summaryrefslogtreecommitdiff
path: root/fs/resctrl/monitor.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/resctrl/monitor.c')
-rw-r--r--fs/resctrl/monitor.c1811
1 files changed, 1811 insertions, 0 deletions
diff --git a/fs/resctrl/monitor.c b/fs/resctrl/monitor.c
new file mode 100644
index 000000000000..572a9925bd6c
--- /dev/null
+++ b/fs/resctrl/monitor.c
@@ -0,0 +1,1811 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Resource Director Technology(RDT)
+ * - Monitoring code
+ *
+ * Copyright (C) 2017 Intel Corporation
+ *
+ * Author:
+ * Vikas Shivappa <vikas.shivappa@intel.com>
+ *
+ * This replaces the cqm.c based on perf but we reuse a lot of
+ * code and datastructures originally from Peter Zijlstra and Matt Fleming.
+ *
+ * More information about RDT be found in the Intel (R) x86 Architecture
+ * Software Developer Manual June 2016, volume 3, section 17.17.
+ */
+
+#define pr_fmt(fmt) "resctrl: " fmt
+
+#include <linux/cpu.h>
+#include <linux/resctrl.h>
+#include <linux/sizes.h>
+#include <linux/slab.h>
+
+#include "internal.h"
+
+#define CREATE_TRACE_POINTS
+
+#include "monitor_trace.h"
+
+/**
+ * struct rmid_entry - dirty tracking for all RMID.
+ * @closid: The CLOSID for this entry.
+ * @rmid: The RMID for this entry.
+ * @busy: The number of domains with cached data using this RMID.
+ * @list: Member of the rmid_free_lru list when busy == 0.
+ *
+ * Depending on the architecture the correct monitor is accessed using
+ * both @closid and @rmid, or @rmid only.
+ *
+ * Take the rdtgroup_mutex when accessing.
+ */
+struct rmid_entry {
+ u32 closid;
+ u32 rmid;
+ int busy;
+ struct list_head list;
+};
+
+/*
+ * @rmid_free_lru - A least recently used list of free RMIDs
+ * These RMIDs are guaranteed to have an occupancy less than the
+ * threshold occupancy
+ */
+static LIST_HEAD(rmid_free_lru);
+
+/*
+ * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
+ * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
+ * Indexed by CLOSID. Protected by rdtgroup_mutex.
+ */
+static u32 *closid_num_dirty_rmid;
+
+/*
+ * @rmid_limbo_count - count of currently unused but (potentially)
+ * dirty RMIDs.
+ * This counts RMIDs that no one is currently using but that
+ * may have a occupancy value > resctrl_rmid_realloc_threshold. User can
+ * change the threshold occupancy value.
+ */
+static unsigned int rmid_limbo_count;
+
+/*
+ * @rmid_entry - The entry in the limbo and free lists.
+ */
+static struct rmid_entry *rmid_ptrs;
+
+/*
+ * This is the threshold cache occupancy in bytes at which we will consider an
+ * RMID available for re-allocation.
+ */
+unsigned int resctrl_rmid_realloc_threshold;
+
+/*
+ * This is the maximum value for the reallocation threshold, in bytes.
+ */
+unsigned int resctrl_rmid_realloc_limit;
+
+/*
+ * x86 and arm64 differ in their handling of monitoring.
+ * x86's RMID are independent numbers, there is only one source of traffic
+ * with an RMID value of '1'.
+ * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
+ * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
+ * value is no longer unique.
+ * To account for this, resctrl uses an index. On x86 this is just the RMID,
+ * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
+ *
+ * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
+ * must accept an attempt to read every index.
+ */
+static inline struct rmid_entry *__rmid_entry(u32 idx)
+{
+ struct rmid_entry *entry;
+ u32 closid, rmid;
+
+ entry = &rmid_ptrs[idx];
+ resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
+
+ WARN_ON_ONCE(entry->closid != closid);
+ WARN_ON_ONCE(entry->rmid != rmid);
+
+ return entry;
+}
+
+static void limbo_release_entry(struct rmid_entry *entry)
+{
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ rmid_limbo_count--;
+ list_add_tail(&entry->list, &rmid_free_lru);
+
+ if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
+ closid_num_dirty_rmid[entry->closid]--;
+}
+
+/*
+ * Check the RMIDs that are marked as busy for this domain. If the
+ * reported LLC occupancy is below the threshold clear the busy bit and
+ * decrement the count. If the busy count gets to zero on an RMID, we
+ * free the RMID
+ */
+void __check_limbo(struct rdt_mon_domain *d, bool force_free)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+ u32 idx_limit = resctrl_arch_system_num_rmid_idx();
+ struct rmid_entry *entry;
+ u32 idx, cur_idx = 1;
+ void *arch_mon_ctx;
+ bool rmid_dirty;
+ u64 val = 0;
+
+ arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
+ if (IS_ERR(arch_mon_ctx)) {
+ pr_warn_ratelimited("Failed to allocate monitor context: %ld",
+ PTR_ERR(arch_mon_ctx));
+ return;
+ }
+
+ /*
+ * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
+ * are marked as busy for occupancy < threshold. If the occupancy
+ * is less than the threshold decrement the busy counter of the
+ * RMID and move it to the free list when the counter reaches 0.
+ */
+ for (;;) {
+ idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
+ if (idx >= idx_limit)
+ break;
+
+ entry = __rmid_entry(idx);
+ if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
+ QOS_L3_OCCUP_EVENT_ID, &val,
+ arch_mon_ctx)) {
+ rmid_dirty = true;
+ } else {
+ rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
+
+ /*
+ * x86's CLOSID and RMID are independent numbers, so the entry's
+ * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
+ * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
+ * used to select the configuration. It is thus necessary to track both
+ * CLOSID and RMID because there may be dependencies between them
+ * on some architectures.
+ */
+ trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
+ }
+
+ if (force_free || !rmid_dirty) {
+ clear_bit(idx, d->rmid_busy_llc);
+ if (!--entry->busy)
+ limbo_release_entry(entry);
+ }
+ cur_idx = idx + 1;
+ }
+
+ resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
+}
+
+bool has_busy_rmid(struct rdt_mon_domain *d)
+{
+ u32 idx_limit = resctrl_arch_system_num_rmid_idx();
+
+ return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
+}
+
+static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
+{
+ struct rmid_entry *itr;
+ u32 itr_idx, cmp_idx;
+
+ if (list_empty(&rmid_free_lru))
+ return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
+
+ list_for_each_entry(itr, &rmid_free_lru, list) {
+ /*
+ * Get the index of this free RMID, and the index it would need
+ * to be if it were used with this CLOSID.
+ * If the CLOSID is irrelevant on this architecture, the two
+ * index values are always the same on every entry and thus the
+ * very first entry will be returned.
+ */
+ itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
+ cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
+
+ if (itr_idx == cmp_idx)
+ return itr;
+ }
+
+ return ERR_PTR(-ENOSPC);
+}
+
+/**
+ * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
+ * RMID are clean, or the CLOSID that has
+ * the most clean RMID.
+ *
+ * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
+ * may not be able to allocate clean RMID. To avoid this the allocator will
+ * choose the CLOSID with the most clean RMID.
+ *
+ * When the CLOSID and RMID are independent numbers, the first free CLOSID will
+ * be returned.
+ */
+int resctrl_find_cleanest_closid(void)
+{
+ u32 cleanest_closid = ~0;
+ int i = 0;
+
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
+ return -EIO;
+
+ for (i = 0; i < closids_supported(); i++) {
+ int num_dirty;
+
+ if (closid_allocated(i))
+ continue;
+
+ num_dirty = closid_num_dirty_rmid[i];
+ if (num_dirty == 0)
+ return i;
+
+ if (cleanest_closid == ~0)
+ cleanest_closid = i;
+
+ if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
+ cleanest_closid = i;
+ }
+
+ if (cleanest_closid == ~0)
+ return -ENOSPC;
+
+ return cleanest_closid;
+}
+
+/*
+ * For MPAM the RMID value is not unique, and has to be considered with
+ * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
+ * allows all domains to be managed by a single free list.
+ * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
+ */
+int alloc_rmid(u32 closid)
+{
+ struct rmid_entry *entry;
+
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ entry = resctrl_find_free_rmid(closid);
+ if (IS_ERR(entry))
+ return PTR_ERR(entry);
+
+ list_del(&entry->list);
+ return entry->rmid;
+}
+
+static void add_rmid_to_limbo(struct rmid_entry *entry)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+ struct rdt_mon_domain *d;
+ u32 idx;
+
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ /* Walking r->domains, ensure it can't race with cpuhp */
+ lockdep_assert_cpus_held();
+
+ idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
+
+ entry->busy = 0;
+ list_for_each_entry(d, &r->mon_domains, hdr.list) {
+ /*
+ * For the first limbo RMID in the domain,
+ * setup up the limbo worker.
+ */
+ if (!has_busy_rmid(d))
+ cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
+ RESCTRL_PICK_ANY_CPU);
+ set_bit(idx, d->rmid_busy_llc);
+ entry->busy++;
+ }
+
+ rmid_limbo_count++;
+ if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
+ closid_num_dirty_rmid[entry->closid]++;
+}
+
+void free_rmid(u32 closid, u32 rmid)
+{
+ u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
+ struct rmid_entry *entry;
+
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ /*
+ * Do not allow the default rmid to be free'd. Comparing by index
+ * allows architectures that ignore the closid parameter to avoid an
+ * unnecessary check.
+ */
+ if (!resctrl_arch_mon_capable() ||
+ idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
+ RESCTRL_RESERVED_RMID))
+ return;
+
+ entry = __rmid_entry(idx);
+
+ if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID))
+ add_rmid_to_limbo(entry);
+ else
+ list_add_tail(&entry->list, &rmid_free_lru);
+}
+
+static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
+ u32 rmid, enum resctrl_event_id evtid)
+{
+ u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
+ struct mbm_state *state;
+
+ if (!resctrl_is_mbm_event(evtid))
+ return NULL;
+
+ state = d->mbm_states[MBM_STATE_IDX(evtid)];
+
+ return state ? &state[idx] : NULL;
+}
+
+/*
+ * mbm_cntr_get() - Return the counter ID for the matching @evtid and @rdtgrp.
+ *
+ * Return:
+ * Valid counter ID on success, or -ENOENT on failure.
+ */
+static int mbm_cntr_get(struct rdt_resource *r, struct rdt_mon_domain *d,
+ struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
+{
+ int cntr_id;
+
+ if (!r->mon.mbm_cntr_assignable)
+ return -ENOENT;
+
+ if (!resctrl_is_mbm_event(evtid))
+ return -ENOENT;
+
+ for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) {
+ if (d->cntr_cfg[cntr_id].rdtgrp == rdtgrp &&
+ d->cntr_cfg[cntr_id].evtid == evtid)
+ return cntr_id;
+ }
+
+ return -ENOENT;
+}
+
+/*
+ * mbm_cntr_alloc() - Initialize and return a new counter ID in the domain @d.
+ * Caller must ensure that the specified event is not assigned already.
+ *
+ * Return:
+ * Valid counter ID on success, or -ENOSPC on failure.
+ */
+static int mbm_cntr_alloc(struct rdt_resource *r, struct rdt_mon_domain *d,
+ struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
+{
+ int cntr_id;
+
+ for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) {
+ if (!d->cntr_cfg[cntr_id].rdtgrp) {
+ d->cntr_cfg[cntr_id].rdtgrp = rdtgrp;
+ d->cntr_cfg[cntr_id].evtid = evtid;
+ return cntr_id;
+ }
+ }
+
+ return -ENOSPC;
+}
+
+/*
+ * mbm_cntr_free() - Clear the counter ID configuration details in the domain @d.
+ */
+static void mbm_cntr_free(struct rdt_mon_domain *d, int cntr_id)
+{
+ memset(&d->cntr_cfg[cntr_id], 0, sizeof(*d->cntr_cfg));
+}
+
+static int __mon_event_count(struct rdtgroup *rdtgrp, struct rmid_read *rr)
+{
+ int cpu = smp_processor_id();
+ u32 closid = rdtgrp->closid;
+ u32 rmid = rdtgrp->mon.rmid;
+ struct rdt_mon_domain *d;
+ int cntr_id = -ENOENT;
+ struct mbm_state *m;
+ int err, ret;
+ u64 tval = 0;
+
+ if (rr->is_mbm_cntr) {
+ cntr_id = mbm_cntr_get(rr->r, rr->d, rdtgrp, rr->evtid);
+ if (cntr_id < 0) {
+ rr->err = -ENOENT;
+ return -EINVAL;
+ }
+ }
+
+ if (rr->first) {
+ if (rr->is_mbm_cntr)
+ resctrl_arch_reset_cntr(rr->r, rr->d, closid, rmid, cntr_id, rr->evtid);
+ else
+ resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
+ m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
+ if (m)
+ memset(m, 0, sizeof(struct mbm_state));
+ return 0;
+ }
+
+ if (rr->d) {
+ /* Reading a single domain, must be on a CPU in that domain. */
+ if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
+ return -EINVAL;
+ if (rr->is_mbm_cntr)
+ rr->err = resctrl_arch_cntr_read(rr->r, rr->d, closid, rmid, cntr_id,
+ rr->evtid, &tval);
+ else
+ rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
+ rr->evtid, &tval, rr->arch_mon_ctx);
+ if (rr->err)
+ return rr->err;
+
+ rr->val += tval;
+
+ return 0;
+ }
+
+ /* Summing domains that share a cache, must be on a CPU for that cache. */
+ if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
+ return -EINVAL;
+
+ /*
+ * Legacy files must report the sum of an event across all
+ * domains that share the same L3 cache instance.
+ * Report success if a read from any domain succeeds, -EINVAL
+ * (translated to "Unavailable" for user space) if reading from
+ * all domains fail for any reason.
+ */
+ ret = -EINVAL;
+ list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
+ if (d->ci_id != rr->ci->id)
+ continue;
+ if (rr->is_mbm_cntr)
+ err = resctrl_arch_cntr_read(rr->r, d, closid, rmid, cntr_id,
+ rr->evtid, &tval);
+ else
+ err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
+ rr->evtid, &tval, rr->arch_mon_ctx);
+ if (!err) {
+ rr->val += tval;
+ ret = 0;
+ }
+ }
+
+ if (ret)
+ rr->err = ret;
+
+ return ret;
+}
+
+/*
+ * mbm_bw_count() - Update bw count from values previously read by
+ * __mon_event_count().
+ * @rdtgrp: resctrl group associated with the CLOSID and RMID to identify
+ * the cached mbm_state.
+ * @rr: The struct rmid_read populated by __mon_event_count().
+ *
+ * Supporting function to calculate the memory bandwidth
+ * and delta bandwidth in MBps. The chunks value previously read by
+ * __mon_event_count() is compared with the chunks value from the previous
+ * invocation. This must be called once per second to maintain values in MBps.
+ */
+static void mbm_bw_count(struct rdtgroup *rdtgrp, struct rmid_read *rr)
+{
+ u64 cur_bw, bytes, cur_bytes;
+ u32 closid = rdtgrp->closid;
+ u32 rmid = rdtgrp->mon.rmid;
+ struct mbm_state *m;
+
+ m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
+ if (WARN_ON_ONCE(!m))
+ return;
+
+ cur_bytes = rr->val;
+ bytes = cur_bytes - m->prev_bw_bytes;
+ m->prev_bw_bytes = cur_bytes;
+
+ cur_bw = bytes / SZ_1M;
+
+ m->prev_bw = cur_bw;
+}
+
+/*
+ * This is scheduled by mon_event_read() to read the CQM/MBM counters
+ * on a domain.
+ */
+void mon_event_count(void *info)
+{
+ struct rdtgroup *rdtgrp, *entry;
+ struct rmid_read *rr = info;
+ struct list_head *head;
+ int ret;
+
+ rdtgrp = rr->rgrp;
+
+ ret = __mon_event_count(rdtgrp, rr);
+
+ /*
+ * For Ctrl groups read data from child monitor groups and
+ * add them together. Count events which are read successfully.
+ * Discard the rmid_read's reporting errors.
+ */
+ head = &rdtgrp->mon.crdtgrp_list;
+
+ if (rdtgrp->type == RDTCTRL_GROUP) {
+ list_for_each_entry(entry, head, mon.crdtgrp_list) {
+ if (__mon_event_count(entry, rr) == 0)
+ ret = 0;
+ }
+ }
+
+ /*
+ * __mon_event_count() calls for newly created monitor groups may
+ * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
+ * Discard error if any of the monitor event reads succeeded.
+ */
+ if (ret == 0)
+ rr->err = 0;
+}
+
+static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu,
+ struct rdt_resource *r)
+{
+ struct rdt_ctrl_domain *d;
+
+ lockdep_assert_cpus_held();
+
+ list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
+ /* Find the domain that contains this CPU */
+ if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
+ return d;
+ }
+
+ return NULL;
+}
+
+/*
+ * Feedback loop for MBA software controller (mba_sc)
+ *
+ * mba_sc is a feedback loop where we periodically read MBM counters and
+ * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
+ * that:
+ *
+ * current bandwidth(cur_bw) < user specified bandwidth(user_bw)
+ *
+ * This uses the MBM counters to measure the bandwidth and MBA throttle
+ * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
+ * fact that resctrl rdtgroups have both monitoring and control.
+ *
+ * The frequency of the checks is 1s and we just tag along the MBM overflow
+ * timer. Having 1s interval makes the calculation of bandwidth simpler.
+ *
+ * Although MBA's goal is to restrict the bandwidth to a maximum, there may
+ * be a need to increase the bandwidth to avoid unnecessarily restricting
+ * the L2 <-> L3 traffic.
+ *
+ * Since MBA controls the L2 external bandwidth where as MBM measures the
+ * L3 external bandwidth the following sequence could lead to such a
+ * situation.
+ *
+ * Consider an rdtgroup which had high L3 <-> memory traffic in initial
+ * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
+ * after some time rdtgroup has mostly L2 <-> L3 traffic.
+ *
+ * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
+ * throttle MSRs already have low percentage values. To avoid
+ * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
+ */
+static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
+{
+ u32 closid, rmid, cur_msr_val, new_msr_val;
+ struct mbm_state *pmbm_data, *cmbm_data;
+ struct rdt_ctrl_domain *dom_mba;
+ enum resctrl_event_id evt_id;
+ struct rdt_resource *r_mba;
+ struct list_head *head;
+ struct rdtgroup *entry;
+ u32 cur_bw, user_bw;
+
+ r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
+ evt_id = rgrp->mba_mbps_event;
+
+ closid = rgrp->closid;
+ rmid = rgrp->mon.rmid;
+ pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id);
+ if (WARN_ON_ONCE(!pmbm_data))
+ return;
+
+ dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
+ if (!dom_mba) {
+ pr_warn_once("Failure to get domain for MBA update\n");
+ return;
+ }
+
+ cur_bw = pmbm_data->prev_bw;
+ user_bw = dom_mba->mbps_val[closid];
+
+ /* MBA resource doesn't support CDP */
+ cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
+
+ /*
+ * For Ctrl groups read data from child monitor groups.
+ */
+ head = &rgrp->mon.crdtgrp_list;
+ list_for_each_entry(entry, head, mon.crdtgrp_list) {
+ cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id);
+ if (WARN_ON_ONCE(!cmbm_data))
+ return;
+ cur_bw += cmbm_data->prev_bw;
+ }
+
+ /*
+ * Scale up/down the bandwidth linearly for the ctrl group. The
+ * bandwidth step is the bandwidth granularity specified by the
+ * hardware.
+ * Always increase throttling if current bandwidth is above the
+ * target set by user.
+ * But avoid thrashing up and down on every poll by checking
+ * whether a decrease in throttling is likely to push the group
+ * back over target. E.g. if currently throttling to 30% of bandwidth
+ * on a system with 10% granularity steps, check whether moving to
+ * 40% would go past the limit by multiplying current bandwidth by
+ * "(30 + 10) / 30".
+ */
+ if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
+ new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
+ } else if (cur_msr_val < MAX_MBA_BW &&
+ (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
+ new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
+ } else {
+ return;
+ }
+
+ resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
+}
+
+static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d,
+ struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
+{
+ struct rmid_read rr = {0};
+
+ rr.r = r;
+ rr.d = d;
+ rr.evtid = evtid;
+ if (resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rr.is_mbm_cntr = true;
+ } else {
+ rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
+ if (IS_ERR(rr.arch_mon_ctx)) {
+ pr_warn_ratelimited("Failed to allocate monitor context: %ld",
+ PTR_ERR(rr.arch_mon_ctx));
+ return;
+ }
+ }
+
+ __mon_event_count(rdtgrp, &rr);
+
+ /*
+ * If the software controller is enabled, compute the
+ * bandwidth for this event id.
+ */
+ if (is_mba_sc(NULL))
+ mbm_bw_count(rdtgrp, &rr);
+
+ if (rr.arch_mon_ctx)
+ resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
+}
+
+static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
+ struct rdtgroup *rdtgrp)
+{
+ /*
+ * This is protected from concurrent reads from user as both
+ * the user and overflow handler hold the global mutex.
+ */
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
+ mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_TOTAL_EVENT_ID);
+
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
+ mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_LOCAL_EVENT_ID);
+}
+
+/*
+ * Handler to scan the limbo list and move the RMIDs
+ * to free list whose occupancy < threshold_occupancy.
+ */
+void cqm_handle_limbo(struct work_struct *work)
+{
+ unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
+ struct rdt_mon_domain *d;
+
+ cpus_read_lock();
+ mutex_lock(&rdtgroup_mutex);
+
+ d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
+
+ __check_limbo(d, false);
+
+ if (has_busy_rmid(d)) {
+ d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
+ RESCTRL_PICK_ANY_CPU);
+ schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
+ delay);
+ }
+
+ mutex_unlock(&rdtgroup_mutex);
+ cpus_read_unlock();
+}
+
+/**
+ * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
+ * domain.
+ * @dom: The domain the limbo handler should run for.
+ * @delay_ms: How far in the future the handler should run.
+ * @exclude_cpu: Which CPU the handler should not run on,
+ * RESCTRL_PICK_ANY_CPU to pick any CPU.
+ */
+void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
+ int exclude_cpu)
+{
+ unsigned long delay = msecs_to_jiffies(delay_ms);
+ int cpu;
+
+ cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
+ dom->cqm_work_cpu = cpu;
+
+ if (cpu < nr_cpu_ids)
+ schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
+}
+
+void mbm_handle_overflow(struct work_struct *work)
+{
+ unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
+ struct rdtgroup *prgrp, *crgrp;
+ struct rdt_mon_domain *d;
+ struct list_head *head;
+ struct rdt_resource *r;
+
+ cpus_read_lock();
+ mutex_lock(&rdtgroup_mutex);
+
+ /*
+ * If the filesystem has been unmounted this work no longer needs to
+ * run.
+ */
+ if (!resctrl_mounted || !resctrl_arch_mon_capable())
+ goto out_unlock;
+
+ r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+ d = container_of(work, struct rdt_mon_domain, mbm_over.work);
+
+ list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
+ mbm_update(r, d, prgrp);
+
+ head = &prgrp->mon.crdtgrp_list;
+ list_for_each_entry(crgrp, head, mon.crdtgrp_list)
+ mbm_update(r, d, crgrp);
+
+ if (is_mba_sc(NULL))
+ update_mba_bw(prgrp, d);
+ }
+
+ /*
+ * Re-check for housekeeping CPUs. This allows the overflow handler to
+ * move off a nohz_full CPU quickly.
+ */
+ d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
+ RESCTRL_PICK_ANY_CPU);
+ schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+ cpus_read_unlock();
+}
+
+/**
+ * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
+ * domain.
+ * @dom: The domain the overflow handler should run for.
+ * @delay_ms: How far in the future the handler should run.
+ * @exclude_cpu: Which CPU the handler should not run on,
+ * RESCTRL_PICK_ANY_CPU to pick any CPU.
+ */
+void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
+ int exclude_cpu)
+{
+ unsigned long delay = msecs_to_jiffies(delay_ms);
+ int cpu;
+
+ /*
+ * When a domain comes online there is no guarantee the filesystem is
+ * mounted. If not, there is no need to catch counter overflow.
+ */
+ if (!resctrl_mounted || !resctrl_arch_mon_capable())
+ return;
+ cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
+ dom->mbm_work_cpu = cpu;
+
+ if (cpu < nr_cpu_ids)
+ schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
+}
+
+static int dom_data_init(struct rdt_resource *r)
+{
+ u32 idx_limit = resctrl_arch_system_num_rmid_idx();
+ u32 num_closid = resctrl_arch_get_num_closid(r);
+ struct rmid_entry *entry = NULL;
+ int err = 0, i;
+ u32 idx;
+
+ mutex_lock(&rdtgroup_mutex);
+ if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
+ u32 *tmp;
+
+ /*
+ * If the architecture hasn't provided a sanitised value here,
+ * this may result in larger arrays than necessary. Resctrl will
+ * use a smaller system wide value based on the resources in
+ * use.
+ */
+ tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
+ if (!tmp) {
+ err = -ENOMEM;
+ goto out_unlock;
+ }
+
+ closid_num_dirty_rmid = tmp;
+ }
+
+ rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
+ if (!rmid_ptrs) {
+ if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
+ kfree(closid_num_dirty_rmid);
+ closid_num_dirty_rmid = NULL;
+ }
+ err = -ENOMEM;
+ goto out_unlock;
+ }
+
+ for (i = 0; i < idx_limit; i++) {
+ entry = &rmid_ptrs[i];
+ INIT_LIST_HEAD(&entry->list);
+
+ resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
+ list_add_tail(&entry->list, &rmid_free_lru);
+ }
+
+ /*
+ * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
+ * are always allocated. These are used for the rdtgroup_default
+ * control group, which will be setup later in resctrl_init().
+ */
+ idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
+ RESCTRL_RESERVED_RMID);
+ entry = __rmid_entry(idx);
+ list_del(&entry->list);
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+
+ return err;
+}
+
+static void dom_data_exit(struct rdt_resource *r)
+{
+ mutex_lock(&rdtgroup_mutex);
+
+ if (!r->mon_capable)
+ goto out_unlock;
+
+ if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
+ kfree(closid_num_dirty_rmid);
+ closid_num_dirty_rmid = NULL;
+ }
+
+ kfree(rmid_ptrs);
+ rmid_ptrs = NULL;
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+}
+
+/*
+ * All available events. Architecture code marks the ones that
+ * are supported by a system using resctrl_enable_mon_event()
+ * to set .enabled.
+ */
+struct mon_evt mon_event_all[QOS_NUM_EVENTS] = {
+ [QOS_L3_OCCUP_EVENT_ID] = {
+ .name = "llc_occupancy",
+ .evtid = QOS_L3_OCCUP_EVENT_ID,
+ .rid = RDT_RESOURCE_L3,
+ },
+ [QOS_L3_MBM_TOTAL_EVENT_ID] = {
+ .name = "mbm_total_bytes",
+ .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
+ .rid = RDT_RESOURCE_L3,
+ },
+ [QOS_L3_MBM_LOCAL_EVENT_ID] = {
+ .name = "mbm_local_bytes",
+ .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
+ .rid = RDT_RESOURCE_L3,
+ },
+};
+
+void resctrl_enable_mon_event(enum resctrl_event_id eventid)
+{
+ if (WARN_ON_ONCE(eventid < QOS_FIRST_EVENT || eventid >= QOS_NUM_EVENTS))
+ return;
+ if (mon_event_all[eventid].enabled) {
+ pr_warn("Duplicate enable for event %d\n", eventid);
+ return;
+ }
+
+ mon_event_all[eventid].enabled = true;
+}
+
+bool resctrl_is_mon_event_enabled(enum resctrl_event_id eventid)
+{
+ return eventid >= QOS_FIRST_EVENT && eventid < QOS_NUM_EVENTS &&
+ mon_event_all[eventid].enabled;
+}
+
+u32 resctrl_get_mon_evt_cfg(enum resctrl_event_id evtid)
+{
+ return mon_event_all[evtid].evt_cfg;
+}
+
+/**
+ * struct mbm_transaction - Memory transaction an MBM event can be configured with.
+ * @name: Name of memory transaction (read, write ...).
+ * @val: The bit (eg. READS_TO_LOCAL_MEM or READS_TO_REMOTE_MEM) used to
+ * represent the memory transaction within an event's configuration.
+ */
+struct mbm_transaction {
+ char name[32];
+ u32 val;
+};
+
+/* Decoded values for each type of memory transaction. */
+static struct mbm_transaction mbm_transactions[NUM_MBM_TRANSACTIONS] = {
+ {"local_reads", READS_TO_LOCAL_MEM},
+ {"remote_reads", READS_TO_REMOTE_MEM},
+ {"local_non_temporal_writes", NON_TEMP_WRITE_TO_LOCAL_MEM},
+ {"remote_non_temporal_writes", NON_TEMP_WRITE_TO_REMOTE_MEM},
+ {"local_reads_slow_memory", READS_TO_LOCAL_S_MEM},
+ {"remote_reads_slow_memory", READS_TO_REMOTE_S_MEM},
+ {"dirty_victim_writes_all", DIRTY_VICTIMS_TO_ALL_MEM},
+};
+
+int event_filter_show(struct kernfs_open_file *of, struct seq_file *seq, void *v)
+{
+ struct mon_evt *mevt = rdt_kn_parent_priv(of->kn);
+ struct rdt_resource *r;
+ bool sep = false;
+ int ret = 0, i;
+
+ mutex_lock(&rdtgroup_mutex);
+ rdt_last_cmd_clear();
+
+ r = resctrl_arch_get_resource(mevt->rid);
+ if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) {
+ if (mevt->evt_cfg & mbm_transactions[i].val) {
+ if (sep)
+ seq_putc(seq, ',');
+ seq_printf(seq, "%s", mbm_transactions[i].name);
+ sep = true;
+ }
+ }
+ seq_putc(seq, '\n');
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+
+ return ret;
+}
+
+int resctrl_mbm_assign_on_mkdir_show(struct kernfs_open_file *of, struct seq_file *s,
+ void *v)
+{
+ struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
+ int ret = 0;
+
+ mutex_lock(&rdtgroup_mutex);
+ rdt_last_cmd_clear();
+
+ if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ seq_printf(s, "%u\n", r->mon.mbm_assign_on_mkdir);
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+
+ return ret;
+}
+
+ssize_t resctrl_mbm_assign_on_mkdir_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
+ struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
+ bool value;
+ int ret;
+
+ ret = kstrtobool(buf, &value);
+ if (ret)
+ return ret;
+
+ mutex_lock(&rdtgroup_mutex);
+ rdt_last_cmd_clear();
+
+ if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ r->mon.mbm_assign_on_mkdir = value;
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+
+ return ret ?: nbytes;
+}
+
+/*
+ * mbm_cntr_free_all() - Clear all the counter ID configuration details in the
+ * domain @d. Called when mbm_assign_mode is changed.
+ */
+static void mbm_cntr_free_all(struct rdt_resource *r, struct rdt_mon_domain *d)
+{
+ memset(d->cntr_cfg, 0, sizeof(*d->cntr_cfg) * r->mon.num_mbm_cntrs);
+}
+
+/*
+ * resctrl_reset_rmid_all() - Reset all non-architecture states for all the
+ * supported RMIDs.
+ */
+static void resctrl_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
+{
+ u32 idx_limit = resctrl_arch_system_num_rmid_idx();
+ enum resctrl_event_id evt;
+ int idx;
+
+ for_each_mbm_event_id(evt) {
+ if (!resctrl_is_mon_event_enabled(evt))
+ continue;
+ idx = MBM_STATE_IDX(evt);
+ memset(d->mbm_states[idx], 0, sizeof(*d->mbm_states[0]) * idx_limit);
+ }
+}
+
+/*
+ * rdtgroup_assign_cntr() - Assign/unassign the counter ID for the event, RMID
+ * pair in the domain.
+ *
+ * Assign the counter if @assign is true else unassign the counter. Reset the
+ * associated non-architectural state.
+ */
+static void rdtgroup_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
+ enum resctrl_event_id evtid, u32 rmid, u32 closid,
+ u32 cntr_id, bool assign)
+{
+ struct mbm_state *m;
+
+ resctrl_arch_config_cntr(r, d, evtid, rmid, closid, cntr_id, assign);
+
+ m = get_mbm_state(d, closid, rmid, evtid);
+ if (m)
+ memset(m, 0, sizeof(*m));
+}
+
+/*
+ * rdtgroup_alloc_assign_cntr() - Allocate a counter ID and assign it to the event
+ * pointed to by @mevt and the resctrl group @rdtgrp within the domain @d.
+ *
+ * Return:
+ * 0 on success, < 0 on failure.
+ */
+static int rdtgroup_alloc_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
+ struct rdtgroup *rdtgrp, struct mon_evt *mevt)
+{
+ int cntr_id;
+
+ /* No action required if the counter is assigned already. */
+ cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid);
+ if (cntr_id >= 0)
+ return 0;
+
+ cntr_id = mbm_cntr_alloc(r, d, rdtgrp, mevt->evtid);
+ if (cntr_id < 0) {
+ rdt_last_cmd_printf("Failed to allocate counter for %s in domain %d\n",
+ mevt->name, d->hdr.id);
+ return cntr_id;
+ }
+
+ rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, true);
+
+ return 0;
+}
+
+/*
+ * rdtgroup_assign_cntr_event() - Assign a hardware counter for the event in
+ * @mevt to the resctrl group @rdtgrp. Assign counters to all domains if @d is
+ * NULL; otherwise, assign the counter to the specified domain @d.
+ *
+ * If all counters in a domain are already in use, rdtgroup_alloc_assign_cntr()
+ * will fail. The assignment process will abort at the first failure encountered
+ * during domain traversal, which may result in the event being only partially
+ * assigned.
+ *
+ * Return:
+ * 0 on success, < 0 on failure.
+ */
+static int rdtgroup_assign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp,
+ struct mon_evt *mevt)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
+ int ret = 0;
+
+ if (!d) {
+ list_for_each_entry(d, &r->mon_domains, hdr.list) {
+ ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt);
+ if (ret)
+ return ret;
+ }
+ } else {
+ ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt);
+ }
+
+ return ret;
+}
+
+/*
+ * rdtgroup_assign_cntrs() - Assign counters to MBM events. Called when
+ * a new group is created.
+ *
+ * Each group can accommodate two counters per domain: one for the total
+ * event and one for the local event. Assignments may fail due to the limited
+ * number of counters. However, it is not necessary to fail the group creation
+ * and thus no failure is returned. Users have the option to modify the
+ * counter assignments after the group has been created.
+ */
+void rdtgroup_assign_cntrs(struct rdtgroup *rdtgrp)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+
+ if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r) ||
+ !r->mon.mbm_assign_on_mkdir)
+ return;
+
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
+ rdtgroup_assign_cntr_event(NULL, rdtgrp,
+ &mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]);
+
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
+ rdtgroup_assign_cntr_event(NULL, rdtgrp,
+ &mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]);
+}
+
+/*
+ * rdtgroup_free_unassign_cntr() - Unassign and reset the counter ID configuration
+ * for the event pointed to by @mevt within the domain @d and resctrl group @rdtgrp.
+ */
+static void rdtgroup_free_unassign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
+ struct rdtgroup *rdtgrp, struct mon_evt *mevt)
+{
+ int cntr_id;
+
+ cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid);
+
+ /* If there is no cntr_id assigned, nothing to do */
+ if (cntr_id < 0)
+ return;
+
+ rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, false);
+
+ mbm_cntr_free(d, cntr_id);
+}
+
+/*
+ * rdtgroup_unassign_cntr_event() - Unassign a hardware counter associated with
+ * the event structure @mevt from the domain @d and the group @rdtgrp. Unassign
+ * the counters from all the domains if @d is NULL else unassign from @d.
+ */
+static void rdtgroup_unassign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp,
+ struct mon_evt *mevt)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
+
+ if (!d) {
+ list_for_each_entry(d, &r->mon_domains, hdr.list)
+ rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt);
+ } else {
+ rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt);
+ }
+}
+
+/*
+ * rdtgroup_unassign_cntrs() - Unassign the counters associated with MBM events.
+ * Called when a group is deleted.
+ */
+void rdtgroup_unassign_cntrs(struct rdtgroup *rdtgrp)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+
+ if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r))
+ return;
+
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
+ rdtgroup_unassign_cntr_event(NULL, rdtgrp,
+ &mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]);
+
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
+ rdtgroup_unassign_cntr_event(NULL, rdtgrp,
+ &mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]);
+}
+
+static int resctrl_parse_mem_transactions(char *tok, u32 *val)
+{
+ u32 temp_val = 0;
+ char *evt_str;
+ bool found;
+ int i;
+
+next_config:
+ if (!tok || tok[0] == '\0') {
+ *val = temp_val;
+ return 0;
+ }
+
+ /* Start processing the strings for each memory transaction type */
+ evt_str = strim(strsep(&tok, ","));
+ found = false;
+ for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) {
+ if (!strcmp(mbm_transactions[i].name, evt_str)) {
+ temp_val |= mbm_transactions[i].val;
+ found = true;
+ break;
+ }
+ }
+
+ if (!found) {
+ rdt_last_cmd_printf("Invalid memory transaction type %s\n", evt_str);
+ return -EINVAL;
+ }
+
+ goto next_config;
+}
+
+/*
+ * rdtgroup_update_cntr_event - Update the counter assignments for the event
+ * in a group.
+ * @r: Resource to which update needs to be done.
+ * @rdtgrp: Resctrl group.
+ * @evtid: MBM monitor event.
+ */
+static void rdtgroup_update_cntr_event(struct rdt_resource *r, struct rdtgroup *rdtgrp,
+ enum resctrl_event_id evtid)
+{
+ struct rdt_mon_domain *d;
+ int cntr_id;
+
+ list_for_each_entry(d, &r->mon_domains, hdr.list) {
+ cntr_id = mbm_cntr_get(r, d, rdtgrp, evtid);
+ if (cntr_id >= 0)
+ rdtgroup_assign_cntr(r, d, evtid, rdtgrp->mon.rmid,
+ rdtgrp->closid, cntr_id, true);
+ }
+}
+
+/*
+ * resctrl_update_cntr_allrdtgrp - Update the counter assignments for the event
+ * for all the groups.
+ * @mevt MBM Monitor event.
+ */
+static void resctrl_update_cntr_allrdtgrp(struct mon_evt *mevt)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
+ struct rdtgroup *prgrp, *crgrp;
+
+ /*
+ * Find all the groups where the event is assigned and update the
+ * configuration of existing assignments.
+ */
+ list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
+ rdtgroup_update_cntr_event(r, prgrp, mevt->evtid);
+
+ list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
+ rdtgroup_update_cntr_event(r, crgrp, mevt->evtid);
+ }
+}
+
+ssize_t event_filter_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
+ loff_t off)
+{
+ struct mon_evt *mevt = rdt_kn_parent_priv(of->kn);
+ struct rdt_resource *r;
+ u32 evt_cfg = 0;
+ int ret = 0;
+
+ /* Valid input requires a trailing newline */
+ if (nbytes == 0 || buf[nbytes - 1] != '\n')
+ return -EINVAL;
+
+ buf[nbytes - 1] = '\0';
+
+ cpus_read_lock();
+ mutex_lock(&rdtgroup_mutex);
+
+ rdt_last_cmd_clear();
+
+ r = resctrl_arch_get_resource(mevt->rid);
+ if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ ret = resctrl_parse_mem_transactions(buf, &evt_cfg);
+ if (!ret && mevt->evt_cfg != evt_cfg) {
+ mevt->evt_cfg = evt_cfg;
+ resctrl_update_cntr_allrdtgrp(mevt);
+ }
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+ cpus_read_unlock();
+
+ return ret ?: nbytes;
+}
+
+int resctrl_mbm_assign_mode_show(struct kernfs_open_file *of,
+ struct seq_file *s, void *v)
+{
+ struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
+ bool enabled;
+
+ mutex_lock(&rdtgroup_mutex);
+ enabled = resctrl_arch_mbm_cntr_assign_enabled(r);
+
+ if (r->mon.mbm_cntr_assignable) {
+ if (enabled)
+ seq_puts(s, "[mbm_event]\n");
+ else
+ seq_puts(s, "[default]\n");
+
+ if (!IS_ENABLED(CONFIG_RESCTRL_ASSIGN_FIXED)) {
+ if (enabled)
+ seq_puts(s, "default\n");
+ else
+ seq_puts(s, "mbm_event\n");
+ }
+ } else {
+ seq_puts(s, "[default]\n");
+ }
+
+ mutex_unlock(&rdtgroup_mutex);
+
+ return 0;
+}
+
+ssize_t resctrl_mbm_assign_mode_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
+ struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
+ struct rdt_mon_domain *d;
+ int ret = 0;
+ bool enable;
+
+ /* Valid input requires a trailing newline */
+ if (nbytes == 0 || buf[nbytes - 1] != '\n')
+ return -EINVAL;
+
+ buf[nbytes - 1] = '\0';
+
+ cpus_read_lock();
+ mutex_lock(&rdtgroup_mutex);
+
+ rdt_last_cmd_clear();
+
+ if (!strcmp(buf, "default")) {
+ enable = 0;
+ } else if (!strcmp(buf, "mbm_event")) {
+ if (r->mon.mbm_cntr_assignable) {
+ enable = 1;
+ } else {
+ ret = -EINVAL;
+ rdt_last_cmd_puts("mbm_event mode is not supported\n");
+ goto out_unlock;
+ }
+ } else {
+ ret = -EINVAL;
+ rdt_last_cmd_puts("Unsupported assign mode\n");
+ goto out_unlock;
+ }
+
+ if (enable != resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ ret = resctrl_arch_mbm_cntr_assign_set(r, enable);
+ if (ret)
+ goto out_unlock;
+
+ /* Update the visibility of BMEC related files */
+ resctrl_bmec_files_show(r, NULL, !enable);
+
+ /*
+ * Initialize the default memory transaction values for
+ * total and local events.
+ */
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
+ mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask;
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
+ mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask &
+ (READS_TO_LOCAL_MEM |
+ READS_TO_LOCAL_S_MEM |
+ NON_TEMP_WRITE_TO_LOCAL_MEM);
+ /* Enable auto assignment when switching to "mbm_event" mode */
+ if (enable)
+ r->mon.mbm_assign_on_mkdir = true;
+ /*
+ * Reset all the non-achitectural RMID state and assignable counters.
+ */
+ list_for_each_entry(d, &r->mon_domains, hdr.list) {
+ mbm_cntr_free_all(r, d);
+ resctrl_reset_rmid_all(r, d);
+ }
+ }
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+ cpus_read_unlock();
+
+ return ret ?: nbytes;
+}
+
+int resctrl_num_mbm_cntrs_show(struct kernfs_open_file *of,
+ struct seq_file *s, void *v)
+{
+ struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
+ struct rdt_mon_domain *dom;
+ bool sep = false;
+
+ cpus_read_lock();
+ mutex_lock(&rdtgroup_mutex);
+
+ list_for_each_entry(dom, &r->mon_domains, hdr.list) {
+ if (sep)
+ seq_putc(s, ';');
+
+ seq_printf(s, "%d=%d", dom->hdr.id, r->mon.num_mbm_cntrs);
+ sep = true;
+ }
+ seq_putc(s, '\n');
+
+ mutex_unlock(&rdtgroup_mutex);
+ cpus_read_unlock();
+ return 0;
+}
+
+int resctrl_available_mbm_cntrs_show(struct kernfs_open_file *of,
+ struct seq_file *s, void *v)
+{
+ struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
+ struct rdt_mon_domain *dom;
+ bool sep = false;
+ u32 cntrs, i;
+ int ret = 0;
+
+ cpus_read_lock();
+ mutex_lock(&rdtgroup_mutex);
+
+ rdt_last_cmd_clear();
+
+ if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ list_for_each_entry(dom, &r->mon_domains, hdr.list) {
+ if (sep)
+ seq_putc(s, ';');
+
+ cntrs = 0;
+ for (i = 0; i < r->mon.num_mbm_cntrs; i++) {
+ if (!dom->cntr_cfg[i].rdtgrp)
+ cntrs++;
+ }
+
+ seq_printf(s, "%d=%u", dom->hdr.id, cntrs);
+ sep = true;
+ }
+ seq_putc(s, '\n');
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+ cpus_read_unlock();
+
+ return ret;
+}
+
+int mbm_L3_assignments_show(struct kernfs_open_file *of, struct seq_file *s, void *v)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+ struct rdt_mon_domain *d;
+ struct rdtgroup *rdtgrp;
+ struct mon_evt *mevt;
+ int ret = 0;
+ bool sep;
+
+ rdtgrp = rdtgroup_kn_lock_live(of->kn);
+ if (!rdtgrp) {
+ ret = -ENOENT;
+ goto out_unlock;
+ }
+
+ rdt_last_cmd_clear();
+ if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ for_each_mon_event(mevt) {
+ if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid))
+ continue;
+
+ sep = false;
+ seq_printf(s, "%s:", mevt->name);
+ list_for_each_entry(d, &r->mon_domains, hdr.list) {
+ if (sep)
+ seq_putc(s, ';');
+
+ if (mbm_cntr_get(r, d, rdtgrp, mevt->evtid) < 0)
+ seq_printf(s, "%d=_", d->hdr.id);
+ else
+ seq_printf(s, "%d=e", d->hdr.id);
+
+ sep = true;
+ }
+ seq_putc(s, '\n');
+ }
+
+out_unlock:
+ rdtgroup_kn_unlock(of->kn);
+
+ return ret;
+}
+
+/*
+ * mbm_get_mon_event_by_name() - Return the mon_evt entry for the matching
+ * event name.
+ */
+static struct mon_evt *mbm_get_mon_event_by_name(struct rdt_resource *r, char *name)
+{
+ struct mon_evt *mevt;
+
+ for_each_mon_event(mevt) {
+ if (mevt->rid == r->rid && mevt->enabled &&
+ resctrl_is_mbm_event(mevt->evtid) &&
+ !strcmp(mevt->name, name))
+ return mevt;
+ }
+
+ return NULL;
+}
+
+static int rdtgroup_modify_assign_state(char *assign, struct rdt_mon_domain *d,
+ struct rdtgroup *rdtgrp, struct mon_evt *mevt)
+{
+ int ret = 0;
+
+ if (!assign || strlen(assign) != 1)
+ return -EINVAL;
+
+ switch (*assign) {
+ case 'e':
+ ret = rdtgroup_assign_cntr_event(d, rdtgrp, mevt);
+ break;
+ case '_':
+ rdtgroup_unassign_cntr_event(d, rdtgrp, mevt);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+static int resctrl_parse_mbm_assignment(struct rdt_resource *r, struct rdtgroup *rdtgrp,
+ char *event, char *tok)
+{
+ struct rdt_mon_domain *d;
+ unsigned long dom_id = 0;
+ char *dom_str, *id_str;
+ struct mon_evt *mevt;
+ int ret;
+
+ mevt = mbm_get_mon_event_by_name(r, event);
+ if (!mevt) {
+ rdt_last_cmd_printf("Invalid event %s\n", event);
+ return -ENOENT;
+ }
+
+next:
+ if (!tok || tok[0] == '\0')
+ return 0;
+
+ /* Start processing the strings for each domain */
+ dom_str = strim(strsep(&tok, ";"));
+
+ id_str = strsep(&dom_str, "=");
+
+ /* Check for domain id '*' which means all domains */
+ if (id_str && *id_str == '*') {
+ ret = rdtgroup_modify_assign_state(dom_str, NULL, rdtgrp, mevt);
+ if (ret)
+ rdt_last_cmd_printf("Assign operation '%s:*=%s' failed\n",
+ event, dom_str);
+ return ret;
+ } else if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
+ rdt_last_cmd_puts("Missing domain id\n");
+ return -EINVAL;
+ }
+
+ /* Verify if the dom_id is valid */
+ list_for_each_entry(d, &r->mon_domains, hdr.list) {
+ if (d->hdr.id == dom_id) {
+ ret = rdtgroup_modify_assign_state(dom_str, d, rdtgrp, mevt);
+ if (ret) {
+ rdt_last_cmd_printf("Assign operation '%s:%ld=%s' failed\n",
+ event, dom_id, dom_str);
+ return ret;
+ }
+ goto next;
+ }
+ }
+
+ rdt_last_cmd_printf("Invalid domain id %ld\n", dom_id);
+ return -EINVAL;
+}
+
+ssize_t mbm_L3_assignments_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+ struct rdtgroup *rdtgrp;
+ char *token, *event;
+ int ret = 0;
+
+ /* Valid input requires a trailing newline */
+ if (nbytes == 0 || buf[nbytes - 1] != '\n')
+ return -EINVAL;
+
+ buf[nbytes - 1] = '\0';
+
+ rdtgrp = rdtgroup_kn_lock_live(of->kn);
+ if (!rdtgrp) {
+ rdtgroup_kn_unlock(of->kn);
+ return -ENOENT;
+ }
+ rdt_last_cmd_clear();
+
+ if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
+ rdt_last_cmd_puts("mbm_event mode is not enabled\n");
+ rdtgroup_kn_unlock(of->kn);
+ return -EINVAL;
+ }
+
+ while ((token = strsep(&buf, "\n")) != NULL) {
+ /*
+ * The write command follows the following format:
+ * "<Event>:<Domain ID>=<Assignment state>"
+ * Extract the event name first.
+ */
+ event = strsep(&token, ":");
+
+ ret = resctrl_parse_mbm_assignment(r, rdtgrp, event, token);
+ if (ret)
+ break;
+ }
+
+ rdtgroup_kn_unlock(of->kn);
+
+ return ret ?: nbytes;
+}
+
+/**
+ * resctrl_mon_resource_init() - Initialise global monitoring structures.
+ *
+ * Allocate and initialise global monitor resources that do not belong to a
+ * specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists.
+ * Called once during boot after the struct rdt_resource's have been configured
+ * but before the filesystem is mounted.
+ * Resctrl's cpuhp callbacks may be called before this point to bring a domain
+ * online.
+ *
+ * Returns 0 for success, or -ENOMEM.
+ */
+int resctrl_mon_resource_init(void)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+ int ret;
+
+ if (!r->mon_capable)
+ return 0;
+
+ ret = dom_data_init(r);
+ if (ret)
+ return ret;
+
+ if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) {
+ mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].configurable = true;
+ resctrl_file_fflags_init("mbm_total_bytes_config",
+ RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
+ }
+ if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) {
+ mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].configurable = true;
+ resctrl_file_fflags_init("mbm_local_bytes_config",
+ RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
+ }
+
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
+ mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID;
+ else if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
+ mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID;
+
+ if (r->mon.mbm_cntr_assignable) {
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
+ mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask;
+ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
+ mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask &
+ (READS_TO_LOCAL_MEM |
+ READS_TO_LOCAL_S_MEM |
+ NON_TEMP_WRITE_TO_LOCAL_MEM);
+ r->mon.mbm_assign_on_mkdir = true;
+ resctrl_file_fflags_init("num_mbm_cntrs",
+ RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
+ resctrl_file_fflags_init("available_mbm_cntrs",
+ RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
+ resctrl_file_fflags_init("event_filter", RFTYPE_ASSIGN_CONFIG);
+ resctrl_file_fflags_init("mbm_assign_on_mkdir", RFTYPE_MON_INFO |
+ RFTYPE_RES_CACHE);
+ resctrl_file_fflags_init("mbm_L3_assignments", RFTYPE_MON_BASE);
+ }
+
+ return 0;
+}
+
+void resctrl_mon_resource_exit(void)
+{
+ struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
+
+ dom_data_exit(r);
+}