summaryrefslogtreecommitdiff
path: root/fs/fs-writeback.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/fs-writeback.c')
-rw-r--r--fs/fs-writeback.c2505
1 files changed, 2005 insertions, 500 deletions
diff --git a/fs/fs-writeback.c b/fs/fs-writeback.c
index 68851ff2fd41..6800886c4d10 100644
--- a/fs/fs-writeback.c
+++ b/fs/fs-writeback.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* fs/fs-writeback.c
*
@@ -13,6 +14,7 @@
* Additions for address_space-based writeback
*/
+#include <linux/sched/sysctl.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/spinlock.h>
@@ -26,153 +28,1390 @@
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/tracepoint.h>
+#include <linux/device.h>
+#include <linux/memcontrol.h>
#include "internal.h"
/*
- * 4MB minimal write chunk size
- */
-#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
-
-/*
* Passed into wb_writeback(), essentially a subset of writeback_control
*/
struct wb_writeback_work {
long nr_pages;
struct super_block *sb;
- unsigned long *older_than_this;
enum writeback_sync_modes sync_mode;
unsigned int tagged_writepages:1;
unsigned int for_kupdate:1;
unsigned int range_cyclic:1;
unsigned int for_background:1;
unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
+ unsigned int auto_free:1; /* free on completion */
enum wb_reason reason; /* why was writeback initiated? */
struct list_head list; /* pending work list */
- struct completion *done; /* set if the caller waits */
+ struct wb_completion *done; /* set if the caller waits */
};
+/*
+ * If an inode is constantly having its pages dirtied, but then the
+ * updates stop dirtytime_expire_interval seconds in the past, it's
+ * possible for the worst case time between when an inode has its
+ * timestamps updated and when they finally get written out to be two
+ * dirtytime_expire_intervals. We set the default to 12 hours (in
+ * seconds), which means most of the time inodes will have their
+ * timestamps written to disk after 12 hours, but in the worst case a
+ * few inodes might not their timestamps updated for 24 hours.
+ */
+static unsigned int dirtytime_expire_interval = 12 * 60 * 60;
+
+static inline struct inode *wb_inode(struct list_head *head)
+{
+ return list_entry(head, struct inode, i_io_list);
+}
+
+/*
+ * Include the creation of the trace points after defining the
+ * wb_writeback_work structure and inline functions so that the definition
+ * remains local to this file.
+ */
+#define CREATE_TRACE_POINTS
+#include <trace/events/writeback.h>
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
+
+static bool wb_io_lists_populated(struct bdi_writeback *wb)
+{
+ if (wb_has_dirty_io(wb)) {
+ return false;
+ } else {
+ set_bit(WB_has_dirty_io, &wb->state);
+ WARN_ON_ONCE(!wb->avg_write_bandwidth);
+ atomic_long_add(wb->avg_write_bandwidth,
+ &wb->bdi->tot_write_bandwidth);
+ return true;
+ }
+}
+
+static void wb_io_lists_depopulated(struct bdi_writeback *wb)
+{
+ if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
+ list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
+ clear_bit(WB_has_dirty_io, &wb->state);
+ WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
+ &wb->bdi->tot_write_bandwidth) < 0);
+ }
+}
+
/**
- * writeback_in_progress - determine whether there is writeback in progress
- * @bdi: the device's backing_dev_info structure.
+ * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
+ * @inode: inode to be moved
+ * @wb: target bdi_writeback
+ * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
*
- * Determine whether there is writeback waiting to be handled against a
- * backing device.
+ * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
+ * Returns %true if @inode is the first occupant of the !dirty_time IO
+ * lists; otherwise, %false.
*/
-int writeback_in_progress(struct backing_dev_info *bdi)
+static bool inode_io_list_move_locked(struct inode *inode,
+ struct bdi_writeback *wb,
+ struct list_head *head)
{
- return test_bit(BDI_writeback_running, &bdi->state);
+ assert_spin_locked(&wb->list_lock);
+ assert_spin_locked(&inode->i_lock);
+ WARN_ON_ONCE(inode_state_read(inode) & I_FREEING);
+
+ list_move(&inode->i_io_list, head);
+
+ /* dirty_time doesn't count as dirty_io until expiration */
+ if (head != &wb->b_dirty_time)
+ return wb_io_lists_populated(wb);
+
+ wb_io_lists_depopulated(wb);
+ return false;
}
-EXPORT_SYMBOL(writeback_in_progress);
-static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
+static void wb_wakeup(struct bdi_writeback *wb)
{
- struct super_block *sb = inode->i_sb;
+ spin_lock_irq(&wb->work_lock);
+ if (test_bit(WB_registered, &wb->state))
+ mod_delayed_work(bdi_wq, &wb->dwork, 0);
+ spin_unlock_irq(&wb->work_lock);
+}
- if (strcmp(sb->s_type->name, "bdev") == 0)
- return inode->i_mapping->backing_dev_info;
+/*
+ * This function is used when the first inode for this wb is marked dirty. It
+ * wakes-up the corresponding bdi thread which should then take care of the
+ * periodic background write-out of dirty inodes. Since the write-out would
+ * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
+ * set up a timer which wakes the bdi thread up later.
+ *
+ * Note, we wouldn't bother setting up the timer, but this function is on the
+ * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
+ * by delaying the wake-up.
+ *
+ * We have to be careful not to postpone flush work if it is scheduled for
+ * earlier. Thus we use queue_delayed_work().
+ */
+static void wb_wakeup_delayed(struct bdi_writeback *wb)
+{
+ unsigned long timeout;
- return sb->s_bdi;
+ timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
+ spin_lock_irq(&wb->work_lock);
+ if (test_bit(WB_registered, &wb->state))
+ queue_delayed_work(bdi_wq, &wb->dwork, timeout);
+ spin_unlock_irq(&wb->work_lock);
}
-static inline struct inode *wb_inode(struct list_head *head)
+static void finish_writeback_work(struct wb_writeback_work *work)
{
- return list_entry(head, struct inode, i_wb_list);
+ struct wb_completion *done = work->done;
+
+ if (work->auto_free)
+ kfree(work);
+ if (done) {
+ wait_queue_head_t *waitq = done->waitq;
+
+ /* @done can't be accessed after the following dec */
+ if (atomic_dec_and_test(&done->cnt))
+ wake_up_all(waitq);
+ }
}
+static void wb_queue_work(struct bdi_writeback *wb,
+ struct wb_writeback_work *work)
+{
+ trace_writeback_queue(wb, work);
+
+ if (work->done)
+ atomic_inc(&work->done->cnt);
+
+ spin_lock_irq(&wb->work_lock);
+
+ if (test_bit(WB_registered, &wb->state)) {
+ list_add_tail(&work->list, &wb->work_list);
+ mod_delayed_work(bdi_wq, &wb->dwork, 0);
+ } else
+ finish_writeback_work(work);
+
+ spin_unlock_irq(&wb->work_lock);
+}
+
+static bool wb_wait_for_completion_cb(struct wb_completion *done)
+{
+ unsigned long waited_secs = (jiffies - done->wait_start) / HZ;
+
+ done->progress_stamp = jiffies;
+ if (waited_secs > sysctl_hung_task_timeout_secs)
+ pr_info("INFO: The task %s:%d has been waiting for writeback "
+ "completion for more than %lu seconds.",
+ current->comm, current->pid, waited_secs);
+
+ return !atomic_read(&done->cnt);
+}
+
+/**
+ * wb_wait_for_completion - wait for completion of bdi_writeback_works
+ * @done: target wb_completion
+ *
+ * Wait for one or more work items issued to @bdi with their ->done field
+ * set to @done, which should have been initialized with
+ * DEFINE_WB_COMPLETION(). This function returns after all such work items
+ * are completed. Work items which are waited upon aren't freed
+ * automatically on completion.
+ */
+void wb_wait_for_completion(struct wb_completion *done)
+{
+ done->wait_start = jiffies;
+ atomic_dec(&done->cnt); /* put down the initial count */
+ wait_event(*done->waitq, wb_wait_for_completion_cb(done));
+}
+
+#ifdef CONFIG_CGROUP_WRITEBACK
+
/*
- * Include the creation of the trace points after defining the
- * wb_writeback_work structure and inline functions so that the definition
- * remains local to this file.
+ * Parameters for foreign inode detection, see wbc_detach_inode() to see
+ * how they're used.
+ *
+ * These paramters are inherently heuristical as the detection target
+ * itself is fuzzy. All we want to do is detaching an inode from the
+ * current owner if it's being written to by some other cgroups too much.
+ *
+ * The current cgroup writeback is built on the assumption that multiple
+ * cgroups writing to the same inode concurrently is very rare and a mode
+ * of operation which isn't well supported. As such, the goal is not
+ * taking too long when a different cgroup takes over an inode while
+ * avoiding too aggressive flip-flops from occasional foreign writes.
+ *
+ * We record, very roughly, 2s worth of IO time history and if more than
+ * half of that is foreign, trigger the switch. The recording is quantized
+ * to 16 slots. To avoid tiny writes from swinging the decision too much,
+ * writes smaller than 1/8 of avg size are ignored.
*/
-#define CREATE_TRACE_POINTS
-#include <trace/events/writeback.h>
+#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
+#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
+#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
+#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
+
+#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
+#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
+ /* each slot's duration is 2s / 16 */
+#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
+ /* if foreign slots >= 8, switch */
+#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
+ /* one round can affect upto 5 slots */
+#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
+
+/*
+ * Maximum inodes per isw. A specific value has been chosen to make
+ * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
+ */
+#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
+ / sizeof(struct inode *))
+
+static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
+static struct workqueue_struct *isw_wq;
-static void bdi_queue_work(struct backing_dev_info *bdi,
- struct wb_writeback_work *work)
+void __inode_attach_wb(struct inode *inode, struct folio *folio)
{
- trace_writeback_queue(bdi, work);
+ struct backing_dev_info *bdi = inode_to_bdi(inode);
+ struct bdi_writeback *wb = NULL;
- spin_lock_bh(&bdi->wb_lock);
- list_add_tail(&work->list, &bdi->work_list);
- spin_unlock_bh(&bdi->wb_lock);
+ if (inode_cgwb_enabled(inode)) {
+ struct cgroup_subsys_state *memcg_css;
- mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
+ if (folio) {
+ memcg_css = mem_cgroup_css_from_folio(folio);
+ wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
+ } else {
+ /* must pin memcg_css, see wb_get_create() */
+ memcg_css = task_get_css(current, memory_cgrp_id);
+ wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
+ css_put(memcg_css);
+ }
+ }
+
+ if (!wb)
+ wb = &bdi->wb;
+
+ /*
+ * There may be multiple instances of this function racing to
+ * update the same inode. Use cmpxchg() to tell the winner.
+ */
+ if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
+ wb_put(wb);
}
-static void
-__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
- bool range_cyclic, enum wb_reason reason)
+/**
+ * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
+ * @inode: inode of interest with i_lock held
+ * @wb: target bdi_writeback
+ *
+ * Remove the inode from wb's io lists and if necessarily put onto b_attached
+ * list. Only inodes attached to cgwb's are kept on this list.
+ */
+static void inode_cgwb_move_to_attached(struct inode *inode,
+ struct bdi_writeback *wb)
{
- struct wb_writeback_work *work;
+ assert_spin_locked(&wb->list_lock);
+ assert_spin_locked(&inode->i_lock);
+ WARN_ON_ONCE(inode_state_read(inode) & I_FREEING);
+
+ inode_state_clear(inode, I_SYNC_QUEUED);
+ if (wb != &wb->bdi->wb)
+ list_move(&inode->i_io_list, &wb->b_attached);
+ else
+ list_del_init(&inode->i_io_list);
+ wb_io_lists_depopulated(wb);
+}
+
+/**
+ * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
+ * @inode: inode of interest with i_lock held
+ *
+ * Returns @inode's wb with its list_lock held. @inode->i_lock must be
+ * held on entry and is released on return. The returned wb is guaranteed
+ * to stay @inode's associated wb until its list_lock is released.
+ */
+static struct bdi_writeback *
+locked_inode_to_wb_and_lock_list(struct inode *inode)
+ __releases(&inode->i_lock)
+ __acquires(&wb->list_lock)
+{
+ while (true) {
+ struct bdi_writeback *wb = inode_to_wb(inode);
+
+ /*
+ * inode_to_wb() association is protected by both
+ * @inode->i_lock and @wb->list_lock but list_lock nests
+ * outside i_lock. Drop i_lock and verify that the
+ * association hasn't changed after acquiring list_lock.
+ */
+ wb_get(wb);
+ spin_unlock(&inode->i_lock);
+ spin_lock(&wb->list_lock);
+
+ /* i_wb may have changed inbetween, can't use inode_to_wb() */
+ if (likely(wb == inode->i_wb)) {
+ wb_put(wb); /* @inode already has ref */
+ return wb;
+ }
+
+ spin_unlock(&wb->list_lock);
+ wb_put(wb);
+ cpu_relax();
+ spin_lock(&inode->i_lock);
+ }
+}
+
+/**
+ * inode_to_wb_and_lock_list - determine an inode's wb and lock it
+ * @inode: inode of interest
+ *
+ * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
+ * on entry.
+ */
+static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
+ __acquires(&wb->list_lock)
+{
+ spin_lock(&inode->i_lock);
+ return locked_inode_to_wb_and_lock_list(inode);
+}
+
+struct inode_switch_wbs_context {
+ /* List of queued switching contexts for the wb */
+ struct llist_node list;
/*
- * This is WB_SYNC_NONE writeback, so if allocation fails just
- * wakeup the thread for old dirty data writeback
+ * Multiple inodes can be switched at once. The switching procedure
+ * consists of two parts, separated by a RCU grace period. To make
+ * sure that the second part is executed for each inode gone through
+ * the first part, all inode pointers are placed into a NULL-terminated
+ * array embedded into struct inode_switch_wbs_context. Otherwise
+ * an inode could be left in a non-consistent state.
*/
- work = kzalloc(sizeof(*work), GFP_ATOMIC);
- if (!work) {
- trace_writeback_nowork(bdi);
- mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
+ struct inode *inodes[];
+};
+
+static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
+{
+ down_write(&bdi->wb_switch_rwsem);
+}
+
+static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
+{
+ up_write(&bdi->wb_switch_rwsem);
+}
+
+static bool inode_do_switch_wbs(struct inode *inode,
+ struct bdi_writeback *old_wb,
+ struct bdi_writeback *new_wb)
+{
+ struct address_space *mapping = inode->i_mapping;
+ XA_STATE(xas, &mapping->i_pages, 0);
+ struct folio *folio;
+ bool switched = false;
+
+ spin_lock(&inode->i_lock);
+ xa_lock_irq(&mapping->i_pages);
+
+ /*
+ * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
+ * path owns the inode and we shouldn't modify ->i_io_list.
+ */
+ if (unlikely(inode_state_read(inode) & (I_FREEING | I_WILL_FREE)))
+ goto skip_switch;
+
+ trace_inode_switch_wbs(inode, old_wb, new_wb);
+
+ /*
+ * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
+ * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
+ * folios actually under writeback.
+ */
+ xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
+ if (folio_test_dirty(folio)) {
+ long nr = folio_nr_pages(folio);
+ wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
+ wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
+ }
+ }
+
+ xas_set(&xas, 0);
+ xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
+ long nr = folio_nr_pages(folio);
+ WARN_ON_ONCE(!folio_test_writeback(folio));
+ wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
+ wb_stat_mod(new_wb, WB_WRITEBACK, nr);
+ }
+
+ if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
+ atomic_dec(&old_wb->writeback_inodes);
+ atomic_inc(&new_wb->writeback_inodes);
+ }
+
+ wb_get(new_wb);
+
+ /*
+ * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
+ * the specific list @inode was on is ignored and the @inode is put on
+ * ->b_dirty which is always correct including from ->b_dirty_time.
+ * If the @inode was clean, it means it was on the b_attached list, so
+ * move it onto the b_attached list of @new_wb.
+ */
+ if (!list_empty(&inode->i_io_list)) {
+ inode->i_wb = new_wb;
+
+ if (inode_state_read(inode) & I_DIRTY_ALL) {
+ /*
+ * We need to keep b_dirty list sorted by
+ * dirtied_time_when. However properly sorting the
+ * inode in the list gets too expensive when switching
+ * many inodes. So just attach inode at the end of the
+ * dirty list and clobber the dirtied_time_when.
+ */
+ inode->dirtied_time_when = jiffies;
+ inode_io_list_move_locked(inode, new_wb,
+ &new_wb->b_dirty);
+ } else {
+ inode_cgwb_move_to_attached(inode, new_wb);
+ }
+ } else {
+ inode->i_wb = new_wb;
+ }
+
+ /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
+ inode->i_wb_frn_winner = 0;
+ inode->i_wb_frn_avg_time = 0;
+ inode->i_wb_frn_history = 0;
+ switched = true;
+skip_switch:
+ /*
+ * Paired with an acquire fence in unlocked_inode_to_wb_begin() and
+ * ensures that the new wb is visible if they see !I_WB_SWITCH.
+ */
+ smp_wmb();
+ inode_state_clear(inode, I_WB_SWITCH);
+
+ xa_unlock_irq(&mapping->i_pages);
+ spin_unlock(&inode->i_lock);
+
+ return switched;
+}
+
+static void process_inode_switch_wbs(struct bdi_writeback *new_wb,
+ struct inode_switch_wbs_context *isw)
+{
+ struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
+ struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
+ unsigned long nr_switched = 0;
+ struct inode **inodep;
+
+ /*
+ * If @inode switches cgwb membership while sync_inodes_sb() is
+ * being issued, sync_inodes_sb() might miss it. Synchronize.
+ */
+ down_read(&bdi->wb_switch_rwsem);
+
+ inodep = isw->inodes;
+ /*
+ * By the time control reaches here, RCU grace period has passed
+ * since I_WB_SWITCH assertion and all wb stat update transactions
+ * between unlocked_inode_to_wb_begin/end() are guaranteed to be
+ * synchronizing against the i_pages lock.
+ *
+ * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
+ * gives us exclusion against all wb related operations on @inode
+ * including IO list manipulations and stat updates.
+ */
+relock:
+ if (old_wb < new_wb) {
+ spin_lock(&old_wb->list_lock);
+ spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
+ } else {
+ spin_lock(&new_wb->list_lock);
+ spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
+ }
+
+ while (*inodep) {
+ WARN_ON_ONCE((*inodep)->i_wb != old_wb);
+ if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
+ nr_switched++;
+ inodep++;
+ if (*inodep && need_resched()) {
+ spin_unlock(&new_wb->list_lock);
+ spin_unlock(&old_wb->list_lock);
+ cond_resched();
+ goto relock;
+ }
+ }
+
+ spin_unlock(&new_wb->list_lock);
+ spin_unlock(&old_wb->list_lock);
+
+ up_read(&bdi->wb_switch_rwsem);
+
+ if (nr_switched) {
+ wb_wakeup(new_wb);
+ wb_put_many(old_wb, nr_switched);
+ }
+
+ for (inodep = isw->inodes; *inodep; inodep++)
+ iput(*inodep);
+ wb_put(new_wb);
+ kfree(isw);
+ atomic_dec(&isw_nr_in_flight);
+}
+
+void inode_switch_wbs_work_fn(struct work_struct *work)
+{
+ struct bdi_writeback *new_wb = container_of(work, struct bdi_writeback,
+ switch_work);
+ struct inode_switch_wbs_context *isw, *next_isw;
+ struct llist_node *list;
+
+ /*
+ * Grab out reference to wb so that it cannot get freed under us
+ * after we process all the isw items.
+ */
+ wb_get(new_wb);
+ while (1) {
+ list = llist_del_all(&new_wb->switch_wbs_ctxs);
+ /* Nothing to do? */
+ if (!list)
+ break;
+ /*
+ * In addition to synchronizing among switchers, I_WB_SWITCH
+ * tells the RCU protected stat update paths to grab the i_page
+ * lock so that stat transfer can synchronize against them.
+ * Let's continue after I_WB_SWITCH is guaranteed to be
+ * visible.
+ */
+ synchronize_rcu();
+
+ llist_for_each_entry_safe(isw, next_isw, list, list)
+ process_inode_switch_wbs(new_wb, isw);
+ }
+ wb_put(new_wb);
+}
+
+static bool inode_prepare_wbs_switch(struct inode *inode,
+ struct bdi_writeback *new_wb)
+{
+ /*
+ * Paired with smp_mb() in cgroup_writeback_umount().
+ * isw_nr_in_flight must be increased before checking SB_ACTIVE and
+ * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
+ * in cgroup_writeback_umount() and the isw_wq will be not flushed.
+ */
+ smp_mb();
+
+ if (IS_DAX(inode))
+ return false;
+
+ /* while holding I_WB_SWITCH, no one else can update the association */
+ spin_lock(&inode->i_lock);
+ if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
+ inode_state_read(inode) & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
+ inode_to_wb(inode) == new_wb) {
+ spin_unlock(&inode->i_lock);
+ return false;
+ }
+ inode_state_set(inode, I_WB_SWITCH);
+ __iget(inode);
+ spin_unlock(&inode->i_lock);
+
+ return true;
+}
+
+static void wb_queue_isw(struct bdi_writeback *wb,
+ struct inode_switch_wbs_context *isw)
+{
+ if (llist_add(&isw->list, &wb->switch_wbs_ctxs))
+ queue_work(isw_wq, &wb->switch_work);
+}
+
+/**
+ * inode_switch_wbs - change the wb association of an inode
+ * @inode: target inode
+ * @new_wb_id: ID of the new wb
+ *
+ * Switch @inode's wb association to the wb identified by @new_wb_id. The
+ * switching is performed asynchronously and may fail silently.
+ */
+static void inode_switch_wbs(struct inode *inode, int new_wb_id)
+{
+ struct backing_dev_info *bdi = inode_to_bdi(inode);
+ struct cgroup_subsys_state *memcg_css;
+ struct inode_switch_wbs_context *isw;
+ struct bdi_writeback *new_wb = NULL;
+
+ /* noop if seems to be already in progress */
+ if (inode_state_read_once(inode) & I_WB_SWITCH)
+ return;
+
+ /* avoid queueing a new switch if too many are already in flight */
+ if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
+ return;
+
+ isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
+ if (!isw)
return;
+
+ atomic_inc(&isw_nr_in_flight);
+
+ /* find and pin the new wb */
+ rcu_read_lock();
+ memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
+ if (memcg_css && !css_tryget(memcg_css))
+ memcg_css = NULL;
+ rcu_read_unlock();
+ if (!memcg_css)
+ goto out_free;
+
+ new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
+ css_put(memcg_css);
+ if (!new_wb)
+ goto out_free;
+
+ if (!inode_prepare_wbs_switch(inode, new_wb))
+ goto out_free;
+
+ isw->inodes[0] = inode;
+
+ trace_inode_switch_wbs_queue(inode->i_wb, new_wb, 1);
+ wb_queue_isw(new_wb, isw);
+ return;
+
+out_free:
+ atomic_dec(&isw_nr_in_flight);
+ if (new_wb)
+ wb_put(new_wb);
+ kfree(isw);
+}
+
+static bool isw_prepare_wbs_switch(struct bdi_writeback *new_wb,
+ struct inode_switch_wbs_context *isw,
+ struct list_head *list, int *nr)
+{
+ struct inode *inode;
+
+ list_for_each_entry(inode, list, i_io_list) {
+ if (!inode_prepare_wbs_switch(inode, new_wb))
+ continue;
+
+ isw->inodes[*nr] = inode;
+ (*nr)++;
+
+ if (*nr >= WB_MAX_INODES_PER_ISW - 1)
+ return true;
}
+ return false;
+}
- work->sync_mode = WB_SYNC_NONE;
- work->nr_pages = nr_pages;
- work->range_cyclic = range_cyclic;
- work->reason = reason;
+/**
+ * cleanup_offline_cgwb - detach associated inodes
+ * @wb: target wb
+ *
+ * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
+ * to eventually release the dying @wb. Returns %true if not all inodes were
+ * switched and the function has to be restarted.
+ */
+bool cleanup_offline_cgwb(struct bdi_writeback *wb)
+{
+ struct cgroup_subsys_state *memcg_css;
+ struct inode_switch_wbs_context *isw;
+ struct bdi_writeback *new_wb;
+ int nr;
+ bool restart = false;
+
+ isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
+ GFP_KERNEL);
+ if (!isw)
+ return restart;
+
+ atomic_inc(&isw_nr_in_flight);
+
+ for (memcg_css = wb->memcg_css->parent; memcg_css;
+ memcg_css = memcg_css->parent) {
+ new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
+ if (new_wb)
+ break;
+ }
+ if (unlikely(!new_wb))
+ new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
+
+ nr = 0;
+ spin_lock(&wb->list_lock);
+ /*
+ * In addition to the inodes that have completed writeback, also switch
+ * cgwbs for those inodes only with dirty timestamps. Otherwise, those
+ * inodes won't be written back for a long time when lazytime is
+ * enabled, and thus pinning the dying cgwbs. It won't break the
+ * bandwidth restrictions, as writeback of inode metadata is not
+ * accounted for.
+ */
+ restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_attached, &nr);
+ if (!restart)
+ restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_dirty_time,
+ &nr);
+ spin_unlock(&wb->list_lock);
+
+ /* no attached inodes? bail out */
+ if (nr == 0) {
+ atomic_dec(&isw_nr_in_flight);
+ wb_put(new_wb);
+ kfree(isw);
+ return restart;
+ }
- bdi_queue_work(bdi, work);
+ trace_inode_switch_wbs_queue(wb, new_wb, nr);
+ wb_queue_isw(new_wb, isw);
+
+ return restart;
}
/**
- * bdi_start_writeback - start writeback
- * @bdi: the backing device to write from
- * @nr_pages: the number of pages to write
- * @reason: reason why some writeback work was initiated
+ * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
+ * @wbc: writeback_control of interest
+ * @inode: target inode
*
- * Description:
- * This does WB_SYNC_NONE opportunistic writeback. The IO is only
- * started when this function returns, we make no guarantees on
- * completion. Caller need not hold sb s_umount semaphore.
+ * @inode is locked and about to be written back under the control of @wbc.
+ * Record @inode's writeback context into @wbc and unlock the i_lock. On
+ * writeback completion, wbc_detach_inode() should be called. This is used
+ * to track the cgroup writeback context.
+ */
+static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
+ struct inode *inode)
+ __releases(&inode->i_lock)
+{
+ if (!inode_cgwb_enabled(inode)) {
+ spin_unlock(&inode->i_lock);
+ return;
+ }
+
+ wbc->wb = inode_to_wb(inode);
+ wbc->inode = inode;
+
+ wbc->wb_id = wbc->wb->memcg_css->id;
+ wbc->wb_lcand_id = inode->i_wb_frn_winner;
+ wbc->wb_tcand_id = 0;
+ wbc->wb_bytes = 0;
+ wbc->wb_lcand_bytes = 0;
+ wbc->wb_tcand_bytes = 0;
+
+ wb_get(wbc->wb);
+ spin_unlock(&inode->i_lock);
+
+ /*
+ * A dying wb indicates that either the blkcg associated with the
+ * memcg changed or the associated memcg is dying. In the first
+ * case, a replacement wb should already be available and we should
+ * refresh the wb immediately. In the second case, trying to
+ * refresh will keep failing.
+ */
+ if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
+ inode_switch_wbs(inode, wbc->wb_id);
+}
+
+/**
+ * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
+ * @wbc: writeback_control of interest
+ * @inode: target inode
+ *
+ * This function is to be used by filemap_writeback(), which is an alternative
+ * entry point into writeback code, and first ensures @inode is associated with
+ * a bdi_writeback and attaches it to @wbc.
+ */
+void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
+ struct inode *inode)
+{
+ spin_lock(&inode->i_lock);
+ inode_attach_wb(inode, NULL);
+ wbc_attach_and_unlock_inode(wbc, inode);
+}
+EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
+
+/**
+ * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
+ * @wbc: writeback_control of the just finished writeback
+ *
+ * To be called after a writeback attempt of an inode finishes and undoes
+ * wbc_attach_and_unlock_inode(). Can be called under any context.
+ *
+ * As concurrent write sharing of an inode is expected to be very rare and
+ * memcg only tracks page ownership on first-use basis severely confining
+ * the usefulness of such sharing, cgroup writeback tracks ownership
+ * per-inode. While the support for concurrent write sharing of an inode
+ * is deemed unnecessary, an inode being written to by different cgroups at
+ * different points in time is a lot more common, and, more importantly,
+ * charging only by first-use can too readily lead to grossly incorrect
+ * behaviors (single foreign page can lead to gigabytes of writeback to be
+ * incorrectly attributed).
+ *
+ * To resolve this issue, cgroup writeback detects the majority dirtier of
+ * an inode and transfers the ownership to it. To avoid unnecessary
+ * oscillation, the detection mechanism keeps track of history and gives
+ * out the switch verdict only if the foreign usage pattern is stable over
+ * a certain amount of time and/or writeback attempts.
*
+ * On each writeback attempt, @wbc tries to detect the majority writer
+ * using Boyer-Moore majority vote algorithm. In addition to the byte
+ * count from the majority voting, it also counts the bytes written for the
+ * current wb and the last round's winner wb (max of last round's current
+ * wb, the winner from two rounds ago, and the last round's majority
+ * candidate). Keeping track of the historical winner helps the algorithm
+ * to semi-reliably detect the most active writer even when it's not the
+ * absolute majority.
+ *
+ * Once the winner of the round is determined, whether the winner is
+ * foreign or not and how much IO time the round consumed is recorded in
+ * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
+ * over a certain threshold, the switch verdict is given.
+ */
+void wbc_detach_inode(struct writeback_control *wbc)
+{
+ struct bdi_writeback *wb = wbc->wb;
+ struct inode *inode = wbc->inode;
+ unsigned long avg_time, max_bytes, max_time;
+ u16 history;
+ int max_id;
+
+ if (!wb)
+ return;
+
+ history = inode->i_wb_frn_history;
+ avg_time = inode->i_wb_frn_avg_time;
+
+ /* pick the winner of this round */
+ if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
+ wbc->wb_bytes >= wbc->wb_tcand_bytes) {
+ max_id = wbc->wb_id;
+ max_bytes = wbc->wb_bytes;
+ } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
+ max_id = wbc->wb_lcand_id;
+ max_bytes = wbc->wb_lcand_bytes;
+ } else {
+ max_id = wbc->wb_tcand_id;
+ max_bytes = wbc->wb_tcand_bytes;
+ }
+
+ /*
+ * Calculate the amount of IO time the winner consumed and fold it
+ * into the running average kept per inode. If the consumed IO
+ * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
+ * deciding whether to switch or not. This is to prevent one-off
+ * small dirtiers from skewing the verdict.
+ */
+ max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
+ wb->avg_write_bandwidth);
+ if (avg_time)
+ avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
+ (avg_time >> WB_FRN_TIME_AVG_SHIFT);
+ else
+ avg_time = max_time; /* immediate catch up on first run */
+
+ if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
+ int slots;
+
+ /*
+ * The switch verdict is reached if foreign wb's consume
+ * more than a certain proportion of IO time in a
+ * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
+ * history mask where each bit represents one sixteenth of
+ * the period. Determine the number of slots to shift into
+ * history from @max_time.
+ */
+ slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
+ (unsigned long)WB_FRN_HIST_MAX_SLOTS);
+ history <<= slots;
+ if (wbc->wb_id != max_id)
+ history |= (1U << slots) - 1;
+
+ if (history)
+ trace_inode_foreign_history(inode, wbc, history);
+
+ /*
+ * Switch if the current wb isn't the consistent winner.
+ * If there are multiple closely competing dirtiers, the
+ * inode may switch across them repeatedly over time, which
+ * is okay. The main goal is avoiding keeping an inode on
+ * the wrong wb for an extended period of time.
+ */
+ if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
+ inode_switch_wbs(inode, max_id);
+ }
+
+ /*
+ * Multiple instances of this function may race to update the
+ * following fields but we don't mind occassional inaccuracies.
+ */
+ inode->i_wb_frn_winner = max_id;
+ inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
+ inode->i_wb_frn_history = history;
+
+ wb_put(wbc->wb);
+ wbc->wb = NULL;
+}
+EXPORT_SYMBOL_GPL(wbc_detach_inode);
+
+/**
+ * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
+ * @wbc: writeback_control of the writeback in progress
+ * @folio: folio being written out
+ * @bytes: number of bytes being written out
+ *
+ * @bytes from @folio are about to written out during the writeback
+ * controlled by @wbc. Keep the book for foreign inode detection. See
+ * wbc_detach_inode().
+ */
+void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
+ size_t bytes)
+{
+ struct cgroup_subsys_state *css;
+ int id;
+
+ /*
+ * pageout() path doesn't attach @wbc to the inode being written
+ * out. This is intentional as we don't want the function to block
+ * behind a slow cgroup. Ultimately, we want pageout() to kick off
+ * regular writeback instead of writing things out itself.
+ */
+ if (!wbc->wb || wbc->no_cgroup_owner)
+ return;
+
+ css = mem_cgroup_css_from_folio(folio);
+ /* dead cgroups shouldn't contribute to inode ownership arbitration */
+ if (!(css->flags & CSS_ONLINE))
+ return;
+
+ id = css->id;
+
+ if (id == wbc->wb_id) {
+ wbc->wb_bytes += bytes;
+ return;
+ }
+
+ if (id == wbc->wb_lcand_id)
+ wbc->wb_lcand_bytes += bytes;
+
+ /* Boyer-Moore majority vote algorithm */
+ if (!wbc->wb_tcand_bytes)
+ wbc->wb_tcand_id = id;
+ if (id == wbc->wb_tcand_id)
+ wbc->wb_tcand_bytes += bytes;
+ else
+ wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
+}
+EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
+
+/**
+ * wb_split_bdi_pages - split nr_pages to write according to bandwidth
+ * @wb: target bdi_writeback to split @nr_pages to
+ * @nr_pages: number of pages to write for the whole bdi
+ *
+ * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
+ * relation to the total write bandwidth of all wb's w/ dirty inodes on
+ * @wb->bdi.
+ */
+static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
+{
+ unsigned long this_bw = wb->avg_write_bandwidth;
+ unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
+
+ if (nr_pages == LONG_MAX)
+ return LONG_MAX;
+
+ /*
+ * This may be called on clean wb's and proportional distribution
+ * may not make sense, just use the original @nr_pages in those
+ * cases. In general, we wanna err on the side of writing more.
+ */
+ if (!tot_bw || this_bw >= tot_bw)
+ return nr_pages;
+ else
+ return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
+}
+
+/**
+ * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
+ * @bdi: target backing_dev_info
+ * @base_work: wb_writeback_work to issue
+ * @skip_if_busy: skip wb's which already have writeback in progress
+ *
+ * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
+ * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
+ * distributed to the busy wbs according to each wb's proportion in the
+ * total active write bandwidth of @bdi.
+ */
+static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
+ struct wb_writeback_work *base_work,
+ bool skip_if_busy)
+{
+ struct bdi_writeback *last_wb = NULL;
+ struct bdi_writeback *wb = list_entry(&bdi->wb_list,
+ struct bdi_writeback, bdi_node);
+
+ might_sleep();
+restart:
+ rcu_read_lock();
+ list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
+ DEFINE_WB_COMPLETION(fallback_work_done, bdi);
+ struct wb_writeback_work fallback_work;
+ struct wb_writeback_work *work;
+ long nr_pages;
+
+ if (last_wb) {
+ wb_put(last_wb);
+ last_wb = NULL;
+ }
+
+ /* SYNC_ALL writes out I_DIRTY_TIME too */
+ if (!wb_has_dirty_io(wb) &&
+ (base_work->sync_mode == WB_SYNC_NONE ||
+ list_empty(&wb->b_dirty_time)))
+ continue;
+ if (skip_if_busy && writeback_in_progress(wb))
+ continue;
+
+ nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
+
+ work = kmalloc(sizeof(*work), GFP_ATOMIC);
+ if (work) {
+ *work = *base_work;
+ work->nr_pages = nr_pages;
+ work->auto_free = 1;
+ wb_queue_work(wb, work);
+ continue;
+ }
+
+ /*
+ * If wb_tryget fails, the wb has been shutdown, skip it.
+ *
+ * Pin @wb so that it stays on @bdi->wb_list. This allows
+ * continuing iteration from @wb after dropping and
+ * regrabbing rcu read lock.
+ */
+ if (!wb_tryget(wb))
+ continue;
+
+ /* alloc failed, execute synchronously using on-stack fallback */
+ work = &fallback_work;
+ *work = *base_work;
+ work->nr_pages = nr_pages;
+ work->auto_free = 0;
+ work->done = &fallback_work_done;
+
+ wb_queue_work(wb, work);
+ last_wb = wb;
+
+ rcu_read_unlock();
+ wb_wait_for_completion(&fallback_work_done);
+ goto restart;
+ }
+ rcu_read_unlock();
+
+ if (last_wb)
+ wb_put(last_wb);
+}
+
+/**
+ * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
+ * @bdi_id: target bdi id
+ * @memcg_id: target memcg css id
+ * @reason: reason why some writeback work initiated
+ * @done: target wb_completion
+ *
+ * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
+ * with the specified parameters.
+ */
+int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
+ enum wb_reason reason, struct wb_completion *done)
+{
+ struct backing_dev_info *bdi;
+ struct cgroup_subsys_state *memcg_css;
+ struct bdi_writeback *wb;
+ struct wb_writeback_work *work;
+ unsigned long dirty;
+ int ret;
+
+ /* lookup bdi and memcg */
+ bdi = bdi_get_by_id(bdi_id);
+ if (!bdi)
+ return -ENOENT;
+
+ rcu_read_lock();
+ memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
+ if (memcg_css && !css_tryget(memcg_css))
+ memcg_css = NULL;
+ rcu_read_unlock();
+ if (!memcg_css) {
+ ret = -ENOENT;
+ goto out_bdi_put;
+ }
+
+ /*
+ * And find the associated wb. If the wb isn't there already
+ * there's nothing to flush, don't create one.
+ */
+ wb = wb_get_lookup(bdi, memcg_css);
+ if (!wb) {
+ ret = -ENOENT;
+ goto out_css_put;
+ }
+
+ /*
+ * The caller is attempting to write out most of
+ * the currently dirty pages. Let's take the current dirty page
+ * count and inflate it by 25% which should be large enough to
+ * flush out most dirty pages while avoiding getting livelocked by
+ * concurrent dirtiers.
+ *
+ * BTW the memcg stats are flushed periodically and this is best-effort
+ * estimation, so some potential error is ok.
+ */
+ dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
+ dirty = dirty * 10 / 8;
+
+ /* issue the writeback work */
+ work = kzalloc(sizeof(*work), GFP_NOWAIT);
+ if (work) {
+ work->nr_pages = dirty;
+ work->sync_mode = WB_SYNC_NONE;
+ work->range_cyclic = 1;
+ work->reason = reason;
+ work->done = done;
+ work->auto_free = 1;
+ wb_queue_work(wb, work);
+ ret = 0;
+ } else {
+ ret = -ENOMEM;
+ }
+
+ wb_put(wb);
+out_css_put:
+ css_put(memcg_css);
+out_bdi_put:
+ bdi_put(bdi);
+ return ret;
+}
+
+/**
+ * cgroup_writeback_umount - flush inode wb switches for umount
+ * @sb: target super_block
+ *
+ * This function is called when a super_block is about to be destroyed and
+ * flushes in-flight inode wb switches. An inode wb switch goes through
+ * RCU and then workqueue, so the two need to be flushed in order to ensure
+ * that all previously scheduled switches are finished. As wb switches are
+ * rare occurrences and synchronize_rcu() can take a while, perform
+ * flushing iff wb switches are in flight.
+ */
+void cgroup_writeback_umount(struct super_block *sb)
+{
+
+ if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
+ return;
+
+ /*
+ * SB_ACTIVE should be reliably cleared before checking
+ * isw_nr_in_flight, see generic_shutdown_super().
+ */
+ smp_mb();
+
+ if (atomic_read(&isw_nr_in_flight)) {
+ /*
+ * Use rcu_barrier() to wait for all pending callbacks to
+ * ensure that all in-flight wb switches are in the workqueue.
+ */
+ rcu_barrier();
+ flush_workqueue(isw_wq);
+ }
+}
+
+static int __init cgroup_writeback_init(void)
+{
+ isw_wq = alloc_workqueue("inode_switch_wbs", WQ_PERCPU, 0);
+ if (!isw_wq)
+ return -ENOMEM;
+ return 0;
+}
+fs_initcall(cgroup_writeback_init);
+
+#else /* CONFIG_CGROUP_WRITEBACK */
+
+static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
+static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
+
+static void inode_cgwb_move_to_attached(struct inode *inode,
+ struct bdi_writeback *wb)
+{
+ assert_spin_locked(&wb->list_lock);
+ assert_spin_locked(&inode->i_lock);
+ WARN_ON_ONCE(inode_state_read(inode) & I_FREEING);
+
+ inode_state_clear(inode, I_SYNC_QUEUED);
+ list_del_init(&inode->i_io_list);
+ wb_io_lists_depopulated(wb);
+}
+
+static struct bdi_writeback *
+locked_inode_to_wb_and_lock_list(struct inode *inode)
+ __releases(&inode->i_lock)
+ __acquires(&wb->list_lock)
+{
+ struct bdi_writeback *wb = inode_to_wb(inode);
+
+ spin_unlock(&inode->i_lock);
+ spin_lock(&wb->list_lock);
+ return wb;
+}
+
+static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
+ __acquires(&wb->list_lock)
+{
+ struct bdi_writeback *wb = inode_to_wb(inode);
+
+ spin_lock(&wb->list_lock);
+ return wb;
+}
+
+static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
+{
+ return nr_pages;
+}
+
+static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
+ struct wb_writeback_work *base_work,
+ bool skip_if_busy)
+{
+ might_sleep();
+
+ if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
+ base_work->auto_free = 0;
+ wb_queue_work(&bdi->wb, base_work);
+ }
+}
+
+static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
+ struct inode *inode)
+ __releases(&inode->i_lock)
+{
+ spin_unlock(&inode->i_lock);
+}
+
+#endif /* CONFIG_CGROUP_WRITEBACK */
+
+/*
+ * Add in the number of potentially dirty inodes, because each inode
+ * write can dirty pagecache in the underlying blockdev.
*/
-void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
- enum wb_reason reason)
+static unsigned long get_nr_dirty_pages(void)
{
- __bdi_start_writeback(bdi, nr_pages, true, reason);
+ return global_node_page_state(NR_FILE_DIRTY) +
+ get_nr_dirty_inodes();
+}
+
+static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
+{
+ if (!wb_has_dirty_io(wb))
+ return;
+
+ /*
+ * All callers of this function want to start writeback of all
+ * dirty pages. Places like vmscan can call this at a very
+ * high frequency, causing pointless allocations of tons of
+ * work items and keeping the flusher threads busy retrieving
+ * that work. Ensure that we only allow one of them pending and
+ * inflight at the time.
+ */
+ if (test_bit(WB_start_all, &wb->state) ||
+ test_and_set_bit(WB_start_all, &wb->state))
+ return;
+
+ wb->start_all_reason = reason;
+ wb_wakeup(wb);
}
/**
- * bdi_start_background_writeback - start background writeback
- * @bdi: the backing device to write from
+ * wb_start_background_writeback - start background writeback
+ * @wb: bdi_writback to write from
*
* Description:
* This makes sure WB_SYNC_NONE background writeback happens. When
- * this function returns, it is only guaranteed that for given BDI
+ * this function returns, it is only guaranteed that for given wb
* some IO is happening if we are over background dirty threshold.
* Caller need not hold sb s_umount semaphore.
*/
-void bdi_start_background_writeback(struct backing_dev_info *bdi)
+void wb_start_background_writeback(struct bdi_writeback *wb)
{
/*
* We just wake up the flusher thread. It will perform background
* writeback as soon as there is no other work to do.
*/
- trace_writeback_wake_background(bdi);
- mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
+ trace_writeback_wake_background(wb);
+ wb_wakeup(wb);
}
/*
* Remove the inode from the writeback list it is on.
*/
-void inode_wb_list_del(struct inode *inode)
+void inode_io_list_del(struct inode *inode)
{
- struct backing_dev_info *bdi = inode_to_bdi(inode);
+ struct bdi_writeback *wb;
+
+ /*
+ * FIXME: ext4 can call here from ext4_evict_inode() after evict() already
+ * unlinked the inode.
+ */
+ if (list_empty_careful(&inode->i_io_list))
+ return;
+
+ wb = inode_to_wb_and_lock_list(inode);
+ spin_lock(&inode->i_lock);
+
+ inode_state_clear(inode, I_SYNC_QUEUED);
+ list_del_init(&inode->i_io_list);
+ wb_io_lists_depopulated(wb);
+
+ spin_unlock(&inode->i_lock);
+ spin_unlock(&wb->list_lock);
+}
+EXPORT_SYMBOL(inode_io_list_del);
+
+/*
+ * mark an inode as under writeback on the sb
+ */
+void sb_mark_inode_writeback(struct inode *inode)
+{
+ struct super_block *sb = inode->i_sb;
+ unsigned long flags;
+
+ if (list_empty(&inode->i_wb_list)) {
+ spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
+ if (list_empty(&inode->i_wb_list)) {
+ list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
+ trace_sb_mark_inode_writeback(inode);
+ }
+ spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
+ }
+}
+
+/*
+ * clear an inode as under writeback on the sb
+ */
+void sb_clear_inode_writeback(struct inode *inode)
+{
+ struct super_block *sb = inode->i_sb;
+ unsigned long flags;
- spin_lock(&bdi->wb.list_lock);
- list_del_init(&inode->i_wb_list);
- spin_unlock(&bdi->wb.list_lock);
+ if (!list_empty(&inode->i_wb_list)) {
+ spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
+ if (!list_empty(&inode->i_wb_list)) {
+ list_del_init(&inode->i_wb_list);
+ trace_sb_clear_inode_writeback(inode);
+ }
+ spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
+ }
}
/*
@@ -184,9 +1423,21 @@ void inode_wb_list_del(struct inode *inode)
* the case then the inode must have been redirtied while it was being written
* out and we don't reset its dirtied_when.
*/
-static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
+static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
{
- assert_spin_locked(&wb->list_lock);
+ assert_spin_locked(&inode->i_lock);
+
+ inode_state_clear(inode, I_SYNC_QUEUED);
+ /*
+ * When the inode is being freed just don't bother with dirty list
+ * tracking. Flush worker will ignore this inode anyway and it will
+ * trigger assertions in inode_io_list_move_locked().
+ */
+ if (inode_state_read(inode) & I_FREEING) {
+ list_del_init(&inode->i_io_list);
+ wb_io_lists_depopulated(wb);
+ return;
+ }
if (!list_empty(&wb->b_dirty)) {
struct inode *tail;
@@ -194,7 +1445,14 @@ static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
if (time_before(inode->dirtied_when, tail->dirtied_when))
inode->dirtied_when = jiffies;
}
- list_move(&inode->i_wb_list, &wb->b_dirty);
+ inode_io_list_move_locked(inode, wb, &wb->b_dirty);
+}
+
+static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
+{
+ spin_lock(&inode->i_lock);
+ redirty_tail_locked(inode, wb);
+ spin_unlock(&inode->i_lock);
}
/*
@@ -202,18 +1460,18 @@ static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
*/
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
{
- assert_spin_locked(&wb->list_lock);
- list_move(&inode->i_wb_list, &wb->b_more_io);
+ inode_io_list_move_locked(inode, wb, &wb->b_more_io);
}
static void inode_sync_complete(struct inode *inode)
{
- inode->i_state &= ~I_SYNC;
+ assert_spin_locked(&inode->i_lock);
+
+ inode_state_clear(inode, I_SYNC);
/* If inode is clean an unused, put it into LRU now... */
- inode_add_lru(inode);
- /* Waiters must see I_SYNC cleared before being woken up */
- smp_mb();
- wake_up_bit(&inode->i_state, __I_SYNC);
+ inode_lru_list_add(inode);
+ /* Called with inode->i_lock which ensures memory ordering. */
+ inode_wake_up_bit(inode, __I_SYNC);
}
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
@@ -232,12 +1490,12 @@ static bool inode_dirtied_after(struct inode *inode, unsigned long t)
}
/*
- * Move expired (dirtied before work->older_than_this) dirty inodes from
+ * Move expired (dirtied before dirtied_before) dirty inodes from
* @delaying_queue to @dispatch_queue.
*/
static int move_expired_inodes(struct list_head *delaying_queue,
struct list_head *dispatch_queue,
- struct wb_writeback_work *work)
+ unsigned long dirtied_before)
{
LIST_HEAD(tmp);
struct list_head *pos, *node;
@@ -248,14 +1506,18 @@ static int move_expired_inodes(struct list_head *delaying_queue,
while (!list_empty(delaying_queue)) {
inode = wb_inode(delaying_queue->prev);
- if (work->older_than_this &&
- inode_dirtied_after(inode, *work->older_than_this))
+ if (inode_dirtied_after(inode, dirtied_before))
break;
+ spin_lock(&inode->i_lock);
+ list_move(&inode->i_io_list, &tmp);
+ moved++;
+ inode_state_set(inode, I_SYNC_QUEUED);
+ spin_unlock(&inode->i_lock);
+ if (sb_is_blkdev_sb(inode->i_sb))
+ continue;
if (sb && sb != inode->i_sb)
do_sb_sort = 1;
sb = inode->i_sb;
- list_move(&inode->i_wb_list, &tmp);
- moved++;
}
/* just one sb in list, splice to dispatch_queue and we're done */
@@ -264,13 +1526,18 @@ static int move_expired_inodes(struct list_head *delaying_queue,
goto out;
}
- /* Move inodes from one superblock together */
+ /*
+ * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
+ * we don't take inode->i_lock here because it is just a pointless overhead.
+ * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
+ * fully under our control.
+ */
while (!list_empty(&tmp)) {
sb = wb_inode(tmp.prev)->i_sb;
list_for_each_prev_safe(pos, node, &tmp) {
inode = wb_inode(pos);
if (inode->i_sb == sb)
- list_move(&inode->i_wb_list, dispatch_queue);
+ list_move(&inode->i_io_list, dispatch_queue);
}
}
out:
@@ -288,13 +1555,22 @@ out:
* |
* +--> dequeue for IO
*/
-static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
+static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
+ unsigned long dirtied_before)
{
int moved;
+ unsigned long time_expire_jif = dirtied_before;
+
assert_spin_locked(&wb->list_lock);
list_splice_init(&wb->b_more_io, &wb->b_io);
- moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
- trace_writeback_queue_io(wb, work, moved);
+ moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
+ if (!work->for_sync)
+ time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
+ moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
+ time_expire_jif);
+ if (moved)
+ wb_io_lists_populated(wb);
+ trace_writeback_queue_io(wb, work, dirtied_before, moved);
}
static int write_inode(struct inode *inode, struct writeback_control *wbc)
@@ -314,29 +1590,27 @@ static int write_inode(struct inode *inode, struct writeback_control *wbc)
* Wait for writeback on an inode to complete. Called with i_lock held.
* Caller must make sure inode cannot go away when we drop i_lock.
*/
-static void __inode_wait_for_writeback(struct inode *inode)
- __releases(inode->i_lock)
- __acquires(inode->i_lock)
+void inode_wait_for_writeback(struct inode *inode)
{
- DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
- wait_queue_head_t *wqh;
+ struct wait_bit_queue_entry wqe;
+ struct wait_queue_head *wq_head;
+
+ assert_spin_locked(&inode->i_lock);
- wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
- while (inode->i_state & I_SYNC) {
+ if (!(inode_state_read(inode) & I_SYNC))
+ return;
+
+ wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
+ for (;;) {
+ prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
+ /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
+ if (!(inode_state_read(inode) & I_SYNC))
+ break;
spin_unlock(&inode->i_lock);
- __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
+ schedule();
spin_lock(&inode->i_lock);
}
-}
-
-/*
- * Wait for writeback on an inode to complete. Caller must have inode pinned.
- */
-void inode_wait_for_writeback(struct inode *inode)
-{
- spin_lock(&inode->i_lock);
- __inode_wait_for_writeback(inode);
- spin_unlock(&inode->i_lock);
+ finish_wait(wq_head, &wqe.wq_entry);
}
/*
@@ -347,16 +1621,20 @@ void inode_wait_for_writeback(struct inode *inode)
static void inode_sleep_on_writeback(struct inode *inode)
__releases(inode->i_lock)
{
- DEFINE_WAIT(wait);
- wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
- int sleep;
+ struct wait_bit_queue_entry wqe;
+ struct wait_queue_head *wq_head;
+ bool sleep;
- prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
- sleep = inode->i_state & I_SYNC;
+ assert_spin_locked(&inode->i_lock);
+
+ wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
+ prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
+ /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
+ sleep = !!(inode_state_read(inode) & I_SYNC);
spin_unlock(&inode->i_lock);
if (sleep)
schedule();
- finish_wait(wqh, &wait);
+ finish_wait(wq_head, &wqe.wq_entry);
}
/*
@@ -368,9 +1646,10 @@ static void inode_sleep_on_writeback(struct inode *inode)
* thread's back can have unexpected consequences.
*/
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
- struct writeback_control *wbc)
+ struct writeback_control *wbc,
+ unsigned long dirtied_before)
{
- if (inode->i_state & I_FREEING)
+ if (inode_state_read(inode) & I_FREEING)
return;
/*
@@ -378,16 +1657,21 @@ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
* shot. If still dirty, it will be redirty_tail()'ed below. Update
* the dirty time to prevent enqueue and sync it again.
*/
- if ((inode->i_state & I_DIRTY) &&
+ if ((inode_state_read(inode) & I_DIRTY) &&
(wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
inode->dirtied_when = jiffies;
if (wbc->pages_skipped) {
/*
- * writeback is not making progress due to locked
- * buffers. Skip this inode for now.
+ * Writeback is not making progress due to locked buffers.
+ * Skip this inode for now. Although having skipped pages
+ * is odd for clean inodes, it can happen for some
+ * filesystems so handle that gracefully.
*/
- redirty_tail(inode, wb);
+ if (inode_state_read(inode) & I_DIRTY_ALL)
+ redirty_tail_locked(inode, wb);
+ else
+ inode_cgwb_move_to_attached(inode, wb);
return;
}
@@ -396,7 +1680,8 @@ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
* We didn't write back all the pages. nfs_writepages()
* sometimes bales out without doing anything.
*/
- if (wbc->nr_to_write <= 0) {
+ if (wbc->nr_to_write <= 0 &&
+ !inode_dirtied_after(inode, dirtied_before)) {
/* Slice used up. Queue for next turn. */
requeue_io(inode, wb);
} else {
@@ -407,25 +1692,35 @@ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
* retrying writeback of the dirty page/inode
* that cannot be performed immediately.
*/
- redirty_tail(inode, wb);
+ redirty_tail_locked(inode, wb);
}
- } else if (inode->i_state & I_DIRTY) {
+ } else if (inode_state_read(inode) & I_DIRTY) {
/*
* Filesystems can dirty the inode during writeback operations,
* such as delayed allocation during submission or metadata
* updates after data IO completion.
*/
- redirty_tail(inode, wb);
+ redirty_tail_locked(inode, wb);
+ } else if (inode_state_read(inode) & I_DIRTY_TIME) {
+ inode->dirtied_when = jiffies;
+ inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
+ inode_state_clear(inode, I_SYNC_QUEUED);
} else {
/* The inode is clean. Remove from writeback lists. */
- list_del_init(&inode->i_wb_list);
+ inode_cgwb_move_to_attached(inode, wb);
}
}
/*
- * Write out an inode and its dirty pages. Do not update the writeback list
- * linkage. That is left to the caller. The caller is also responsible for
- * setting I_SYNC flag and calling inode_sync_complete() to clear it.
+ * Write out an inode and its dirty pages (or some of its dirty pages, depending
+ * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
+ *
+ * This doesn't remove the inode from the writeback list it is on, except
+ * potentially to move it from b_dirty_time to b_dirty due to timestamp
+ * expiration. The caller is otherwise responsible for writeback list handling.
+ *
+ * The caller is also responsible for setting the I_SYNC flag beforehand and
+ * calling inode_sync_complete() to clear it afterwards.
*/
static int
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
@@ -435,7 +1730,7 @@ __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
unsigned dirty;
int ret;
- WARN_ON(!(inode->i_state & I_SYNC));
+ WARN_ON(!(inode_state_read_once(inode) & I_SYNC));
trace_writeback_single_inode_start(inode, wbc, nr_to_write);
@@ -455,80 +1750,141 @@ __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
}
/*
- * Some filesystems may redirty the inode during the writeback
- * due to delalloc, clear dirty metadata flags right before
- * write_inode()
+ * If the inode has dirty timestamps and we need to write them, call
+ * mark_inode_dirty_sync() to notify the filesystem about it and to
+ * change I_DIRTY_TIME into I_DIRTY_SYNC.
+ */
+ if ((inode_state_read_once(inode) & I_DIRTY_TIME) &&
+ (wbc->sync_mode == WB_SYNC_ALL ||
+ time_after(jiffies, inode->dirtied_time_when +
+ dirtytime_expire_interval * HZ))) {
+ trace_writeback_lazytime(inode);
+ mark_inode_dirty_sync(inode);
+ }
+
+ /*
+ * Get and clear the dirty flags from i_state. This needs to be done
+ * after calling writepages because some filesystems may redirty the
+ * inode during writepages due to delalloc. It also needs to be done
+ * after handling timestamp expiration, as that may dirty the inode too.
*/
spin_lock(&inode->i_lock);
- /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
- if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
- inode->i_state &= ~I_DIRTY_PAGES;
- dirty = inode->i_state & I_DIRTY;
- inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
+ dirty = inode_state_read(inode) & I_DIRTY;
+ inode_state_clear(inode, dirty);
+
+ /*
+ * Paired with smp_mb() in __mark_inode_dirty(). This allows
+ * __mark_inode_dirty() to test i_state without grabbing i_lock -
+ * either they see the I_DIRTY bits cleared or we see the dirtied
+ * inode.
+ *
+ * I_DIRTY_PAGES is always cleared together above even if @mapping
+ * still has dirty pages. The flag is reinstated after smp_mb() if
+ * necessary. This guarantees that either __mark_inode_dirty()
+ * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
+ */
+ smp_mb();
+
+ if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
+ inode_state_set(inode, I_DIRTY_PAGES);
+ else if (unlikely(inode_state_read(inode) & I_PINNING_NETFS_WB)) {
+ if (!(inode_state_read(inode) & I_DIRTY_PAGES)) {
+ inode_state_clear(inode, I_PINNING_NETFS_WB);
+ wbc->unpinned_netfs_wb = true;
+ dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
+ }
+ }
+
spin_unlock(&inode->i_lock);
+
/* Don't write the inode if only I_DIRTY_PAGES was set */
- if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
+ if (dirty & ~I_DIRTY_PAGES) {
int err = write_inode(inode, wbc);
if (ret == 0)
ret = err;
}
+ wbc->unpinned_netfs_wb = false;
trace_writeback_single_inode(inode, wbc, nr_to_write);
return ret;
}
/*
- * Write out an inode's dirty pages. Either the caller has an active reference
- * on the inode or the inode has I_WILL_FREE set.
+ * Write out an inode's dirty data and metadata on-demand, i.e. separately from
+ * the regular batched writeback done by the flusher threads in
+ * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
+ * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
*
- * This function is designed to be called for writing back one inode which
- * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
- * and does more profound writeback list handling in writeback_sb_inodes().
+ * To prevent the inode from going away, either the caller must have a reference
+ * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
*/
-static int
-writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
- struct writeback_control *wbc)
+static int writeback_single_inode(struct inode *inode,
+ struct writeback_control *wbc)
{
+ struct bdi_writeback *wb;
int ret = 0;
spin_lock(&inode->i_lock);
- if (!atomic_read(&inode->i_count))
- WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
+ if (!icount_read(inode))
+ WARN_ON(!(inode_state_read(inode) & (I_WILL_FREE | I_FREEING)));
else
- WARN_ON(inode->i_state & I_WILL_FREE);
+ WARN_ON(inode_state_read(inode) & I_WILL_FREE);
- if (inode->i_state & I_SYNC) {
- if (wbc->sync_mode != WB_SYNC_ALL)
- goto out;
+ if (inode_state_read(inode) & I_SYNC) {
/*
- * It's a data-integrity sync. We must wait. Since callers hold
- * inode reference or inode has I_WILL_FREE set, it cannot go
- * away under us.
+ * Writeback is already running on the inode. For WB_SYNC_NONE,
+ * that's enough and we can just return. For WB_SYNC_ALL, we
+ * must wait for the existing writeback to complete, then do
+ * writeback again if there's anything left.
*/
- __inode_wait_for_writeback(inode);
+ if (wbc->sync_mode != WB_SYNC_ALL)
+ goto out;
+ inode_wait_for_writeback(inode);
}
- WARN_ON(inode->i_state & I_SYNC);
+ WARN_ON(inode_state_read(inode) & I_SYNC);
/*
- * Skip inode if it is clean. We don't want to mess with writeback
- * lists in this function since flusher thread may be doing for example
- * sync in parallel and if we move the inode, it could get skipped. So
- * here we make sure inode is on some writeback list and leave it there
- * unless we have completely cleaned the inode.
+ * If the inode is already fully clean, then there's nothing to do.
+ *
+ * For data-integrity syncs we also need to check whether any pages are
+ * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
+ * there are any such pages, we'll need to wait for them.
*/
- if (!(inode->i_state & I_DIRTY))
+ if (!(inode_state_read(inode) & I_DIRTY_ALL) &&
+ (wbc->sync_mode != WB_SYNC_ALL ||
+ !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
goto out;
- inode->i_state |= I_SYNC;
- spin_unlock(&inode->i_lock);
+ inode_state_set(inode, I_SYNC);
+ wbc_attach_and_unlock_inode(wbc, inode);
ret = __writeback_single_inode(inode, wbc);
- spin_lock(&wb->list_lock);
+ wbc_detach_inode(wbc);
+
+ wb = inode_to_wb_and_lock_list(inode);
spin_lock(&inode->i_lock);
/*
- * If inode is clean, remove it from writeback lists. Otherwise don't
- * touch it. See comment above for explanation.
+ * If the inode is freeing, its i_io_list shoudn't be updated
+ * as it can be finally deleted at this moment.
*/
- if (!(inode->i_state & I_DIRTY))
- list_del_init(&inode->i_wb_list);
+ if (!(inode_state_read(inode) & I_FREEING)) {
+ /*
+ * If the inode is now fully clean, then it can be safely
+ * removed from its writeback list (if any). Otherwise the
+ * flusher threads are responsible for the writeback lists.
+ */
+ if (!(inode_state_read(inode) & I_DIRTY_ALL))
+ inode_cgwb_move_to_attached(inode, wb);
+ else if (!(inode_state_read(inode) & I_SYNC_QUEUED)) {
+ if ((inode_state_read(inode) & I_DIRTY))
+ redirty_tail_locked(inode, wb);
+ else if (inode_state_read(inode) & I_DIRTY_TIME) {
+ inode->dirtied_when = jiffies;
+ inode_io_list_move_locked(inode,
+ wb,
+ &wb->b_dirty_time);
+ }
+ }
+ }
+
spin_unlock(&wb->list_lock);
inode_sync_complete(inode);
out:
@@ -536,8 +1892,8 @@ out:
return ret;
}
-static long writeback_chunk_size(struct backing_dev_info *bdi,
- struct wb_writeback_work *work)
+static long writeback_chunk_size(struct super_block *sb,
+ struct bdi_writeback *wb, struct wb_writeback_work *work)
{
long pages;
@@ -555,22 +1911,23 @@ static long writeback_chunk_size(struct backing_dev_info *bdi,
* (maybe slowly) sync all tagged pages
*/
if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
- pages = LONG_MAX;
- else {
- pages = min(bdi->avg_write_bandwidth / 2,
- global_dirty_limit / DIRTY_SCOPE);
- pages = min(pages, work->nr_pages);
- pages = round_down(pages + MIN_WRITEBACK_PAGES,
- MIN_WRITEBACK_PAGES);
- }
+ return LONG_MAX;
- return pages;
+ pages = min(wb->avg_write_bandwidth / 2,
+ global_wb_domain.dirty_limit / DIRTY_SCOPE);
+ pages = min(pages, work->nr_pages);
+ return round_down(pages + sb->s_min_writeback_pages,
+ sb->s_min_writeback_pages);
}
/*
* Write a portion of b_io inodes which belong to @sb.
*
* Return the number of pages and/or inodes written.
+ *
+ * NOTE! This is called with wb->list_lock held, and will
+ * unlock and relock that for each inode it ends up doing
+ * IO for.
*/
static long writeback_sb_inodes(struct super_block *sb,
struct bdi_writeback *wb,
@@ -588,10 +1945,17 @@ static long writeback_sb_inodes(struct super_block *sb,
};
unsigned long start_time = jiffies;
long write_chunk;
- long wrote = 0; /* count both pages and inodes */
+ long total_wrote = 0; /* count both pages and inodes */
+ unsigned long dirtied_before = jiffies;
+
+ if (work->for_kupdate)
+ dirtied_before = jiffies -
+ msecs_to_jiffies(dirty_expire_interval * 10);
while (!list_empty(&wb->b_io)) {
struct inode *inode = wb_inode(wb->b_io.prev);
+ struct bdi_writeback *tmp_wb;
+ long wrote;
if (inode->i_sb != sb) {
if (work->sb) {
@@ -618,12 +1982,12 @@ static long writeback_sb_inodes(struct super_block *sb,
* kind writeout is handled by the freer.
*/
spin_lock(&inode->i_lock);
- if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
+ if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) {
+ redirty_tail_locked(inode, wb);
spin_unlock(&inode->i_lock);
- redirty_tail(inode, wb);
continue;
}
- if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
+ if ((inode_state_read(inode) & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
/*
* If this inode is locked for writeback and we are not
* doing writeback-for-data-integrity, move it to
@@ -633,8 +1997,8 @@ static long writeback_sb_inodes(struct super_block *sb,
* We'll have another go at writing back this inode
* when we completed a full scan of b_io.
*/
- spin_unlock(&inode->i_lock);
requeue_io(inode, wb);
+ spin_unlock(&inode->i_lock);
trace_writeback_sb_inodes_requeue(inode);
continue;
}
@@ -645,17 +2009,17 @@ static long writeback_sb_inodes(struct super_block *sb,
* are doing WB_SYNC_NONE writeback. So this catches only the
* WB_SYNC_ALL case.
*/
- if (inode->i_state & I_SYNC) {
+ if (inode_state_read(inode) & I_SYNC) {
/* Wait for I_SYNC. This function drops i_lock... */
inode_sleep_on_writeback(inode);
/* Inode may be gone, start again */
spin_lock(&wb->list_lock);
continue;
}
- inode->i_state |= I_SYNC;
- spin_unlock(&inode->i_lock);
+ inode_state_set(inode, I_SYNC);
+ wbc_attach_and_unlock_inode(&wbc, inode);
- write_chunk = writeback_chunk_size(wb->bdi, work);
+ write_chunk = writeback_chunk_size(inode->i_sb, wb, work);
wbc.nr_to_write = write_chunk;
wbc.pages_skipped = 0;
@@ -665,28 +2029,60 @@ static long writeback_sb_inodes(struct super_block *sb,
*/
__writeback_single_inode(inode, &wbc);
+ /* Report progress to inform the hung task detector of the progress. */
+ if (work->done && work->done->progress_stamp &&
+ (jiffies - work->done->progress_stamp) > HZ *
+ sysctl_hung_task_timeout_secs / 2)
+ wake_up_all(work->done->waitq);
+
+ wbc_detach_inode(&wbc);
work->nr_pages -= write_chunk - wbc.nr_to_write;
- wrote += write_chunk - wbc.nr_to_write;
- spin_lock(&wb->list_lock);
+ wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
+ wrote = wrote < 0 ? 0 : wrote;
+ total_wrote += wrote;
+
+ if (need_resched()) {
+ /*
+ * We're trying to balance between building up a nice
+ * long list of IOs to improve our merge rate, and
+ * getting those IOs out quickly for anyone throttling
+ * in balance_dirty_pages(). cond_resched() doesn't
+ * unplug, so get our IOs out the door before we
+ * give up the CPU.
+ */
+ blk_flush_plug(current->plug, false);
+ cond_resched();
+ }
+
+ /*
+ * Requeue @inode if still dirty. Be careful as @inode may
+ * have been switched to another wb in the meantime.
+ */
+ tmp_wb = inode_to_wb_and_lock_list(inode);
spin_lock(&inode->i_lock);
- if (!(inode->i_state & I_DIRTY))
- wrote++;
- requeue_inode(inode, wb, &wbc);
+ if (!(inode_state_read(inode) & I_DIRTY_ALL))
+ total_wrote++;
+ requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
inode_sync_complete(inode);
spin_unlock(&inode->i_lock);
- cond_resched_lock(&wb->list_lock);
+
+ if (unlikely(tmp_wb != wb)) {
+ spin_unlock(&tmp_wb->list_lock);
+ spin_lock(&wb->list_lock);
+ }
+
/*
* bail out to wb_writeback() often enough to check
* background threshold and other termination conditions.
*/
- if (wrote) {
+ if (total_wrote) {
if (time_is_before_jiffies(start_time + HZ / 10UL))
break;
if (work->nr_pages <= 0)
break;
}
}
- return wrote;
+ return total_wrote;
}
static long __writeback_inodes_wb(struct bdi_writeback *wb,
@@ -699,9 +2095,9 @@ static long __writeback_inodes_wb(struct bdi_writeback *wb,
struct inode *inode = wb_inode(wb->b_io.prev);
struct super_block *sb = inode->i_sb;
- if (!grab_super_passive(sb)) {
+ if (!super_trylock_shared(sb)) {
/*
- * grab_super_passive() may fail consistently due to
+ * super_trylock_shared() may fail consistently due to
* s_umount being grabbed by someone else. Don't use
* requeue_io() to avoid busy retrying the inode/sb.
*/
@@ -709,7 +2105,7 @@ static long __writeback_inodes_wb(struct bdi_writeback *wb,
continue;
}
wrote += writeback_sb_inodes(sb, wb, work);
- drop_super(sb);
+ up_read(&sb->s_umount);
/* refer to the same tests at the end of writeback_sb_inodes */
if (wrote) {
@@ -723,7 +2119,7 @@ static long __writeback_inodes_wb(struct bdi_writeback *wb,
return wrote;
}
-long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
+static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
enum wb_reason reason)
{
struct wb_writeback_work work = {
@@ -732,43 +2128,19 @@ long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
.range_cyclic = 1,
.reason = reason,
};
+ struct blk_plug plug;
+ blk_start_plug(&plug);
spin_lock(&wb->list_lock);
if (list_empty(&wb->b_io))
- queue_io(wb, &work);
+ queue_io(wb, &work, jiffies);
__writeback_inodes_wb(wb, &work);
spin_unlock(&wb->list_lock);
+ blk_finish_plug(&plug);
return nr_pages - work.nr_pages;
}
-static bool over_bground_thresh(struct backing_dev_info *bdi)
-{
- unsigned long background_thresh, dirty_thresh;
-
- global_dirty_limits(&background_thresh, &dirty_thresh);
-
- if (global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS) > background_thresh)
- return true;
-
- if (bdi_stat(bdi, BDI_RECLAIMABLE) >
- bdi_dirty_limit(bdi, background_thresh))
- return true;
-
- return false;
-}
-
-/*
- * Called under wb->list_lock. If there are multiple wb per bdi,
- * only the flusher working on the first wb should do it.
- */
-static void wb_update_bandwidth(struct bdi_writeback *wb,
- unsigned long start_time)
-{
- __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
-}
-
/*
* Explicit flushing or periodic writeback of "old" data.
*
@@ -781,22 +2153,20 @@ static void wb_update_bandwidth(struct bdi_writeback *wb,
* takes longer than a dirty_writeback_interval interval, then leave a
* one-second gap.
*
- * older_than_this takes precedence over nr_to_write. So we'll only write back
+ * dirtied_before takes precedence over nr_to_write. So we'll only write back
* all dirty pages if they are all attached to "old" mappings.
*/
static long wb_writeback(struct bdi_writeback *wb,
struct wb_writeback_work *work)
{
- unsigned long wb_start = jiffies;
long nr_pages = work->nr_pages;
- unsigned long oldest_jif;
+ unsigned long dirtied_before = jiffies;
struct inode *inode;
long progress;
+ struct blk_plug plug;
+ bool queued = false;
- oldest_jif = jiffies;
- work->older_than_this = &oldest_jif;
-
- spin_lock(&wb->list_lock);
+ blk_start_plug(&plug);
for (;;) {
/*
* Stop writeback when nr_pages has been consumed
@@ -811,38 +2181,42 @@ static long wb_writeback(struct bdi_writeback *wb,
* after the other works are all done.
*/
if ((work->for_background || work->for_kupdate) &&
- !list_empty(&wb->bdi->work_list))
+ !list_empty(&wb->work_list))
break;
/*
* For background writeout, stop when we are below the
* background dirty threshold
*/
- if (work->for_background && !over_bground_thresh(wb->bdi))
+ if (work->for_background && !wb_over_bg_thresh(wb))
break;
- /*
- * Kupdate and background works are special and we want to
- * include all inodes that need writing. Livelock avoidance is
- * handled by these works yielding to any other work so we are
- * safe.
- */
- if (work->for_kupdate) {
- oldest_jif = jiffies -
- msecs_to_jiffies(dirty_expire_interval * 10);
- } else if (work->for_background)
- oldest_jif = jiffies;
-
- trace_writeback_start(wb->bdi, work);
- if (list_empty(&wb->b_io))
- queue_io(wb, work);
+
+ spin_lock(&wb->list_lock);
+
+ trace_writeback_start(wb, work);
+ if (list_empty(&wb->b_io)) {
+ /*
+ * Kupdate and background works are special and we want
+ * to include all inodes that need writing. Livelock
+ * avoidance is handled by these works yielding to any
+ * other work so we are safe.
+ */
+ if (work->for_kupdate) {
+ dirtied_before = jiffies -
+ msecs_to_jiffies(dirty_expire_interval *
+ 10);
+ } else if (work->for_background)
+ dirtied_before = jiffies;
+
+ queue_io(wb, work, dirtied_before);
+ queued = true;
+ }
if (work->sb)
progress = writeback_sb_inodes(work->sb, wb, work);
else
progress = __writeback_inodes_wb(wb, work);
- trace_writeback_written(wb->bdi, work);
-
- wb_update_bandwidth(wb, wb_start);
+ trace_writeback_written(wb, work);
/*
* Did we write something? Try for more
@@ -852,29 +2226,32 @@ static long wb_writeback(struct bdi_writeback *wb,
* mean the overall work is done. So we keep looping as long
* as made some progress on cleaning pages or inodes.
*/
- if (progress)
+ if (progress || !queued) {
+ spin_unlock(&wb->list_lock);
continue;
+ }
+
/*
* No more inodes for IO, bail
*/
- if (list_empty(&wb->b_more_io))
+ if (list_empty(&wb->b_more_io)) {
+ spin_unlock(&wb->list_lock);
break;
+ }
+
/*
* Nothing written. Wait for some inode to
* become available for writeback. Otherwise
* we'll just busyloop.
*/
- if (!list_empty(&wb->b_more_io)) {
- trace_writeback_wait(wb->bdi, work);
- inode = wb_inode(wb->b_more_io.prev);
- spin_lock(&inode->i_lock);
- spin_unlock(&wb->list_lock);
- /* This function drops i_lock... */
- inode_sleep_on_writeback(inode);
- spin_lock(&wb->list_lock);
- }
+ trace_writeback_wait(wb, work);
+ inode = wb_inode(wb->b_more_io.prev);
+ spin_lock(&inode->i_lock);
+ spin_unlock(&wb->list_lock);
+ /* This function drops i_lock... */
+ inode_sleep_on_writeback(inode);
}
- spin_unlock(&wb->list_lock);
+ blk_finish_plug(&plug);
return nr_pages - work->nr_pages;
}
@@ -882,35 +2259,23 @@ static long wb_writeback(struct bdi_writeback *wb,
/*
* Return the next wb_writeback_work struct that hasn't been processed yet.
*/
-static struct wb_writeback_work *
-get_next_work_item(struct backing_dev_info *bdi)
+static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
{
struct wb_writeback_work *work = NULL;
- spin_lock_bh(&bdi->wb_lock);
- if (!list_empty(&bdi->work_list)) {
- work = list_entry(bdi->work_list.next,
+ spin_lock_irq(&wb->work_lock);
+ if (!list_empty(&wb->work_list)) {
+ work = list_entry(wb->work_list.next,
struct wb_writeback_work, list);
list_del_init(&work->list);
}
- spin_unlock_bh(&bdi->wb_lock);
+ spin_unlock_irq(&wb->work_lock);
return work;
}
-/*
- * Add in the number of potentially dirty inodes, because each inode
- * write can dirty pagecache in the underlying blockdev.
- */
-static unsigned long get_nr_dirty_pages(void)
-{
- return global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS) +
- get_nr_dirty_inodes();
-}
-
static long wb_check_background_flush(struct bdi_writeback *wb)
{
- if (over_bground_thresh(wb->bdi)) {
+ if (wb_over_bg_thresh(wb)) {
struct wb_writeback_work work = {
.nr_pages = LONG_MAX,
@@ -960,38 +2325,56 @@ static long wb_check_old_data_flush(struct bdi_writeback *wb)
return 0;
}
+static long wb_check_start_all(struct bdi_writeback *wb)
+{
+ long nr_pages;
+
+ if (!test_bit(WB_start_all, &wb->state))
+ return 0;
+
+ nr_pages = get_nr_dirty_pages();
+ if (nr_pages) {
+ struct wb_writeback_work work = {
+ .nr_pages = wb_split_bdi_pages(wb, nr_pages),
+ .sync_mode = WB_SYNC_NONE,
+ .range_cyclic = 1,
+ .reason = wb->start_all_reason,
+ };
+
+ nr_pages = wb_writeback(wb, &work);
+ }
+
+ clear_bit(WB_start_all, &wb->state);
+ return nr_pages;
+}
+
+
/*
* Retrieve work items and do the writeback they describe
*/
static long wb_do_writeback(struct bdi_writeback *wb)
{
- struct backing_dev_info *bdi = wb->bdi;
struct wb_writeback_work *work;
long wrote = 0;
- set_bit(BDI_writeback_running, &wb->bdi->state);
- while ((work = get_next_work_item(bdi)) != NULL) {
-
- trace_writeback_exec(bdi, work);
-
+ set_bit(WB_writeback_running, &wb->state);
+ while ((work = get_next_work_item(wb)) != NULL) {
+ trace_writeback_exec(wb, work);
wrote += wb_writeback(wb, work);
-
- /*
- * Notify the caller of completion if this is a synchronous
- * work item, otherwise just free it.
- */
- if (work->done)
- complete(work->done);
- else
- kfree(work);
+ finish_writeback_work(work);
}
/*
+ * Check for a flush-everything request
+ */
+ wrote += wb_check_start_all(wb);
+
+ /*
* Check for periodic writeback, kupdated() style
*/
wrote += wb_check_old_data_flush(wb);
wrote += wb_check_background_flush(wb);
- clear_bit(BDI_writeback_running, &wb->bdi->state);
+ clear_bit(WB_writeback_running, &wb->state);
return wrote;
}
@@ -1000,107 +2383,167 @@ static long wb_do_writeback(struct bdi_writeback *wb)
* Handle writeback of dirty data for the device backed by this bdi. Also
* reschedules periodically and does kupdated style flushing.
*/
-void bdi_writeback_workfn(struct work_struct *work)
+void wb_workfn(struct work_struct *work)
{
struct bdi_writeback *wb = container_of(to_delayed_work(work),
struct bdi_writeback, dwork);
- struct backing_dev_info *bdi = wb->bdi;
long pages_written;
- set_worker_desc("flush-%s", dev_name(bdi->dev));
- current->flags |= PF_SWAPWRITE;
+ set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
if (likely(!current_is_workqueue_rescuer() ||
- list_empty(&bdi->bdi_list))) {
+ !test_bit(WB_registered, &wb->state))) {
/*
- * The normal path. Keep writing back @bdi until its
+ * The normal path. Keep writing back @wb until its
* work_list is empty. Note that this path is also taken
- * if @bdi is shutting down even when we're running off the
+ * if @wb is shutting down even when we're running off the
* rescuer as work_list needs to be drained.
*/
do {
pages_written = wb_do_writeback(wb);
trace_writeback_pages_written(pages_written);
- } while (!list_empty(&bdi->work_list));
+ } while (!list_empty(&wb->work_list));
} else {
/*
* bdi_wq can't get enough workers and we're running off
* the emergency worker. Don't hog it. Hopefully, 1024 is
* enough for efficient IO.
*/
- pages_written = writeback_inodes_wb(&bdi->wb, 1024,
+ pages_written = writeback_inodes_wb(wb, 1024,
WB_REASON_FORKER_THREAD);
trace_writeback_pages_written(pages_written);
}
- if (!list_empty(&bdi->work_list) ||
- (wb_has_dirty_io(wb) && dirty_writeback_interval))
- queue_delayed_work(bdi_wq, &wb->dwork,
- msecs_to_jiffies(dirty_writeback_interval * 10));
+ if (!list_empty(&wb->work_list))
+ wb_wakeup(wb);
+ else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
+ wb_wakeup_delayed(wb);
+}
+
+/*
+ * Start writeback of all dirty pages on this bdi.
+ */
+static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
+ enum wb_reason reason)
+{
+ struct bdi_writeback *wb;
+
+ if (!bdi_has_dirty_io(bdi))
+ return;
- current->flags &= ~PF_SWAPWRITE;
+ list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
+ wb_start_writeback(wb, reason);
+}
+
+void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
+ enum wb_reason reason)
+{
+ rcu_read_lock();
+ __wakeup_flusher_threads_bdi(bdi, reason);
+ rcu_read_unlock();
}
/*
- * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
- * the whole world.
+ * Wakeup the flusher threads to start writeback of all currently dirty pages
*/
-void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
+void wakeup_flusher_threads(enum wb_reason reason)
{
struct backing_dev_info *bdi;
- if (!nr_pages) {
- nr_pages = global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS);
- }
+ /*
+ * If we are expecting writeback progress we must submit plugged IO.
+ */
+ blk_flush_plug(current->plug, true);
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
+ __wakeup_flusher_threads_bdi(bdi, reason);
+ rcu_read_unlock();
+}
+
+/*
+ * Wake up bdi's periodically to make sure dirtytime inodes gets
+ * written back periodically. We deliberately do *not* check the
+ * b_dirtytime list in wb_has_dirty_io(), since this would cause the
+ * kernel to be constantly waking up once there are any dirtytime
+ * inodes on the system. So instead we define a separate delayed work
+ * function which gets called much more rarely. (By default, only
+ * once every 12 hours.)
+ *
+ * If there is any other write activity going on in the file system,
+ * this function won't be necessary. But if the only thing that has
+ * happened on the file system is a dirtytime inode caused by an atime
+ * update, we need this infrastructure below to make sure that inode
+ * eventually gets pushed out to disk.
+ */
+static void wakeup_dirtytime_writeback(struct work_struct *w);
+static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
+
+static void wakeup_dirtytime_writeback(struct work_struct *w)
+{
+ struct backing_dev_info *bdi;
rcu_read_lock();
list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
- if (!bdi_has_dirty_io(bdi))
- continue;
- __bdi_start_writeback(bdi, nr_pages, false, reason);
+ struct bdi_writeback *wb;
+
+ list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
+ if (!list_empty(&wb->b_dirty_time))
+ wb_wakeup(wb);
}
rcu_read_unlock();
+ schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}
-static noinline void block_dump___mark_inode_dirty(struct inode *inode)
+static int dirtytime_interval_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
{
- if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
- struct dentry *dentry;
- const char *name = "?";
+ int ret;
- dentry = d_find_alias(inode);
- if (dentry) {
- spin_lock(&dentry->d_lock);
- name = (const char *) dentry->d_name.name;
- }
- printk(KERN_DEBUG
- "%s(%d): dirtied inode %lu (%s) on %s\n",
- current->comm, task_pid_nr(current), inode->i_ino,
- name, inode->i_sb->s_id);
- if (dentry) {
- spin_unlock(&dentry->d_lock);
- dput(dentry);
- }
- }
+ ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+ if (ret == 0 && write)
+ mod_delayed_work(system_percpu_wq, &dirtytime_work, 0);
+ return ret;
}
+static const struct ctl_table vm_fs_writeback_table[] = {
+ {
+ .procname = "dirtytime_expire_seconds",
+ .data = &dirtytime_expire_interval,
+ .maxlen = sizeof(dirtytime_expire_interval),
+ .mode = 0644,
+ .proc_handler = dirtytime_interval_handler,
+ .extra1 = SYSCTL_ZERO,
+ },
+};
+
+static int __init start_dirtytime_writeback(void)
+{
+ schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
+ register_sysctl_init("vm", vm_fs_writeback_table);
+ return 0;
+}
+__initcall(start_dirtytime_writeback);
+
/**
- * __mark_inode_dirty - internal function
- * @inode: inode to mark
- * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
- * Mark an inode as dirty. Callers should use mark_inode_dirty or
- * mark_inode_dirty_sync.
+ * __mark_inode_dirty - internal function to mark an inode dirty
+ *
+ * @inode: inode to mark
+ * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
+ * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
+ * with I_DIRTY_PAGES.
*
- * Put the inode on the super block's dirty list.
+ * Mark an inode as dirty. We notify the filesystem, then update the inode's
+ * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
*
- * CAREFUL! We mark it dirty unconditionally, but move it onto the
- * dirty list only if it is hashed or if it refers to a blockdev.
- * If it was not hashed, it will never be added to the dirty list
- * even if it is later hashed, as it will have been marked dirty already.
+ * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
+ * instead of calling this directly.
*
- * In short, make sure you hash any inodes _before_ you start marking
- * them dirty.
+ * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
+ * refers to a blockdev. Unhashed inodes will never be added to the dirty list
+ * even if they are later hashed, as they will have been marked dirty already.
+ *
+ * In short, ensure you hash any inodes _before_ you start marking them dirty.
*
* Note that for blockdevs, inode->dirtied_when represents the dirtying time of
* the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
@@ -1112,47 +2555,87 @@ static noinline void block_dump___mark_inode_dirty(struct inode *inode)
void __mark_inode_dirty(struct inode *inode, int flags)
{
struct super_block *sb = inode->i_sb;
- struct backing_dev_info *bdi = NULL;
+ int dirtytime = 0;
+ struct bdi_writeback *wb = NULL;
- /*
- * Don't do this for I_DIRTY_PAGES - that doesn't actually
- * dirty the inode itself
- */
- if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
- trace_writeback_dirty_inode_start(inode, flags);
+ trace_writeback_mark_inode_dirty(inode, flags);
- if (sb->s_op->dirty_inode)
- sb->s_op->dirty_inode(inode, flags);
+ if (flags & I_DIRTY_INODE) {
+ /*
+ * Inode timestamp update will piggback on this dirtying.
+ * We tell ->dirty_inode callback that timestamps need to
+ * be updated by setting I_DIRTY_TIME in flags.
+ */
+ if (inode_state_read_once(inode) & I_DIRTY_TIME) {
+ spin_lock(&inode->i_lock);
+ if (inode_state_read(inode) & I_DIRTY_TIME) {
+ inode_state_clear(inode, I_DIRTY_TIME);
+ flags |= I_DIRTY_TIME;
+ }
+ spin_unlock(&inode->i_lock);
+ }
+ /*
+ * Notify the filesystem about the inode being dirtied, so that
+ * (if needed) it can update on-disk fields and journal the
+ * inode. This is only needed when the inode itself is being
+ * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
+ * for just I_DIRTY_PAGES or I_DIRTY_TIME.
+ */
+ trace_writeback_dirty_inode_start(inode, flags);
+ if (sb->s_op->dirty_inode)
+ sb->s_op->dirty_inode(inode,
+ flags & (I_DIRTY_INODE | I_DIRTY_TIME));
trace_writeback_dirty_inode(inode, flags);
+
+ /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
+ flags &= ~I_DIRTY_TIME;
+ } else {
+ /*
+ * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
+ * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
+ * in one call to __mark_inode_dirty().)
+ */
+ dirtytime = flags & I_DIRTY_TIME;
+ WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
}
/*
- * make sure that changes are seen by all cpus before we test i_state
- * -- mikulas
+ * Paired with smp_mb() in __writeback_single_inode() for the
+ * following lockless i_state test. See there for details.
*/
smp_mb();
- /* avoid the locking if we can */
- if ((inode->i_state & flags) == flags)
+ if ((inode_state_read_once(inode) & flags) == flags)
return;
- if (unlikely(block_dump))
- block_dump___mark_inode_dirty(inode);
-
spin_lock(&inode->i_lock);
- if ((inode->i_state & flags) != flags) {
- const int was_dirty = inode->i_state & I_DIRTY;
+ if ((inode_state_read(inode) & flags) != flags) {
+ const int was_dirty = inode_state_read(inode) & I_DIRTY;
+
+ inode_attach_wb(inode, NULL);
- inode->i_state |= flags;
+ inode_state_set(inode, flags);
/*
- * If the inode is being synced, just update its dirty state.
- * The unlocker will place the inode on the appropriate
- * superblock list, based upon its state.
+ * Grab inode's wb early because it requires dropping i_lock and we
+ * need to make sure following checks happen atomically with dirty
+ * list handling so that we don't move inodes under flush worker's
+ * hands.
*/
- if (inode->i_state & I_SYNC)
- goto out_unlock_inode;
+ if (!was_dirty) {
+ wb = locked_inode_to_wb_and_lock_list(inode);
+ spin_lock(&inode->i_lock);
+ }
+
+ /*
+ * If the inode is queued for writeback by flush worker, just
+ * update its dirty state. Once the flush worker is done with
+ * the inode it will place it on the appropriate superblock
+ * list, based upon its state.
+ */
+ if (inode_state_read(inode) & I_SYNC_QUEUED)
+ goto out_unlock;
/*
* Only add valid (hashed) inodes to the superblock's
@@ -1160,53 +2643,67 @@ void __mark_inode_dirty(struct inode *inode, int flags)
*/
if (!S_ISBLK(inode->i_mode)) {
if (inode_unhashed(inode))
- goto out_unlock_inode;
+ goto out_unlock;
}
- if (inode->i_state & I_FREEING)
- goto out_unlock_inode;
+ if (inode_state_read(inode) & I_FREEING)
+ goto out_unlock;
/*
* If the inode was already on b_dirty/b_io/b_more_io, don't
* reposition it (that would break b_dirty time-ordering).
*/
if (!was_dirty) {
+ struct list_head *dirty_list;
bool wakeup_bdi = false;
- bdi = inode_to_bdi(inode);
- if (bdi_cap_writeback_dirty(bdi)) {
- WARN(!test_bit(BDI_registered, &bdi->state),
- "bdi-%s not registered\n", bdi->name);
+ inode->dirtied_when = jiffies;
+ if (dirtytime)
+ inode->dirtied_time_when = jiffies;
+
+ if (inode_state_read(inode) & I_DIRTY)
+ dirty_list = &wb->b_dirty;
+ else
+ dirty_list = &wb->b_dirty_time;
- /*
- * If this is the first dirty inode for this
- * bdi, we have to wake-up the corresponding
- * bdi thread to make sure background
- * write-back happens later.
- */
- if (!wb_has_dirty_io(&bdi->wb))
- wakeup_bdi = true;
- }
+ wakeup_bdi = inode_io_list_move_locked(inode, wb,
+ dirty_list);
+
+ /*
+ * If this is the first dirty inode for this bdi,
+ * we have to wake-up the corresponding bdi thread
+ * to make sure background write-back happens
+ * later.
+ */
+ if (wakeup_bdi &&
+ (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
+ wb_wakeup_delayed(wb);
+ spin_unlock(&wb->list_lock);
spin_unlock(&inode->i_lock);
- spin_lock(&bdi->wb.list_lock);
- inode->dirtied_when = jiffies;
- list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
- spin_unlock(&bdi->wb.list_lock);
+ trace_writeback_dirty_inode_enqueue(inode);
- if (wakeup_bdi)
- bdi_wakeup_thread_delayed(bdi);
return;
}
}
-out_unlock_inode:
+out_unlock:
+ if (wb)
+ spin_unlock(&wb->list_lock);
spin_unlock(&inode->i_lock);
-
}
EXPORT_SYMBOL(__mark_inode_dirty);
+/*
+ * The @s_sync_lock is used to serialise concurrent sync operations
+ * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
+ * Concurrent callers will block on the s_sync_lock rather than doing contending
+ * walks. The queueing maintains sync(2) required behaviour as all the IO that
+ * has been issued up to the time this function is enter is guaranteed to be
+ * completed by the time we have gained the lock and waited for all IO that is
+ * in progress regardless of the order callers are granted the lock.
+ */
static void wait_sb_inodes(struct super_block *sb)
{
- struct inode *inode, *old_inode = NULL;
+ LIST_HEAD(sync_list);
/*
* We need to be protected against the filesystem going from
@@ -1214,47 +2711,101 @@ static void wait_sb_inodes(struct super_block *sb)
*/
WARN_ON(!rwsem_is_locked(&sb->s_umount));
- spin_lock(&inode_sb_list_lock);
+ mutex_lock(&sb->s_sync_lock);
/*
- * Data integrity sync. Must wait for all pages under writeback,
- * because there may have been pages dirtied before our sync
- * call, but which had writeout started before we write it out.
- * In which case, the inode may not be on the dirty list, but
- * we still have to wait for that writeout.
+ * Splice the writeback list onto a temporary list to avoid waiting on
+ * inodes that have started writeback after this point.
+ *
+ * Use rcu_read_lock() to keep the inodes around until we have a
+ * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
+ * the local list because inodes can be dropped from either by writeback
+ * completion.
+ */
+ rcu_read_lock();
+ spin_lock_irq(&sb->s_inode_wblist_lock);
+ list_splice_init(&sb->s_inodes_wb, &sync_list);
+
+ /*
+ * Data integrity sync. Must wait for all pages under writeback, because
+ * there may have been pages dirtied before our sync call, but which had
+ * writeout started before we write it out. In which case, the inode
+ * may not be on the dirty list, but we still have to wait for that
+ * writeout.
*/
- list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
+ while (!list_empty(&sync_list)) {
+ struct inode *inode = list_first_entry(&sync_list, struct inode,
+ i_wb_list);
struct address_space *mapping = inode->i_mapping;
+ /*
+ * Move each inode back to the wb list before we drop the lock
+ * to preserve consistency between i_wb_list and the mapping
+ * writeback tag. Writeback completion is responsible to remove
+ * the inode from either list once the writeback tag is cleared.
+ */
+ list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
+
+ /*
+ * The mapping can appear untagged while still on-list since we
+ * do not have the mapping lock. Skip it here, wb completion
+ * will remove it.
+ */
+ if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
+ continue;
+
+ spin_unlock_irq(&sb->s_inode_wblist_lock);
+
spin_lock(&inode->i_lock);
- if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
- (mapping->nrpages == 0)) {
+ if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) {
spin_unlock(&inode->i_lock);
+
+ spin_lock_irq(&sb->s_inode_wblist_lock);
continue;
}
__iget(inode);
spin_unlock(&inode->i_lock);
- spin_unlock(&inode_sb_list_lock);
+ rcu_read_unlock();
/*
- * We hold a reference to 'inode' so it couldn't have been
- * removed from s_inodes list while we dropped the
- * inode_sb_list_lock. We cannot iput the inode now as we can
- * be holding the last reference and we cannot iput it under
- * inode_sb_list_lock. So we keep the reference and iput it
- * later.
+ * We keep the error status of individual mapping so that
+ * applications can catch the writeback error using fsync(2).
+ * See filemap_fdatawait_keep_errors() for details.
*/
- iput(old_inode);
- old_inode = inode;
-
- filemap_fdatawait(mapping);
+ filemap_fdatawait_keep_errors(mapping);
cond_resched();
- spin_lock(&inode_sb_list_lock);
+ iput(inode);
+
+ rcu_read_lock();
+ spin_lock_irq(&sb->s_inode_wblist_lock);
}
- spin_unlock(&inode_sb_list_lock);
- iput(old_inode);
+ spin_unlock_irq(&sb->s_inode_wblist_lock);
+ rcu_read_unlock();
+ mutex_unlock(&sb->s_sync_lock);
+}
+
+static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
+ enum wb_reason reason, bool skip_if_busy)
+{
+ struct backing_dev_info *bdi = sb->s_bdi;
+ DEFINE_WB_COMPLETION(done, bdi);
+ struct wb_writeback_work work = {
+ .sb = sb,
+ .sync_mode = WB_SYNC_NONE,
+ .tagged_writepages = 1,
+ .done = &done,
+ .nr_pages = nr,
+ .reason = reason,
+ };
+
+ if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
+ return;
+ WARN_ON(!rwsem_is_locked(&sb->s_umount));
+
+ bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
+ wb_wait_for_completion(&done);
}
/**
@@ -1271,21 +2822,7 @@ void writeback_inodes_sb_nr(struct super_block *sb,
unsigned long nr,
enum wb_reason reason)
{
- DECLARE_COMPLETION_ONSTACK(done);
- struct wb_writeback_work work = {
- .sb = sb,
- .sync_mode = WB_SYNC_NONE,
- .tagged_writepages = 1,
- .done = &done,
- .nr_pages = nr,
- .reason = reason,
- };
-
- if (sb->s_bdi == &noop_backing_dev_info)
- return;
- WARN_ON(!rwsem_is_locked(&sb->s_umount));
- bdi_queue_work(sb->s_bdi, &work);
- wait_for_completion(&done);
+ __writeback_inodes_sb_nr(sb, nr, reason, false);
}
EXPORT_SYMBOL(writeback_inodes_sb_nr);
@@ -1300,46 +2837,24 @@ EXPORT_SYMBOL(writeback_inodes_sb_nr);
*/
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
{
- return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
+ writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
}
EXPORT_SYMBOL(writeback_inodes_sb);
/**
- * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
+ * try_to_writeback_inodes_sb - try to start writeback if none underway
* @sb: the superblock
- * @nr: the number of pages to write
- * @reason: the reason of writeback
+ * @reason: reason why some writeback work was initiated
*
- * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
- * Returns 1 if writeback was started, 0 if not.
+ * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
*/
-int try_to_writeback_inodes_sb_nr(struct super_block *sb,
- unsigned long nr,
- enum wb_reason reason)
+void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
{
- if (writeback_in_progress(sb->s_bdi))
- return 1;
-
if (!down_read_trylock(&sb->s_umount))
- return 0;
+ return;
- writeback_inodes_sb_nr(sb, nr, reason);
+ __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
up_read(&sb->s_umount);
- return 1;
-}
-EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
-
-/**
- * try_to_writeback_inodes_sb - try to start writeback if none underway
- * @sb: the superblock
- * @reason: reason why some writeback work was initiated
- *
- * Implement by try_to_writeback_inodes_sb_nr()
- * Returns 1 if writeback was started, 0 if not.
- */
-int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
-{
- return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
}
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
@@ -1352,7 +2867,8 @@ EXPORT_SYMBOL(try_to_writeback_inodes_sb);
*/
void sync_inodes_sb(struct super_block *sb)
{
- DECLARE_COMPLETION_ONSTACK(done);
+ struct backing_dev_info *bdi = sb->s_bdi;
+ DEFINE_WB_COMPLETION(done, bdi);
struct wb_writeback_work work = {
.sb = sb,
.sync_mode = WB_SYNC_ALL,
@@ -1363,13 +2879,20 @@ void sync_inodes_sb(struct super_block *sb)
.for_sync = 1,
};
- /* Nothing to do? */
- if (sb->s_bdi == &noop_backing_dev_info)
+ /*
+ * Can't skip on !bdi_has_dirty() because we should wait for !dirty
+ * inodes under writeback and I_DIRTY_TIME inodes ignored by
+ * bdi_has_dirty() need to be written out too.
+ */
+ if (bdi == &noop_backing_dev_info)
return;
WARN_ON(!rwsem_is_locked(&sb->s_umount));
- bdi_queue_work(sb->s_bdi, &work);
- wait_for_completion(&done);
+ /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
+ bdi_down_write_wb_switch_rwsem(bdi);
+ bdi_split_work_to_wbs(bdi, &work, false);
+ wb_wait_for_completion(&done);
+ bdi_up_write_wb_switch_rwsem(bdi);
wait_sb_inodes(sb);
}
@@ -1387,7 +2910,6 @@ EXPORT_SYMBOL(sync_inodes_sb);
*/
int write_inode_now(struct inode *inode, int sync)
{
- struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
struct writeback_control wbc = {
.nr_to_write = LONG_MAX,
.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
@@ -1395,32 +2917,15 @@ int write_inode_now(struct inode *inode, int sync)
.range_end = LLONG_MAX,
};
- if (!mapping_cap_writeback_dirty(inode->i_mapping))
+ if (!mapping_can_writeback(inode->i_mapping))
wbc.nr_to_write = 0;
might_sleep();
- return writeback_single_inode(inode, wb, &wbc);
+ return writeback_single_inode(inode, &wbc);
}
EXPORT_SYMBOL(write_inode_now);
/**
- * sync_inode - write an inode and its pages to disk.
- * @inode: the inode to sync
- * @wbc: controls the writeback mode
- *
- * sync_inode() will write an inode and its pages to disk. It will also
- * correctly update the inode on its superblock's dirty inode lists and will
- * update inode->i_state.
- *
- * The caller must have a ref on the inode.
- */
-int sync_inode(struct inode *inode, struct writeback_control *wbc)
-{
- return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
-}
-EXPORT_SYMBOL(sync_inode);
-
-/**
* sync_inode_metadata - write an inode to disk
* @inode: the inode to sync
* @wait: wait for I/O to complete.
@@ -1436,6 +2941,6 @@ int sync_inode_metadata(struct inode *inode, int wait)
.nr_to_write = 0, /* metadata-only */
};
- return sync_inode(inode, &wbc);
+ return writeback_single_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);