summaryrefslogtreecommitdiff
path: root/fs/xfs/scrub/reap.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/scrub/reap.c')
-rw-r--r--fs/xfs/scrub/reap.c1695
1 files changed, 1695 insertions, 0 deletions
diff --git a/fs/xfs/scrub/reap.c b/fs/xfs/scrub/reap.c
new file mode 100644
index 000000000000..07f5bb8a6421
--- /dev/null
+++ b/fs/xfs/scrub/reap.c
@@ -0,0 +1,1695 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2022-2023 Oracle. All Rights Reserved.
+ * Author: Darrick J. Wong <djwong@kernel.org>
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_btree.h"
+#include "xfs_log_format.h"
+#include "xfs_trans.h"
+#include "xfs_sb.h"
+#include "xfs_inode.h"
+#include "xfs_alloc.h"
+#include "xfs_alloc_btree.h"
+#include "xfs_ialloc.h"
+#include "xfs_ialloc_btree.h"
+#include "xfs_rmap.h"
+#include "xfs_rmap_btree.h"
+#include "xfs_refcount.h"
+#include "xfs_refcount_btree.h"
+#include "xfs_extent_busy.h"
+#include "xfs_ag.h"
+#include "xfs_ag_resv.h"
+#include "xfs_quota.h"
+#include "xfs_qm.h"
+#include "xfs_bmap.h"
+#include "xfs_da_format.h"
+#include "xfs_da_btree.h"
+#include "xfs_attr.h"
+#include "xfs_attr_remote.h"
+#include "xfs_defer.h"
+#include "xfs_metafile.h"
+#include "xfs_rtgroup.h"
+#include "xfs_rtrmap_btree.h"
+#include "xfs_extfree_item.h"
+#include "xfs_rmap_item.h"
+#include "xfs_refcount_item.h"
+#include "xfs_buf_item.h"
+#include "xfs_bmap_item.h"
+#include "xfs_bmap_btree.h"
+#include "scrub/scrub.h"
+#include "scrub/common.h"
+#include "scrub/trace.h"
+#include "scrub/repair.h"
+#include "scrub/bitmap.h"
+#include "scrub/agb_bitmap.h"
+#include "scrub/fsb_bitmap.h"
+#include "scrub/rtb_bitmap.h"
+#include "scrub/reap.h"
+
+/*
+ * Disposal of Blocks from Old Metadata
+ *
+ * Now that we've constructed a new btree to replace the damaged one, we want
+ * to dispose of the blocks that (we think) the old btree was using.
+ * Previously, we used the rmapbt to collect the extents (bitmap) with the
+ * rmap owner corresponding to the tree we rebuilt, collected extents for any
+ * blocks with the same rmap owner that are owned by another data structure
+ * (sublist), and subtracted sublist from bitmap. In theory the extents
+ * remaining in bitmap are the old btree's blocks.
+ *
+ * Unfortunately, it's possible that the btree was crosslinked with other
+ * blocks on disk. The rmap data can tell us if there are multiple owners, so
+ * if the rmapbt says there is an owner of this block other than @oinfo, then
+ * the block is crosslinked. Remove the reverse mapping and continue.
+ *
+ * If there is one rmap record, we can free the block, which removes the
+ * reverse mapping but doesn't add the block to the free space. Our repair
+ * strategy is to hope the other metadata objects crosslinked on this block
+ * will be rebuilt (atop different blocks), thereby removing all the cross
+ * links.
+ *
+ * If there are no rmap records at all, we also free the block. If the btree
+ * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
+ * supposed to be a rmap record and everything is ok. For other btrees there
+ * had to have been an rmap entry for the block to have ended up on @bitmap,
+ * so if it's gone now there's something wrong and the fs will shut down.
+ *
+ * Note: If there are multiple rmap records with only the same rmap owner as
+ * the btree we're trying to rebuild and the block is indeed owned by another
+ * data structure with the same rmap owner, then the block will be in sublist
+ * and therefore doesn't need disposal. If there are multiple rmap records
+ * with only the same rmap owner but the block is not owned by something with
+ * the same rmap owner, the block will be freed.
+ *
+ * The caller is responsible for locking the AG headers/inode for the entire
+ * rebuild operation so that nothing else can sneak in and change the incore
+ * state while we're not looking. We must also invalidate any buffers
+ * associated with @bitmap.
+ */
+
+/* Information about reaping extents after a repair. */
+struct xreap_state {
+ struct xfs_scrub *sc;
+
+ union {
+ struct {
+ /*
+ * For AG blocks, this is reverse mapping owner and
+ * metadata reservation type.
+ */
+ const struct xfs_owner_info *oinfo;
+ enum xfs_ag_resv_type resv;
+ };
+ struct {
+ /* For file blocks, this is the inode and fork. */
+ struct xfs_inode *ip;
+ int whichfork;
+ };
+ };
+
+ /* Number of invalidated buffers logged to the current transaction. */
+ unsigned int nr_binval;
+
+ /* Maximum number of buffers we can invalidate in a single tx. */
+ unsigned int max_binval;
+
+ /* Number of deferred reaps attached to the current transaction. */
+ unsigned int nr_deferred;
+
+ /* Maximum number of intents we can reap in a single transaction. */
+ unsigned int max_deferred;
+};
+
+/* Put a block back on the AGFL. */
+STATIC int
+xreap_put_freelist(
+ struct xfs_scrub *sc,
+ xfs_agblock_t agbno)
+{
+ struct xfs_buf *agfl_bp;
+ int error;
+
+ /* Make sure there's space on the freelist. */
+ error = xrep_fix_freelist(sc, 0);
+ if (error)
+ return error;
+
+ /*
+ * Since we're "freeing" a lost block onto the AGFL, we have to
+ * create an rmap for the block prior to merging it or else other
+ * parts will break.
+ */
+ error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
+ &XFS_RMAP_OINFO_AG);
+ if (error)
+ return error;
+
+ /* Put the block on the AGFL. */
+ error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
+ if (error)
+ return error;
+
+ error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp,
+ agfl_bp, agbno, 0);
+ if (error)
+ return error;
+ xfs_extent_busy_insert(sc->tp, pag_group(sc->sa.pag), agbno, 1,
+ XFS_EXTENT_BUSY_SKIP_DISCARD);
+
+ return 0;
+}
+
+/* Are there any uncommitted reap operations? */
+static inline bool xreap_is_dirty(const struct xreap_state *rs)
+{
+ return rs->nr_binval > 0 || rs->nr_deferred > 0;
+}
+
+/*
+ * Decide if we need to roll the transaction to clear out the the log
+ * reservation that we allocated to buffer invalidations.
+ */
+static inline bool xreap_want_binval_roll(const struct xreap_state *rs)
+{
+ return rs->nr_binval >= rs->max_binval;
+}
+
+/* Reset the buffer invalidation count after rolling. */
+static inline void xreap_binval_reset(struct xreap_state *rs)
+{
+ rs->nr_binval = 0;
+}
+
+/*
+ * Bump the number of invalidated buffers, and return true if we can continue,
+ * or false if we need to roll the transaction.
+ */
+static inline bool xreap_inc_binval(struct xreap_state *rs)
+{
+ rs->nr_binval++;
+ return rs->nr_binval < rs->max_binval;
+}
+
+/*
+ * Decide if we want to finish the deferred ops that are attached to the scrub
+ * transaction. We don't want to queue huge chains of deferred ops because
+ * that can consume a lot of log space and kernel memory. Hence we trigger a
+ * xfs_defer_finish if there are too many deferred reap operations or we've run
+ * out of space for invalidations.
+ */
+static inline bool xreap_want_defer_finish(const struct xreap_state *rs)
+{
+ return rs->nr_deferred >= rs->max_deferred;
+}
+
+/*
+ * Reset the defer chain length and buffer invalidation count after finishing
+ * items.
+ */
+static inline void xreap_defer_finish_reset(struct xreap_state *rs)
+{
+ rs->nr_deferred = 0;
+ rs->nr_binval = 0;
+}
+
+/*
+ * Bump the number of deferred extent reaps.
+ */
+static inline void xreap_inc_defer(struct xreap_state *rs)
+{
+ rs->nr_deferred++;
+}
+
+/* Force the caller to finish a deferred item chain. */
+static inline void xreap_force_defer_finish(struct xreap_state *rs)
+{
+ rs->nr_deferred = rs->max_deferred;
+}
+
+/* Maximum number of fsblocks that we might find in a buffer to invalidate. */
+static inline unsigned int
+xrep_binval_max_fsblocks(
+ struct xfs_mount *mp)
+{
+ /* Remote xattr values are the largest buffers that we support. */
+ return xfs_attr3_max_rmt_blocks(mp);
+}
+
+/*
+ * Compute the maximum length of a buffer cache scan (in units of sectors),
+ * given a quantity of fs blocks.
+ */
+xfs_daddr_t
+xrep_bufscan_max_sectors(
+ struct xfs_mount *mp,
+ xfs_extlen_t fsblocks)
+{
+ return XFS_FSB_TO_BB(mp, min_t(xfs_extlen_t, fsblocks,
+ xrep_binval_max_fsblocks(mp)));
+}
+
+/*
+ * Return an incore buffer from a sector scan, or NULL if there are no buffers
+ * left to return.
+ */
+struct xfs_buf *
+xrep_bufscan_advance(
+ struct xfs_mount *mp,
+ struct xrep_bufscan *scan)
+{
+ scan->__sector_count += scan->daddr_step;
+ while (scan->__sector_count <= scan->max_sectors) {
+ struct xfs_buf *bp = NULL;
+ int error;
+
+ error = xfs_buf_incore(mp->m_ddev_targp, scan->daddr,
+ scan->__sector_count, XBF_LIVESCAN, &bp);
+ if (!error)
+ return bp;
+
+ scan->__sector_count += scan->daddr_step;
+ }
+
+ return NULL;
+}
+
+/* Try to invalidate the incore buffers for an extent that we're freeing. */
+STATIC void
+xreap_agextent_binval(
+ struct xreap_state *rs,
+ xfs_agblock_t agbno,
+ xfs_extlen_t *aglenp)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_perag *pag = sc->sa.pag;
+ struct xfs_mount *mp = sc->mp;
+ xfs_agblock_t agbno_next = agbno + *aglenp;
+ xfs_agblock_t bno = agbno;
+
+ /*
+ * Avoid invalidating AG headers and post-EOFS blocks because we never
+ * own those.
+ */
+ if (!xfs_verify_agbno(pag, agbno) ||
+ !xfs_verify_agbno(pag, agbno_next - 1))
+ return;
+
+ /*
+ * If there are incore buffers for these blocks, invalidate them. We
+ * assume that the lack of any other known owners means that the buffer
+ * can be locked without risk of deadlocking. The buffer cache cannot
+ * detect aliasing, so employ nested loops to scan for incore buffers
+ * of any plausible size.
+ */
+ while (bno < agbno_next) {
+ struct xrep_bufscan scan = {
+ .daddr = xfs_agbno_to_daddr(pag, bno),
+ .max_sectors = xrep_bufscan_max_sectors(mp,
+ agbno_next - bno),
+ .daddr_step = XFS_FSB_TO_BB(mp, 1),
+ };
+ struct xfs_buf *bp;
+
+ while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) {
+ xfs_trans_bjoin(sc->tp, bp);
+ xfs_trans_binval(sc->tp, bp);
+
+ /*
+ * Stop invalidating if we've hit the limit; we should
+ * still have enough reservation left to free however
+ * far we've gotten.
+ */
+ if (!xreap_inc_binval(rs)) {
+ *aglenp -= agbno_next - bno;
+ goto out;
+ }
+ }
+
+ bno++;
+ }
+
+out:
+ trace_xreap_agextent_binval(pag_group(sc->sa.pag), agbno, *aglenp);
+}
+
+/*
+ * Figure out the longest run of blocks that we can dispose of with a single
+ * call. Cross-linked blocks should have their reverse mappings removed, but
+ * single-owner extents can be freed. AGFL blocks can only be put back one at
+ * a time.
+ */
+STATIC int
+xreap_agextent_select(
+ struct xreap_state *rs,
+ xfs_agblock_t agbno,
+ xfs_agblock_t agbno_next,
+ bool *crosslinked,
+ xfs_extlen_t *aglenp)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_btree_cur *cur;
+ xfs_agblock_t bno = agbno + 1;
+ xfs_extlen_t len = 1;
+ int error;
+
+ /*
+ * Determine if there are any other rmap records covering the first
+ * block of this extent. If so, the block is crosslinked.
+ */
+ cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
+ sc->sa.pag);
+ error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo,
+ crosslinked);
+ if (error)
+ goto out_cur;
+
+ /* AGFL blocks can only be deal with one at a time. */
+ if (rs->resv == XFS_AG_RESV_AGFL)
+ goto out_found;
+
+ /*
+ * Figure out how many of the subsequent blocks have the same crosslink
+ * status.
+ */
+ while (bno < agbno_next) {
+ bool also_crosslinked;
+
+ error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo,
+ &also_crosslinked);
+ if (error)
+ goto out_cur;
+
+ if (*crosslinked != also_crosslinked)
+ break;
+
+ len++;
+ bno++;
+ }
+
+out_found:
+ *aglenp = len;
+ trace_xreap_agextent_select(pag_group(sc->sa.pag), agbno, len,
+ *crosslinked);
+out_cur:
+ xfs_btree_del_cursor(cur, error);
+ return error;
+}
+
+/*
+ * Dispose of as much of the beginning of this AG extent as possible. The
+ * number of blocks disposed of will be returned in @aglenp.
+ */
+STATIC int
+xreap_agextent_iter(
+ struct xreap_state *rs,
+ xfs_agblock_t agbno,
+ xfs_extlen_t *aglenp,
+ bool crosslinked)
+{
+ struct xfs_scrub *sc = rs->sc;
+ xfs_fsblock_t fsbno;
+ int error = 0;
+
+ ASSERT(rs->resv != XFS_AG_RESV_METAFILE);
+
+ fsbno = xfs_agbno_to_fsb(sc->sa.pag, agbno);
+
+ /*
+ * If there are other rmappings, this block is cross linked and must
+ * not be freed. Remove the reverse mapping and move on. Otherwise,
+ * we were the only owner of the block, so free the extent, which will
+ * also remove the rmap.
+ *
+ * XXX: XFS doesn't support detecting the case where a single block
+ * metadata structure is crosslinked with a multi-block structure
+ * because the buffer cache doesn't detect aliasing problems, so we
+ * can't fix 100% of crosslinking problems (yet). The verifiers will
+ * blow on writeout, the filesystem will shut down, and the admin gets
+ * to run xfs_repair.
+ */
+ if (crosslinked) {
+ trace_xreap_dispose_unmap_extent(pag_group(sc->sa.pag), agbno,
+ *aglenp);
+
+ if (rs->oinfo == &XFS_RMAP_OINFO_COW) {
+ /*
+ * t0: Unmapping CoW staging extents, remove the
+ * records from the refcountbt, which will remove the
+ * rmap record as well.
+ */
+ xfs_refcount_free_cow_extent(sc->tp, false, fsbno,
+ *aglenp);
+ xreap_inc_defer(rs);
+ return 0;
+ }
+
+ /* t1: unmap crosslinked metadata blocks */
+ xfs_rmap_free_extent(sc->tp, false, fsbno, *aglenp,
+ rs->oinfo->oi_owner);
+ xreap_inc_defer(rs);
+ return 0;
+ }
+
+ trace_xreap_dispose_free_extent(pag_group(sc->sa.pag), agbno, *aglenp);
+
+ /*
+ * Invalidate as many buffers as we can, starting at agbno. If this
+ * function sets *aglenp to zero, the transaction is full of logged
+ * buffer invalidations, so we need to return early so that we can
+ * roll and retry.
+ */
+ xreap_agextent_binval(rs, agbno, aglenp);
+ if (*aglenp == 0) {
+ ASSERT(xreap_want_binval_roll(rs));
+ return 0;
+ }
+
+ /*
+ * t2: To get rid of CoW staging extents, use deferred work items
+ * to remove the refcountbt records (which removes the rmap records)
+ * and free the extent. We're not worried about the system going down
+ * here because log recovery walks the refcount btree to clean out the
+ * CoW staging extents.
+ */
+ if (rs->oinfo == &XFS_RMAP_OINFO_COW) {
+ ASSERT(rs->resv == XFS_AG_RESV_NONE);
+
+ xfs_refcount_free_cow_extent(sc->tp, false, fsbno, *aglenp);
+ error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, NULL,
+ rs->resv, XFS_FREE_EXTENT_SKIP_DISCARD);
+ if (error)
+ return error;
+
+ xreap_inc_defer(rs);
+ return 0;
+ }
+
+ /* t3: Put blocks back on the AGFL one at a time. */
+ if (rs->resv == XFS_AG_RESV_AGFL) {
+ ASSERT(*aglenp == 1);
+ error = xreap_put_freelist(sc, agbno);
+ if (error)
+ return error;
+
+ xreap_force_defer_finish(rs);
+ return 0;
+ }
+
+ /*
+ * t4: Use deferred frees to get rid of the old btree blocks to try to
+ * minimize the window in which we could crash and lose the old blocks.
+ * Add a defer ops barrier every other extent to avoid stressing the
+ * system with large EFIs.
+ */
+ error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, rs->oinfo,
+ rs->resv, XFS_FREE_EXTENT_SKIP_DISCARD);
+ if (error)
+ return error;
+
+ xreap_inc_defer(rs);
+ if (rs->nr_deferred % 2 == 0)
+ xfs_defer_add_barrier(sc->tp);
+ return 0;
+}
+
+/* Configure the deferral and invalidation limits */
+static inline void
+xreap_configure_limits(
+ struct xreap_state *rs,
+ unsigned int fixed_overhead,
+ unsigned int variable_overhead,
+ unsigned int per_intent,
+ unsigned int per_binval)
+{
+ struct xfs_scrub *sc = rs->sc;
+ unsigned int res = sc->tp->t_log_res - fixed_overhead;
+
+ /* Don't underflow the reservation */
+ if (sc->tp->t_log_res < (fixed_overhead + variable_overhead)) {
+ ASSERT(sc->tp->t_log_res >=
+ (fixed_overhead + variable_overhead));
+ xfs_force_shutdown(sc->mp, SHUTDOWN_CORRUPT_INCORE);
+ return;
+ }
+
+ rs->max_deferred = per_intent ? res / variable_overhead : 0;
+ res -= rs->max_deferred * per_intent;
+ rs->max_binval = per_binval ? res / per_binval : 0;
+}
+
+/*
+ * Compute the maximum number of intent items that reaping can attach to the
+ * scrub transaction given the worst case log overhead of the intent items
+ * needed to reap a single per-AG space extent. This is not for freeing CoW
+ * staging extents.
+ */
+STATIC void
+xreap_configure_agextent_limits(
+ struct xreap_state *rs)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_mount *mp = sc->mp;
+
+ /*
+ * In the worst case, relogging an intent item causes both an intent
+ * item and a done item to be attached to a transaction for each extent
+ * that we'd like to process.
+ */
+ const unsigned int efi = xfs_efi_log_space(1) +
+ xfs_efd_log_space(1);
+ const unsigned int rui = xfs_rui_log_space(1) +
+ xfs_rud_log_space();
+
+ /*
+ * Various things can happen when reaping non-CoW metadata blocks:
+ *
+ * t1: Unmapping crosslinked metadata blocks: deferred removal of rmap
+ * record.
+ *
+ * t3: Freeing to AGFL: roll and finish deferred items for every block.
+ * Limits here do not matter.
+ *
+ * t4: Freeing metadata blocks: deferred freeing of the space, which
+ * also removes the rmap record.
+ *
+ * For simplicity, we'll use the worst-case intents size to determine
+ * the maximum number of deferred extents before we have to finish the
+ * whole chain. If we're trying to reap a btree larger than this size,
+ * a crash midway through reaping can result in leaked blocks.
+ */
+ const unsigned int t1 = rui;
+ const unsigned int t4 = rui + efi;
+ const unsigned int per_intent = max(t1, t4);
+
+ /*
+ * For each transaction in a reap chain, we must be able to take one
+ * step in the defer item chain, which should only consist of EFI or
+ * RUI items.
+ */
+ const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1);
+ const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1);
+ const unsigned int step_size = max(f1, f2);
+
+ /* Largest buffer size (in fsblocks) that can be invalidated. */
+ const unsigned int max_binval = xrep_binval_max_fsblocks(mp);
+
+ /* Maximum overhead of invalidating one buffer. */
+ const unsigned int per_binval =
+ xfs_buf_inval_log_space(1, XFS_B_TO_FSBT(mp, max_binval));
+
+ /*
+ * For each transaction in a reap chain, we can delete some number of
+ * extents and invalidate some number of blocks. We assume that btree
+ * blocks aren't usually contiguous; and that scrub likely pulled all
+ * the buffers into memory. From these assumptions, set the maximum
+ * number of deferrals we can queue before flushing the defer chain,
+ * and the number of invalidations we can queue before rolling to a
+ * clean transaction (and possibly relogging some of the deferrals) to
+ * the same quantity.
+ */
+ const unsigned int variable_overhead = per_intent + per_binval;
+
+ xreap_configure_limits(rs, step_size, variable_overhead, per_intent,
+ per_binval);
+
+ trace_xreap_agextent_limits(sc->tp, per_binval, rs->max_binval,
+ step_size, per_intent, rs->max_deferred);
+}
+
+/*
+ * Compute the maximum number of intent items that reaping can attach to the
+ * scrub transaction given the worst case log overhead of the intent items
+ * needed to reap a single CoW staging extent. This is not for freeing
+ * metadata blocks.
+ */
+STATIC void
+xreap_configure_agcow_limits(
+ struct xreap_state *rs)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_mount *mp = sc->mp;
+
+ /*
+ * In the worst case, relogging an intent item causes both an intent
+ * item and a done item to be attached to a transaction for each extent
+ * that we'd like to process.
+ */
+ const unsigned int efi = xfs_efi_log_space(1) +
+ xfs_efd_log_space(1);
+ const unsigned int rui = xfs_rui_log_space(1) +
+ xfs_rud_log_space();
+ const unsigned int cui = xfs_cui_log_space(1) +
+ xfs_cud_log_space();
+
+ /*
+ * Various things can happen when reaping non-CoW metadata blocks:
+ *
+ * t0: Unmapping crosslinked CoW blocks: deferred removal of refcount
+ * record, which defers removal of rmap record
+ *
+ * t2: Freeing CoW blocks: deferred removal of refcount record, which
+ * defers removal of rmap record; and deferred removal of the space
+ *
+ * For simplicity, we'll use the worst-case intents size to determine
+ * the maximum number of deferred extents before we have to finish the
+ * whole chain. If we're trying to reap a btree larger than this size,
+ * a crash midway through reaping can result in leaked blocks.
+ */
+ const unsigned int t0 = cui + rui;
+ const unsigned int t2 = cui + rui + efi;
+ const unsigned int per_intent = max(t0, t2);
+
+ /*
+ * For each transaction in a reap chain, we must be able to take one
+ * step in the defer item chain, which should only consist of CUI, EFI,
+ * or RUI items.
+ */
+ const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1);
+ const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1);
+ const unsigned int f3 = xfs_calc_finish_cui_reservation(mp, 1);
+ const unsigned int step_size = max3(f1, f2, f3);
+
+ /* Largest buffer size (in fsblocks) that can be invalidated. */
+ const unsigned int max_binval = xrep_binval_max_fsblocks(mp);
+
+ /* Overhead of invalidating one buffer */
+ const unsigned int per_binval =
+ xfs_buf_inval_log_space(1, XFS_B_TO_FSBT(mp, max_binval));
+
+ /*
+ * For each transaction in a reap chain, we can delete some number of
+ * extents and invalidate some number of blocks. We assume that CoW
+ * staging extents are usually more than 1 fsblock, and that there
+ * shouldn't be any buffers for those blocks. From the assumptions,
+ * set the number of deferrals to use as much of the reservation as
+ * it can, but leave space to invalidate 1/8th that number of buffers.
+ */
+ const unsigned int variable_overhead = per_intent +
+ (per_binval / 8);
+
+ xreap_configure_limits(rs, step_size, variable_overhead, per_intent,
+ per_binval);
+
+ trace_xreap_agcow_limits(sc->tp, per_binval, rs->max_binval, step_size,
+ per_intent, rs->max_deferred);
+}
+
+/*
+ * Break an AG metadata extent into sub-extents by fate (crosslinked, not
+ * crosslinked), and dispose of each sub-extent separately.
+ */
+STATIC int
+xreap_agmeta_extent(
+ uint32_t agbno,
+ uint32_t len,
+ void *priv)
+{
+ struct xreap_state *rs = priv;
+ struct xfs_scrub *sc = rs->sc;
+ xfs_agblock_t agbno_next = agbno + len;
+ int error = 0;
+
+ ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
+ ASSERT(sc->ip == NULL);
+
+ while (agbno < agbno_next) {
+ xfs_extlen_t aglen;
+ bool crosslinked;
+
+ error = xreap_agextent_select(rs, agbno, agbno_next,
+ &crosslinked, &aglen);
+ if (error)
+ return error;
+
+ error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked);
+ if (error)
+ return error;
+
+ if (xreap_want_defer_finish(rs)) {
+ error = xrep_defer_finish(sc);
+ if (error)
+ return error;
+ xreap_defer_finish_reset(rs);
+ } else if (xreap_want_binval_roll(rs)) {
+ error = xrep_roll_ag_trans(sc);
+ if (error)
+ return error;
+ xreap_binval_reset(rs);
+ }
+
+ agbno += aglen;
+ }
+
+ return 0;
+}
+
+/* Dispose of every block of every AG metadata extent in the bitmap. */
+int
+xrep_reap_agblocks(
+ struct xfs_scrub *sc,
+ struct xagb_bitmap *bitmap,
+ const struct xfs_owner_info *oinfo,
+ enum xfs_ag_resv_type type)
+{
+ struct xreap_state rs = {
+ .sc = sc,
+ .oinfo = oinfo,
+ .resv = type,
+ };
+ int error;
+
+ ASSERT(xfs_has_rmapbt(sc->mp));
+ ASSERT(sc->ip == NULL);
+
+ xreap_configure_agextent_limits(&rs);
+ error = xagb_bitmap_walk(bitmap, xreap_agmeta_extent, &rs);
+ if (error)
+ return error;
+
+ if (xreap_is_dirty(&rs))
+ return xrep_defer_finish(sc);
+
+ return 0;
+}
+
+/*
+ * Break a file metadata extent into sub-extents by fate (crosslinked, not
+ * crosslinked), and dispose of each sub-extent separately. The extent must
+ * not cross an AG boundary.
+ */
+STATIC int
+xreap_fsmeta_extent(
+ uint64_t fsbno,
+ uint64_t len,
+ void *priv)
+{
+ struct xreap_state *rs = priv;
+ struct xfs_scrub *sc = rs->sc;
+ xfs_agnumber_t agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
+ xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
+ xfs_agblock_t agbno_next = agbno + len;
+ int error = 0;
+
+ ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
+ ASSERT(sc->ip != NULL);
+ ASSERT(!sc->sa.pag);
+
+ /*
+ * We're reaping blocks after repairing file metadata, which means that
+ * we have to init the xchk_ag structure ourselves.
+ */
+ sc->sa.pag = xfs_perag_get(sc->mp, agno);
+ if (!sc->sa.pag)
+ return -EFSCORRUPTED;
+
+ error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp);
+ if (error)
+ goto out_pag;
+
+ while (agbno < agbno_next) {
+ xfs_extlen_t aglen;
+ bool crosslinked;
+
+ error = xreap_agextent_select(rs, agbno, agbno_next,
+ &crosslinked, &aglen);
+ if (error)
+ goto out_agf;
+
+ error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked);
+ if (error)
+ goto out_agf;
+
+ if (xreap_want_defer_finish(rs)) {
+ /*
+ * Holds the AGF buffer across the deferred chain
+ * processing.
+ */
+ error = xrep_defer_finish(sc);
+ if (error)
+ goto out_agf;
+ xreap_defer_finish_reset(rs);
+ } else if (xreap_want_binval_roll(rs)) {
+ /*
+ * Hold the AGF buffer across the transaction roll so
+ * that we don't have to reattach it to the scrub
+ * context.
+ */
+ xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
+ error = xfs_trans_roll_inode(&sc->tp, sc->ip);
+ xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
+ if (error)
+ goto out_agf;
+ xreap_binval_reset(rs);
+ }
+
+ agbno += aglen;
+ }
+
+out_agf:
+ xfs_trans_brelse(sc->tp, sc->sa.agf_bp);
+ sc->sa.agf_bp = NULL;
+out_pag:
+ xfs_perag_put(sc->sa.pag);
+ sc->sa.pag = NULL;
+ return error;
+}
+
+/*
+ * Dispose of every block of every fs metadata extent in the bitmap.
+ * Do not use this to dispose of the mappings in an ondisk inode fork.
+ */
+int
+xrep_reap_fsblocks(
+ struct xfs_scrub *sc,
+ struct xfsb_bitmap *bitmap,
+ const struct xfs_owner_info *oinfo)
+{
+ struct xreap_state rs = {
+ .sc = sc,
+ .oinfo = oinfo,
+ .resv = XFS_AG_RESV_NONE,
+ };
+ int error;
+
+ ASSERT(xfs_has_rmapbt(sc->mp));
+ ASSERT(sc->ip != NULL);
+
+ if (oinfo == &XFS_RMAP_OINFO_COW)
+ xreap_configure_agcow_limits(&rs);
+ else
+ xreap_configure_agextent_limits(&rs);
+ error = xfsb_bitmap_walk(bitmap, xreap_fsmeta_extent, &rs);
+ if (error)
+ return error;
+
+ if (xreap_is_dirty(&rs))
+ return xrep_defer_finish(sc);
+
+ return 0;
+}
+
+#ifdef CONFIG_XFS_RT
+/*
+ * Figure out the longest run of blocks that we can dispose of with a single
+ * call. Cross-linked blocks should have their reverse mappings removed, but
+ * single-owner extents can be freed. Units are rt blocks, not rt extents.
+ */
+STATIC int
+xreap_rgextent_select(
+ struct xreap_state *rs,
+ xfs_rgblock_t rgbno,
+ xfs_rgblock_t rgbno_next,
+ bool *crosslinked,
+ xfs_extlen_t *rglenp)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_btree_cur *cur;
+ xfs_rgblock_t bno = rgbno + 1;
+ xfs_extlen_t len = 1;
+ int error;
+
+ /*
+ * Determine if there are any other rmap records covering the first
+ * block of this extent. If so, the block is crosslinked.
+ */
+ cur = xfs_rtrmapbt_init_cursor(sc->tp, sc->sr.rtg);
+ error = xfs_rmap_has_other_keys(cur, rgbno, 1, rs->oinfo,
+ crosslinked);
+ if (error)
+ goto out_cur;
+
+ /*
+ * Figure out how many of the subsequent blocks have the same crosslink
+ * status.
+ */
+ while (bno < rgbno_next) {
+ bool also_crosslinked;
+
+ error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo,
+ &also_crosslinked);
+ if (error)
+ goto out_cur;
+
+ if (*crosslinked != also_crosslinked)
+ break;
+
+ len++;
+ bno++;
+ }
+
+ *rglenp = len;
+ trace_xreap_agextent_select(rtg_group(sc->sr.rtg), rgbno, len,
+ *crosslinked);
+out_cur:
+ xfs_btree_del_cursor(cur, error);
+ return error;
+}
+
+/*
+ * Dispose of as much of the beginning of this rtgroup extent as possible.
+ * The number of blocks disposed of will be returned in @rglenp.
+ */
+STATIC int
+xreap_rgextent_iter(
+ struct xreap_state *rs,
+ xfs_rgblock_t rgbno,
+ xfs_extlen_t *rglenp,
+ bool crosslinked)
+{
+ struct xfs_scrub *sc = rs->sc;
+ xfs_rtblock_t rtbno;
+ int error;
+
+ /*
+ * The only caller so far is CoW fork repair, so we only know how to
+ * unlink or free CoW staging extents. Here we don't have to worry
+ * about invalidating buffers!
+ */
+ if (rs->oinfo != &XFS_RMAP_OINFO_COW) {
+ ASSERT(rs->oinfo == &XFS_RMAP_OINFO_COW);
+ return -EFSCORRUPTED;
+ }
+ ASSERT(rs->resv == XFS_AG_RESV_NONE);
+
+ rtbno = xfs_rgbno_to_rtb(sc->sr.rtg, rgbno);
+
+ /*
+ * t1: There are other rmappings; this block is cross linked and must
+ * not be freed. Remove the forward and reverse mapping and move on.
+ */
+ if (crosslinked) {
+ trace_xreap_dispose_unmap_extent(rtg_group(sc->sr.rtg), rgbno,
+ *rglenp);
+
+ xfs_refcount_free_cow_extent(sc->tp, true, rtbno, *rglenp);
+ xreap_inc_defer(rs);
+ return 0;
+ }
+
+ trace_xreap_dispose_free_extent(rtg_group(sc->sr.rtg), rgbno, *rglenp);
+
+ /*
+ * t2: The CoW staging extent is not crosslinked. Use deferred work
+ * to remove the refcountbt records (which removes the rmap records)
+ * and free the extent. We're not worried about the system going down
+ * here because log recovery walks the refcount btree to clean out the
+ * CoW staging extents.
+ */
+ xfs_refcount_free_cow_extent(sc->tp, true, rtbno, *rglenp);
+ error = xfs_free_extent_later(sc->tp, rtbno, *rglenp, NULL,
+ rs->resv,
+ XFS_FREE_EXTENT_REALTIME |
+ XFS_FREE_EXTENT_SKIP_DISCARD);
+ if (error)
+ return error;
+
+ xreap_inc_defer(rs);
+ return 0;
+}
+
+/*
+ * Compute the maximum number of intent items that reaping can attach to the
+ * scrub transaction given the worst case log overhead of the intent items
+ * needed to reap a single CoW staging extent. This is not for freeing
+ * metadata blocks.
+ */
+STATIC void
+xreap_configure_rgcow_limits(
+ struct xreap_state *rs)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_mount *mp = sc->mp;
+
+ /*
+ * In the worst case, relogging an intent item causes both an intent
+ * item and a done item to be attached to a transaction for each extent
+ * that we'd like to process.
+ */
+ const unsigned int efi = xfs_efi_log_space(1) +
+ xfs_efd_log_space(1);
+ const unsigned int rui = xfs_rui_log_space(1) +
+ xfs_rud_log_space();
+ const unsigned int cui = xfs_cui_log_space(1) +
+ xfs_cud_log_space();
+
+ /*
+ * Various things can happen when reaping non-CoW metadata blocks:
+ *
+ * t1: Unmapping crosslinked CoW blocks: deferred removal of refcount
+ * record, which defers removal of rmap record
+ *
+ * t2: Freeing CoW blocks: deferred removal of refcount record, which
+ * defers removal of rmap record; and deferred removal of the space
+ *
+ * For simplicity, we'll use the worst-case intents size to determine
+ * the maximum number of deferred extents before we have to finish the
+ * whole chain. If we're trying to reap a btree larger than this size,
+ * a crash midway through reaping can result in leaked blocks.
+ */
+ const unsigned int t1 = cui + rui;
+ const unsigned int t2 = cui + rui + efi;
+ const unsigned int per_intent = max(t1, t2);
+
+ /*
+ * For each transaction in a reap chain, we must be able to take one
+ * step in the defer item chain, which should only consist of CUI, EFI,
+ * or RUI items.
+ */
+ const unsigned int f1 = xfs_calc_finish_rt_efi_reservation(mp, 1);
+ const unsigned int f2 = xfs_calc_finish_rt_rui_reservation(mp, 1);
+ const unsigned int f3 = xfs_calc_finish_rt_cui_reservation(mp, 1);
+ const unsigned int step_size = max3(f1, f2, f3);
+
+ /*
+ * The only buffer for the rt device is the rtgroup super, so we don't
+ * need to save space for buffer invalidations.
+ */
+ xreap_configure_limits(rs, step_size, per_intent, per_intent, 0);
+
+ trace_xreap_rgcow_limits(sc->tp, 0, 0, step_size, per_intent,
+ rs->max_deferred);
+}
+
+#define XREAP_RTGLOCK_ALL (XFS_RTGLOCK_BITMAP | \
+ XFS_RTGLOCK_RMAP | \
+ XFS_RTGLOCK_REFCOUNT)
+
+/*
+ * Break a rt file metadata extent into sub-extents by fate (crosslinked, not
+ * crosslinked), and dispose of each sub-extent separately. The extent must
+ * be aligned to a realtime extent.
+ */
+STATIC int
+xreap_rtmeta_extent(
+ uint64_t rtbno,
+ uint64_t len,
+ void *priv)
+{
+ struct xreap_state *rs = priv;
+ struct xfs_scrub *sc = rs->sc;
+ xfs_rgblock_t rgbno = xfs_rtb_to_rgbno(sc->mp, rtbno);
+ xfs_rgblock_t rgbno_next = rgbno + len;
+ int error = 0;
+
+ ASSERT(sc->ip != NULL);
+ ASSERT(!sc->sr.rtg);
+
+ /*
+ * We're reaping blocks after repairing file metadata, which means that
+ * we have to init the xchk_ag structure ourselves.
+ */
+ sc->sr.rtg = xfs_rtgroup_get(sc->mp, xfs_rtb_to_rgno(sc->mp, rtbno));
+ if (!sc->sr.rtg)
+ return -EFSCORRUPTED;
+
+ xfs_rtgroup_lock(sc->sr.rtg, XREAP_RTGLOCK_ALL);
+
+ while (rgbno < rgbno_next) {
+ xfs_extlen_t rglen;
+ bool crosslinked;
+
+ error = xreap_rgextent_select(rs, rgbno, rgbno_next,
+ &crosslinked, &rglen);
+ if (error)
+ goto out_unlock;
+
+ error = xreap_rgextent_iter(rs, rgbno, &rglen, crosslinked);
+ if (error)
+ goto out_unlock;
+
+ if (xreap_want_defer_finish(rs)) {
+ error = xfs_defer_finish(&sc->tp);
+ if (error)
+ goto out_unlock;
+ xreap_defer_finish_reset(rs);
+ } else if (xreap_want_binval_roll(rs)) {
+ error = xfs_trans_roll_inode(&sc->tp, sc->ip);
+ if (error)
+ goto out_unlock;
+ xreap_binval_reset(rs);
+ }
+
+ rgbno += rglen;
+ }
+
+out_unlock:
+ xfs_rtgroup_unlock(sc->sr.rtg, XREAP_RTGLOCK_ALL);
+ xfs_rtgroup_put(sc->sr.rtg);
+ sc->sr.rtg = NULL;
+ return error;
+}
+
+/*
+ * Dispose of every block of every rt metadata extent in the bitmap.
+ * Do not use this to dispose of the mappings in an ondisk inode fork.
+ */
+int
+xrep_reap_rtblocks(
+ struct xfs_scrub *sc,
+ struct xrtb_bitmap *bitmap,
+ const struct xfs_owner_info *oinfo)
+{
+ struct xreap_state rs = {
+ .sc = sc,
+ .oinfo = oinfo,
+ .resv = XFS_AG_RESV_NONE,
+ };
+ int error;
+
+ ASSERT(xfs_has_rmapbt(sc->mp));
+ ASSERT(sc->ip != NULL);
+ ASSERT(oinfo == &XFS_RMAP_OINFO_COW);
+
+ xreap_configure_rgcow_limits(&rs);
+ error = xrtb_bitmap_walk(bitmap, xreap_rtmeta_extent, &rs);
+ if (error)
+ return error;
+
+ if (xreap_is_dirty(&rs))
+ return xrep_defer_finish(sc);
+
+ return 0;
+}
+#endif /* CONFIG_XFS_RT */
+
+/*
+ * Dispose of every block of an old metadata btree that used to be rooted in a
+ * metadata directory file.
+ */
+int
+xrep_reap_metadir_fsblocks(
+ struct xfs_scrub *sc,
+ struct xfsb_bitmap *bitmap)
+{
+ /*
+ * Reap old metadir btree blocks with XFS_AG_RESV_NONE because the old
+ * blocks are no longer mapped by the inode, and inode metadata space
+ * reservations can only account freed space to the i_nblocks.
+ */
+ struct xfs_owner_info oinfo;
+ struct xreap_state rs = {
+ .sc = sc,
+ .oinfo = &oinfo,
+ .resv = XFS_AG_RESV_NONE,
+ };
+ int error;
+
+ ASSERT(xfs_has_rmapbt(sc->mp));
+ ASSERT(sc->ip != NULL);
+ ASSERT(xfs_is_metadir_inode(sc->ip));
+
+ xreap_configure_agextent_limits(&rs);
+ xfs_rmap_ino_bmbt_owner(&oinfo, sc->ip->i_ino, XFS_DATA_FORK);
+ error = xfsb_bitmap_walk(bitmap, xreap_fsmeta_extent, &rs);
+ if (error)
+ return error;
+
+ if (xreap_is_dirty(&rs)) {
+ error = xrep_defer_finish(sc);
+ if (error)
+ return error;
+ }
+
+ return xrep_reset_metafile_resv(sc);
+}
+
+/*
+ * Metadata files are not supposed to share blocks with anything else.
+ * If blocks are shared, we remove the reverse mapping (thus reducing the
+ * crosslink factor); if blocks are not shared, we also need to free them.
+ *
+ * This first step determines the longest subset of the passed-in imap
+ * (starting at its beginning) that is either crosslinked or not crosslinked.
+ * The blockcount will be adjust down as needed.
+ */
+STATIC int
+xreap_bmapi_select(
+ struct xreap_state *rs,
+ struct xfs_bmbt_irec *imap,
+ bool *crosslinked)
+{
+ struct xfs_owner_info oinfo;
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_btree_cur *cur;
+ xfs_filblks_t len = 1;
+ xfs_agblock_t bno;
+ xfs_agblock_t agbno;
+ xfs_agblock_t agbno_next;
+ int error;
+
+ agbno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock);
+ agbno_next = agbno + imap->br_blockcount;
+
+ cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
+ sc->sa.pag);
+
+ xfs_rmap_ino_owner(&oinfo, rs->ip->i_ino, rs->whichfork,
+ imap->br_startoff);
+ error = xfs_rmap_has_other_keys(cur, agbno, 1, &oinfo, crosslinked);
+ if (error)
+ goto out_cur;
+
+ bno = agbno + 1;
+ while (bno < agbno_next) {
+ bool also_crosslinked;
+
+ oinfo.oi_offset++;
+ error = xfs_rmap_has_other_keys(cur, bno, 1, &oinfo,
+ &also_crosslinked);
+ if (error)
+ goto out_cur;
+
+ if (also_crosslinked != *crosslinked)
+ break;
+
+ len++;
+ bno++;
+ }
+
+ imap->br_blockcount = len;
+ trace_xreap_bmapi_select(pag_group(sc->sa.pag), agbno, len,
+ *crosslinked);
+out_cur:
+ xfs_btree_del_cursor(cur, error);
+ return error;
+}
+
+/*
+ * Decide if this buffer can be joined to a transaction. This is true for most
+ * buffers, but there are two cases that we want to catch: large remote xattr
+ * value buffers are not logged and can overflow the buffer log item dirty
+ * bitmap size; and oversized cached buffers if things have really gone
+ * haywire.
+ */
+static inline bool
+xreap_buf_loggable(
+ const struct xfs_buf *bp)
+{
+ int i;
+
+ for (i = 0; i < bp->b_map_count; i++) {
+ int chunks;
+ int map_size;
+
+ chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
+ XFS_BLF_CHUNK);
+ map_size = DIV_ROUND_UP(chunks, NBWORD);
+ if (map_size > XFS_BLF_DATAMAP_SIZE)
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Invalidate any buffers for this file mapping. The @imap blockcount may be
+ * adjusted downward if we need to roll the transaction.
+ */
+STATIC int
+xreap_bmapi_binval(
+ struct xreap_state *rs,
+ struct xfs_bmbt_irec *imap)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_mount *mp = sc->mp;
+ struct xfs_perag *pag = sc->sa.pag;
+ int bmap_flags = xfs_bmapi_aflag(rs->whichfork);
+ xfs_fileoff_t off;
+ xfs_fileoff_t max_off;
+ xfs_extlen_t scan_blocks;
+ xfs_agblock_t bno;
+ xfs_agblock_t agbno;
+ xfs_agblock_t agbno_next;
+ int error;
+
+ /*
+ * Avoid invalidating AG headers and post-EOFS blocks because we never
+ * own those.
+ */
+ agbno = bno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock);
+ agbno_next = agbno + imap->br_blockcount;
+ if (!xfs_verify_agbno(pag, agbno) ||
+ !xfs_verify_agbno(pag, agbno_next - 1))
+ return 0;
+
+ /*
+ * Buffers for file blocks can span multiple contiguous mappings. This
+ * means that for each block in the mapping, there could exist an
+ * xfs_buf indexed by that block with any length up to the maximum
+ * buffer size (remote xattr values) or to the next hole in the fork.
+ * To set up our binval scan, first we need to figure out the location
+ * of the next hole.
+ */
+ off = imap->br_startoff + imap->br_blockcount;
+ max_off = off + xfs_attr3_max_rmt_blocks(mp);
+ while (off < max_off) {
+ struct xfs_bmbt_irec hmap;
+ int nhmaps = 1;
+
+ error = xfs_bmapi_read(rs->ip, off, max_off - off, &hmap,
+ &nhmaps, bmap_flags);
+ if (error)
+ return error;
+ if (nhmaps != 1 || hmap.br_startblock == DELAYSTARTBLOCK) {
+ ASSERT(0);
+ return -EFSCORRUPTED;
+ }
+
+ if (!xfs_bmap_is_real_extent(&hmap))
+ break;
+
+ off = hmap.br_startoff + hmap.br_blockcount;
+ }
+ scan_blocks = off - imap->br_startoff;
+
+ trace_xreap_bmapi_binval_scan(sc, imap, scan_blocks);
+
+ /*
+ * If there are incore buffers for these blocks, invalidate them. If
+ * we can't (try)lock the buffer we assume it's owned by someone else
+ * and leave it alone. The buffer cache cannot detect aliasing, so
+ * employ nested loops to detect incore buffers of any plausible size.
+ */
+ while (bno < agbno_next) {
+ struct xrep_bufscan scan = {
+ .daddr = xfs_agbno_to_daddr(pag, bno),
+ .max_sectors = xrep_bufscan_max_sectors(mp,
+ scan_blocks),
+ .daddr_step = XFS_FSB_TO_BB(mp, 1),
+ };
+ struct xfs_buf *bp;
+
+ while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) {
+ if (xreap_buf_loggable(bp)) {
+ xfs_trans_bjoin(sc->tp, bp);
+ xfs_trans_binval(sc->tp, bp);
+ } else {
+ xfs_buf_stale(bp);
+ xfs_buf_relse(bp);
+ }
+
+ /*
+ * Stop invalidating if we've hit the limit; we should
+ * still have enough reservation left to free however
+ * far we've gotten.
+ */
+ if (!xreap_inc_binval(rs)) {
+ imap->br_blockcount = agbno_next - bno;
+ goto out;
+ }
+ }
+
+ bno++;
+ scan_blocks--;
+ }
+
+out:
+ trace_xreap_bmapi_binval(pag_group(sc->sa.pag), agbno,
+ imap->br_blockcount);
+ return 0;
+}
+
+/*
+ * Dispose of as much of the beginning of this file fork mapping as possible.
+ * The number of blocks disposed of is returned in @imap->br_blockcount.
+ */
+STATIC int
+xrep_reap_bmapi_iter(
+ struct xreap_state *rs,
+ struct xfs_bmbt_irec *imap,
+ bool crosslinked)
+{
+ struct xfs_scrub *sc = rs->sc;
+ int error;
+
+ if (crosslinked) {
+ /*
+ * If there are other rmappings, this block is cross linked and
+ * must not be freed. Remove the reverse mapping, leave the
+ * buffer cache in its possibly confused state, and move on.
+ * We don't want to risk discarding valid data buffers from
+ * anybody else who thinks they own the block, even though that
+ * runs the risk of stale buffer warnings in the future.
+ */
+ trace_xreap_dispose_unmap_extent(pag_group(sc->sa.pag),
+ XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock),
+ imap->br_blockcount);
+
+ /*
+ * t0: Schedule removal of the mapping from the fork. We use
+ * deferred log intents in this function to control the exact
+ * sequence of metadata updates.
+ */
+ xfs_bmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap);
+ xfs_trans_mod_dquot_byino(sc->tp, rs->ip, XFS_TRANS_DQ_BCOUNT,
+ -(int64_t)imap->br_blockcount);
+ xfs_rmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap);
+ return 0;
+ }
+
+ /*
+ * If the block is not crosslinked, we can invalidate all the incore
+ * buffers for the extent, and then free the extent. This is a bit of
+ * a mess since we don't detect discontiguous buffers that are indexed
+ * by a block starting before the first block of the extent but overlap
+ * anyway.
+ */
+ trace_xreap_dispose_free_extent(pag_group(sc->sa.pag),
+ XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock),
+ imap->br_blockcount);
+
+ /*
+ * Invalidate as many buffers as we can, starting at the beginning of
+ * this mapping. If this function sets blockcount to zero, the
+ * transaction is full of logged buffer invalidations, so we need to
+ * return early so that we can roll and retry.
+ */
+ error = xreap_bmapi_binval(rs, imap);
+ if (error || imap->br_blockcount == 0)
+ return error;
+
+ /*
+ * t1: Schedule removal of the mapping from the fork. We use deferred
+ * work in this function to control the exact sequence of metadata
+ * updates.
+ */
+ xfs_bmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap);
+ xfs_trans_mod_dquot_byino(sc->tp, rs->ip, XFS_TRANS_DQ_BCOUNT,
+ -(int64_t)imap->br_blockcount);
+ return xfs_free_extent_later(sc->tp, imap->br_startblock,
+ imap->br_blockcount, NULL, XFS_AG_RESV_NONE,
+ XFS_FREE_EXTENT_SKIP_DISCARD);
+}
+
+/* Compute the maximum mapcount of a file buffer. */
+static unsigned int
+xreap_bmapi_binval_mapcount(
+ struct xfs_scrub *sc)
+{
+ /* directory blocks can span multiple fsblocks and be discontiguous */
+ if (sc->sm->sm_type == XFS_SCRUB_TYPE_DIR)
+ return sc->mp->m_dir_geo->fsbcount;
+
+ /* all other file xattr/symlink blocks must be contiguous */
+ return 1;
+}
+
+/* Compute the maximum block size of a file buffer. */
+static unsigned int
+xreap_bmapi_binval_blocksize(
+ struct xfs_scrub *sc)
+{
+ switch (sc->sm->sm_type) {
+ case XFS_SCRUB_TYPE_DIR:
+ return sc->mp->m_dir_geo->blksize;
+ case XFS_SCRUB_TYPE_XATTR:
+ case XFS_SCRUB_TYPE_PARENT:
+ /*
+ * The xattr structure itself consists of single fsblocks, but
+ * there could be remote xattr blocks to invalidate.
+ */
+ return XFS_XATTR_SIZE_MAX;
+ }
+
+ /* everything else is a single block */
+ return sc->mp->m_sb.sb_blocksize;
+}
+
+/*
+ * Compute the maximum number of buffer invalidations that we can do while
+ * reaping a single extent from a file fork.
+ */
+STATIC void
+xreap_configure_bmapi_limits(
+ struct xreap_state *rs)
+{
+ struct xfs_scrub *sc = rs->sc;
+ struct xfs_mount *mp = sc->mp;
+
+ /* overhead of invalidating a buffer */
+ const unsigned int per_binval =
+ xfs_buf_inval_log_space(xreap_bmapi_binval_mapcount(sc),
+ xreap_bmapi_binval_blocksize(sc));
+
+ /*
+ * In the worst case, relogging an intent item causes both an intent
+ * item and a done item to be attached to a transaction for each extent
+ * that we'd like to process.
+ */
+ const unsigned int efi = xfs_efi_log_space(1) +
+ xfs_efd_log_space(1);
+ const unsigned int rui = xfs_rui_log_space(1) +
+ xfs_rud_log_space();
+ const unsigned int bui = xfs_bui_log_space(1) +
+ xfs_bud_log_space();
+
+ /*
+ * t1: Unmapping crosslinked file data blocks: one bmap deletion,
+ * possibly an EFI for underfilled bmbt blocks, and an rmap deletion.
+ *
+ * t2: Freeing freeing file data blocks: one bmap deletion, possibly an
+ * EFI for underfilled bmbt blocks, and another EFI for the space
+ * itself.
+ */
+ const unsigned int t1 = (bui + efi) + rui;
+ const unsigned int t2 = (bui + efi) + efi;
+ const unsigned int per_intent = max(t1, t2);
+
+ /*
+ * For each transaction in a reap chain, we must be able to take one
+ * step in the defer item chain, which should only consist of CUI, EFI,
+ * or RUI items.
+ */
+ const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1);
+ const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1);
+ const unsigned int f3 = xfs_calc_finish_bui_reservation(mp, 1);
+ const unsigned int step_size = max3(f1, f2, f3);
+
+ /*
+ * Each call to xreap_ifork_extent starts with a clean transaction and
+ * operates on a single mapping by creating a chain of log intent items
+ * for that mapping. We need to leave enough reservation in the
+ * transaction to log btree buffer and inode updates for each step in
+ * the chain, and to relog the log intents.
+ */
+ const unsigned int per_extent_res = per_intent + step_size;
+
+ xreap_configure_limits(rs, per_extent_res, per_binval, 0, per_binval);
+
+ trace_xreap_bmapi_limits(sc->tp, per_binval, rs->max_binval,
+ step_size, per_intent, 1);
+}
+
+/*
+ * Dispose of as much of this file extent as we can. Upon successful return,
+ * the imap will reflect the mapping that was removed from the fork.
+ */
+STATIC int
+xreap_ifork_extent(
+ struct xreap_state *rs,
+ struct xfs_bmbt_irec *imap)
+{
+ struct xfs_scrub *sc = rs->sc;
+ xfs_agnumber_t agno;
+ bool crosslinked;
+ int error;
+
+ ASSERT(sc->sa.pag == NULL);
+
+ trace_xreap_ifork_extent(sc, rs->ip, rs->whichfork, imap);
+
+ agno = XFS_FSB_TO_AGNO(sc->mp, imap->br_startblock);
+ sc->sa.pag = xfs_perag_get(sc->mp, agno);
+ if (!sc->sa.pag)
+ return -EFSCORRUPTED;
+
+ error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp);
+ if (error)
+ goto out_pag;
+
+ /*
+ * Decide the fate of the blocks at the beginning of the mapping, then
+ * update the mapping to use it with the unmap calls.
+ */
+ error = xreap_bmapi_select(rs, imap, &crosslinked);
+ if (error)
+ goto out_agf;
+
+ error = xrep_reap_bmapi_iter(rs, imap, crosslinked);
+ if (error)
+ goto out_agf;
+
+out_agf:
+ xfs_trans_brelse(sc->tp, sc->sa.agf_bp);
+ sc->sa.agf_bp = NULL;
+out_pag:
+ xfs_perag_put(sc->sa.pag);
+ sc->sa.pag = NULL;
+ return error;
+}
+
+/*
+ * Dispose of each block mapped to the given fork of the given file. Callers
+ * must hold ILOCK_EXCL, and ip can only be sc->ip or sc->tempip. The fork
+ * must not have any delalloc reservations.
+ */
+int
+xrep_reap_ifork(
+ struct xfs_scrub *sc,
+ struct xfs_inode *ip,
+ int whichfork)
+{
+ struct xreap_state rs = {
+ .sc = sc,
+ .ip = ip,
+ .whichfork = whichfork,
+ };
+ xfs_fileoff_t off = 0;
+ int bmap_flags = xfs_bmapi_aflag(whichfork);
+ int error;
+
+ ASSERT(xfs_has_rmapbt(sc->mp));
+ ASSERT(ip == sc->ip || ip == sc->tempip);
+ ASSERT(whichfork == XFS_ATTR_FORK || !XFS_IS_REALTIME_INODE(ip));
+
+ xreap_configure_bmapi_limits(&rs);
+ while (off < XFS_MAX_FILEOFF) {
+ struct xfs_bmbt_irec imap;
+ int nimaps = 1;
+
+ /* Read the next extent, skip past holes and delalloc. */
+ error = xfs_bmapi_read(ip, off, XFS_MAX_FILEOFF - off, &imap,
+ &nimaps, bmap_flags);
+ if (error)
+ return error;
+ if (nimaps != 1 || imap.br_startblock == DELAYSTARTBLOCK) {
+ ASSERT(0);
+ return -EFSCORRUPTED;
+ }
+
+ /*
+ * If this is a real space mapping, reap as much of it as we
+ * can in a single transaction.
+ */
+ if (xfs_bmap_is_real_extent(&imap)) {
+ error = xreap_ifork_extent(&rs, &imap);
+ if (error)
+ return error;
+
+ error = xfs_defer_finish(&sc->tp);
+ if (error)
+ return error;
+ xreap_defer_finish_reset(&rs);
+ }
+
+ off = imap.br_startoff + imap.br_blockcount;
+ }
+
+ return 0;
+}