback *wb, if (work->for_background && !wb_over_bg_thresh(wb)) break; - /* - * Kupdate and background works are special and we want to - * include all inodes that need writing. Livelock avoidance is - * handled by these works yielding to any other work so we are - * safe. - */ - if (work->for_kupdate) { - oldest_jif = jiffies - - msecs_to_jiffies(dirty_expire_interval * 10); - } else if (work->for_background) - oldest_jif = jiffies; + + spin_lock(&wb->list_lock); trace_writeback_start(wb, work); - if (list_empty(&wb->b_io)) - queue_io(wb, work); + if (list_empty(&wb->b_io)) { + /* + * Kupdate and background works are special and we want + * to include all inodes that need writing. Livelock + * avoidance is handled by these works yielding to any + * other work so we are safe. + */ + if (work->for_kupdate) { + dirtied_before = jiffies - + msecs_to_jiffies(dirty_expire_interval * + 10); + } else if (work->for_background) + dirtied_before = jiffies; + + queue_io(wb, work, dirtied_before); + queued = true; + } if (work->sb) progress = writeback_sb_inodes(work->sb, wb, work); else progress = __writeback_inodes_wb(wb, work); trace_writeback_written(wb, work); - wb_update_bandwidth(wb, wb_start); - /* * Did we write something? Try for more * @@ -1768,13 +2226,19 @@ static long wb_writeback(struct bdi_writeback *wb, * mean the overall work is done. So we keep looping as long * as made some progress on cleaning pages or inodes. */ - if (progress) + if (progress || !queued) { + spin_unlock(&wb->list_lock); continue; + } + /* * No more inodes for IO, bail */ - if (list_empty(&wb->b_more_io)) + if (list_empty(&wb->b_more_io)) { + spin_unlock(&wb->list_lock); break; + } + /* * Nothing written. Wait for some inode to * become available for writeback. Otherwise @@ -1786,9 +2250,7 @@ static long wb_writeback(struct bdi_writeback *wb, spin_unlock(&wb->list_lock); /* This function drops i_lock... */ inode_sleep_on_writeback(inode); - spin_lock(&wb->list_lock); } - spin_unlock(&wb->list_lock); blk_finish_plug(&plug); return nr_pages - work->nr_pages; @@ -1801,13 +2263,13 @@ static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) { struct wb_writeback_work *work = NULL; - spin_lock_bh(&wb->work_lock); + spin_lock_irq(&wb->work_lock); if (!list_empty(&wb->work_list)) { work = list_entry(wb->work_list.next, struct wb_writeback_work, list); list_del_init(&work->list); } - spin_unlock_bh(&wb->work_lock); + spin_unlock_irq(&wb->work_lock); return work; } @@ -1899,7 +2361,7 @@ static long wb_do_writeback(struct bdi_writeback *wb) while ((work = get_next_work_item(wb)) != NULL) { trace_writeback_exec(wb, work); wrote += wb_writeback(wb, work); - finish_writeback_work(wb, work); + finish_writeback_work(work); } /* @@ -1927,8 +2389,7 @@ void wb_workfn(struct work_struct *work) struct bdi_writeback, dwork); long pages_written; - set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); - current->flags |= PF_SWAPWRITE; + set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); if (likely(!current_is_workqueue_rescuer() || !test_bit(WB_registered, &wb->state))) { @@ -1957,13 +2418,10 @@ void wb_workfn(struct work_struct *work) wb_wakeup(wb); else if (wb_has_dirty_io(wb) && dirty_writeback_interval) wb_wakeup_delayed(wb); - - current->flags &= ~PF_SWAPWRITE; } /* - * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, - * write back the whole world. + * Start writeback of all dirty pages on this bdi. */ static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, enum wb_reason reason) @@ -1995,8 +2453,7 @@ void wakeup_flusher_threads(enum wb_reason reason) /* * If we are expecting writeback progress we must submit plugged IO. */ - if (blk_needs_flush_plug(current)) - blk_schedule_flush_plug(current); + blk_flush_plug(current->plug, true); rcu_read_lock(); list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) @@ -2038,64 +2495,55 @@ static void wakeup_dirtytime_writeback(struct work_struct *w) schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); } -static int __init start_dirtytime_writeback(void) -{ - schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); - return 0; -} -__initcall(start_dirtytime_writeback); - -int dirtytime_interval_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *lenp, loff_t *ppos) +static int dirtytime_interval_handler(const struct ctl_table *table, int write, + void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) - mod_delayed_work(system_wq, &dirtytime_work, 0); + mod_delayed_work(system_percpu_wq, &dirtytime_work, 0); return ret; } -static noinline void block_dump___mark_inode_dirty(struct inode *inode) -{ - if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { - struct dentry *dentry; - const char *name = "?"; +static const struct ctl_table vm_fs_writeback_table[] = { + { + .procname = "dirtytime_expire_seconds", + .data = &dirtytime_expire_interval, + .maxlen = sizeof(dirtytime_expire_interval), + .mode = 0644, + .proc_handler = dirtytime_interval_handler, + .extra1 = SYSCTL_ZERO, + }, +}; - dentry = d_find_alias(inode); - if (dentry) { - spin_lock(&dentry->d_lock); - name = (const char *) dentry->d_name.name; - } - printk(KERN_DEBUG - "%s(%d): dirtied inode %lu (%s) on %s\n", - current->comm, task_pid_nr(current), inode->i_ino, - name, inode->i_sb->s_id); - if (dentry) { - spin_unlock(&dentry->d_lock); - dput(dentry); - } - } +static int __init start_dirtytime_writeback(void) +{ + schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); + register_sysctl_init("vm", vm_fs_writeback_table); + return 0; } +__initcall(start_dirtytime_writeback); /** - * __mark_inode_dirty - internal function + * __mark_inode_dirty - internal function to mark an inode dirty * * @inode: inode to mark - * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) + * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of + * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined + * with I_DIRTY_PAGES. * - * Mark an inode as dirty. Callers should use mark_inode_dirty or - * mark_inode_dirty_sync. + * Mark an inode as dirty. We notify the filesystem, then update the inode's + * dirty flags. Then, if needed we add the inode to the appropriate dirty list. * - * Put the inode on the super block's dirty list. + * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() + * instead of calling this directly. * - * CAREFUL! We mark it dirty unconditionally, but move it onto the - * dirty list only if it is hashed or if it refers to a blockdev. - * If it was not hashed, it will never be added to the dirty list - * even if it is later hashed, as it will have been marked dirty already. + * CAREFUL! We only add the inode to the dirty list if it is hashed or if it + * refers to a blockdev. Unhashed inodes will never be added to the dirty list + * even if they are later hashed, as they will have been marked dirty already. * - * In short, make sure you hash any inodes _before_ you start marking - * them dirty. + * In short, ensure you hash any inodes _before_ you start marking them dirty. * * Note that for blockdevs, inode->dirtied_when represents the dirtying time of * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of @@ -2107,25 +2555,50 @@ static noinline void block_dump___mark_inode_dirty(struct inode *inode) void __mark_inode_dirty(struct inode *inode, int flags) { struct super_block *sb = inode->i_sb; - int dirtytime; + int dirtytime = 0; + struct bdi_writeback *wb = NULL; trace_writeback_mark_inode_dirty(inode, flags); - /* - * Don't do this for I_DIRTY_PAGES - that doesn't actually - * dirty the inode itself - */ - if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { - trace_writeback_dirty_inode_start(inode, flags); + if (flags & I_DIRTY_INODE) { + /* + * Inode timestamp update will piggback on this dirtying. + * We tell ->dirty_inode callback that timestamps need to + * be updated by setting I_DIRTY_TIME in flags. + */ + if (inode_state_read_once(inode) & I_DIRTY_TIME) { + spin_lock(&inode->i_lock); + if (inode_state_read(inode) & I_DIRTY_TIME) { + inode_state_clear(inode, I_DIRTY_TIME); + flags |= I_DIRTY_TIME; + } + spin_unlock(&inode->i_lock); + } + /* + * Notify the filesystem about the inode being dirtied, so that + * (if needed) it can update on-disk fields and journal the + * inode. This is only needed when the inode itself is being + * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not + * for just I_DIRTY_PAGES or I_DIRTY_TIME. + */ + trace_writeback_dirty_inode_start(inode, flags); if (sb->s_op->dirty_inode) - sb->s_op->dirty_inode(inode, flags); - + sb->s_op->dirty_inode(inode, + flags & (I_DIRTY_INODE | I_DIRTY_TIME)); trace_writeback_dirty_inode(inode, flags); - } - if (flags & I_DIRTY_INODE) + + /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ flags &= ~I_DIRTY_TIME; - dirtytime = flags & I_DIRTY_TIME; + } else { + /* + * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. + * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME + * in one call to __mark_inode_dirty().) + */ + dirtytime = flags & I_DIRTY_TIME; + WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); + } /* * Paired with smp_mb() in __writeback_single_inode() for the @@ -2133,32 +2606,36 @@ void __mark_inode_dirty(struct inode *inode, int flags) */ smp_mb(); - if (((inode->i_state & flags) == flags) || - (dirtytime && (inode->i_state & I_DIRTY_INODE))) + if ((inode_state_read_once(inode) & flags) == flags) return; - if (unlikely(block_dump)) - block_dump___mark_inode_dirty(inode); - spin_lock(&inode->i_lock); - if (dirtytime && (inode->i_state & I_DIRTY_INODE)) - goto out_unlock_inode; - if ((inode->i_state & flags) != flags) { - const int was_dirty = inode->i_state & I_DIRTY; + if ((inode_state_read(inode) & flags) != flags) { + const int was_dirty = inode_state_read(inode) & I_DIRTY; inode_attach_wb(inode, NULL); - if (flags & I_DIRTY_INODE) - inode->i_state &= ~I_DIRTY_TIME; - inode->i_state |= flags; + inode_state_set(inode, flags); + + /* + * Grab inode's wb early because it requires dropping i_lock and we + * need to make sure following checks happen atomically with dirty + * list handling so that we don't move inodes under flush worker's + * hands. + */ + if (!was_dirty) { + wb = locked_inode_to_wb_and_lock_list(inode); + spin_lock(&inode->i_lock); + } /* - * If the inode is being synced, just update its dirty state. - * The unlocker will place the inode on the appropriate - * superblock list, based upon its state. + * If the inode is queued for writeback by flush worker, just + * update its dirty state. Once the flush worker is done with + * the inode it will place it on the appropriate superblock + * list, based upon its state. */ - if (inode->i_state & I_SYNC) - goto out_unlock_inode; + if (inode_state_read(inode) & I_SYNC_QUEUED) + goto out_unlock; /* * Only add valid (hashed) inodes to the superblock's @@ -2166,31 +2643,24 @@ void __mark_inode_dirty(struct inode *inode, int flags) */ if (!S_ISBLK(inode->i_mode)) { if (inode_unhashed(inode)) - goto out_unlock_inode; + goto out_unlock; } - if (inode->i_state & I_FREEING) - goto out_unlock_inode; + if (inode_state_read(inode) & I_FREEING) + goto out_unlock; /* * If the inode was already on b_dirty/b_io/b_more_io, don't * reposition it (that would break b_dirty time-ordering). */ if (!was_dirty) { - struct bdi_writeback *wb; struct list_head *dirty_list; bool wakeup_bdi = false; - wb = locked_inode_to_wb_and_lock_list(inode); - - WARN(bdi_cap_writeback_dirty(wb->bdi) && - !test_bit(WB_registered, &wb->state), - "bdi-%s not registered\n", wb->bdi->name); - inode->dirtied_when = jiffies; if (dirtytime) inode->dirtied_time_when = jiffies; - if (inode->i_state & I_DIRTY) + if (inode_state_read(inode) & I_DIRTY) dirty_list = &wb->b_dirty; else dirty_list = &wb->b_dirty_time; @@ -2198,21 +2668,26 @@ void __mark_inode_dirty(struct inode *inode, int flags) wakeup_bdi = inode_io_list_move_locked(inode, wb, dirty_list); - spin_unlock(&wb->list_lock); - trace_writeback_dirty_inode_enqueue(inode); - /* * If this is the first dirty inode for this bdi, * we have to wake-up the corresponding bdi thread * to make sure background write-back happens * later. */ - if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) + if (wakeup_bdi && + (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) wb_wakeup_delayed(wb); + + spin_unlock(&wb->list_lock); + spin_unlock(&inode->i_lock); + trace_writeback_dirty_inode_enqueue(inode); + return; } } -out_unlock_inode: +out_unlock: + if (wb) + spin_unlock(&wb->list_lock); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(__mark_inode_dirty); @@ -2282,7 +2757,7 @@ static void wait_sb_inodes(struct super_block *sb) spin_unlock_irq(&sb->s_inode_wblist_lock); spin_lock(&inode->i_lock); - if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { + if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) { spin_unlock(&inode->i_lock); spin_lock_irq(&sb->s_inode_wblist_lock); @@ -2314,7 +2789,8 @@ static void wait_sb_inodes(struct super_block *sb) static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, enum wb_reason reason, bool skip_if_busy) { - DEFINE_WB_COMPLETION_ONSTACK(done); + struct backing_dev_info *bdi = sb->s_bdi; + DEFINE_WB_COMPLETION(done, bdi); struct wb_writeback_work work = { .sb = sb, .sync_mode = WB_SYNC_NONE, @@ -2323,14 +2799,13 @@ static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, .nr_pages = nr, .reason = reason, }; - struct backing_dev_info *bdi = sb->s_bdi; if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) return; WARN_ON(!rwsem_is_locked(&sb->s_umount)); bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); - wb_wait_for_completion(bdi, &done); + wb_wait_for_completion(&done); } /** @@ -2362,7 +2837,7 @@ EXPORT_SYMBOL(writeback_inodes_sb_nr); */ void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) { - return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); + writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); } EXPORT_SYMBOL(writeback_inodes_sb); @@ -2392,7 +2867,8 @@ EXPORT_SYMBOL(try_to_writeback_inodes_sb); */ void sync_inodes_sb(struct super_block *sb) { - DEFINE_WB_COMPLETION_ONSTACK(done); + struct backing_dev_info *bdi = sb->s_bdi; + DEFINE_WB_COMPLETION(done, bdi); struct wb_writeback_work work = { .sb = sb, .sync_mode = WB_SYNC_ALL, @@ -2402,7 +2878,6 @@ void sync_inodes_sb(struct super_block *sb) .reason = WB_REASON_SYNC, .for_sync = 1, }; - struct backing_dev_info *bdi = sb->s_bdi; /* * Can't skip on !bdi_has_dirty() because we should wait for !dirty @@ -2413,8 +2888,11 @@ void sync_inodes_sb(struct super_block *sb) return; WARN_ON(!rwsem_is_locked(&sb->s_umount)); + /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ + bdi_down_write_wb_switch_rwsem(bdi); bdi_split_work_to_wbs(bdi, &work, false); - wb_wait_for_completion(bdi, &done); + wb_wait_for_completion(&done); + bdi_up_write_wb_switch_rwsem(bdi); wait_sb_inodes(sb); } @@ -2439,7 +2917,7 @@ int write_inode_now(struct inode *inode, int sync) .range_end = LLONG_MAX, }; - if (!mapping_cap_writeback_dirty(inode->i_mapping)) + if (!mapping_can_writeback(inode->i_mapping)) wbc.nr_to_write = 0; might_sleep(); @@ -2448,23 +2926,6 @@ int write_inode_now(struct inode *inode, int sync) EXPORT_SYMBOL(write_inode_now); /** - * sync_inode - write an inode and its pages to disk. - * @inode: the inode to sync - * @wbc: controls the writeback mode - * - * sync_inode() will write an inode and its pages to disk. It will also - * correctly update the inode on its superblock's dirty inode lists and will - * update inode->i_state. - * - * The caller must have a ref on the inode. - */ -int sync_inode(struct inode *inode, struct writeback_control *wbc) -{ - return writeback_single_inode(inode, wbc); -} -EXPORT_SYMBOL(sync_inode); - -/** * sync_inode_metadata - write an inode to disk * @inode: the inode to sync * @wait: wait for I/O to complete. @@ -2480,6 +2941,6 @@ int sync_inode_metadata(struct inode *inode, int wait) .nr_to_write = 0, /* metadata-only */ }; - return sync_inode(inode, &wbc); + return writeback_single_inode(inode, &wbc); } EXPORT_SYMBOL(sync_inode_metadata); |
