summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_icache.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_icache.c')
-rw-r--r--fs/xfs/xfs_icache.c2694
1 files changed, 1848 insertions, 846 deletions
diff --git a/fs/xfs/xfs_icache.c b/fs/xfs/xfs_icache.c
index 3f90e1ceb8d6..23a920437fe4 100644
--- a/fs/xfs/xfs_icache.c
+++ b/fs/xfs/xfs_icache.c
@@ -1,53 +1,89 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it would be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
-#include "xfs_types.h"
-#include "xfs_log.h"
-#include "xfs_log_priv.h"
-#include "xfs_inum.h"
-#include "xfs_trans.h"
-#include "xfs_trans_priv.h"
-#include "xfs_sb.h"
-#include "xfs_ag.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
#include "xfs_mount.h"
-#include "xfs_bmap_btree.h"
#include "xfs_inode.h"
-#include "xfs_dinode.h"
-#include "xfs_error.h"
-#include "xfs_filestream.h"
-#include "xfs_vnodeops.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
#include "xfs_inode_item.h"
#include "xfs_quota.h"
#include "xfs_trace.h"
-#include "xfs_fsops.h"
#include "xfs_icache.h"
+#include "xfs_bmap_util.h"
+#include "xfs_dquot_item.h"
+#include "xfs_dquot.h"
+#include "xfs_reflink.h"
+#include "xfs_ialloc.h"
+#include "xfs_ag.h"
+#include "xfs_log_priv.h"
+#include "xfs_health.h"
+#include "xfs_da_format.h"
+#include "xfs_dir2.h"
+#include "xfs_metafile.h"
+
+#include <linux/iversion.h>
+
+/* Radix tree tags for incore inode tree. */
-#include <linux/kthread.h>
-#include <linux/freezer.h>
+/* inode is to be reclaimed */
+#define XFS_ICI_RECLAIM_TAG 0
+/* Inode has speculative preallocations (posteof or cow) to clean. */
+#define XFS_ICI_BLOCKGC_TAG 1
-STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
- struct xfs_perag *pag, struct xfs_inode *ip);
+/*
+ * The goal for walking incore inodes. These can correspond with incore inode
+ * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
+ */
+enum xfs_icwalk_goal {
+ /* Goals directly associated with tagged inodes. */
+ XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
+ XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
+};
+
+static int xfs_icwalk(struct xfs_mount *mp,
+ enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
+static int xfs_icwalk_ag(struct xfs_perag *pag,
+ enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
+
+/*
+ * Private inode cache walk flags for struct xfs_icwalk. Must not
+ * coincide with XFS_ICWALK_FLAGS_VALID.
+ */
+
+/* Stop scanning after icw_scan_limit inodes. */
+#define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
+
+#define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
+#define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
+
+#define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
+ XFS_ICWALK_FLAG_RECLAIM_SICK | \
+ XFS_ICWALK_FLAG_UNION)
+
+/* Marks for the perag xarray */
+#define XFS_PERAG_RECLAIM_MARK XA_MARK_0
+#define XFS_PERAG_BLOCKGC_MARK XA_MARK_1
+
+static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
+{
+ if (tag == XFS_ICI_RECLAIM_TAG)
+ return XFS_PERAG_RECLAIM_MARK;
+ ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
+ return XFS_PERAG_BLOCKGC_MARK;
+}
/*
* Allocate and initialise an xfs_inode.
*/
-STATIC struct xfs_inode *
+struct xfs_inode *
xfs_inode_alloc(
struct xfs_mount *mp,
xfs_ino_t ino)
@@ -55,34 +91,45 @@ xfs_inode_alloc(
struct xfs_inode *ip;
/*
- * if this didn't occur in transactions, we could use
- * KM_MAYFAIL and return NULL here on ENOMEM. Set the
- * code up to do this anyway.
+ * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
+ * and return NULL here on ENOMEM.
*/
- ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
- if (!ip)
- return NULL;
+ ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
+
if (inode_init_always(mp->m_super, VFS_I(ip))) {
- kmem_zone_free(xfs_inode_zone, ip);
+ kmem_cache_free(xfs_inode_cache, ip);
return NULL;
}
+ /* VFS doesn't initialise i_mode! */
+ VFS_I(ip)->i_mode = 0;
+ mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
+ M_IGEO(mp)->min_folio_order);
+
+ XFS_STATS_INC(mp, vn_active);
ASSERT(atomic_read(&ip->i_pincount) == 0);
- ASSERT(!spin_is_locked(&ip->i_flags_lock));
- ASSERT(!xfs_isiflocked(ip));
ASSERT(ip->i_ino == 0);
- mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
-
/* initialise the xfs inode */
ip->i_ino = ino;
ip->i_mount = mp;
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
- ip->i_afp = NULL;
- memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
+ ip->i_cowfp = NULL;
+ memset(&ip->i_af, 0, sizeof(ip->i_af));
+ ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
+ memset(&ip->i_df, 0, sizeof(ip->i_df));
ip->i_flags = 0;
ip->i_delayed_blks = 0;
- memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
+ ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
+ ip->i_nblocks = 0;
+ ip->i_forkoff = 0;
+ ip->i_sick = 0;
+ ip->i_checked = 0;
+ INIT_WORK(&ip->i_ioend_work, xfs_end_io);
+ INIT_LIST_HEAD(&ip->i_ioend_list);
+ spin_lock_init(&ip->i_ioend_lock);
+ ip->i_next_unlinked = NULLAGINO;
+ ip->i_prev_unlinked = 0;
return ip;
}
@@ -94,34 +141,47 @@ xfs_inode_free_callback(
struct inode *inode = container_of(head, struct inode, i_rcu);
struct xfs_inode *ip = XFS_I(inode);
- kmem_zone_free(xfs_inode_zone, ip);
-}
-
-STATIC void
-xfs_inode_free(
- struct xfs_inode *ip)
-{
- switch (ip->i_d.di_mode & S_IFMT) {
+ switch (VFS_I(ip)->i_mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
case S_IFLNK:
- xfs_idestroy_fork(ip, XFS_DATA_FORK);
+ xfs_idestroy_fork(&ip->i_df);
break;
}
- if (ip->i_afp)
- xfs_idestroy_fork(ip, XFS_ATTR_FORK);
+ xfs_ifork_zap_attr(ip);
+ if (ip->i_cowfp) {
+ xfs_idestroy_fork(ip->i_cowfp);
+ kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
+ }
if (ip->i_itemp) {
- ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
+ ASSERT(!test_bit(XFS_LI_IN_AIL,
+ &ip->i_itemp->ili_item.li_flags));
xfs_inode_item_destroy(ip);
ip->i_itemp = NULL;
}
+ kmem_cache_free(xfs_inode_cache, ip);
+}
+
+static void
+__xfs_inode_free(
+ struct xfs_inode *ip)
+{
/* asserts to verify all state is correct here */
ASSERT(atomic_read(&ip->i_pincount) == 0);
- ASSERT(!spin_is_locked(&ip->i_flags_lock));
- ASSERT(!xfs_isiflocked(ip));
+ ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
+ XFS_STATS_DEC(ip->i_mount, vn_active);
+
+ call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
+}
+
+void
+xfs_inode_free(
+ struct xfs_inode *ip)
+{
+ ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
/*
* Because we use RCU freeing we need to ensure the inode always
@@ -134,7 +194,301 @@ xfs_inode_free(
ip->i_ino = 0;
spin_unlock(&ip->i_flags_lock);
- call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
+ __xfs_inode_free(ip);
+}
+
+/*
+ * Queue background inode reclaim work if there are reclaimable inodes and there
+ * isn't reclaim work already scheduled or in progress.
+ */
+static void
+xfs_reclaim_work_queue(
+ struct xfs_mount *mp)
+{
+
+ rcu_read_lock();
+ if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
+ queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
+ msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
+ }
+ rcu_read_unlock();
+}
+
+/*
+ * Background scanning to trim preallocated space. This is queued based on the
+ * 'speculative_prealloc_lifetime' tunable (5m by default).
+ */
+static inline void
+xfs_blockgc_queue(
+ struct xfs_perag *pag)
+{
+ struct xfs_mount *mp = pag_mount(pag);
+
+ if (!xfs_is_blockgc_enabled(mp))
+ return;
+
+ rcu_read_lock();
+ if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
+ queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work,
+ secs_to_jiffies(xfs_blockgc_secs));
+ rcu_read_unlock();
+}
+
+/* Set a tag on both the AG incore inode tree and the AG radix tree. */
+static void
+xfs_perag_set_inode_tag(
+ struct xfs_perag *pag,
+ xfs_agino_t agino,
+ unsigned int tag)
+{
+ bool was_tagged;
+
+ lockdep_assert_held(&pag->pag_ici_lock);
+
+ was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
+ radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
+
+ if (tag == XFS_ICI_RECLAIM_TAG)
+ pag->pag_ici_reclaimable++;
+
+ if (was_tagged)
+ return;
+
+ /* propagate the tag up into the pag xarray tree */
+ xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag));
+
+ /* start background work */
+ switch (tag) {
+ case XFS_ICI_RECLAIM_TAG:
+ xfs_reclaim_work_queue(pag_mount(pag));
+ break;
+ case XFS_ICI_BLOCKGC_TAG:
+ xfs_blockgc_queue(pag);
+ break;
+ }
+
+ trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
+}
+
+/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
+static void
+xfs_perag_clear_inode_tag(
+ struct xfs_perag *pag,
+ xfs_agino_t agino,
+ unsigned int tag)
+{
+ lockdep_assert_held(&pag->pag_ici_lock);
+
+ /*
+ * Reclaim can signal (with a null agino) that it cleared its own tag
+ * by removing the inode from the radix tree.
+ */
+ if (agino != NULLAGINO)
+ radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
+ else
+ ASSERT(tag == XFS_ICI_RECLAIM_TAG);
+
+ if (tag == XFS_ICI_RECLAIM_TAG)
+ pag->pag_ici_reclaimable--;
+
+ if (radix_tree_tagged(&pag->pag_ici_root, tag))
+ return;
+
+ /* clear the tag from the pag xarray */
+ xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag));
+ trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
+}
+
+/*
+ * Find the next AG after @pag, or the first AG if @pag is NULL.
+ */
+static struct xfs_perag *
+xfs_perag_grab_next_tag(
+ struct xfs_mount *mp,
+ struct xfs_perag *pag,
+ int tag)
+{
+ return to_perag(xfs_group_grab_next_mark(mp,
+ pag ? pag_group(pag) : NULL,
+ ici_tag_to_mark(tag), XG_TYPE_AG));
+}
+
+/*
+ * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
+ * part of the structure. This is made more complex by the fact we store
+ * information about the on-disk values in the VFS inode and so we can't just
+ * overwrite the values unconditionally. Hence we save the parameters we
+ * need to retain across reinitialisation, and rewrite them into the VFS inode
+ * after reinitialisation even if it fails.
+ */
+static int
+xfs_reinit_inode(
+ struct xfs_mount *mp,
+ struct inode *inode)
+{
+ int error;
+ uint32_t nlink = inode->i_nlink;
+ uint32_t generation = inode->i_generation;
+ uint64_t version = inode_peek_iversion(inode);
+ umode_t mode = inode->i_mode;
+ dev_t dev = inode->i_rdev;
+ kuid_t uid = inode->i_uid;
+ kgid_t gid = inode->i_gid;
+ unsigned long state = inode_state_read_once(inode);
+
+ error = inode_init_always(mp->m_super, inode);
+
+ set_nlink(inode, nlink);
+ inode->i_generation = generation;
+ inode_set_iversion_queried(inode, version);
+ inode->i_mode = mode;
+ inode->i_rdev = dev;
+ inode->i_uid = uid;
+ inode->i_gid = gid;
+ inode_state_assign_raw(inode, state);
+ mapping_set_folio_min_order(inode->i_mapping,
+ M_IGEO(mp)->min_folio_order);
+ return error;
+}
+
+/*
+ * Carefully nudge an inode whose VFS state has been torn down back into a
+ * usable state. Drops the i_flags_lock and the rcu read lock.
+ */
+static int
+xfs_iget_recycle(
+ struct xfs_perag *pag,
+ struct xfs_inode *ip)
+{
+ struct xfs_mount *mp = ip->i_mount;
+ struct inode *inode = VFS_I(ip);
+ int error;
+
+ trace_xfs_iget_recycle(ip);
+
+ ASSERT(!rwsem_is_locked(&inode->i_rwsem));
+ error = xfs_reinit_inode(mp, inode);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ if (error) {
+ /*
+ * Re-initializing the inode failed, and we are in deep
+ * trouble. Try to re-add it to the reclaim list.
+ */
+ rcu_read_lock();
+ spin_lock(&ip->i_flags_lock);
+ ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
+ ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
+ spin_unlock(&ip->i_flags_lock);
+ rcu_read_unlock();
+
+ trace_xfs_iget_recycle_fail(ip);
+ return error;
+ }
+
+ spin_lock(&pag->pag_ici_lock);
+ spin_lock(&ip->i_flags_lock);
+
+ /*
+ * Clear the per-lifetime state in the inode as we are now effectively
+ * a new inode and need to return to the initial state before reuse
+ * occurs.
+ */
+ ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
+ ip->i_flags |= XFS_INEW;
+ xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
+ XFS_ICI_RECLAIM_TAG);
+ inode_state_assign_raw(inode, I_NEW);
+ spin_unlock(&ip->i_flags_lock);
+ spin_unlock(&pag->pag_ici_lock);
+
+ return 0;
+}
+
+/*
+ * If we are allocating a new inode, then check what was returned is
+ * actually a free, empty inode. If we are not allocating an inode,
+ * then check we didn't find a free inode.
+ *
+ * Returns:
+ * 0 if the inode free state matches the lookup context
+ * -ENOENT if the inode is free and we are not allocating
+ * -EFSCORRUPTED if there is any state mismatch at all
+ */
+static int
+xfs_iget_check_free_state(
+ struct xfs_inode *ip,
+ int flags)
+{
+ if (flags & XFS_IGET_CREATE) {
+ /* should be a free inode */
+ if (VFS_I(ip)->i_mode != 0) {
+ xfs_warn(ip->i_mount,
+"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
+ ip->i_ino, VFS_I(ip)->i_mode);
+ xfs_agno_mark_sick(ip->i_mount,
+ XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
+ XFS_SICK_AG_INOBT);
+ return -EFSCORRUPTED;
+ }
+
+ if (ip->i_nblocks != 0) {
+ xfs_warn(ip->i_mount,
+"Corruption detected! Free inode 0x%llx has blocks allocated!",
+ ip->i_ino);
+ xfs_agno_mark_sick(ip->i_mount,
+ XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
+ XFS_SICK_AG_INOBT);
+ return -EFSCORRUPTED;
+ }
+ return 0;
+ }
+
+ /* should be an allocated inode */
+ if (VFS_I(ip)->i_mode == 0)
+ return -ENOENT;
+
+ return 0;
+}
+
+/* Make all pending inactivation work start immediately. */
+static bool
+xfs_inodegc_queue_all(
+ struct xfs_mount *mp)
+{
+ struct xfs_inodegc *gc;
+ int cpu;
+ bool ret = false;
+
+ for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
+ gc = per_cpu_ptr(mp->m_inodegc, cpu);
+ if (!llist_empty(&gc->list)) {
+ mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
+ ret = true;
+ }
+ }
+
+ return ret;
+}
+
+/* Wait for all queued work and collect errors */
+static int
+xfs_inodegc_wait_all(
+ struct xfs_mount *mp)
+{
+ int cpu;
+ int error = 0;
+
+ flush_workqueue(mp->m_inodegc_wq);
+ for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
+ struct xfs_inodegc *gc;
+
+ gc = per_cpu_ptr(mp->m_inodegc, cpu);
+ if (gc->error && !error)
+ error = gc->error;
+ gc->error = 0;
+ }
+
+ return error;
}
/*
@@ -160,97 +514,73 @@ xfs_iget_cache_hit(
* will not match, so check for that, too.
*/
spin_lock(&ip->i_flags_lock);
- if (ip->i_ino != ino) {
- trace_xfs_iget_skip(ip);
- XFS_STATS_INC(xs_ig_frecycle);
- error = EAGAIN;
- goto out_error;
- }
-
+ if (ip->i_ino != ino)
+ goto out_skip;
/*
* If we are racing with another cache hit that is currently
* instantiating this inode or currently recycling it out of
- * reclaimabe state, wait for the initialisation to complete
+ * reclaimable state, wait for the initialisation to complete
* before continuing.
*
+ * If we're racing with the inactivation worker we also want to wait.
+ * If we're creating a new file, it's possible that the worker
+ * previously marked the inode as free on disk but hasn't finished
+ * updating the incore state yet. The AGI buffer will be dirty and
+ * locked to the icreate transaction, so a synchronous push of the
+ * inodegc workers would result in deadlock. For a regular iget, the
+ * worker is running already, so we might as well wait.
+ *
* XXX(hch): eventually we should do something equivalent to
* wait_on_inode to wait for these flags to be cleared
* instead of polling for it.
*/
- if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
- trace_xfs_iget_skip(ip);
- XFS_STATS_INC(xs_ig_frecycle);
- error = EAGAIN;
- goto out_error;
+ if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
+ goto out_skip;
+
+ if (ip->i_flags & XFS_NEED_INACTIVE) {
+ /* Unlinked inodes cannot be re-grabbed. */
+ if (VFS_I(ip)->i_nlink == 0) {
+ error = -ENOENT;
+ goto out_error;
+ }
+ goto out_inodegc_flush;
}
/*
- * If lookup is racing with unlink return an error immediately.
+ * Check the inode free state is valid. This also detects lookup
+ * racing with unlinks.
*/
- if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
- error = ENOENT;
+ error = xfs_iget_check_free_state(ip, flags);
+ if (error)
goto out_error;
- }
- /*
- * If IRECLAIMABLE is set, we've torn down the VFS inode already.
- * Need to carefully get it back into useable state.
- */
- if (ip->i_flags & XFS_IRECLAIMABLE) {
- trace_xfs_iget_reclaim(ip);
+ /* Skip inodes that have no vfs state. */
+ if ((flags & XFS_IGET_INCORE) &&
+ (ip->i_flags & XFS_IRECLAIMABLE))
+ goto out_skip;
+ /* The inode fits the selection criteria; process it. */
+ if (ip->i_flags & XFS_IRECLAIMABLE) {
/*
- * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
- * from stomping over us while we recycle the inode. We can't
- * clear the radix tree reclaimable tag yet as it requires
- * pag_ici_lock to be held exclusive.
+ * We need to make it look like the inode is being reclaimed to
+ * prevent the actual reclaim workers from stomping over us
+ * while we recycle the inode. We can't clear the radix tree
+ * tag yet as it requires pag_ici_lock to be held exclusive.
*/
+ if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
+ goto out_skip;
ip->i_flags |= XFS_IRECLAIM;
-
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
- error = -inode_init_always(mp->m_super, inode);
- if (error) {
- /*
- * Re-initializing the inode failed, and we are in deep
- * trouble. Try to re-add it to the reclaim list.
- */
- rcu_read_lock();
- spin_lock(&ip->i_flags_lock);
-
- ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
- ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
- trace_xfs_iget_reclaim_fail(ip);
- goto out_error;
- }
-
- spin_lock(&pag->pag_ici_lock);
- spin_lock(&ip->i_flags_lock);
-
- /*
- * Clear the per-lifetime state in the inode as we are now
- * effectively a new inode and need to return to the initial
- * state before reuse occurs.
- */
- ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
- ip->i_flags |= XFS_INEW;
- __xfs_inode_clear_reclaim_tag(mp, pag, ip);
- inode->i_state = I_NEW;
-
- ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
- mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
-
- spin_unlock(&ip->i_flags_lock);
- spin_unlock(&pag->pag_ici_lock);
+ error = xfs_iget_recycle(pag, ip);
+ if (error)
+ return error;
} else {
/* If the VFS inode is being torn down, pause and try again. */
- if (!igrab(inode)) {
- trace_xfs_iget_skip(ip);
- error = EAGAIN;
- goto out_error;
- }
+ if (!igrab(inode))
+ goto out_skip;
/* We've got a live one. */
spin_unlock(&ip->i_flags_lock);
@@ -261,17 +591,32 @@ xfs_iget_cache_hit(
if (lock_flags != 0)
xfs_ilock(ip, lock_flags);
- xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
- XFS_STATS_INC(xs_ig_found);
+ if (!(flags & XFS_IGET_INCORE))
+ xfs_iflags_clear(ip, XFS_ISTALE);
+ XFS_STATS_INC(mp, xs_ig_found);
return 0;
+out_skip:
+ trace_xfs_iget_skip(ip);
+ XFS_STATS_INC(mp, xs_ig_frecycle);
+ error = -EAGAIN;
out_error:
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
return error;
-}
+out_inodegc_flush:
+ spin_unlock(&ip->i_flags_lock);
+ rcu_read_unlock();
+ /*
+ * Do not wait for the workers, because the caller could hold an AGI
+ * buffer lock. We're just going to sleep in a loop anyway.
+ */
+ if (xfs_is_inodegc_enabled(mp))
+ xfs_inodegc_queue_all(mp);
+ return -EAGAIN;
+}
static int
xfs_iget_cache_miss(
@@ -286,31 +631,62 @@ xfs_iget_cache_miss(
struct xfs_inode *ip;
int error;
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
- int iflags;
ip = xfs_inode_alloc(mp, ino);
if (!ip)
- return ENOMEM;
+ return -ENOMEM;
- error = xfs_iread(mp, tp, ip, flags);
+ error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
if (error)
goto out_destroy;
+ /*
+ * For version 5 superblocks, if we are initialising a new inode, we
+ * simply build the new inode core with a random generation number.
+ *
+ * For version 4 (and older) superblocks, log recovery is dependent on
+ * the i_flushiter field being initialised from the current on-disk
+ * value and hence we must also read the inode off disk even when
+ * initializing new inodes.
+ */
+ if (xfs_has_v3inodes(mp) && (flags & XFS_IGET_CREATE)) {
+ VFS_I(ip)->i_generation = get_random_u32();
+ } else {
+ struct xfs_buf *bp;
+
+ error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
+ if (error)
+ goto out_destroy;
+
+ error = xfs_inode_from_disk(ip,
+ xfs_buf_offset(bp, ip->i_imap.im_boffset));
+ if (!error)
+ xfs_buf_set_ref(bp, XFS_INO_REF);
+ else
+ xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
+ xfs_trans_brelse(tp, bp);
+
+ if (error)
+ goto out_destroy;
+ }
+
trace_xfs_iget_miss(ip);
- if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
- error = ENOENT;
+ /*
+ * Check the inode free state is valid. This also detects lookup
+ * racing with unlinks.
+ */
+ error = xfs_iget_check_free_state(ip, flags);
+ if (error)
goto out_destroy;
- }
/*
* Preload the radix tree so we can insert safely under the
* write spinlock. Note that we cannot sleep inside the preload
- * region. Since we can be called from transaction context, don't
- * recurse into the file system.
+ * region.
*/
- if (radix_tree_preload(GFP_NOFS)) {
- error = EAGAIN;
+ if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
+ error = -EAGAIN;
goto out_destroy;
}
@@ -332,21 +708,20 @@ xfs_iget_cache_miss(
* memory barrier that ensures this detection works correctly at lookup
* time.
*/
- iflags = XFS_INEW;
if (flags & XFS_IGET_DONTCACHE)
- iflags |= XFS_IDONTCACHE;
+ d_mark_dontcache(VFS_I(ip));
ip->i_udquot = NULL;
ip->i_gdquot = NULL;
ip->i_pdquot = NULL;
- xfs_iflags_set(ip, iflags);
+ xfs_iflags_set(ip, XFS_INEW);
/* insert the new inode */
spin_lock(&pag->pag_ici_lock);
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
if (unlikely(error)) {
WARN_ON(error != -EEXIST);
- XFS_STATS_INC(xs_ig_dup);
- error = EAGAIN;
+ XFS_STATS_INC(mp, xs_ig_dup);
+ error = -EAGAIN;
goto out_preload_end;
}
spin_unlock(&pag->pag_ici_lock);
@@ -367,53 +742,38 @@ out_destroy:
}
/*
- * Look up an inode by number in the given file system.
- * The inode is looked up in the cache held in each AG.
- * If the inode is found in the cache, initialise the vfs inode
- * if necessary.
+ * Look up an inode by number in the given file system. The inode is looked up
+ * in the cache held in each AG. If the inode is found in the cache, initialise
+ * the vfs inode if necessary.
*
- * If it is not in core, read it in from the file system's device,
- * add it to the cache and initialise the vfs inode.
+ * If it is not in core, read it in from the file system's device, add it to the
+ * cache and initialise the vfs inode.
*
* The inode is locked according to the value of the lock_flags parameter.
- * This flag parameter indicates how and if the inode's IO lock and inode lock
- * should be taken.
- *
- * mp -- the mount point structure for the current file system. It points
- * to the inode hash table.
- * tp -- a pointer to the current transaction if there is one. This is
- * simply passed through to the xfs_iread() call.
- * ino -- the number of the inode desired. This is the unique identifier
- * within the file system for the inode being requested.
- * lock_flags -- flags indicating how to lock the inode. See the comment
- * for xfs_ilock() for a list of valid values.
+ * Inode lookup is only done during metadata operations and not as part of the
+ * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
*/
int
xfs_iget(
- xfs_mount_t *mp,
- xfs_trans_t *tp,
- xfs_ino_t ino,
- uint flags,
- uint lock_flags,
- xfs_inode_t **ipp)
-{
- xfs_inode_t *ip;
- int error;
- xfs_perag_t *pag;
- xfs_agino_t agino;
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ xfs_ino_t ino,
+ uint flags,
+ uint lock_flags,
+ struct xfs_inode **ipp)
+{
+ struct xfs_inode *ip;
+ struct xfs_perag *pag;
+ xfs_agino_t agino;
+ int error;
- /*
- * xfs_reclaim_inode() uses the ILOCK to ensure an inode
- * doesn't get freed while it's being referenced during a
- * radix tree traversal here. It assumes this function
- * aqcuires only the ILOCK (and therefore it has no need to
- * involve the IOLOCK in this synchronization).
- */
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
/* reject inode numbers outside existing AGs */
- if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
- return EINVAL;
+ if (!xfs_verify_ino(mp, ino))
+ return -EINVAL;
+
+ XFS_STATS_INC(mp, xs_ig_attempts);
/* get the perag structure and ensure that it's inode capable */
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
@@ -430,7 +790,11 @@ again:
goto out_error_or_again;
} else {
rcu_read_unlock();
- XFS_STATS_INC(xs_ig_missed);
+ if (flags & XFS_IGET_INCORE) {
+ error = -ENODATA;
+ goto out_error_or_again;
+ }
+ XFS_STATS_INC(mp, xs_ig_missed);
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
flags, lock_flags);
@@ -442,15 +806,17 @@ again:
*ipp = ip;
/*
- * If we have a real type for an on-disk inode, we can set ops(&unlock)
- * now. If it's a new inode being created, xfs_ialloc will handle it.
+ * If we have a real type for an on-disk inode, we can setup the inode
+ * now. If it's a new inode being created, xfs_init_new_inode will
+ * handle it.
*/
- if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
- xfs_setup_inode(ip);
+ if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
+ xfs_setup_existing_inode(ip);
return 0;
out_error_or_again:
- if (error == EAGAIN) {
+ if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
+ error == -EAGAIN) {
delay(1);
goto again;
}
@@ -459,81 +825,935 @@ out_error_or_again:
}
/*
- * The inode lookup is done in batches to keep the amount of lock traffic and
- * radix tree lookups to a minimum. The batch size is a trade off between
- * lookup reduction and stack usage. This is in the reclaim path, so we can't
- * be too greedy.
+ * Get a metadata inode.
+ *
+ * The metafile type must match the file mode exactly, and for files in the
+ * metadata directory tree, it must match the inode's metatype exactly.
*/
-#define XFS_LOOKUP_BATCH 32
+int
+xfs_trans_metafile_iget(
+ struct xfs_trans *tp,
+ xfs_ino_t ino,
+ enum xfs_metafile_type metafile_type,
+ struct xfs_inode **ipp)
+{
+ struct xfs_mount *mp = tp->t_mountp;
+ struct xfs_inode *ip;
+ umode_t mode;
+ int error;
-STATIC int
-xfs_inode_ag_walk_grab(
- struct xfs_inode *ip)
+ error = xfs_iget(mp, tp, ino, 0, 0, &ip);
+ if (error == -EFSCORRUPTED || error == -EINVAL)
+ goto whine;
+ if (error)
+ return error;
+
+ if (VFS_I(ip)->i_nlink == 0)
+ goto bad_rele;
+
+ if (metafile_type == XFS_METAFILE_DIR)
+ mode = S_IFDIR;
+ else
+ mode = S_IFREG;
+ if (inode_wrong_type(VFS_I(ip), mode))
+ goto bad_rele;
+ if (xfs_has_metadir(mp)) {
+ if (!xfs_is_metadir_inode(ip))
+ goto bad_rele;
+ if (metafile_type != ip->i_metatype)
+ goto bad_rele;
+ }
+
+ *ipp = ip;
+ return 0;
+bad_rele:
+ xfs_irele(ip);
+whine:
+ xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino,
+ metafile_type);
+ xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR);
+ return -EFSCORRUPTED;
+}
+
+/* Grab a metadata file if the caller doesn't already have a transaction. */
+int
+xfs_metafile_iget(
+ struct xfs_mount *mp,
+ xfs_ino_t ino,
+ enum xfs_metafile_type metafile_type,
+ struct xfs_inode **ipp)
{
- struct inode *inode = VFS_I(ip);
+ struct xfs_trans *tp;
+ int error;
+ tp = xfs_trans_alloc_empty(mp);
+ error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp);
+ xfs_trans_cancel(tp);
+ return error;
+}
+
+/*
+ * Grab the inode for reclaim exclusively.
+ *
+ * We have found this inode via a lookup under RCU, so the inode may have
+ * already been freed, or it may be in the process of being recycled by
+ * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
+ * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
+ * will not be set. Hence we need to check for both these flag conditions to
+ * avoid inodes that are no longer reclaim candidates.
+ *
+ * Note: checking for other state flags here, under the i_flags_lock or not, is
+ * racy and should be avoided. Those races should be resolved only after we have
+ * ensured that we are able to reclaim this inode and the world can see that we
+ * are going to reclaim it.
+ *
+ * Return true if we grabbed it, false otherwise.
+ */
+static bool
+xfs_reclaim_igrab(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw)
+{
ASSERT(rcu_read_lock_held());
+ spin_lock(&ip->i_flags_lock);
+ if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
+ __xfs_iflags_test(ip, XFS_IRECLAIM)) {
+ /* not a reclaim candidate. */
+ spin_unlock(&ip->i_flags_lock);
+ return false;
+ }
+
+ /* Don't reclaim a sick inode unless the caller asked for it. */
+ if (ip->i_sick &&
+ (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
+ spin_unlock(&ip->i_flags_lock);
+ return false;
+ }
+
+ __xfs_iflags_set(ip, XFS_IRECLAIM);
+ spin_unlock(&ip->i_flags_lock);
+ return true;
+}
+
+/*
+ * Inode reclaim is non-blocking, so the default action if progress cannot be
+ * made is to "requeue" the inode for reclaim by unlocking it and clearing the
+ * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
+ * blocking anymore and hence we can wait for the inode to be able to reclaim
+ * it.
+ *
+ * We do no IO here - if callers require inodes to be cleaned they must push the
+ * AIL first to trigger writeback of dirty inodes. This enables writeback to be
+ * done in the background in a non-blocking manner, and enables memory reclaim
+ * to make progress without blocking.
+ */
+static void
+xfs_reclaim_inode(
+ struct xfs_inode *ip,
+ struct xfs_perag *pag)
+{
+ xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
+
+ if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
+ goto out;
+ if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
+ goto out_iunlock;
+
+ /*
+ * Check for log shutdown because aborting the inode can move the log
+ * tail and corrupt in memory state. This is fine if the log is shut
+ * down, but if the log is still active and only the mount is shut down
+ * then the in-memory log tail movement caused by the abort can be
+ * incorrectly propagated to disk.
+ */
+ if (xlog_is_shutdown(ip->i_mount->m_log)) {
+ xfs_iunpin_wait(ip);
+ /*
+ * Avoid a ABBA deadlock on the inode cluster buffer vs
+ * concurrent xfs_ifree_cluster() trying to mark the inode
+ * stale. We don't need the inode locked to run the flush abort
+ * code, but the flush abort needs to lock the cluster buffer.
+ */
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ xfs_iflush_shutdown_abort(ip);
+ xfs_ilock(ip, XFS_ILOCK_EXCL);
+ goto reclaim;
+ }
+ if (xfs_ipincount(ip))
+ goto out_clear_flush;
+ if (!xfs_inode_clean(ip))
+ goto out_clear_flush;
+
+ xfs_iflags_clear(ip, XFS_IFLUSHING);
+reclaim:
+ trace_xfs_inode_reclaiming(ip);
+
+ /*
+ * Because we use RCU freeing we need to ensure the inode always appears
+ * to be reclaimed with an invalid inode number when in the free state.
+ * We do this as early as possible under the ILOCK so that
+ * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
+ * detect races with us here. By doing this, we guarantee that once
+ * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
+ * it will see either a valid inode that will serialise correctly, or it
+ * will see an invalid inode that it can skip.
+ */
+ spin_lock(&ip->i_flags_lock);
+ ip->i_flags = XFS_IRECLAIM;
+ ip->i_ino = 0;
+ ip->i_sick = 0;
+ ip->i_checked = 0;
+ spin_unlock(&ip->i_flags_lock);
+
+ ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+
+ XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
+ /*
+ * Remove the inode from the per-AG radix tree.
+ *
+ * Because radix_tree_delete won't complain even if the item was never
+ * added to the tree assert that it's been there before to catch
+ * problems with the inode life time early on.
+ */
+ spin_lock(&pag->pag_ici_lock);
+ if (!radix_tree_delete(&pag->pag_ici_root,
+ XFS_INO_TO_AGINO(ip->i_mount, ino)))
+ ASSERT(0);
+ xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
+ spin_unlock(&pag->pag_ici_lock);
+
+ /*
+ * Here we do an (almost) spurious inode lock in order to coordinate
+ * with inode cache radix tree lookups. This is because the lookup
+ * can reference the inodes in the cache without taking references.
+ *
+ * We make that OK here by ensuring that we wait until the inode is
+ * unlocked after the lookup before we go ahead and free it.
+ */
+ xfs_ilock(ip, XFS_ILOCK_EXCL);
+ ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ ASSERT(xfs_inode_clean(ip));
+
+ __xfs_inode_free(ip);
+ return;
+
+out_clear_flush:
+ xfs_iflags_clear(ip, XFS_IFLUSHING);
+out_iunlock:
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+out:
+ xfs_iflags_clear(ip, XFS_IRECLAIM);
+}
+
+/* Reclaim sick inodes if we're unmounting or the fs went down. */
+static inline bool
+xfs_want_reclaim_sick(
+ struct xfs_mount *mp)
+{
+ return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
+ xfs_is_shutdown(mp);
+}
+
+void
+xfs_reclaim_inodes(
+ struct xfs_mount *mp)
+{
+ struct xfs_icwalk icw = {
+ .icw_flags = 0,
+ };
+
+ if (xfs_want_reclaim_sick(mp))
+ icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
+
+ while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
+ xfs_ail_push_all_sync(mp->m_ail);
+ xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
+ }
+}
+
+/*
+ * The shrinker infrastructure determines how many inodes we should scan for
+ * reclaim. We want as many clean inodes ready to reclaim as possible, so we
+ * push the AIL here. We also want to proactively free up memory if we can to
+ * minimise the amount of work memory reclaim has to do so we kick the
+ * background reclaim if it isn't already scheduled.
+ */
+long
+xfs_reclaim_inodes_nr(
+ struct xfs_mount *mp,
+ unsigned long nr_to_scan)
+{
+ struct xfs_icwalk icw = {
+ .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
+ .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
+ };
+
+ if (xfs_want_reclaim_sick(mp))
+ icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
+
+ /* kick background reclaimer and push the AIL */
+ xfs_reclaim_work_queue(mp);
+ xfs_ail_push_all(mp->m_ail);
+
+ xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
+ return 0;
+}
+
+/*
+ * Return the number of reclaimable inodes in the filesystem for
+ * the shrinker to determine how much to reclaim.
+ */
+long
+xfs_reclaim_inodes_count(
+ struct xfs_mount *mp)
+{
+ XA_STATE (xas, &mp->m_groups[XG_TYPE_AG].xa, 0);
+ long reclaimable = 0;
+ struct xfs_perag *pag;
+
+ rcu_read_lock();
+ xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
+ trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
+ reclaimable += pag->pag_ici_reclaimable;
+ }
+ rcu_read_unlock();
+
+ return reclaimable;
+}
+
+STATIC bool
+xfs_icwalk_match_id(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw)
+{
+ if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
+ !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
+ return false;
+
+ if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
+ !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
+ return false;
+
+ if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
+ ip->i_projid != icw->icw_prid)
+ return false;
+
+ return true;
+}
+
+/*
+ * A union-based inode filtering algorithm. Process the inode if any of the
+ * criteria match. This is for global/internal scans only.
+ */
+STATIC bool
+xfs_icwalk_match_id_union(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw)
+{
+ if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
+ uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
+ return true;
+
+ if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
+ gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
+ return true;
+
+ if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
+ ip->i_projid == icw->icw_prid)
+ return true;
+
+ return false;
+}
+
+/*
+ * Is this inode @ip eligible for eof/cow block reclamation, given some
+ * filtering parameters @icw? The inode is eligible if @icw is null or
+ * if the predicate functions match.
+ */
+static bool
+xfs_icwalk_match(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw)
+{
+ bool match;
+
+ if (!icw)
+ return true;
+
+ if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
+ match = xfs_icwalk_match_id_union(ip, icw);
+ else
+ match = xfs_icwalk_match_id(ip, icw);
+ if (!match)
+ return false;
+
+ /* skip the inode if the file size is too small */
+ if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
+ XFS_ISIZE(ip) < icw->icw_min_file_size)
+ return false;
+
+ return true;
+}
+
+/*
+ * This is a fast pass over the inode cache to try to get reclaim moving on as
+ * many inodes as possible in a short period of time. It kicks itself every few
+ * seconds, as well as being kicked by the inode cache shrinker when memory
+ * goes low.
+ */
+void
+xfs_reclaim_worker(
+ struct work_struct *work)
+{
+ struct xfs_mount *mp = container_of(to_delayed_work(work),
+ struct xfs_mount, m_reclaim_work);
+
+ xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
+ xfs_reclaim_work_queue(mp);
+}
+
+STATIC int
+xfs_inode_free_eofblocks(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw,
+ unsigned int *lockflags)
+{
+ bool wait;
+
+ wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
+
+ if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
+ return 0;
+
+ /*
+ * If the mapping is dirty the operation can block and wait for some
+ * time. Unless we are waiting, skip it.
+ */
+ if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
+ return 0;
+
+ if (!xfs_icwalk_match(ip, icw))
+ return 0;
+
+ /*
+ * If the caller is waiting, return -EAGAIN to keep the background
+ * scanner moving and revisit the inode in a subsequent pass.
+ */
+ if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
+ if (wait)
+ return -EAGAIN;
+ return 0;
+ }
+ *lockflags |= XFS_IOLOCK_EXCL;
+
+ if (xfs_can_free_eofblocks(ip))
+ return xfs_free_eofblocks(ip);
+
+ /* inode could be preallocated */
+ trace_xfs_inode_free_eofblocks_invalid(ip);
+ xfs_inode_clear_eofblocks_tag(ip);
+ return 0;
+}
+
+static void
+xfs_blockgc_set_iflag(
+ struct xfs_inode *ip,
+ unsigned long iflag)
+{
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_perag *pag;
+
+ ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
+
+ /*
+ * Don't bother locking the AG and looking up in the radix trees
+ * if we already know that we have the tag set.
+ */
+ if (ip->i_flags & iflag)
+ return;
+ spin_lock(&ip->i_flags_lock);
+ ip->i_flags |= iflag;
+ spin_unlock(&ip->i_flags_lock);
+
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
+ spin_lock(&pag->pag_ici_lock);
+
+ xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
+ XFS_ICI_BLOCKGC_TAG);
+
+ spin_unlock(&pag->pag_ici_lock);
+ xfs_perag_put(pag);
+}
+
+void
+xfs_inode_set_eofblocks_tag(
+ xfs_inode_t *ip)
+{
+ trace_xfs_inode_set_eofblocks_tag(ip);
+ return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
+}
+
+static void
+xfs_blockgc_clear_iflag(
+ struct xfs_inode *ip,
+ unsigned long iflag)
+{
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_perag *pag;
+ bool clear_tag;
+
+ ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
+
+ spin_lock(&ip->i_flags_lock);
+ ip->i_flags &= ~iflag;
+ clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
+ spin_unlock(&ip->i_flags_lock);
+
+ if (!clear_tag)
+ return;
+
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
+ spin_lock(&pag->pag_ici_lock);
+
+ xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
+ XFS_ICI_BLOCKGC_TAG);
+
+ spin_unlock(&pag->pag_ici_lock);
+ xfs_perag_put(pag);
+}
+
+void
+xfs_inode_clear_eofblocks_tag(
+ xfs_inode_t *ip)
+{
+ trace_xfs_inode_clear_eofblocks_tag(ip);
+ return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
+}
+
+/*
+ * Prepare to free COW fork blocks from an inode.
+ */
+static bool
+xfs_prep_free_cowblocks(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw)
+{
+ bool sync;
+
+ sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
+
/*
- * check for stale RCU freed inode
+ * Just clear the tag if we have an empty cow fork or none at all. It's
+ * possible the inode was fully unshared since it was originally tagged.
+ */
+ if (!xfs_inode_has_cow_data(ip)) {
+ trace_xfs_inode_free_cowblocks_invalid(ip);
+ xfs_inode_clear_cowblocks_tag(ip);
+ return false;
+ }
+
+ /*
+ * A cowblocks trim of an inode can have a significant effect on
+ * fragmentation even when a reasonable COW extent size hint is set.
+ * Therefore, we prefer to not process cowblocks unless they are clean
+ * and idle. We can never process a cowblocks inode that is dirty or has
+ * in-flight I/O under any circumstances, because outstanding writeback
+ * or dio expects targeted COW fork blocks exist through write
+ * completion where they can be remapped into the data fork.
*
- * If the inode has been reallocated, it doesn't matter if it's not in
- * the AG we are walking - we are walking for writeback, so if it
- * passes all the "valid inode" checks and is dirty, then we'll write
- * it back anyway. If it has been reallocated and still being
- * initialised, the XFS_INEW check below will catch it.
+ * Therefore, the heuristic used here is to never process inodes
+ * currently opened for write from background (i.e. non-sync) scans. For
+ * sync scans, use the pagecache/dio state of the inode to ensure we
+ * never free COW fork blocks out from under pending I/O.
+ */
+ if (!sync && inode_is_open_for_write(VFS_I(ip)))
+ return false;
+ return xfs_can_free_cowblocks(ip);
+}
+
+/*
+ * Automatic CoW Reservation Freeing
+ *
+ * These functions automatically garbage collect leftover CoW reservations
+ * that were made on behalf of a cowextsize hint when we start to run out
+ * of quota or when the reservations sit around for too long. If the file
+ * has dirty pages or is undergoing writeback, its CoW reservations will
+ * be retained.
+ *
+ * The actual garbage collection piggybacks off the same code that runs
+ * the speculative EOF preallocation garbage collector.
+ */
+STATIC int
+xfs_inode_free_cowblocks(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw,
+ unsigned int *lockflags)
+{
+ bool wait;
+ int ret = 0;
+
+ wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
+
+ if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
+ return 0;
+
+ if (!xfs_prep_free_cowblocks(ip, icw))
+ return 0;
+
+ if (!xfs_icwalk_match(ip, icw))
+ return 0;
+
+ /*
+ * If the caller is waiting, return -EAGAIN to keep the background
+ * scanner moving and revisit the inode in a subsequent pass.
+ */
+ if (!(*lockflags & XFS_IOLOCK_EXCL) &&
+ !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
+ if (wait)
+ return -EAGAIN;
+ return 0;
+ }
+ *lockflags |= XFS_IOLOCK_EXCL;
+
+ if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
+ if (wait)
+ return -EAGAIN;
+ return 0;
+ }
+ *lockflags |= XFS_MMAPLOCK_EXCL;
+
+ /*
+ * Check again, nobody else should be able to dirty blocks or change
+ * the reflink iflag now that we have the first two locks held.
*/
+ if (xfs_prep_free_cowblocks(ip, icw))
+ ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
+ return ret;
+}
+
+void
+xfs_inode_set_cowblocks_tag(
+ xfs_inode_t *ip)
+{
+ trace_xfs_inode_set_cowblocks_tag(ip);
+ return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
+}
+
+void
+xfs_inode_clear_cowblocks_tag(
+ xfs_inode_t *ip)
+{
+ trace_xfs_inode_clear_cowblocks_tag(ip);
+ return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
+}
+
+/* Disable post-EOF and CoW block auto-reclamation. */
+void
+xfs_blockgc_stop(
+ struct xfs_mount *mp)
+{
+ struct xfs_perag *pag = NULL;
+
+ if (!xfs_clear_blockgc_enabled(mp))
+ return;
+
+ while ((pag = xfs_perag_next(mp, pag)))
+ cancel_delayed_work_sync(&pag->pag_blockgc_work);
+ trace_xfs_blockgc_stop(mp, __return_address);
+}
+
+/* Enable post-EOF and CoW block auto-reclamation. */
+void
+xfs_blockgc_start(
+ struct xfs_mount *mp)
+{
+ struct xfs_perag *pag = NULL;
+
+ if (xfs_set_blockgc_enabled(mp))
+ return;
+
+ trace_xfs_blockgc_start(mp, __return_address);
+ while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
+ xfs_blockgc_queue(pag);
+}
+
+/* Don't try to run block gc on an inode that's in any of these states. */
+#define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
+ XFS_NEED_INACTIVE | \
+ XFS_INACTIVATING | \
+ XFS_IRECLAIMABLE | \
+ XFS_IRECLAIM)
+/*
+ * Decide if the given @ip is eligible for garbage collection of speculative
+ * preallocations, and grab it if so. Returns true if it's ready to go or
+ * false if we should just ignore it.
+ */
+static bool
+xfs_blockgc_igrab(
+ struct xfs_inode *ip)
+{
+ struct inode *inode = VFS_I(ip);
+
+ ASSERT(rcu_read_lock_held());
+
+ /* Check for stale RCU freed inode */
spin_lock(&ip->i_flags_lock);
if (!ip->i_ino)
goto out_unlock_noent;
- /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
- if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
+ if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
goto out_unlock_noent;
spin_unlock(&ip->i_flags_lock);
/* nothing to sync during shutdown */
- if (XFS_FORCED_SHUTDOWN(ip->i_mount))
- return EFSCORRUPTED;
+ if (xfs_is_shutdown(ip->i_mount))
+ return false;
/* If we can't grab the inode, it must on it's way to reclaim. */
if (!igrab(inode))
- return ENOENT;
-
- if (is_bad_inode(inode)) {
- IRELE(ip);
- return ENOENT;
- }
+ return false;
/* inode is valid */
- return 0;
+ return true;
out_unlock_noent:
spin_unlock(&ip->i_flags_lock);
- return ENOENT;
+ return false;
}
-STATIC int
-xfs_inode_ag_walk(
+/* Scan one incore inode for block preallocations that we can remove. */
+static int
+xfs_blockgc_scan_inode(
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw)
+{
+ unsigned int lockflags = 0;
+ int error;
+
+ error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
+ if (error)
+ goto unlock;
+
+ error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
+unlock:
+ if (lockflags)
+ xfs_iunlock(ip, lockflags);
+ xfs_irele(ip);
+ return error;
+}
+
+/* Background worker that trims preallocated space. */
+void
+xfs_blockgc_worker(
+ struct work_struct *work)
+{
+ struct xfs_perag *pag = container_of(to_delayed_work(work),
+ struct xfs_perag, pag_blockgc_work);
+ struct xfs_mount *mp = pag_mount(pag);
+ int error;
+
+ trace_xfs_blockgc_worker(mp, __return_address);
+
+ error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
+ if (error)
+ xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
+ pag_agno(pag), error);
+ xfs_blockgc_queue(pag);
+}
+
+/*
+ * Try to free space in the filesystem by purging inactive inodes, eofblocks
+ * and cowblocks.
+ */
+int
+xfs_blockgc_free_space(
struct xfs_mount *mp,
+ struct xfs_icwalk *icw)
+{
+ int error;
+
+ trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
+
+ error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
+ if (error)
+ return error;
+
+ return xfs_inodegc_flush(mp);
+}
+
+/*
+ * Reclaim all the free space that we can by scheduling the background blockgc
+ * and inodegc workers immediately and waiting for them all to clear.
+ */
+int
+xfs_blockgc_flush_all(
+ struct xfs_mount *mp)
+{
+ struct xfs_perag *pag = NULL;
+
+ trace_xfs_blockgc_flush_all(mp, __return_address);
+
+ /*
+ * For each blockgc worker, move its queue time up to now. If it wasn't
+ * queued, it will not be requeued. Then flush whatever is left.
+ */
+ while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
+ mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0);
+
+ while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
+ flush_delayed_work(&pag->pag_blockgc_work);
+
+ return xfs_inodegc_flush(mp);
+}
+
+/*
+ * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
+ * quota caused an allocation failure, so we make a best effort by including
+ * each quota under low free space conditions (less than 1% free space) in the
+ * scan.
+ *
+ * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
+ * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
+ * MMAPLOCK.
+ */
+int
+xfs_blockgc_free_dquots(
+ struct xfs_mount *mp,
+ struct xfs_dquot *udqp,
+ struct xfs_dquot *gdqp,
+ struct xfs_dquot *pdqp,
+ unsigned int iwalk_flags)
+{
+ struct xfs_icwalk icw = {0};
+ bool do_work = false;
+
+ if (!udqp && !gdqp && !pdqp)
+ return 0;
+
+ /*
+ * Run a scan to free blocks using the union filter to cover all
+ * applicable quotas in a single scan.
+ */
+ icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
+
+ if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
+ icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
+ icw.icw_flags |= XFS_ICWALK_FLAG_UID;
+ do_work = true;
+ }
+
+ if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
+ icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
+ icw.icw_flags |= XFS_ICWALK_FLAG_GID;
+ do_work = true;
+ }
+
+ if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
+ icw.icw_prid = pdqp->q_id;
+ icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
+ do_work = true;
+ }
+
+ if (!do_work)
+ return 0;
+
+ return xfs_blockgc_free_space(mp, &icw);
+}
+
+/* Run cow/eofblocks scans on the quotas attached to the inode. */
+int
+xfs_blockgc_free_quota(
+ struct xfs_inode *ip,
+ unsigned int iwalk_flags)
+{
+ return xfs_blockgc_free_dquots(ip->i_mount,
+ xfs_inode_dquot(ip, XFS_DQTYPE_USER),
+ xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
+ xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
+}
+
+/* XFS Inode Cache Walking Code */
+
+/*
+ * The inode lookup is done in batches to keep the amount of lock traffic and
+ * radix tree lookups to a minimum. The batch size is a trade off between
+ * lookup reduction and stack usage. This is in the reclaim path, so we can't
+ * be too greedy.
+ */
+#define XFS_LOOKUP_BATCH 32
+
+
+/*
+ * Decide if we want to grab this inode in anticipation of doing work towards
+ * the goal.
+ */
+static inline bool
+xfs_icwalk_igrab(
+ enum xfs_icwalk_goal goal,
+ struct xfs_inode *ip,
+ struct xfs_icwalk *icw)
+{
+ switch (goal) {
+ case XFS_ICWALK_BLOCKGC:
+ return xfs_blockgc_igrab(ip);
+ case XFS_ICWALK_RECLAIM:
+ return xfs_reclaim_igrab(ip, icw);
+ default:
+ return false;
+ }
+}
+
+/*
+ * Process an inode. Each processing function must handle any state changes
+ * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
+ */
+static inline int
+xfs_icwalk_process_inode(
+ enum xfs_icwalk_goal goal,
+ struct xfs_inode *ip,
struct xfs_perag *pag,
- int (*execute)(struct xfs_inode *ip,
- struct xfs_perag *pag, int flags,
- void *args),
- int flags,
- void *args,
- int tag)
+ struct xfs_icwalk *icw)
+{
+ int error = 0;
+
+ switch (goal) {
+ case XFS_ICWALK_BLOCKGC:
+ error = xfs_blockgc_scan_inode(ip, icw);
+ break;
+ case XFS_ICWALK_RECLAIM:
+ xfs_reclaim_inode(ip, pag);
+ break;
+ }
+ return error;
+}
+
+/*
+ * For a given per-AG structure @pag and a goal, grab qualifying inodes and
+ * process them in some manner.
+ */
+static int
+xfs_icwalk_ag(
+ struct xfs_perag *pag,
+ enum xfs_icwalk_goal goal,
+ struct xfs_icwalk *icw)
{
+ struct xfs_mount *mp = pag_mount(pag);
uint32_t first_index;
int last_error = 0;
int skipped;
- int done;
+ bool done;
int nr_found;
restart:
- done = 0;
+ done = false;
skipped = 0;
- first_index = 0;
+ if (goal == XFS_ICWALK_RECLAIM)
+ first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
+ else
+ first_index = 0;
nr_found = 0;
do {
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
@@ -542,17 +1762,11 @@ restart:
rcu_read_lock();
- if (tag == -1)
- nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
- (void **)batch, first_index,
- XFS_LOOKUP_BATCH);
- else
- nr_found = radix_tree_gang_lookup_tag(
- &pag->pag_ici_root,
- (void **) batch, first_index,
- XFS_LOOKUP_BATCH, tag);
-
+ nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
+ (void **) batch, first_index,
+ XFS_LOOKUP_BATCH, goal);
if (!nr_found) {
+ done = true;
rcu_read_unlock();
break;
}
@@ -564,7 +1778,7 @@ restart:
for (i = 0; i < nr_found; i++) {
struct xfs_inode *ip = batch[i];
- if (done || xfs_inode_ag_walk_grab(ip))
+ if (done || !xfs_icwalk_igrab(goal, ip, icw))
batch[i] = NULL;
/*
@@ -579,11 +1793,11 @@ restart:
* us to see this inode, so another lookup from the
* same index will not find it again.
*/
- if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
+ if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
continue;
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
- done = 1;
+ done = true;
}
/* unlock now we've grabbed the inodes. */
@@ -592,24 +1806,35 @@ restart:
for (i = 0; i < nr_found; i++) {
if (!batch[i])
continue;
- error = execute(batch[i], pag, flags, args);
- IRELE(batch[i]);
- if (error == EAGAIN) {
+ error = xfs_icwalk_process_inode(goal, batch[i], pag,
+ icw);
+ if (error == -EAGAIN) {
skipped++;
continue;
}
- if (error && last_error != EFSCORRUPTED)
+ if (error && last_error != -EFSCORRUPTED)
last_error = error;
}
/* bail out if the filesystem is corrupted. */
- if (error == EFSCORRUPTED)
+ if (error == -EFSCORRUPTED)
break;
cond_resched();
+ if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
+ icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
+ if (icw->icw_scan_limit <= 0)
+ break;
+ }
} while (nr_found && !done);
+ if (goal == XFS_ICWALK_RECLAIM) {
+ if (done)
+ first_index = 0;
+ WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
+ }
+
if (skipped) {
delay(1);
goto restart;
@@ -617,727 +1842,504 @@ restart:
return last_error;
}
-/*
- * Background scanning to trim post-EOF preallocated space. This is queued
- * based on the 'background_prealloc_discard_period' tunable (5m by default).
- */
-STATIC void
-xfs_queue_eofblocks(
- struct xfs_mount *mp)
-{
- rcu_read_lock();
- if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
- queue_delayed_work(mp->m_eofblocks_workqueue,
- &mp->m_eofblocks_work,
- msecs_to_jiffies(xfs_eofb_secs * 1000));
- rcu_read_unlock();
-}
-
-void
-xfs_eofblocks_worker(
- struct work_struct *work)
-{
- struct xfs_mount *mp = container_of(to_delayed_work(work),
- struct xfs_mount, m_eofblocks_work);
- xfs_icache_free_eofblocks(mp, NULL);
- xfs_queue_eofblocks(mp);
-}
-
-int
-xfs_inode_ag_iterator(
+/* Walk all incore inodes to achieve a given goal. */
+static int
+xfs_icwalk(
struct xfs_mount *mp,
- int (*execute)(struct xfs_inode *ip,
- struct xfs_perag *pag, int flags,
- void *args),
- int flags,
- void *args)
+ enum xfs_icwalk_goal goal,
+ struct xfs_icwalk *icw)
{
- struct xfs_perag *pag;
+ struct xfs_perag *pag = NULL;
int error = 0;
int last_error = 0;
- xfs_agnumber_t ag;
- ag = 0;
- while ((pag = xfs_perag_get(mp, ag))) {
- ag = pag->pag_agno + 1;
- error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
- xfs_perag_put(pag);
+ while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
+ error = xfs_icwalk_ag(pag, goal, icw);
if (error) {
last_error = error;
- if (error == EFSCORRUPTED)
+ if (error == -EFSCORRUPTED) {
+ xfs_perag_rele(pag);
break;
+ }
}
}
- return XFS_ERROR(last_error);
+ return last_error;
+ BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
}
-int
-xfs_inode_ag_iterator_tag(
- struct xfs_mount *mp,
- int (*execute)(struct xfs_inode *ip,
- struct xfs_perag *pag, int flags,
- void *args),
- int flags,
- void *args,
- int tag)
+#ifdef DEBUG
+static void
+xfs_check_delalloc(
+ struct xfs_inode *ip,
+ int whichfork)
{
- struct xfs_perag *pag;
- int error = 0;
- int last_error = 0;
- xfs_agnumber_t ag;
+ struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
+ struct xfs_bmbt_irec got;
+ struct xfs_iext_cursor icur;
- ag = 0;
- while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
- ag = pag->pag_agno + 1;
- error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
- xfs_perag_put(pag);
- if (error) {
- last_error = error;
- if (error == EFSCORRUPTED)
- break;
+ if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
+ return;
+ do {
+ if (isnullstartblock(got.br_startblock)) {
+ xfs_warn(ip->i_mount,
+ "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
+ ip->i_ino,
+ whichfork == XFS_DATA_FORK ? "data" : "cow",
+ got.br_startoff, got.br_blockcount);
}
- }
- return XFS_ERROR(last_error);
+ } while (xfs_iext_next_extent(ifp, &icur, &got));
}
+#else
+#define xfs_check_delalloc(ip, whichfork) do { } while (0)
+#endif
-/*
- * Queue a new inode reclaim pass if there are reclaimable inodes and there
- * isn't a reclaim pass already in progress. By default it runs every 5s based
- * on the xfs periodic sync default of 30s. Perhaps this should have it's own
- * tunable, but that can be done if this method proves to be ineffective or too
- * aggressive.
- */
+/* Schedule the inode for reclaim. */
static void
-xfs_reclaim_work_queue(
- struct xfs_mount *mp)
+xfs_inodegc_set_reclaimable(
+ struct xfs_inode *ip)
{
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_perag *pag;
- rcu_read_lock();
- if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
- queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
- msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
+ if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
+ xfs_check_delalloc(ip, XFS_DATA_FORK);
+ xfs_check_delalloc(ip, XFS_COW_FORK);
+ ASSERT(0);
}
- rcu_read_unlock();
+
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
+ spin_lock(&pag->pag_ici_lock);
+ spin_lock(&ip->i_flags_lock);
+
+ trace_xfs_inode_set_reclaimable(ip);
+ ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
+ ip->i_flags |= XFS_IRECLAIMABLE;
+ xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
+ XFS_ICI_RECLAIM_TAG);
+
+ spin_unlock(&ip->i_flags_lock);
+ spin_unlock(&pag->pag_ici_lock);
+ xfs_perag_put(pag);
}
/*
- * This is a fast pass over the inode cache to try to get reclaim moving on as
- * many inodes as possible in a short period of time. It kicks itself every few
- * seconds, as well as being kicked by the inode cache shrinker when memory
- * goes low. It scans as quickly as possible avoiding locked inodes or those
- * already being flushed, and once done schedules a future pass.
+ * Free all speculative preallocations and possibly even the inode itself.
+ * This is the last chance to make changes to an otherwise unreferenced file
+ * before incore reclamation happens.
*/
-void
-xfs_reclaim_worker(
- struct work_struct *work)
+static int
+xfs_inodegc_inactivate(
+ struct xfs_inode *ip)
{
- struct xfs_mount *mp = container_of(to_delayed_work(work),
- struct xfs_mount, m_reclaim_work);
+ int error;
+
+ trace_xfs_inode_inactivating(ip);
+ error = xfs_inactive(ip);
+ xfs_inodegc_set_reclaimable(ip);
+ return error;
- xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
- xfs_reclaim_work_queue(mp);
}
-static void
-__xfs_inode_set_reclaim_tag(
- struct xfs_perag *pag,
- struct xfs_inode *ip)
+void
+xfs_inodegc_worker(
+ struct work_struct *work)
{
- radix_tree_tag_set(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
- XFS_ICI_RECLAIM_TAG);
+ struct xfs_inodegc *gc = container_of(to_delayed_work(work),
+ struct xfs_inodegc, work);
+ struct llist_node *node = llist_del_all(&gc->list);
+ struct xfs_inode *ip, *n;
+ struct xfs_mount *mp = gc->mp;
+ unsigned int nofs_flag;
+
+ /*
+ * Clear the cpu mask bit and ensure that we have seen the latest
+ * update of the gc structure associated with this CPU. This matches
+ * with the release semantics used when setting the cpumask bit in
+ * xfs_inodegc_queue.
+ */
+ cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
+ smp_mb__after_atomic();
+
+ WRITE_ONCE(gc->items, 0);
- if (!pag->pag_ici_reclaimable) {
- /* propagate the reclaim tag up into the perag radix tree */
- spin_lock(&ip->i_mount->m_perag_lock);
- radix_tree_tag_set(&ip->i_mount->m_perag_tree,
- XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
- XFS_ICI_RECLAIM_TAG);
- spin_unlock(&ip->i_mount->m_perag_lock);
+ if (!node)
+ return;
- /* schedule periodic background inode reclaim */
- xfs_reclaim_work_queue(ip->i_mount);
+ /*
+ * We can allocate memory here while doing writeback on behalf of
+ * memory reclaim. To avoid memory allocation deadlocks set the
+ * task-wide nofs context for the following operations.
+ */
+ nofs_flag = memalloc_nofs_save();
- trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
- -1, _RET_IP_);
+ ip = llist_entry(node, struct xfs_inode, i_gclist);
+ trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
+
+ WRITE_ONCE(gc->shrinker_hits, 0);
+ llist_for_each_entry_safe(ip, n, node, i_gclist) {
+ int error;
+
+ xfs_iflags_set(ip, XFS_INACTIVATING);
+ error = xfs_inodegc_inactivate(ip);
+ if (error && !gc->error)
+ gc->error = error;
}
- pag->pag_ici_reclaimable++;
+
+ memalloc_nofs_restore(nofs_flag);
}
/*
- * We set the inode flag atomically with the radix tree tag.
- * Once we get tag lookups on the radix tree, this inode flag
- * can go away.
+ * Expedite all pending inodegc work to run immediately. This does not wait for
+ * completion of the work.
*/
void
-xfs_inode_set_reclaim_tag(
- xfs_inode_t *ip)
-{
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_perag *pag;
-
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
- spin_lock(&pag->pag_ici_lock);
- spin_lock(&ip->i_flags_lock);
- __xfs_inode_set_reclaim_tag(pag, ip);
- __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
- spin_unlock(&ip->i_flags_lock);
- spin_unlock(&pag->pag_ici_lock);
- xfs_perag_put(pag);
-}
-
-STATIC void
-__xfs_inode_clear_reclaim(
- xfs_perag_t *pag,
- xfs_inode_t *ip)
+xfs_inodegc_push(
+ struct xfs_mount *mp)
{
- pag->pag_ici_reclaimable--;
- if (!pag->pag_ici_reclaimable) {
- /* clear the reclaim tag from the perag radix tree */
- spin_lock(&ip->i_mount->m_perag_lock);
- radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
- XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
- XFS_ICI_RECLAIM_TAG);
- spin_unlock(&ip->i_mount->m_perag_lock);
- trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
- -1, _RET_IP_);
- }
+ if (!xfs_is_inodegc_enabled(mp))
+ return;
+ trace_xfs_inodegc_push(mp, __return_address);
+ xfs_inodegc_queue_all(mp);
}
-STATIC void
-__xfs_inode_clear_reclaim_tag(
- xfs_mount_t *mp,
- xfs_perag_t *pag,
- xfs_inode_t *ip)
+/*
+ * Force all currently queued inode inactivation work to run immediately and
+ * wait for the work to finish.
+ */
+int
+xfs_inodegc_flush(
+ struct xfs_mount *mp)
{
- radix_tree_tag_clear(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
- __xfs_inode_clear_reclaim(pag, ip);
+ xfs_inodegc_push(mp);
+ trace_xfs_inodegc_flush(mp, __return_address);
+ return xfs_inodegc_wait_all(mp);
}
/*
- * Grab the inode for reclaim exclusively.
- * Return 0 if we grabbed it, non-zero otherwise.
+ * Flush all the pending work and then disable the inode inactivation background
+ * workers and wait for them to stop. Caller must hold sb->s_umount to
+ * coordinate changes in the inodegc_enabled state.
*/
-STATIC int
-xfs_reclaim_inode_grab(
- struct xfs_inode *ip,
- int flags)
+void
+xfs_inodegc_stop(
+ struct xfs_mount *mp)
{
- ASSERT(rcu_read_lock_held());
+ bool rerun;
- /* quick check for stale RCU freed inode */
- if (!ip->i_ino)
- return 1;
+ if (!xfs_clear_inodegc_enabled(mp))
+ return;
/*
- * If we are asked for non-blocking operation, do unlocked checks to
- * see if the inode already is being flushed or in reclaim to avoid
- * lock traffic.
+ * Drain all pending inodegc work, including inodes that could be
+ * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
+ * threads that sample the inodegc state just prior to us clearing it.
+ * The inodegc flag state prevents new threads from queuing more
+ * inodes, so we queue pending work items and flush the workqueue until
+ * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
+ * here because it does not allow other unserialized mechanisms to
+ * reschedule inodegc work while this draining is in progress.
*/
- if ((flags & SYNC_TRYLOCK) &&
- __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
- return 1;
+ xfs_inodegc_queue_all(mp);
+ do {
+ flush_workqueue(mp->m_inodegc_wq);
+ rerun = xfs_inodegc_queue_all(mp);
+ } while (rerun);
- /*
- * The radix tree lock here protects a thread in xfs_iget from racing
- * with us starting reclaim on the inode. Once we have the
- * XFS_IRECLAIM flag set it will not touch us.
- *
- * Due to RCU lookup, we may find inodes that have been freed and only
- * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
- * aren't candidates for reclaim at all, so we must check the
- * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
- */
- spin_lock(&ip->i_flags_lock);
- if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
- __xfs_iflags_test(ip, XFS_IRECLAIM)) {
- /* not a reclaim candidate. */
- spin_unlock(&ip->i_flags_lock);
- return 1;
- }
- __xfs_iflags_set(ip, XFS_IRECLAIM);
- spin_unlock(&ip->i_flags_lock);
- return 0;
+ trace_xfs_inodegc_stop(mp, __return_address);
}
/*
- * Inodes in different states need to be treated differently. The following
- * table lists the inode states and the reclaim actions necessary:
- *
- * inode state iflush ret required action
- * --------------- ---------- ---------------
- * bad - reclaim
- * shutdown EIO unpin and reclaim
- * clean, unpinned 0 reclaim
- * stale, unpinned 0 reclaim
- * clean, pinned(*) 0 requeue
- * stale, pinned EAGAIN requeue
- * dirty, async - requeue
- * dirty, sync 0 reclaim
- *
- * (*) dgc: I don't think the clean, pinned state is possible but it gets
- * handled anyway given the order of checks implemented.
- *
- * Also, because we get the flush lock first, we know that any inode that has
- * been flushed delwri has had the flush completed by the time we check that
- * the inode is clean.
- *
- * Note that because the inode is flushed delayed write by AIL pushing, the
- * flush lock may already be held here and waiting on it can result in very
- * long latencies. Hence for sync reclaims, where we wait on the flush lock,
- * the caller should push the AIL first before trying to reclaim inodes to
- * minimise the amount of time spent waiting. For background relaim, we only
- * bother to reclaim clean inodes anyway.
- *
- * Hence the order of actions after gaining the locks should be:
- * bad => reclaim
- * shutdown => unpin and reclaim
- * pinned, async => requeue
- * pinned, sync => unpin
- * stale => reclaim
- * clean => reclaim
- * dirty, async => requeue
- * dirty, sync => flush, wait and reclaim
+ * Enable the inode inactivation background workers and schedule deferred inode
+ * inactivation work if there is any. Caller must hold sb->s_umount to
+ * coordinate changes in the inodegc_enabled state.
*/
-STATIC int
-xfs_reclaim_inode(
- struct xfs_inode *ip,
- struct xfs_perag *pag,
- int sync_mode)
+void
+xfs_inodegc_start(
+ struct xfs_mount *mp)
{
- struct xfs_buf *bp = NULL;
- int error;
+ if (xfs_set_inodegc_enabled(mp))
+ return;
-restart:
- error = 0;
- xfs_ilock(ip, XFS_ILOCK_EXCL);
- if (!xfs_iflock_nowait(ip)) {
- if (!(sync_mode & SYNC_WAIT))
- goto out;
- xfs_iflock(ip);
- }
-
- if (is_bad_inode(VFS_I(ip)))
- goto reclaim;
- if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
- xfs_iunpin_wait(ip);
- xfs_iflush_abort(ip, false);
- goto reclaim;
- }
- if (xfs_ipincount(ip)) {
- if (!(sync_mode & SYNC_WAIT))
- goto out_ifunlock;
- xfs_iunpin_wait(ip);
- }
- if (xfs_iflags_test(ip, XFS_ISTALE))
- goto reclaim;
- if (xfs_inode_clean(ip))
- goto reclaim;
-
- /*
- * Never flush out dirty data during non-blocking reclaim, as it would
- * just contend with AIL pushing trying to do the same job.
- */
- if (!(sync_mode & SYNC_WAIT))
- goto out_ifunlock;
-
- /*
- * Now we have an inode that needs flushing.
- *
- * Note that xfs_iflush will never block on the inode buffer lock, as
- * xfs_ifree_cluster() can lock the inode buffer before it locks the
- * ip->i_lock, and we are doing the exact opposite here. As a result,
- * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
- * result in an ABBA deadlock with xfs_ifree_cluster().
- *
- * As xfs_ifree_cluser() must gather all inodes that are active in the
- * cache to mark them stale, if we hit this case we don't actually want
- * to do IO here - we want the inode marked stale so we can simply
- * reclaim it. Hence if we get an EAGAIN error here, just unlock the
- * inode, back off and try again. Hopefully the next pass through will
- * see the stale flag set on the inode.
- */
- error = xfs_iflush(ip, &bp);
- if (error == EAGAIN) {
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- /* backoff longer than in xfs_ifree_cluster */
- delay(2);
- goto restart;
- }
-
- if (!error) {
- error = xfs_bwrite(bp);
- xfs_buf_relse(bp);
- }
-
- xfs_iflock(ip);
-reclaim:
- xfs_ifunlock(ip);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ trace_xfs_inodegc_start(mp, __return_address);
+ xfs_inodegc_queue_all(mp);
+}
- XFS_STATS_INC(xs_ig_reclaims);
- /*
- * Remove the inode from the per-AG radix tree.
- *
- * Because radix_tree_delete won't complain even if the item was never
- * added to the tree assert that it's been there before to catch
- * problems with the inode life time early on.
- */
- spin_lock(&pag->pag_ici_lock);
- if (!radix_tree_delete(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
- ASSERT(0);
- __xfs_inode_clear_reclaim(pag, ip);
- spin_unlock(&pag->pag_ici_lock);
+#ifdef CONFIG_XFS_RT
+static inline bool
+xfs_inodegc_want_queue_rt_file(
+ struct xfs_inode *ip)
+{
+ struct xfs_mount *mp = ip->i_mount;
- /*
- * Here we do an (almost) spurious inode lock in order to coordinate
- * with inode cache radix tree lookups. This is because the lookup
- * can reference the inodes in the cache without taking references.
- *
- * We make that OK here by ensuring that we wait until the inode is
- * unlocked after the lookup before we go ahead and free it.
- */
- xfs_ilock(ip, XFS_ILOCK_EXCL);
- xfs_qm_dqdetach(ip);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp))
+ return false;
- xfs_inode_free(ip);
- return error;
+ if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS,
+ mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
+ XFS_FDBLOCKS_BATCH) < 0)
+ return true;
-out_ifunlock:
- xfs_ifunlock(ip);
-out:
- xfs_iflags_clear(ip, XFS_IRECLAIM);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- /*
- * We could return EAGAIN here to make reclaim rescan the inode tree in
- * a short while. However, this just burns CPU time scanning the tree
- * waiting for IO to complete and the reclaim work never goes back to
- * the idle state. Instead, return 0 to let the next scheduled
- * background reclaim attempt to reclaim the inode again.
- */
- return 0;
+ return false;
}
+#else
+# define xfs_inodegc_want_queue_rt_file(ip) (false)
+#endif /* CONFIG_XFS_RT */
/*
- * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
- * corrupted, we still want to try to reclaim all the inodes. If we don't,
- * then a shut down during filesystem unmount reclaim walk leak all the
- * unreclaimed inodes.
+ * Schedule the inactivation worker when:
+ *
+ * - We've accumulated more than one inode cluster buffer's worth of inodes.
+ * - There is less than 5% free space left.
+ * - Any of the quotas for this inode are near an enforcement limit.
*/
-STATIC int
-xfs_reclaim_inodes_ag(
- struct xfs_mount *mp,
- int flags,
- int *nr_to_scan)
+static inline bool
+xfs_inodegc_want_queue_work(
+ struct xfs_inode *ip,
+ unsigned int items)
{
- struct xfs_perag *pag;
- int error = 0;
- int last_error = 0;
- xfs_agnumber_t ag;
- int trylock = flags & SYNC_TRYLOCK;
- int skipped;
-
-restart:
- ag = 0;
- skipped = 0;
- while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
- unsigned long first_index = 0;
- int done = 0;
- int nr_found = 0;
-
- ag = pag->pag_agno + 1;
-
- if (trylock) {
- if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
- skipped++;
- xfs_perag_put(pag);
- continue;
- }
- first_index = pag->pag_ici_reclaim_cursor;
- } else
- mutex_lock(&pag->pag_ici_reclaim_lock);
-
- do {
- struct xfs_inode *batch[XFS_LOOKUP_BATCH];
- int i;
-
- rcu_read_lock();
- nr_found = radix_tree_gang_lookup_tag(
- &pag->pag_ici_root,
- (void **)batch, first_index,
- XFS_LOOKUP_BATCH,
- XFS_ICI_RECLAIM_TAG);
- if (!nr_found) {
- done = 1;
- rcu_read_unlock();
- break;
- }
-
- /*
- * Grab the inodes before we drop the lock. if we found
- * nothing, nr == 0 and the loop will be skipped.
- */
- for (i = 0; i < nr_found; i++) {
- struct xfs_inode *ip = batch[i];
-
- if (done || xfs_reclaim_inode_grab(ip, flags))
- batch[i] = NULL;
-
- /*
- * Update the index for the next lookup. Catch
- * overflows into the next AG range which can
- * occur if we have inodes in the last block of
- * the AG and we are currently pointing to the
- * last inode.
- *
- * Because we may see inodes that are from the
- * wrong AG due to RCU freeing and
- * reallocation, only update the index if it
- * lies in this AG. It was a race that lead us
- * to see this inode, so another lookup from
- * the same index will not find it again.
- */
- if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
- pag->pag_agno)
- continue;
- first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
- if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
- done = 1;
- }
+ struct xfs_mount *mp = ip->i_mount;
- /* unlock now we've grabbed the inodes. */
- rcu_read_unlock();
+ if (items > mp->m_ino_geo.inodes_per_cluster)
+ return true;
- for (i = 0; i < nr_found; i++) {
- if (!batch[i])
- continue;
- error = xfs_reclaim_inode(batch[i], pag, flags);
- if (error && last_error != EFSCORRUPTED)
- last_error = error;
- }
+ if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS,
+ mp->m_low_space[XFS_LOWSP_5_PCNT],
+ XFS_FDBLOCKS_BATCH) < 0)
+ return true;
- *nr_to_scan -= XFS_LOOKUP_BATCH;
+ if (xfs_inodegc_want_queue_rt_file(ip))
+ return true;
- cond_resched();
+ if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
+ return true;
- } while (nr_found && !done && *nr_to_scan > 0);
+ if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
+ return true;
- if (trylock && !done)
- pag->pag_ici_reclaim_cursor = first_index;
- else
- pag->pag_ici_reclaim_cursor = 0;
- mutex_unlock(&pag->pag_ici_reclaim_lock);
- xfs_perag_put(pag);
- }
+ if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
+ return true;
- /*
- * if we skipped any AG, and we still have scan count remaining, do
- * another pass this time using blocking reclaim semantics (i.e
- * waiting on the reclaim locks and ignoring the reclaim cursors). This
- * ensure that when we get more reclaimers than AGs we block rather
- * than spin trying to execute reclaim.
- */
- if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
- trylock = 0;
- goto restart;
- }
- return XFS_ERROR(last_error);
+ return false;
}
-int
-xfs_reclaim_inodes(
- xfs_mount_t *mp,
- int mode)
-{
- int nr_to_scan = INT_MAX;
-
- return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
-}
+/*
+ * Upper bound on the number of inodes in each AG that can be queued for
+ * inactivation at any given time, to avoid monopolizing the workqueue.
+ */
+#define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
/*
- * Scan a certain number of inodes for reclaim.
+ * Make the frontend wait for inactivations when:
*
- * When called we make sure that there is a background (fast) inode reclaim in
- * progress, while we will throttle the speed of reclaim via doing synchronous
- * reclaim of inodes. That means if we come across dirty inodes, we wait for
- * them to be cleaned, which we hope will not be very long due to the
- * background walker having already kicked the IO off on those dirty inodes.
+ * - Memory shrinkers queued the inactivation worker and it hasn't finished.
+ * - The queue depth exceeds the maximum allowable percpu backlog.
+ *
+ * Note: If we are in a NOFS context here (e.g. current thread is running a
+ * transaction) the we don't want to block here as inodegc progress may require
+ * filesystem resources we hold to make progress and that could result in a
+ * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
*/
-void
-xfs_reclaim_inodes_nr(
- struct xfs_mount *mp,
- int nr_to_scan)
+static inline bool
+xfs_inodegc_want_flush_work(
+ struct xfs_inode *ip,
+ unsigned int items,
+ unsigned int shrinker_hits)
{
- /* kick background reclaimer and push the AIL */
- xfs_reclaim_work_queue(mp);
- xfs_ail_push_all(mp->m_ail);
+ if (current->flags & PF_MEMALLOC_NOFS)
+ return false;
- xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
+ if (shrinker_hits > 0)
+ return true;
+
+ if (items > XFS_INODEGC_MAX_BACKLOG)
+ return true;
+
+ return false;
}
/*
- * Return the number of reclaimable inodes in the filesystem for
- * the shrinker to determine how much to reclaim.
+ * Queue a background inactivation worker if there are inodes that need to be
+ * inactivated and higher level xfs code hasn't disabled the background
+ * workers.
*/
-int
-xfs_reclaim_inodes_count(
- struct xfs_mount *mp)
+static void
+xfs_inodegc_queue(
+ struct xfs_inode *ip)
{
- struct xfs_perag *pag;
- xfs_agnumber_t ag = 0;
- int reclaimable = 0;
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_inodegc *gc;
+ int items;
+ unsigned int shrinker_hits;
+ unsigned int cpu_nr;
+ unsigned long queue_delay = 1;
- while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
- ag = pag->pag_agno + 1;
- reclaimable += pag->pag_ici_reclaimable;
- xfs_perag_put(pag);
- }
- return reclaimable;
-}
+ trace_xfs_inode_set_need_inactive(ip);
+ spin_lock(&ip->i_flags_lock);
+ ip->i_flags |= XFS_NEED_INACTIVE;
+ spin_unlock(&ip->i_flags_lock);
-STATIC int
-xfs_inode_match_id(
- struct xfs_inode *ip,
- struct xfs_eofblocks *eofb)
-{
- if (eofb->eof_flags & XFS_EOF_FLAGS_UID &&
- ip->i_d.di_uid != eofb->eof_uid)
- return 0;
+ cpu_nr = get_cpu();
+ gc = this_cpu_ptr(mp->m_inodegc);
+ llist_add(&ip->i_gclist, &gc->list);
+ items = READ_ONCE(gc->items);
+ WRITE_ONCE(gc->items, items + 1);
+ shrinker_hits = READ_ONCE(gc->shrinker_hits);
- if (eofb->eof_flags & XFS_EOF_FLAGS_GID &&
- ip->i_d.di_gid != eofb->eof_gid)
- return 0;
+ /*
+ * Ensure the list add is always seen by anyone who finds the cpumask
+ * bit set. This effectively gives the cpumask bit set operation
+ * release ordering semantics.
+ */
+ smp_mb__before_atomic();
+ if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
+ cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
- if (eofb->eof_flags & XFS_EOF_FLAGS_PRID &&
- xfs_get_projid(ip) != eofb->eof_prid)
- return 0;
+ /*
+ * We queue the work while holding the current CPU so that the work
+ * is scheduled to run on this CPU.
+ */
+ if (!xfs_is_inodegc_enabled(mp)) {
+ put_cpu();
+ return;
+ }
+
+ if (xfs_inodegc_want_queue_work(ip, items))
+ queue_delay = 0;
- return 1;
+ trace_xfs_inodegc_queue(mp, __return_address);
+ mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
+ queue_delay);
+ put_cpu();
+
+ if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
+ trace_xfs_inodegc_throttle(mp, __return_address);
+ flush_delayed_work(&gc->work);
+ }
}
-STATIC int
-xfs_inode_free_eofblocks(
- struct xfs_inode *ip,
- struct xfs_perag *pag,
- int flags,
- void *args)
+/*
+ * We set the inode flag atomically with the radix tree tag. Once we get tag
+ * lookups on the radix tree, this inode flag can go away.
+ *
+ * We always use background reclaim here because even if the inode is clean, it
+ * still may be under IO and hence we have wait for IO completion to occur
+ * before we can reclaim the inode. The background reclaim path handles this
+ * more efficiently than we can here, so simply let background reclaim tear down
+ * all inodes.
+ */
+void
+xfs_inode_mark_reclaimable(
+ struct xfs_inode *ip)
{
- int ret;
- struct xfs_eofblocks *eofb = args;
+ struct xfs_mount *mp = ip->i_mount;
+ bool need_inactive;
- if (!xfs_can_free_eofblocks(ip, false)) {
- /* inode could be preallocated or append-only */
- trace_xfs_inode_free_eofblocks_invalid(ip);
- xfs_inode_clear_eofblocks_tag(ip);
- return 0;
- }
+ XFS_STATS_INC(mp, vn_reclaim);
/*
- * If the mapping is dirty the operation can block and wait for some
- * time. Unless we are waiting, skip it.
+ * We should never get here with any of the reclaim flags already set.
*/
- if (!(flags & SYNC_WAIT) &&
- mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
- return 0;
+ ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
- if (eofb) {
- if (!xfs_inode_match_id(ip, eofb))
- return 0;
-
- /* skip the inode if the file size is too small */
- if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
- XFS_ISIZE(ip) < eofb->eof_min_file_size)
- return 0;
+ need_inactive = xfs_inode_needs_inactive(ip);
+ if (need_inactive) {
+ xfs_inodegc_queue(ip);
+ return;
}
- ret = xfs_free_eofblocks(ip->i_mount, ip, true);
-
- /* don't revisit the inode if we're not waiting */
- if (ret == EAGAIN && !(flags & SYNC_WAIT))
- ret = 0;
-
- return ret;
+ /* Going straight to reclaim, so drop the dquots. */
+ xfs_qm_dqdetach(ip);
+ xfs_inodegc_set_reclaimable(ip);
}
-int
-xfs_icache_free_eofblocks(
- struct xfs_mount *mp,
- struct xfs_eofblocks *eofb)
+/*
+ * Register a phony shrinker so that we can run background inodegc sooner when
+ * there's memory pressure. Inactivation does not itself free any memory but
+ * it does make inodes reclaimable, which eventually frees memory.
+ *
+ * The count function, seek value, and batch value are crafted to trigger the
+ * scan function during the second round of scanning. Hopefully this means
+ * that we reclaimed enough memory that initiating metadata transactions won't
+ * make things worse.
+ */
+#define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
+#define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
+
+static unsigned long
+xfs_inodegc_shrinker_count(
+ struct shrinker *shrink,
+ struct shrink_control *sc)
{
- int flags = SYNC_TRYLOCK;
+ struct xfs_mount *mp = shrink->private_data;
+ struct xfs_inodegc *gc;
+ int cpu;
+
+ if (!xfs_is_inodegc_enabled(mp))
+ return 0;
- if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
- flags = SYNC_WAIT;
+ for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
+ gc = per_cpu_ptr(mp->m_inodegc, cpu);
+ if (!llist_empty(&gc->list))
+ return XFS_INODEGC_SHRINKER_COUNT;
+ }
- return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
- eofb, XFS_ICI_EOFBLOCKS_TAG);
+ return 0;
}
-void
-xfs_inode_set_eofblocks_tag(
- xfs_inode_t *ip)
+static unsigned long
+xfs_inodegc_shrinker_scan(
+ struct shrinker *shrink,
+ struct shrink_control *sc)
{
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_perag *pag;
- int tagged;
+ struct xfs_mount *mp = shrink->private_data;
+ struct xfs_inodegc *gc;
+ int cpu;
+ bool no_items = true;
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
- spin_lock(&pag->pag_ici_lock);
- trace_xfs_inode_set_eofblocks_tag(ip);
+ if (!xfs_is_inodegc_enabled(mp))
+ return SHRINK_STOP;
+
+ trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
- tagged = radix_tree_tagged(&pag->pag_ici_root,
- XFS_ICI_EOFBLOCKS_TAG);
- radix_tree_tag_set(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
- XFS_ICI_EOFBLOCKS_TAG);
- if (!tagged) {
- /* propagate the eofblocks tag up into the perag radix tree */
- spin_lock(&ip->i_mount->m_perag_lock);
- radix_tree_tag_set(&ip->i_mount->m_perag_tree,
- XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
- XFS_ICI_EOFBLOCKS_TAG);
- spin_unlock(&ip->i_mount->m_perag_lock);
-
- /* kick off background trimming */
- xfs_queue_eofblocks(ip->i_mount);
-
- trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
- -1, _RET_IP_);
+ for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
+ gc = per_cpu_ptr(mp->m_inodegc, cpu);
+ if (!llist_empty(&gc->list)) {
+ unsigned int h = READ_ONCE(gc->shrinker_hits);
+
+ WRITE_ONCE(gc->shrinker_hits, h + 1);
+ mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
+ no_items = false;
+ }
}
- spin_unlock(&pag->pag_ici_lock);
- xfs_perag_put(pag);
+ /*
+ * If there are no inodes to inactivate, we don't want the shrinker
+ * to think there's deferred work to call us back about.
+ */
+ if (no_items)
+ return LONG_MAX;
+
+ return SHRINK_STOP;
}
-void
-xfs_inode_clear_eofblocks_tag(
- xfs_inode_t *ip)
+/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
+int
+xfs_inodegc_register_shrinker(
+ struct xfs_mount *mp)
{
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_perag *pag;
+ mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
+ "xfs-inodegc:%s",
+ mp->m_super->s_id);
+ if (!mp->m_inodegc_shrinker)
+ return -ENOMEM;
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
- spin_lock(&pag->pag_ici_lock);
- trace_xfs_inode_clear_eofblocks_tag(ip);
+ mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
+ mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
+ mp->m_inodegc_shrinker->seeks = 0;
+ mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
+ mp->m_inodegc_shrinker->private_data = mp;
- radix_tree_tag_clear(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
- XFS_ICI_EOFBLOCKS_TAG);
- if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
- /* clear the eofblocks tag from the perag radix tree */
- spin_lock(&ip->i_mount->m_perag_lock);
- radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
- XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
- XFS_ICI_EOFBLOCKS_TAG);
- spin_unlock(&ip->i_mount->m_perag_lock);
- trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
- -1, _RET_IP_);
- }
+ shrinker_register(mp->m_inodegc_shrinker);
- spin_unlock(&pag->pag_ici_lock);
- xfs_perag_put(pag);
+ return 0;
}
-