diff options
Diffstat (limited to 'fs/xfs/scrub/reap.c')
| -rw-r--r-- | fs/xfs/scrub/reap.c | 1695 |
1 files changed, 1695 insertions, 0 deletions
diff --git a/fs/xfs/scrub/reap.c b/fs/xfs/scrub/reap.c new file mode 100644 index 000000000000..07f5bb8a6421 --- /dev/null +++ b/fs/xfs/scrub/reap.c @@ -0,0 +1,1695 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2022-2023 Oracle. All Rights Reserved. + * Author: Darrick J. Wong <djwong@kernel.org> + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_trans_resv.h" +#include "xfs_mount.h" +#include "xfs_btree.h" +#include "xfs_log_format.h" +#include "xfs_trans.h" +#include "xfs_sb.h" +#include "xfs_inode.h" +#include "xfs_alloc.h" +#include "xfs_alloc_btree.h" +#include "xfs_ialloc.h" +#include "xfs_ialloc_btree.h" +#include "xfs_rmap.h" +#include "xfs_rmap_btree.h" +#include "xfs_refcount.h" +#include "xfs_refcount_btree.h" +#include "xfs_extent_busy.h" +#include "xfs_ag.h" +#include "xfs_ag_resv.h" +#include "xfs_quota.h" +#include "xfs_qm.h" +#include "xfs_bmap.h" +#include "xfs_da_format.h" +#include "xfs_da_btree.h" +#include "xfs_attr.h" +#include "xfs_attr_remote.h" +#include "xfs_defer.h" +#include "xfs_metafile.h" +#include "xfs_rtgroup.h" +#include "xfs_rtrmap_btree.h" +#include "xfs_extfree_item.h" +#include "xfs_rmap_item.h" +#include "xfs_refcount_item.h" +#include "xfs_buf_item.h" +#include "xfs_bmap_item.h" +#include "xfs_bmap_btree.h" +#include "scrub/scrub.h" +#include "scrub/common.h" +#include "scrub/trace.h" +#include "scrub/repair.h" +#include "scrub/bitmap.h" +#include "scrub/agb_bitmap.h" +#include "scrub/fsb_bitmap.h" +#include "scrub/rtb_bitmap.h" +#include "scrub/reap.h" + +/* + * Disposal of Blocks from Old Metadata + * + * Now that we've constructed a new btree to replace the damaged one, we want + * to dispose of the blocks that (we think) the old btree was using. + * Previously, we used the rmapbt to collect the extents (bitmap) with the + * rmap owner corresponding to the tree we rebuilt, collected extents for any + * blocks with the same rmap owner that are owned by another data structure + * (sublist), and subtracted sublist from bitmap. In theory the extents + * remaining in bitmap are the old btree's blocks. + * + * Unfortunately, it's possible that the btree was crosslinked with other + * blocks on disk. The rmap data can tell us if there are multiple owners, so + * if the rmapbt says there is an owner of this block other than @oinfo, then + * the block is crosslinked. Remove the reverse mapping and continue. + * + * If there is one rmap record, we can free the block, which removes the + * reverse mapping but doesn't add the block to the free space. Our repair + * strategy is to hope the other metadata objects crosslinked on this block + * will be rebuilt (atop different blocks), thereby removing all the cross + * links. + * + * If there are no rmap records at all, we also free the block. If the btree + * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't + * supposed to be a rmap record and everything is ok. For other btrees there + * had to have been an rmap entry for the block to have ended up on @bitmap, + * so if it's gone now there's something wrong and the fs will shut down. + * + * Note: If there are multiple rmap records with only the same rmap owner as + * the btree we're trying to rebuild and the block is indeed owned by another + * data structure with the same rmap owner, then the block will be in sublist + * and therefore doesn't need disposal. If there are multiple rmap records + * with only the same rmap owner but the block is not owned by something with + * the same rmap owner, the block will be freed. + * + * The caller is responsible for locking the AG headers/inode for the entire + * rebuild operation so that nothing else can sneak in and change the incore + * state while we're not looking. We must also invalidate any buffers + * associated with @bitmap. + */ + +/* Information about reaping extents after a repair. */ +struct xreap_state { + struct xfs_scrub *sc; + + union { + struct { + /* + * For AG blocks, this is reverse mapping owner and + * metadata reservation type. + */ + const struct xfs_owner_info *oinfo; + enum xfs_ag_resv_type resv; + }; + struct { + /* For file blocks, this is the inode and fork. */ + struct xfs_inode *ip; + int whichfork; + }; + }; + + /* Number of invalidated buffers logged to the current transaction. */ + unsigned int nr_binval; + + /* Maximum number of buffers we can invalidate in a single tx. */ + unsigned int max_binval; + + /* Number of deferred reaps attached to the current transaction. */ + unsigned int nr_deferred; + + /* Maximum number of intents we can reap in a single transaction. */ + unsigned int max_deferred; +}; + +/* Put a block back on the AGFL. */ +STATIC int +xreap_put_freelist( + struct xfs_scrub *sc, + xfs_agblock_t agbno) +{ + struct xfs_buf *agfl_bp; + int error; + + /* Make sure there's space on the freelist. */ + error = xrep_fix_freelist(sc, 0); + if (error) + return error; + + /* + * Since we're "freeing" a lost block onto the AGFL, we have to + * create an rmap for the block prior to merging it or else other + * parts will break. + */ + error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1, + &XFS_RMAP_OINFO_AG); + if (error) + return error; + + /* Put the block on the AGFL. */ + error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); + if (error) + return error; + + error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp, + agfl_bp, agbno, 0); + if (error) + return error; + xfs_extent_busy_insert(sc->tp, pag_group(sc->sa.pag), agbno, 1, + XFS_EXTENT_BUSY_SKIP_DISCARD); + + return 0; +} + +/* Are there any uncommitted reap operations? */ +static inline bool xreap_is_dirty(const struct xreap_state *rs) +{ + return rs->nr_binval > 0 || rs->nr_deferred > 0; +} + +/* + * Decide if we need to roll the transaction to clear out the the log + * reservation that we allocated to buffer invalidations. + */ +static inline bool xreap_want_binval_roll(const struct xreap_state *rs) +{ + return rs->nr_binval >= rs->max_binval; +} + +/* Reset the buffer invalidation count after rolling. */ +static inline void xreap_binval_reset(struct xreap_state *rs) +{ + rs->nr_binval = 0; +} + +/* + * Bump the number of invalidated buffers, and return true if we can continue, + * or false if we need to roll the transaction. + */ +static inline bool xreap_inc_binval(struct xreap_state *rs) +{ + rs->nr_binval++; + return rs->nr_binval < rs->max_binval; +} + +/* + * Decide if we want to finish the deferred ops that are attached to the scrub + * transaction. We don't want to queue huge chains of deferred ops because + * that can consume a lot of log space and kernel memory. Hence we trigger a + * xfs_defer_finish if there are too many deferred reap operations or we've run + * out of space for invalidations. + */ +static inline bool xreap_want_defer_finish(const struct xreap_state *rs) +{ + return rs->nr_deferred >= rs->max_deferred; +} + +/* + * Reset the defer chain length and buffer invalidation count after finishing + * items. + */ +static inline void xreap_defer_finish_reset(struct xreap_state *rs) +{ + rs->nr_deferred = 0; + rs->nr_binval = 0; +} + +/* + * Bump the number of deferred extent reaps. + */ +static inline void xreap_inc_defer(struct xreap_state *rs) +{ + rs->nr_deferred++; +} + +/* Force the caller to finish a deferred item chain. */ +static inline void xreap_force_defer_finish(struct xreap_state *rs) +{ + rs->nr_deferred = rs->max_deferred; +} + +/* Maximum number of fsblocks that we might find in a buffer to invalidate. */ +static inline unsigned int +xrep_binval_max_fsblocks( + struct xfs_mount *mp) +{ + /* Remote xattr values are the largest buffers that we support. */ + return xfs_attr3_max_rmt_blocks(mp); +} + +/* + * Compute the maximum length of a buffer cache scan (in units of sectors), + * given a quantity of fs blocks. + */ +xfs_daddr_t +xrep_bufscan_max_sectors( + struct xfs_mount *mp, + xfs_extlen_t fsblocks) +{ + return XFS_FSB_TO_BB(mp, min_t(xfs_extlen_t, fsblocks, + xrep_binval_max_fsblocks(mp))); +} + +/* + * Return an incore buffer from a sector scan, or NULL if there are no buffers + * left to return. + */ +struct xfs_buf * +xrep_bufscan_advance( + struct xfs_mount *mp, + struct xrep_bufscan *scan) +{ + scan->__sector_count += scan->daddr_step; + while (scan->__sector_count <= scan->max_sectors) { + struct xfs_buf *bp = NULL; + int error; + + error = xfs_buf_incore(mp->m_ddev_targp, scan->daddr, + scan->__sector_count, XBF_LIVESCAN, &bp); + if (!error) + return bp; + + scan->__sector_count += scan->daddr_step; + } + + return NULL; +} + +/* Try to invalidate the incore buffers for an extent that we're freeing. */ +STATIC void +xreap_agextent_binval( + struct xreap_state *rs, + xfs_agblock_t agbno, + xfs_extlen_t *aglenp) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_perag *pag = sc->sa.pag; + struct xfs_mount *mp = sc->mp; + xfs_agblock_t agbno_next = agbno + *aglenp; + xfs_agblock_t bno = agbno; + + /* + * Avoid invalidating AG headers and post-EOFS blocks because we never + * own those. + */ + if (!xfs_verify_agbno(pag, agbno) || + !xfs_verify_agbno(pag, agbno_next - 1)) + return; + + /* + * If there are incore buffers for these blocks, invalidate them. We + * assume that the lack of any other known owners means that the buffer + * can be locked without risk of deadlocking. The buffer cache cannot + * detect aliasing, so employ nested loops to scan for incore buffers + * of any plausible size. + */ + while (bno < agbno_next) { + struct xrep_bufscan scan = { + .daddr = xfs_agbno_to_daddr(pag, bno), + .max_sectors = xrep_bufscan_max_sectors(mp, + agbno_next - bno), + .daddr_step = XFS_FSB_TO_BB(mp, 1), + }; + struct xfs_buf *bp; + + while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) { + xfs_trans_bjoin(sc->tp, bp); + xfs_trans_binval(sc->tp, bp); + + /* + * Stop invalidating if we've hit the limit; we should + * still have enough reservation left to free however + * far we've gotten. + */ + if (!xreap_inc_binval(rs)) { + *aglenp -= agbno_next - bno; + goto out; + } + } + + bno++; + } + +out: + trace_xreap_agextent_binval(pag_group(sc->sa.pag), agbno, *aglenp); +} + +/* + * Figure out the longest run of blocks that we can dispose of with a single + * call. Cross-linked blocks should have their reverse mappings removed, but + * single-owner extents can be freed. AGFL blocks can only be put back one at + * a time. + */ +STATIC int +xreap_agextent_select( + struct xreap_state *rs, + xfs_agblock_t agbno, + xfs_agblock_t agbno_next, + bool *crosslinked, + xfs_extlen_t *aglenp) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_btree_cur *cur; + xfs_agblock_t bno = agbno + 1; + xfs_extlen_t len = 1; + int error; + + /* + * Determine if there are any other rmap records covering the first + * block of this extent. If so, the block is crosslinked. + */ + cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, + sc->sa.pag); + error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo, + crosslinked); + if (error) + goto out_cur; + + /* AGFL blocks can only be deal with one at a time. */ + if (rs->resv == XFS_AG_RESV_AGFL) + goto out_found; + + /* + * Figure out how many of the subsequent blocks have the same crosslink + * status. + */ + while (bno < agbno_next) { + bool also_crosslinked; + + error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo, + &also_crosslinked); + if (error) + goto out_cur; + + if (*crosslinked != also_crosslinked) + break; + + len++; + bno++; + } + +out_found: + *aglenp = len; + trace_xreap_agextent_select(pag_group(sc->sa.pag), agbno, len, + *crosslinked); +out_cur: + xfs_btree_del_cursor(cur, error); + return error; +} + +/* + * Dispose of as much of the beginning of this AG extent as possible. The + * number of blocks disposed of will be returned in @aglenp. + */ +STATIC int +xreap_agextent_iter( + struct xreap_state *rs, + xfs_agblock_t agbno, + xfs_extlen_t *aglenp, + bool crosslinked) +{ + struct xfs_scrub *sc = rs->sc; + xfs_fsblock_t fsbno; + int error = 0; + + ASSERT(rs->resv != XFS_AG_RESV_METAFILE); + + fsbno = xfs_agbno_to_fsb(sc->sa.pag, agbno); + + /* + * If there are other rmappings, this block is cross linked and must + * not be freed. Remove the reverse mapping and move on. Otherwise, + * we were the only owner of the block, so free the extent, which will + * also remove the rmap. + * + * XXX: XFS doesn't support detecting the case where a single block + * metadata structure is crosslinked with a multi-block structure + * because the buffer cache doesn't detect aliasing problems, so we + * can't fix 100% of crosslinking problems (yet). The verifiers will + * blow on writeout, the filesystem will shut down, and the admin gets + * to run xfs_repair. + */ + if (crosslinked) { + trace_xreap_dispose_unmap_extent(pag_group(sc->sa.pag), agbno, + *aglenp); + + if (rs->oinfo == &XFS_RMAP_OINFO_COW) { + /* + * t0: Unmapping CoW staging extents, remove the + * records from the refcountbt, which will remove the + * rmap record as well. + */ + xfs_refcount_free_cow_extent(sc->tp, false, fsbno, + *aglenp); + xreap_inc_defer(rs); + return 0; + } + + /* t1: unmap crosslinked metadata blocks */ + xfs_rmap_free_extent(sc->tp, false, fsbno, *aglenp, + rs->oinfo->oi_owner); + xreap_inc_defer(rs); + return 0; + } + + trace_xreap_dispose_free_extent(pag_group(sc->sa.pag), agbno, *aglenp); + + /* + * Invalidate as many buffers as we can, starting at agbno. If this + * function sets *aglenp to zero, the transaction is full of logged + * buffer invalidations, so we need to return early so that we can + * roll and retry. + */ + xreap_agextent_binval(rs, agbno, aglenp); + if (*aglenp == 0) { + ASSERT(xreap_want_binval_roll(rs)); + return 0; + } + + /* + * t2: To get rid of CoW staging extents, use deferred work items + * to remove the refcountbt records (which removes the rmap records) + * and free the extent. We're not worried about the system going down + * here because log recovery walks the refcount btree to clean out the + * CoW staging extents. + */ + if (rs->oinfo == &XFS_RMAP_OINFO_COW) { + ASSERT(rs->resv == XFS_AG_RESV_NONE); + + xfs_refcount_free_cow_extent(sc->tp, false, fsbno, *aglenp); + error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, NULL, + rs->resv, XFS_FREE_EXTENT_SKIP_DISCARD); + if (error) + return error; + + xreap_inc_defer(rs); + return 0; + } + + /* t3: Put blocks back on the AGFL one at a time. */ + if (rs->resv == XFS_AG_RESV_AGFL) { + ASSERT(*aglenp == 1); + error = xreap_put_freelist(sc, agbno); + if (error) + return error; + + xreap_force_defer_finish(rs); + return 0; + } + + /* + * t4: Use deferred frees to get rid of the old btree blocks to try to + * minimize the window in which we could crash and lose the old blocks. + * Add a defer ops barrier every other extent to avoid stressing the + * system with large EFIs. + */ + error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, rs->oinfo, + rs->resv, XFS_FREE_EXTENT_SKIP_DISCARD); + if (error) + return error; + + xreap_inc_defer(rs); + if (rs->nr_deferred % 2 == 0) + xfs_defer_add_barrier(sc->tp); + return 0; +} + +/* Configure the deferral and invalidation limits */ +static inline void +xreap_configure_limits( + struct xreap_state *rs, + unsigned int fixed_overhead, + unsigned int variable_overhead, + unsigned int per_intent, + unsigned int per_binval) +{ + struct xfs_scrub *sc = rs->sc; + unsigned int res = sc->tp->t_log_res - fixed_overhead; + + /* Don't underflow the reservation */ + if (sc->tp->t_log_res < (fixed_overhead + variable_overhead)) { + ASSERT(sc->tp->t_log_res >= + (fixed_overhead + variable_overhead)); + xfs_force_shutdown(sc->mp, SHUTDOWN_CORRUPT_INCORE); + return; + } + + rs->max_deferred = per_intent ? res / variable_overhead : 0; + res -= rs->max_deferred * per_intent; + rs->max_binval = per_binval ? res / per_binval : 0; +} + +/* + * Compute the maximum number of intent items that reaping can attach to the + * scrub transaction given the worst case log overhead of the intent items + * needed to reap a single per-AG space extent. This is not for freeing CoW + * staging extents. + */ +STATIC void +xreap_configure_agextent_limits( + struct xreap_state *rs) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_mount *mp = sc->mp; + + /* + * In the worst case, relogging an intent item causes both an intent + * item and a done item to be attached to a transaction for each extent + * that we'd like to process. + */ + const unsigned int efi = xfs_efi_log_space(1) + + xfs_efd_log_space(1); + const unsigned int rui = xfs_rui_log_space(1) + + xfs_rud_log_space(); + + /* + * Various things can happen when reaping non-CoW metadata blocks: + * + * t1: Unmapping crosslinked metadata blocks: deferred removal of rmap + * record. + * + * t3: Freeing to AGFL: roll and finish deferred items for every block. + * Limits here do not matter. + * + * t4: Freeing metadata blocks: deferred freeing of the space, which + * also removes the rmap record. + * + * For simplicity, we'll use the worst-case intents size to determine + * the maximum number of deferred extents before we have to finish the + * whole chain. If we're trying to reap a btree larger than this size, + * a crash midway through reaping can result in leaked blocks. + */ + const unsigned int t1 = rui; + const unsigned int t4 = rui + efi; + const unsigned int per_intent = max(t1, t4); + + /* + * For each transaction in a reap chain, we must be able to take one + * step in the defer item chain, which should only consist of EFI or + * RUI items. + */ + const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1); + const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1); + const unsigned int step_size = max(f1, f2); + + /* Largest buffer size (in fsblocks) that can be invalidated. */ + const unsigned int max_binval = xrep_binval_max_fsblocks(mp); + + /* Maximum overhead of invalidating one buffer. */ + const unsigned int per_binval = + xfs_buf_inval_log_space(1, XFS_B_TO_FSBT(mp, max_binval)); + + /* + * For each transaction in a reap chain, we can delete some number of + * extents and invalidate some number of blocks. We assume that btree + * blocks aren't usually contiguous; and that scrub likely pulled all + * the buffers into memory. From these assumptions, set the maximum + * number of deferrals we can queue before flushing the defer chain, + * and the number of invalidations we can queue before rolling to a + * clean transaction (and possibly relogging some of the deferrals) to + * the same quantity. + */ + const unsigned int variable_overhead = per_intent + per_binval; + + xreap_configure_limits(rs, step_size, variable_overhead, per_intent, + per_binval); + + trace_xreap_agextent_limits(sc->tp, per_binval, rs->max_binval, + step_size, per_intent, rs->max_deferred); +} + +/* + * Compute the maximum number of intent items that reaping can attach to the + * scrub transaction given the worst case log overhead of the intent items + * needed to reap a single CoW staging extent. This is not for freeing + * metadata blocks. + */ +STATIC void +xreap_configure_agcow_limits( + struct xreap_state *rs) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_mount *mp = sc->mp; + + /* + * In the worst case, relogging an intent item causes both an intent + * item and a done item to be attached to a transaction for each extent + * that we'd like to process. + */ + const unsigned int efi = xfs_efi_log_space(1) + + xfs_efd_log_space(1); + const unsigned int rui = xfs_rui_log_space(1) + + xfs_rud_log_space(); + const unsigned int cui = xfs_cui_log_space(1) + + xfs_cud_log_space(); + + /* + * Various things can happen when reaping non-CoW metadata blocks: + * + * t0: Unmapping crosslinked CoW blocks: deferred removal of refcount + * record, which defers removal of rmap record + * + * t2: Freeing CoW blocks: deferred removal of refcount record, which + * defers removal of rmap record; and deferred removal of the space + * + * For simplicity, we'll use the worst-case intents size to determine + * the maximum number of deferred extents before we have to finish the + * whole chain. If we're trying to reap a btree larger than this size, + * a crash midway through reaping can result in leaked blocks. + */ + const unsigned int t0 = cui + rui; + const unsigned int t2 = cui + rui + efi; + const unsigned int per_intent = max(t0, t2); + + /* + * For each transaction in a reap chain, we must be able to take one + * step in the defer item chain, which should only consist of CUI, EFI, + * or RUI items. + */ + const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1); + const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1); + const unsigned int f3 = xfs_calc_finish_cui_reservation(mp, 1); + const unsigned int step_size = max3(f1, f2, f3); + + /* Largest buffer size (in fsblocks) that can be invalidated. */ + const unsigned int max_binval = xrep_binval_max_fsblocks(mp); + + /* Overhead of invalidating one buffer */ + const unsigned int per_binval = + xfs_buf_inval_log_space(1, XFS_B_TO_FSBT(mp, max_binval)); + + /* + * For each transaction in a reap chain, we can delete some number of + * extents and invalidate some number of blocks. We assume that CoW + * staging extents are usually more than 1 fsblock, and that there + * shouldn't be any buffers for those blocks. From the assumptions, + * set the number of deferrals to use as much of the reservation as + * it can, but leave space to invalidate 1/8th that number of buffers. + */ + const unsigned int variable_overhead = per_intent + + (per_binval / 8); + + xreap_configure_limits(rs, step_size, variable_overhead, per_intent, + per_binval); + + trace_xreap_agcow_limits(sc->tp, per_binval, rs->max_binval, step_size, + per_intent, rs->max_deferred); +} + +/* + * Break an AG metadata extent into sub-extents by fate (crosslinked, not + * crosslinked), and dispose of each sub-extent separately. + */ +STATIC int +xreap_agmeta_extent( + uint32_t agbno, + uint32_t len, + void *priv) +{ + struct xreap_state *rs = priv; + struct xfs_scrub *sc = rs->sc; + xfs_agblock_t agbno_next = agbno + len; + int error = 0; + + ASSERT(len <= XFS_MAX_BMBT_EXTLEN); + ASSERT(sc->ip == NULL); + + while (agbno < agbno_next) { + xfs_extlen_t aglen; + bool crosslinked; + + error = xreap_agextent_select(rs, agbno, agbno_next, + &crosslinked, &aglen); + if (error) + return error; + + error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked); + if (error) + return error; + + if (xreap_want_defer_finish(rs)) { + error = xrep_defer_finish(sc); + if (error) + return error; + xreap_defer_finish_reset(rs); + } else if (xreap_want_binval_roll(rs)) { + error = xrep_roll_ag_trans(sc); + if (error) + return error; + xreap_binval_reset(rs); + } + + agbno += aglen; + } + + return 0; +} + +/* Dispose of every block of every AG metadata extent in the bitmap. */ +int +xrep_reap_agblocks( + struct xfs_scrub *sc, + struct xagb_bitmap *bitmap, + const struct xfs_owner_info *oinfo, + enum xfs_ag_resv_type type) +{ + struct xreap_state rs = { + .sc = sc, + .oinfo = oinfo, + .resv = type, + }; + int error; + + ASSERT(xfs_has_rmapbt(sc->mp)); + ASSERT(sc->ip == NULL); + + xreap_configure_agextent_limits(&rs); + error = xagb_bitmap_walk(bitmap, xreap_agmeta_extent, &rs); + if (error) + return error; + + if (xreap_is_dirty(&rs)) + return xrep_defer_finish(sc); + + return 0; +} + +/* + * Break a file metadata extent into sub-extents by fate (crosslinked, not + * crosslinked), and dispose of each sub-extent separately. The extent must + * not cross an AG boundary. + */ +STATIC int +xreap_fsmeta_extent( + uint64_t fsbno, + uint64_t len, + void *priv) +{ + struct xreap_state *rs = priv; + struct xfs_scrub *sc = rs->sc; + xfs_agnumber_t agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); + xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); + xfs_agblock_t agbno_next = agbno + len; + int error = 0; + + ASSERT(len <= XFS_MAX_BMBT_EXTLEN); + ASSERT(sc->ip != NULL); + ASSERT(!sc->sa.pag); + + /* + * We're reaping blocks after repairing file metadata, which means that + * we have to init the xchk_ag structure ourselves. + */ + sc->sa.pag = xfs_perag_get(sc->mp, agno); + if (!sc->sa.pag) + return -EFSCORRUPTED; + + error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp); + if (error) + goto out_pag; + + while (agbno < agbno_next) { + xfs_extlen_t aglen; + bool crosslinked; + + error = xreap_agextent_select(rs, agbno, agbno_next, + &crosslinked, &aglen); + if (error) + goto out_agf; + + error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked); + if (error) + goto out_agf; + + if (xreap_want_defer_finish(rs)) { + /* + * Holds the AGF buffer across the deferred chain + * processing. + */ + error = xrep_defer_finish(sc); + if (error) + goto out_agf; + xreap_defer_finish_reset(rs); + } else if (xreap_want_binval_roll(rs)) { + /* + * Hold the AGF buffer across the transaction roll so + * that we don't have to reattach it to the scrub + * context. + */ + xfs_trans_bhold(sc->tp, sc->sa.agf_bp); + error = xfs_trans_roll_inode(&sc->tp, sc->ip); + xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); + if (error) + goto out_agf; + xreap_binval_reset(rs); + } + + agbno += aglen; + } + +out_agf: + xfs_trans_brelse(sc->tp, sc->sa.agf_bp); + sc->sa.agf_bp = NULL; +out_pag: + xfs_perag_put(sc->sa.pag); + sc->sa.pag = NULL; + return error; +} + +/* + * Dispose of every block of every fs metadata extent in the bitmap. + * Do not use this to dispose of the mappings in an ondisk inode fork. + */ +int +xrep_reap_fsblocks( + struct xfs_scrub *sc, + struct xfsb_bitmap *bitmap, + const struct xfs_owner_info *oinfo) +{ + struct xreap_state rs = { + .sc = sc, + .oinfo = oinfo, + .resv = XFS_AG_RESV_NONE, + }; + int error; + + ASSERT(xfs_has_rmapbt(sc->mp)); + ASSERT(sc->ip != NULL); + + if (oinfo == &XFS_RMAP_OINFO_COW) + xreap_configure_agcow_limits(&rs); + else + xreap_configure_agextent_limits(&rs); + error = xfsb_bitmap_walk(bitmap, xreap_fsmeta_extent, &rs); + if (error) + return error; + + if (xreap_is_dirty(&rs)) + return xrep_defer_finish(sc); + + return 0; +} + +#ifdef CONFIG_XFS_RT +/* + * Figure out the longest run of blocks that we can dispose of with a single + * call. Cross-linked blocks should have their reverse mappings removed, but + * single-owner extents can be freed. Units are rt blocks, not rt extents. + */ +STATIC int +xreap_rgextent_select( + struct xreap_state *rs, + xfs_rgblock_t rgbno, + xfs_rgblock_t rgbno_next, + bool *crosslinked, + xfs_extlen_t *rglenp) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_btree_cur *cur; + xfs_rgblock_t bno = rgbno + 1; + xfs_extlen_t len = 1; + int error; + + /* + * Determine if there are any other rmap records covering the first + * block of this extent. If so, the block is crosslinked. + */ + cur = xfs_rtrmapbt_init_cursor(sc->tp, sc->sr.rtg); + error = xfs_rmap_has_other_keys(cur, rgbno, 1, rs->oinfo, + crosslinked); + if (error) + goto out_cur; + + /* + * Figure out how many of the subsequent blocks have the same crosslink + * status. + */ + while (bno < rgbno_next) { + bool also_crosslinked; + + error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo, + &also_crosslinked); + if (error) + goto out_cur; + + if (*crosslinked != also_crosslinked) + break; + + len++; + bno++; + } + + *rglenp = len; + trace_xreap_agextent_select(rtg_group(sc->sr.rtg), rgbno, len, + *crosslinked); +out_cur: + xfs_btree_del_cursor(cur, error); + return error; +} + +/* + * Dispose of as much of the beginning of this rtgroup extent as possible. + * The number of blocks disposed of will be returned in @rglenp. + */ +STATIC int +xreap_rgextent_iter( + struct xreap_state *rs, + xfs_rgblock_t rgbno, + xfs_extlen_t *rglenp, + bool crosslinked) +{ + struct xfs_scrub *sc = rs->sc; + xfs_rtblock_t rtbno; + int error; + + /* + * The only caller so far is CoW fork repair, so we only know how to + * unlink or free CoW staging extents. Here we don't have to worry + * about invalidating buffers! + */ + if (rs->oinfo != &XFS_RMAP_OINFO_COW) { + ASSERT(rs->oinfo == &XFS_RMAP_OINFO_COW); + return -EFSCORRUPTED; + } + ASSERT(rs->resv == XFS_AG_RESV_NONE); + + rtbno = xfs_rgbno_to_rtb(sc->sr.rtg, rgbno); + + /* + * t1: There are other rmappings; this block is cross linked and must + * not be freed. Remove the forward and reverse mapping and move on. + */ + if (crosslinked) { + trace_xreap_dispose_unmap_extent(rtg_group(sc->sr.rtg), rgbno, + *rglenp); + + xfs_refcount_free_cow_extent(sc->tp, true, rtbno, *rglenp); + xreap_inc_defer(rs); + return 0; + } + + trace_xreap_dispose_free_extent(rtg_group(sc->sr.rtg), rgbno, *rglenp); + + /* + * t2: The CoW staging extent is not crosslinked. Use deferred work + * to remove the refcountbt records (which removes the rmap records) + * and free the extent. We're not worried about the system going down + * here because log recovery walks the refcount btree to clean out the + * CoW staging extents. + */ + xfs_refcount_free_cow_extent(sc->tp, true, rtbno, *rglenp); + error = xfs_free_extent_later(sc->tp, rtbno, *rglenp, NULL, + rs->resv, + XFS_FREE_EXTENT_REALTIME | + XFS_FREE_EXTENT_SKIP_DISCARD); + if (error) + return error; + + xreap_inc_defer(rs); + return 0; +} + +/* + * Compute the maximum number of intent items that reaping can attach to the + * scrub transaction given the worst case log overhead of the intent items + * needed to reap a single CoW staging extent. This is not for freeing + * metadata blocks. + */ +STATIC void +xreap_configure_rgcow_limits( + struct xreap_state *rs) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_mount *mp = sc->mp; + + /* + * In the worst case, relogging an intent item causes both an intent + * item and a done item to be attached to a transaction for each extent + * that we'd like to process. + */ + const unsigned int efi = xfs_efi_log_space(1) + + xfs_efd_log_space(1); + const unsigned int rui = xfs_rui_log_space(1) + + xfs_rud_log_space(); + const unsigned int cui = xfs_cui_log_space(1) + + xfs_cud_log_space(); + + /* + * Various things can happen when reaping non-CoW metadata blocks: + * + * t1: Unmapping crosslinked CoW blocks: deferred removal of refcount + * record, which defers removal of rmap record + * + * t2: Freeing CoW blocks: deferred removal of refcount record, which + * defers removal of rmap record; and deferred removal of the space + * + * For simplicity, we'll use the worst-case intents size to determine + * the maximum number of deferred extents before we have to finish the + * whole chain. If we're trying to reap a btree larger than this size, + * a crash midway through reaping can result in leaked blocks. + */ + const unsigned int t1 = cui + rui; + const unsigned int t2 = cui + rui + efi; + const unsigned int per_intent = max(t1, t2); + + /* + * For each transaction in a reap chain, we must be able to take one + * step in the defer item chain, which should only consist of CUI, EFI, + * or RUI items. + */ + const unsigned int f1 = xfs_calc_finish_rt_efi_reservation(mp, 1); + const unsigned int f2 = xfs_calc_finish_rt_rui_reservation(mp, 1); + const unsigned int f3 = xfs_calc_finish_rt_cui_reservation(mp, 1); + const unsigned int step_size = max3(f1, f2, f3); + + /* + * The only buffer for the rt device is the rtgroup super, so we don't + * need to save space for buffer invalidations. + */ + xreap_configure_limits(rs, step_size, per_intent, per_intent, 0); + + trace_xreap_rgcow_limits(sc->tp, 0, 0, step_size, per_intent, + rs->max_deferred); +} + +#define XREAP_RTGLOCK_ALL (XFS_RTGLOCK_BITMAP | \ + XFS_RTGLOCK_RMAP | \ + XFS_RTGLOCK_REFCOUNT) + +/* + * Break a rt file metadata extent into sub-extents by fate (crosslinked, not + * crosslinked), and dispose of each sub-extent separately. The extent must + * be aligned to a realtime extent. + */ +STATIC int +xreap_rtmeta_extent( + uint64_t rtbno, + uint64_t len, + void *priv) +{ + struct xreap_state *rs = priv; + struct xfs_scrub *sc = rs->sc; + xfs_rgblock_t rgbno = xfs_rtb_to_rgbno(sc->mp, rtbno); + xfs_rgblock_t rgbno_next = rgbno + len; + int error = 0; + + ASSERT(sc->ip != NULL); + ASSERT(!sc->sr.rtg); + + /* + * We're reaping blocks after repairing file metadata, which means that + * we have to init the xchk_ag structure ourselves. + */ + sc->sr.rtg = xfs_rtgroup_get(sc->mp, xfs_rtb_to_rgno(sc->mp, rtbno)); + if (!sc->sr.rtg) + return -EFSCORRUPTED; + + xfs_rtgroup_lock(sc->sr.rtg, XREAP_RTGLOCK_ALL); + + while (rgbno < rgbno_next) { + xfs_extlen_t rglen; + bool crosslinked; + + error = xreap_rgextent_select(rs, rgbno, rgbno_next, + &crosslinked, &rglen); + if (error) + goto out_unlock; + + error = xreap_rgextent_iter(rs, rgbno, &rglen, crosslinked); + if (error) + goto out_unlock; + + if (xreap_want_defer_finish(rs)) { + error = xfs_defer_finish(&sc->tp); + if (error) + goto out_unlock; + xreap_defer_finish_reset(rs); + } else if (xreap_want_binval_roll(rs)) { + error = xfs_trans_roll_inode(&sc->tp, sc->ip); + if (error) + goto out_unlock; + xreap_binval_reset(rs); + } + + rgbno += rglen; + } + +out_unlock: + xfs_rtgroup_unlock(sc->sr.rtg, XREAP_RTGLOCK_ALL); + xfs_rtgroup_put(sc->sr.rtg); + sc->sr.rtg = NULL; + return error; +} + +/* + * Dispose of every block of every rt metadata extent in the bitmap. + * Do not use this to dispose of the mappings in an ondisk inode fork. + */ +int +xrep_reap_rtblocks( + struct xfs_scrub *sc, + struct xrtb_bitmap *bitmap, + const struct xfs_owner_info *oinfo) +{ + struct xreap_state rs = { + .sc = sc, + .oinfo = oinfo, + .resv = XFS_AG_RESV_NONE, + }; + int error; + + ASSERT(xfs_has_rmapbt(sc->mp)); + ASSERT(sc->ip != NULL); + ASSERT(oinfo == &XFS_RMAP_OINFO_COW); + + xreap_configure_rgcow_limits(&rs); + error = xrtb_bitmap_walk(bitmap, xreap_rtmeta_extent, &rs); + if (error) + return error; + + if (xreap_is_dirty(&rs)) + return xrep_defer_finish(sc); + + return 0; +} +#endif /* CONFIG_XFS_RT */ + +/* + * Dispose of every block of an old metadata btree that used to be rooted in a + * metadata directory file. + */ +int +xrep_reap_metadir_fsblocks( + struct xfs_scrub *sc, + struct xfsb_bitmap *bitmap) +{ + /* + * Reap old metadir btree blocks with XFS_AG_RESV_NONE because the old + * blocks are no longer mapped by the inode, and inode metadata space + * reservations can only account freed space to the i_nblocks. + */ + struct xfs_owner_info oinfo; + struct xreap_state rs = { + .sc = sc, + .oinfo = &oinfo, + .resv = XFS_AG_RESV_NONE, + }; + int error; + + ASSERT(xfs_has_rmapbt(sc->mp)); + ASSERT(sc->ip != NULL); + ASSERT(xfs_is_metadir_inode(sc->ip)); + + xreap_configure_agextent_limits(&rs); + xfs_rmap_ino_bmbt_owner(&oinfo, sc->ip->i_ino, XFS_DATA_FORK); + error = xfsb_bitmap_walk(bitmap, xreap_fsmeta_extent, &rs); + if (error) + return error; + + if (xreap_is_dirty(&rs)) { + error = xrep_defer_finish(sc); + if (error) + return error; + } + + return xrep_reset_metafile_resv(sc); +} + +/* + * Metadata files are not supposed to share blocks with anything else. + * If blocks are shared, we remove the reverse mapping (thus reducing the + * crosslink factor); if blocks are not shared, we also need to free them. + * + * This first step determines the longest subset of the passed-in imap + * (starting at its beginning) that is either crosslinked or not crosslinked. + * The blockcount will be adjust down as needed. + */ +STATIC int +xreap_bmapi_select( + struct xreap_state *rs, + struct xfs_bmbt_irec *imap, + bool *crosslinked) +{ + struct xfs_owner_info oinfo; + struct xfs_scrub *sc = rs->sc; + struct xfs_btree_cur *cur; + xfs_filblks_t len = 1; + xfs_agblock_t bno; + xfs_agblock_t agbno; + xfs_agblock_t agbno_next; + int error; + + agbno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock); + agbno_next = agbno + imap->br_blockcount; + + cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, + sc->sa.pag); + + xfs_rmap_ino_owner(&oinfo, rs->ip->i_ino, rs->whichfork, + imap->br_startoff); + error = xfs_rmap_has_other_keys(cur, agbno, 1, &oinfo, crosslinked); + if (error) + goto out_cur; + + bno = agbno + 1; + while (bno < agbno_next) { + bool also_crosslinked; + + oinfo.oi_offset++; + error = xfs_rmap_has_other_keys(cur, bno, 1, &oinfo, + &also_crosslinked); + if (error) + goto out_cur; + + if (also_crosslinked != *crosslinked) + break; + + len++; + bno++; + } + + imap->br_blockcount = len; + trace_xreap_bmapi_select(pag_group(sc->sa.pag), agbno, len, + *crosslinked); +out_cur: + xfs_btree_del_cursor(cur, error); + return error; +} + +/* + * Decide if this buffer can be joined to a transaction. This is true for most + * buffers, but there are two cases that we want to catch: large remote xattr + * value buffers are not logged and can overflow the buffer log item dirty + * bitmap size; and oversized cached buffers if things have really gone + * haywire. + */ +static inline bool +xreap_buf_loggable( + const struct xfs_buf *bp) +{ + int i; + + for (i = 0; i < bp->b_map_count; i++) { + int chunks; + int map_size; + + chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), + XFS_BLF_CHUNK); + map_size = DIV_ROUND_UP(chunks, NBWORD); + if (map_size > XFS_BLF_DATAMAP_SIZE) + return false; + } + + return true; +} + +/* + * Invalidate any buffers for this file mapping. The @imap blockcount may be + * adjusted downward if we need to roll the transaction. + */ +STATIC int +xreap_bmapi_binval( + struct xreap_state *rs, + struct xfs_bmbt_irec *imap) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_mount *mp = sc->mp; + struct xfs_perag *pag = sc->sa.pag; + int bmap_flags = xfs_bmapi_aflag(rs->whichfork); + xfs_fileoff_t off; + xfs_fileoff_t max_off; + xfs_extlen_t scan_blocks; + xfs_agblock_t bno; + xfs_agblock_t agbno; + xfs_agblock_t agbno_next; + int error; + + /* + * Avoid invalidating AG headers and post-EOFS blocks because we never + * own those. + */ + agbno = bno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock); + agbno_next = agbno + imap->br_blockcount; + if (!xfs_verify_agbno(pag, agbno) || + !xfs_verify_agbno(pag, agbno_next - 1)) + return 0; + + /* + * Buffers for file blocks can span multiple contiguous mappings. This + * means that for each block in the mapping, there could exist an + * xfs_buf indexed by that block with any length up to the maximum + * buffer size (remote xattr values) or to the next hole in the fork. + * To set up our binval scan, first we need to figure out the location + * of the next hole. + */ + off = imap->br_startoff + imap->br_blockcount; + max_off = off + xfs_attr3_max_rmt_blocks(mp); + while (off < max_off) { + struct xfs_bmbt_irec hmap; + int nhmaps = 1; + + error = xfs_bmapi_read(rs->ip, off, max_off - off, &hmap, + &nhmaps, bmap_flags); + if (error) + return error; + if (nhmaps != 1 || hmap.br_startblock == DELAYSTARTBLOCK) { + ASSERT(0); + return -EFSCORRUPTED; + } + + if (!xfs_bmap_is_real_extent(&hmap)) + break; + + off = hmap.br_startoff + hmap.br_blockcount; + } + scan_blocks = off - imap->br_startoff; + + trace_xreap_bmapi_binval_scan(sc, imap, scan_blocks); + + /* + * If there are incore buffers for these blocks, invalidate them. If + * we can't (try)lock the buffer we assume it's owned by someone else + * and leave it alone. The buffer cache cannot detect aliasing, so + * employ nested loops to detect incore buffers of any plausible size. + */ + while (bno < agbno_next) { + struct xrep_bufscan scan = { + .daddr = xfs_agbno_to_daddr(pag, bno), + .max_sectors = xrep_bufscan_max_sectors(mp, + scan_blocks), + .daddr_step = XFS_FSB_TO_BB(mp, 1), + }; + struct xfs_buf *bp; + + while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) { + if (xreap_buf_loggable(bp)) { + xfs_trans_bjoin(sc->tp, bp); + xfs_trans_binval(sc->tp, bp); + } else { + xfs_buf_stale(bp); + xfs_buf_relse(bp); + } + + /* + * Stop invalidating if we've hit the limit; we should + * still have enough reservation left to free however + * far we've gotten. + */ + if (!xreap_inc_binval(rs)) { + imap->br_blockcount = agbno_next - bno; + goto out; + } + } + + bno++; + scan_blocks--; + } + +out: + trace_xreap_bmapi_binval(pag_group(sc->sa.pag), agbno, + imap->br_blockcount); + return 0; +} + +/* + * Dispose of as much of the beginning of this file fork mapping as possible. + * The number of blocks disposed of is returned in @imap->br_blockcount. + */ +STATIC int +xrep_reap_bmapi_iter( + struct xreap_state *rs, + struct xfs_bmbt_irec *imap, + bool crosslinked) +{ + struct xfs_scrub *sc = rs->sc; + int error; + + if (crosslinked) { + /* + * If there are other rmappings, this block is cross linked and + * must not be freed. Remove the reverse mapping, leave the + * buffer cache in its possibly confused state, and move on. + * We don't want to risk discarding valid data buffers from + * anybody else who thinks they own the block, even though that + * runs the risk of stale buffer warnings in the future. + */ + trace_xreap_dispose_unmap_extent(pag_group(sc->sa.pag), + XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock), + imap->br_blockcount); + + /* + * t0: Schedule removal of the mapping from the fork. We use + * deferred log intents in this function to control the exact + * sequence of metadata updates. + */ + xfs_bmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap); + xfs_trans_mod_dquot_byino(sc->tp, rs->ip, XFS_TRANS_DQ_BCOUNT, + -(int64_t)imap->br_blockcount); + xfs_rmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap); + return 0; + } + + /* + * If the block is not crosslinked, we can invalidate all the incore + * buffers for the extent, and then free the extent. This is a bit of + * a mess since we don't detect discontiguous buffers that are indexed + * by a block starting before the first block of the extent but overlap + * anyway. + */ + trace_xreap_dispose_free_extent(pag_group(sc->sa.pag), + XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock), + imap->br_blockcount); + + /* + * Invalidate as many buffers as we can, starting at the beginning of + * this mapping. If this function sets blockcount to zero, the + * transaction is full of logged buffer invalidations, so we need to + * return early so that we can roll and retry. + */ + error = xreap_bmapi_binval(rs, imap); + if (error || imap->br_blockcount == 0) + return error; + + /* + * t1: Schedule removal of the mapping from the fork. We use deferred + * work in this function to control the exact sequence of metadata + * updates. + */ + xfs_bmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap); + xfs_trans_mod_dquot_byino(sc->tp, rs->ip, XFS_TRANS_DQ_BCOUNT, + -(int64_t)imap->br_blockcount); + return xfs_free_extent_later(sc->tp, imap->br_startblock, + imap->br_blockcount, NULL, XFS_AG_RESV_NONE, + XFS_FREE_EXTENT_SKIP_DISCARD); +} + +/* Compute the maximum mapcount of a file buffer. */ +static unsigned int +xreap_bmapi_binval_mapcount( + struct xfs_scrub *sc) +{ + /* directory blocks can span multiple fsblocks and be discontiguous */ + if (sc->sm->sm_type == XFS_SCRUB_TYPE_DIR) + return sc->mp->m_dir_geo->fsbcount; + + /* all other file xattr/symlink blocks must be contiguous */ + return 1; +} + +/* Compute the maximum block size of a file buffer. */ +static unsigned int +xreap_bmapi_binval_blocksize( + struct xfs_scrub *sc) +{ + switch (sc->sm->sm_type) { + case XFS_SCRUB_TYPE_DIR: + return sc->mp->m_dir_geo->blksize; + case XFS_SCRUB_TYPE_XATTR: + case XFS_SCRUB_TYPE_PARENT: + /* + * The xattr structure itself consists of single fsblocks, but + * there could be remote xattr blocks to invalidate. + */ + return XFS_XATTR_SIZE_MAX; + } + + /* everything else is a single block */ + return sc->mp->m_sb.sb_blocksize; +} + +/* + * Compute the maximum number of buffer invalidations that we can do while + * reaping a single extent from a file fork. + */ +STATIC void +xreap_configure_bmapi_limits( + struct xreap_state *rs) +{ + struct xfs_scrub *sc = rs->sc; + struct xfs_mount *mp = sc->mp; + + /* overhead of invalidating a buffer */ + const unsigned int per_binval = + xfs_buf_inval_log_space(xreap_bmapi_binval_mapcount(sc), + xreap_bmapi_binval_blocksize(sc)); + + /* + * In the worst case, relogging an intent item causes both an intent + * item and a done item to be attached to a transaction for each extent + * that we'd like to process. + */ + const unsigned int efi = xfs_efi_log_space(1) + + xfs_efd_log_space(1); + const unsigned int rui = xfs_rui_log_space(1) + + xfs_rud_log_space(); + const unsigned int bui = xfs_bui_log_space(1) + + xfs_bud_log_space(); + + /* + * t1: Unmapping crosslinked file data blocks: one bmap deletion, + * possibly an EFI for underfilled bmbt blocks, and an rmap deletion. + * + * t2: Freeing freeing file data blocks: one bmap deletion, possibly an + * EFI for underfilled bmbt blocks, and another EFI for the space + * itself. + */ + const unsigned int t1 = (bui + efi) + rui; + const unsigned int t2 = (bui + efi) + efi; + const unsigned int per_intent = max(t1, t2); + + /* + * For each transaction in a reap chain, we must be able to take one + * step in the defer item chain, which should only consist of CUI, EFI, + * or RUI items. + */ + const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1); + const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1); + const unsigned int f3 = xfs_calc_finish_bui_reservation(mp, 1); + const unsigned int step_size = max3(f1, f2, f3); + + /* + * Each call to xreap_ifork_extent starts with a clean transaction and + * operates on a single mapping by creating a chain of log intent items + * for that mapping. We need to leave enough reservation in the + * transaction to log btree buffer and inode updates for each step in + * the chain, and to relog the log intents. + */ + const unsigned int per_extent_res = per_intent + step_size; + + xreap_configure_limits(rs, per_extent_res, per_binval, 0, per_binval); + + trace_xreap_bmapi_limits(sc->tp, per_binval, rs->max_binval, + step_size, per_intent, 1); +} + +/* + * Dispose of as much of this file extent as we can. Upon successful return, + * the imap will reflect the mapping that was removed from the fork. + */ +STATIC int +xreap_ifork_extent( + struct xreap_state *rs, + struct xfs_bmbt_irec *imap) +{ + struct xfs_scrub *sc = rs->sc; + xfs_agnumber_t agno; + bool crosslinked; + int error; + + ASSERT(sc->sa.pag == NULL); + + trace_xreap_ifork_extent(sc, rs->ip, rs->whichfork, imap); + + agno = XFS_FSB_TO_AGNO(sc->mp, imap->br_startblock); + sc->sa.pag = xfs_perag_get(sc->mp, agno); + if (!sc->sa.pag) + return -EFSCORRUPTED; + + error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp); + if (error) + goto out_pag; + + /* + * Decide the fate of the blocks at the beginning of the mapping, then + * update the mapping to use it with the unmap calls. + */ + error = xreap_bmapi_select(rs, imap, &crosslinked); + if (error) + goto out_agf; + + error = xrep_reap_bmapi_iter(rs, imap, crosslinked); + if (error) + goto out_agf; + +out_agf: + xfs_trans_brelse(sc->tp, sc->sa.agf_bp); + sc->sa.agf_bp = NULL; +out_pag: + xfs_perag_put(sc->sa.pag); + sc->sa.pag = NULL; + return error; +} + +/* + * Dispose of each block mapped to the given fork of the given file. Callers + * must hold ILOCK_EXCL, and ip can only be sc->ip or sc->tempip. The fork + * must not have any delalloc reservations. + */ +int +xrep_reap_ifork( + struct xfs_scrub *sc, + struct xfs_inode *ip, + int whichfork) +{ + struct xreap_state rs = { + .sc = sc, + .ip = ip, + .whichfork = whichfork, + }; + xfs_fileoff_t off = 0; + int bmap_flags = xfs_bmapi_aflag(whichfork); + int error; + + ASSERT(xfs_has_rmapbt(sc->mp)); + ASSERT(ip == sc->ip || ip == sc->tempip); + ASSERT(whichfork == XFS_ATTR_FORK || !XFS_IS_REALTIME_INODE(ip)); + + xreap_configure_bmapi_limits(&rs); + while (off < XFS_MAX_FILEOFF) { + struct xfs_bmbt_irec imap; + int nimaps = 1; + + /* Read the next extent, skip past holes and delalloc. */ + error = xfs_bmapi_read(ip, off, XFS_MAX_FILEOFF - off, &imap, + &nimaps, bmap_flags); + if (error) + return error; + if (nimaps != 1 || imap.br_startblock == DELAYSTARTBLOCK) { + ASSERT(0); + return -EFSCORRUPTED; + } + + /* + * If this is a real space mapping, reap as much of it as we + * can in a single transaction. + */ + if (xfs_bmap_is_real_extent(&imap)) { + error = xreap_ifork_extent(&rs, &imap); + if (error) + return error; + + error = xfs_defer_finish(&sc->tp); + if (error) + return error; + xreap_defer_finish_reset(&rs); + } + + off = imap.br_startoff + imap.br_blockcount; + } + + return 0; +} |
