summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_inode.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_inode.c')
-rw-r--r--fs/xfs/xfs_inode.c3764
1 files changed, 1621 insertions, 2143 deletions
diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c
index ae667ba74a1c..f1f88e48fe22 100644
--- a/fs/xfs/xfs_inode.c
+++ b/fs/xfs/xfs_inode.c
@@ -3,7 +3,6 @@
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
-#include <linux/log2.h>
#include <linux/iversion.h>
#include "xfs.h"
@@ -12,19 +11,17 @@
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
-#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
-#include "xfs_da_format.h"
-#include "xfs_da_btree.h"
#include "xfs_dir2.h"
-#include "xfs_attr_sf.h"
#include "xfs_attr.h"
+#include "xfs_bit.h"
#include "xfs_trans_space.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
+#include "xfs_iunlink_item.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
@@ -32,7 +29,6 @@
#include "xfs_error.h"
#include "xfs_quota.h"
#include "xfs_filestream.h"
-#include "xfs_cksum.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_symlink.h"
@@ -40,56 +36,16 @@
#include "xfs_log.h"
#include "xfs_bmap_btree.h"
#include "xfs_reflink.h"
-#include "xfs_dir2_priv.h"
+#include "xfs_ag.h"
+#include "xfs_log_priv.h"
+#include "xfs_health.h"
+#include "xfs_pnfs.h"
+#include "xfs_parent.h"
+#include "xfs_xattr.h"
+#include "xfs_inode_util.h"
+#include "xfs_metafile.h"
-kmem_zone_t *xfs_inode_zone;
-
-/*
- * Used in xfs_itruncate_extents(). This is the maximum number of extents
- * freed from a file in a single transaction.
- */
-#define XFS_ITRUNC_MAX_EXTENTS 2
-
-STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
-STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
-STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
-
-/*
- * helper function to extract extent size hint from inode
- */
-xfs_extlen_t
-xfs_get_extsz_hint(
- struct xfs_inode *ip)
-{
- if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
- return ip->i_d.di_extsize;
- if (XFS_IS_REALTIME_INODE(ip))
- return ip->i_mount->m_sb.sb_rextsize;
- return 0;
-}
-
-/*
- * Helper function to extract CoW extent size hint from inode.
- * Between the extent size hint and the CoW extent size hint, we
- * return the greater of the two. If the value is zero (automatic),
- * use the default size.
- */
-xfs_extlen_t
-xfs_get_cowextsz_hint(
- struct xfs_inode *ip)
-{
- xfs_extlen_t a, b;
-
- a = 0;
- if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
- a = ip->i_d.di_cowextsize;
- b = xfs_get_extsz_hint(ip);
-
- a = max(a, b);
- if (a == 0)
- return XFS_DEFAULT_COWEXTSZ_HINT;
- return a;
-}
+struct kmem_cache *xfs_inode_cache;
/*
* These two are wrapper routines around the xfs_ilock() routine used to
@@ -112,8 +68,7 @@ xfs_ilock_data_map_shared(
{
uint lock_mode = XFS_ILOCK_SHARED;
- if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
- (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
+ if (xfs_need_iread_extents(&ip->i_df))
lock_mode = XFS_ILOCK_EXCL;
xfs_ilock(ip, lock_mode);
return lock_mode;
@@ -125,16 +80,35 @@ xfs_ilock_attr_map_shared(
{
uint lock_mode = XFS_ILOCK_SHARED;
- if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
- (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
+ if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
lock_mode = XFS_ILOCK_EXCL;
xfs_ilock(ip, lock_mode);
return lock_mode;
}
/*
+ * You can't set both SHARED and EXCL for the same lock,
+ * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
+ * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
+ * to set in lock_flags.
+ */
+static inline void
+xfs_lock_flags_assert(
+ uint lock_flags)
+{
+ ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
+ (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
+ ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
+ (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
+ ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
+ (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
+ ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
+ ASSERT(lock_flags != 0);
+}
+
+/*
* In addition to i_rwsem in the VFS inode, the xfs inode contains 2
- * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
+ * multi-reader locks: invalidate_lock and the i_lock. This routine allows
* various combinations of the locks to be obtained.
*
* The 3 locks should always be ordered so that the IO lock is obtained first,
@@ -142,23 +116,23 @@ xfs_ilock_attr_map_shared(
*
* Basic locking order:
*
- * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
+ * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
*
- * mmap_sem locking order:
+ * mmap_lock locking order:
*
- * i_rwsem -> page lock -> mmap_sem
- * mmap_sem -> i_mmap_lock -> page_lock
+ * i_rwsem -> page lock -> mmap_lock
+ * mmap_lock -> invalidate_lock -> page_lock
*
- * The difference in mmap_sem locking order mean that we cannot hold the
- * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
- * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
- * in get_user_pages() to map the user pages into the kernel address space for
- * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
- * page faults already hold the mmap_sem.
+ * The difference in mmap_lock locking order mean that we cannot hold the
+ * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
+ * can fault in pages during copy in/out (for buffered IO) or require the
+ * mmap_lock in get_user_pages() to map the user pages into the kernel address
+ * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
+ * fault because page faults already hold the mmap_lock.
*
* Hence to serialise fully against both syscall and mmap based IO, we need to
- * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
- * taken in places where we need to invalidate the page cache in a race
+ * take both the i_rwsem and the invalidate_lock. These locks should *only* be
+ * both taken in places where we need to invalidate the page cache in a race
* free manner (e.g. truncate, hole punch and other extent manipulation
* functions).
*/
@@ -169,18 +143,7 @@ xfs_ilock(
{
trace_xfs_ilock(ip, lock_flags, _RET_IP_);
- /*
- * You can't set both SHARED and EXCL for the same lock,
- * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
- * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
- */
- ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
- (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
- ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
- (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
- ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
- (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
- ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
+ xfs_lock_flags_assert(lock_flags);
if (lock_flags & XFS_IOLOCK_EXCL) {
down_write_nested(&VFS_I(ip)->i_rwsem,
@@ -190,15 +153,18 @@ xfs_ilock(
XFS_IOLOCK_DEP(lock_flags));
}
- if (lock_flags & XFS_MMAPLOCK_EXCL)
- mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
- else if (lock_flags & XFS_MMAPLOCK_SHARED)
- mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
+ if (lock_flags & XFS_MMAPLOCK_EXCL) {
+ down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
+ XFS_MMAPLOCK_DEP(lock_flags));
+ } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
+ down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
+ XFS_MMAPLOCK_DEP(lock_flags));
+ }
if (lock_flags & XFS_ILOCK_EXCL)
- mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
+ down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
else if (lock_flags & XFS_ILOCK_SHARED)
- mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
+ down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
}
/*
@@ -220,18 +186,7 @@ xfs_ilock_nowait(
{
trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
- /*
- * You can't set both SHARED and EXCL for the same lock,
- * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
- * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
- */
- ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
- (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
- ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
- (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
- ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
- (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
- ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
+ xfs_lock_flags_assert(lock_flags);
if (lock_flags & XFS_IOLOCK_EXCL) {
if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
@@ -242,27 +197,27 @@ xfs_ilock_nowait(
}
if (lock_flags & XFS_MMAPLOCK_EXCL) {
- if (!mrtryupdate(&ip->i_mmaplock))
+ if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
goto out_undo_iolock;
} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
- if (!mrtryaccess(&ip->i_mmaplock))
+ if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
goto out_undo_iolock;
}
if (lock_flags & XFS_ILOCK_EXCL) {
- if (!mrtryupdate(&ip->i_lock))
+ if (!down_write_trylock(&ip->i_lock))
goto out_undo_mmaplock;
} else if (lock_flags & XFS_ILOCK_SHARED) {
- if (!mrtryaccess(&ip->i_lock))
+ if (!down_read_trylock(&ip->i_lock))
goto out_undo_mmaplock;
}
return 1;
out_undo_mmaplock:
if (lock_flags & XFS_MMAPLOCK_EXCL)
- mrunlock_excl(&ip->i_mmaplock);
+ up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
else if (lock_flags & XFS_MMAPLOCK_SHARED)
- mrunlock_shared(&ip->i_mmaplock);
+ up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
out_undo_iolock:
if (lock_flags & XFS_IOLOCK_EXCL)
up_write(&VFS_I(ip)->i_rwsem);
@@ -289,19 +244,7 @@ xfs_iunlock(
xfs_inode_t *ip,
uint lock_flags)
{
- /*
- * You can't set both SHARED and EXCL for the same lock,
- * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
- * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
- */
- ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
- (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
- ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
- (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
- ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
- (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
- ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
- ASSERT(lock_flags != 0);
+ xfs_lock_flags_assert(lock_flags);
if (lock_flags & XFS_IOLOCK_EXCL)
up_write(&VFS_I(ip)->i_rwsem);
@@ -309,14 +252,14 @@ xfs_iunlock(
up_read(&VFS_I(ip)->i_rwsem);
if (lock_flags & XFS_MMAPLOCK_EXCL)
- mrunlock_excl(&ip->i_mmaplock);
+ up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
else if (lock_flags & XFS_MMAPLOCK_SHARED)
- mrunlock_shared(&ip->i_mmaplock);
+ up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
if (lock_flags & XFS_ILOCK_EXCL)
- mrunlock_excl(&ip->i_lock);
+ up_write(&ip->i_lock);
else if (lock_flags & XFS_ILOCK_SHARED)
- mrunlock_shared(&ip->i_lock);
+ up_read(&ip->i_lock);
trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
}
@@ -335,44 +278,39 @@ xfs_ilock_demote(
~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
if (lock_flags & XFS_ILOCK_EXCL)
- mrdemote(&ip->i_lock);
+ downgrade_write(&ip->i_lock);
if (lock_flags & XFS_MMAPLOCK_EXCL)
- mrdemote(&ip->i_mmaplock);
+ downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
if (lock_flags & XFS_IOLOCK_EXCL)
downgrade_write(&VFS_I(ip)->i_rwsem);
trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
}
-#if defined(DEBUG) || defined(XFS_WARN)
-int
-xfs_isilocked(
- xfs_inode_t *ip,
+void
+xfs_assert_ilocked(
+ struct xfs_inode *ip,
uint lock_flags)
{
- if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
- if (!(lock_flags & XFS_ILOCK_SHARED))
- return !!ip->i_lock.mr_writer;
- return rwsem_is_locked(&ip->i_lock.mr_lock);
- }
-
- if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
- if (!(lock_flags & XFS_MMAPLOCK_SHARED))
- return !!ip->i_mmaplock.mr_writer;
- return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
- }
+ /*
+ * Sometimes we assert the ILOCK is held exclusively, but we're in
+ * a workqueue, so lockdep doesn't know we're the owner.
+ */
+ if (lock_flags & XFS_ILOCK_SHARED)
+ rwsem_assert_held(&ip->i_lock);
+ else if (lock_flags & XFS_ILOCK_EXCL)
+ rwsem_assert_held_write_nolockdep(&ip->i_lock);
- if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
- if (!(lock_flags & XFS_IOLOCK_SHARED))
- return !debug_locks ||
- lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
- return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
- }
+ if (lock_flags & XFS_MMAPLOCK_SHARED)
+ rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
+ else if (lock_flags & XFS_MMAPLOCK_EXCL)
+ rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
- ASSERT(0);
- return 0;
+ if (lock_flags & XFS_IOLOCK_SHARED)
+ rwsem_assert_held(&VFS_I(ip)->i_rwsem);
+ else if (lock_flags & XFS_IOLOCK_EXCL)
+ rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
}
-#endif
/*
* xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
@@ -397,13 +335,14 @@ xfs_lockdep_subclass_ok(
* parent locking. Care must be taken to ensure we don't overrun the subclass
* storage fields in the class mask we build.
*/
-static inline int
-xfs_lock_inumorder(int lock_mode, int subclass)
+static inline uint
+xfs_lock_inumorder(
+ uint lock_mode,
+ uint subclass)
{
- int class = 0;
+ uint class = 0;
- ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
- XFS_ILOCK_RTSUM)));
+ ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
ASSERT(xfs_lockdep_subclass_ok(subclass));
if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
@@ -439,19 +378,22 @@ xfs_lock_inumorder(int lock_mode, int subclass)
* lock more than one at a time, lockdep will report false positives saying we
* have violated locking orders.
*/
-static void
+void
xfs_lock_inodes(
- xfs_inode_t **ips,
- int inodes,
- uint lock_mode)
+ struct xfs_inode **ips,
+ int inodes,
+ uint lock_mode)
{
- int attempts = 0, i, j, try_lock;
- xfs_log_item_t *lp;
+ int attempts = 0;
+ uint i;
+ int j;
+ bool try_lock;
+ struct xfs_log_item *lp;
/*
* Currently supports between 2 and 5 inodes with exclusive locking. We
* support an arbitrary depth of locking here, but absolute limits on
- * inodes depend on the the type of locking and the limits placed by
+ * inodes depend on the type of locking and the limits placed by
* lockdep annotations in xfs_lock_inumorder. These are all checked by
* the asserts.
*/
@@ -470,9 +412,9 @@ xfs_lock_inodes(
} else if (lock_mode & XFS_MMAPLOCK_EXCL)
ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
- try_lock = 0;
- i = 0;
again:
+ try_lock = false;
+ i = 0;
for (; i < inodes; i++) {
ASSERT(ips[i]);
@@ -485,9 +427,9 @@ again:
*/
if (!try_lock) {
for (j = (i - 1); j >= 0 && !try_lock; j--) {
- lp = (xfs_log_item_t *)ips[j]->i_itemp;
+ lp = &ips[j]->i_itemp->ili_item;
if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
- try_lock++;
+ try_lock = true;
}
}
@@ -527,19 +469,15 @@ again:
if ((attempts % 5) == 0) {
delay(1); /* Don't just spin the CPU */
}
- i = 0;
- try_lock = 0;
goto again;
}
}
/*
- * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
- * the mmaplock or the ilock, but not more than one type at a time. If we lock
- * more than one at a time, lockdep will report false positives saying we have
- * violated locking orders. The iolock must be double-locked separately since
- * we use i_rwsem for that. We now support taking one lock EXCL and the other
- * SHARED.
+ * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
+ * mmaplock must be double-locked separately since we use i_rwsem and
+ * invalidate_lock for that. We now support taking one lock EXCL and the
+ * other SHARED.
*/
void
xfs_lock_two_inodes(
@@ -548,33 +486,20 @@ xfs_lock_two_inodes(
struct xfs_inode *ip1,
uint ip1_mode)
{
- struct xfs_inode *temp;
- uint mode_temp;
int attempts = 0;
- xfs_log_item_t *lp;
+ struct xfs_log_item *lp;
ASSERT(hweight32(ip0_mode) == 1);
ASSERT(hweight32(ip1_mode) == 1);
ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
- ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
- !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
- ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
- !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
- ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
- !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
- ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
- !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
-
+ ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
+ ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
ASSERT(ip0->i_ino != ip1->i_ino);
if (ip0->i_ino > ip1->i_ino) {
- temp = ip0;
- ip0 = ip1;
- ip1 = temp;
- mode_temp = ip0_mode;
- ip0_mode = ip1_mode;
- ip1_mode = mode_temp;
+ swap(ip0, ip1);
+ swap(ip0_mode, ip1_mode);
}
again:
@@ -585,7 +510,7 @@ xfs_lock_two_inodes(
* the second lock. If we can't get it, we must release the first one
* and try again.
*/
- lp = (xfs_log_item_t *)ip0->i_itemp;
+ lp = &ip0->i_itemp->ili_item;
if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
xfs_iunlock(ip0, ip0_mode);
@@ -598,83 +523,6 @@ xfs_lock_two_inodes(
}
}
-void
-__xfs_iflock(
- struct xfs_inode *ip)
-{
- wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
- DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
-
- do {
- prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
- if (xfs_isiflocked(ip))
- io_schedule();
- } while (!xfs_iflock_nowait(ip));
-
- finish_wait(wq, &wait.wq_entry);
-}
-
-STATIC uint
-_xfs_dic2xflags(
- uint16_t di_flags,
- uint64_t di_flags2,
- bool has_attr)
-{
- uint flags = 0;
-
- if (di_flags & XFS_DIFLAG_ANY) {
- if (di_flags & XFS_DIFLAG_REALTIME)
- flags |= FS_XFLAG_REALTIME;
- if (di_flags & XFS_DIFLAG_PREALLOC)
- flags |= FS_XFLAG_PREALLOC;
- if (di_flags & XFS_DIFLAG_IMMUTABLE)
- flags |= FS_XFLAG_IMMUTABLE;
- if (di_flags & XFS_DIFLAG_APPEND)
- flags |= FS_XFLAG_APPEND;
- if (di_flags & XFS_DIFLAG_SYNC)
- flags |= FS_XFLAG_SYNC;
- if (di_flags & XFS_DIFLAG_NOATIME)
- flags |= FS_XFLAG_NOATIME;
- if (di_flags & XFS_DIFLAG_NODUMP)
- flags |= FS_XFLAG_NODUMP;
- if (di_flags & XFS_DIFLAG_RTINHERIT)
- flags |= FS_XFLAG_RTINHERIT;
- if (di_flags & XFS_DIFLAG_PROJINHERIT)
- flags |= FS_XFLAG_PROJINHERIT;
- if (di_flags & XFS_DIFLAG_NOSYMLINKS)
- flags |= FS_XFLAG_NOSYMLINKS;
- if (di_flags & XFS_DIFLAG_EXTSIZE)
- flags |= FS_XFLAG_EXTSIZE;
- if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
- flags |= FS_XFLAG_EXTSZINHERIT;
- if (di_flags & XFS_DIFLAG_NODEFRAG)
- flags |= FS_XFLAG_NODEFRAG;
- if (di_flags & XFS_DIFLAG_FILESTREAM)
- flags |= FS_XFLAG_FILESTREAM;
- }
-
- if (di_flags2 & XFS_DIFLAG2_ANY) {
- if (di_flags2 & XFS_DIFLAG2_DAX)
- flags |= FS_XFLAG_DAX;
- if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
- flags |= FS_XFLAG_COWEXTSIZE;
- }
-
- if (has_attr)
- flags |= FS_XFLAG_HASATTR;
-
- return flags;
-}
-
-uint
-xfs_ip2xflags(
- struct xfs_inode *ip)
-{
- struct xfs_icdinode *dic = &ip->i_d;
-
- return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
-}
-
/*
* Lookups up an inode from "name". If ci_name is not NULL, then a CI match
* is allowed, otherwise it has to be an exact match. If a CI match is found,
@@ -683,9 +531,9 @@ xfs_ip2xflags(
*/
int
xfs_lookup(
- xfs_inode_t *dp,
- struct xfs_name *name,
- xfs_inode_t **ipp,
+ struct xfs_inode *dp,
+ const struct xfs_name *name,
+ struct xfs_inode **ipp,
struct xfs_name *ci_name)
{
xfs_ino_t inum;
@@ -693,7 +541,9 @@ xfs_lookup(
trace_xfs_lookup(dp, name);
- if (XFS_FORCED_SHUTDOWN(dp->i_mount))
+ if (xfs_is_shutdown(dp->i_mount))
+ return -EIO;
+ if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
return -EIO;
error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
@@ -704,246 +554,56 @@ xfs_lookup(
if (error)
goto out_free_name;
+ /*
+ * Fail if a directory entry in the regular directory tree points to
+ * a metadata file.
+ */
+ if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
+ xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
+ error = -EFSCORRUPTED;
+ goto out_irele;
+ }
+
return 0;
+out_irele:
+ xfs_irele(*ipp);
out_free_name:
if (ci_name)
- kmem_free(ci_name->name);
+ kfree(ci_name->name);
out_unlock:
*ipp = NULL;
return error;
}
/*
- * Allocate an inode on disk and return a copy of its in-core version.
- * The in-core inode is locked exclusively. Set mode, nlink, and rdev
- * appropriately within the inode. The uid and gid for the inode are
- * set according to the contents of the given cred structure.
+ * Initialise a newly allocated inode and return the in-core inode to the
+ * caller locked exclusively.
*
- * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
- * has a free inode available, call xfs_iget() to obtain the in-core
- * version of the allocated inode. Finally, fill in the inode and
- * log its initial contents. In this case, ialloc_context would be
- * set to NULL.
- *
- * If xfs_dialloc() does not have an available inode, it will replenish
- * its supply by doing an allocation. Since we can only do one
- * allocation within a transaction without deadlocks, we must commit
- * the current transaction before returning the inode itself.
- * In this case, therefore, we will set ialloc_context and return.
- * The caller should then commit the current transaction, start a new
- * transaction, and call xfs_ialloc() again to actually get the inode.
- *
- * To ensure that some other process does not grab the inode that
- * was allocated during the first call to xfs_ialloc(), this routine
- * also returns the [locked] bp pointing to the head of the freelist
- * as ialloc_context. The caller should hold this buffer across
- * the commit and pass it back into this routine on the second call.
- *
- * If we are allocating quota inodes, we do not have a parent inode
- * to attach to or associate with (i.e. pip == NULL) because they
- * are not linked into the directory structure - they are attached
- * directly to the superblock - and so have no parent.
+ * Caller is responsible for unlocking the inode manually upon return
*/
-static int
-xfs_ialloc(
- xfs_trans_t *tp,
- xfs_inode_t *pip,
- umode_t mode,
- xfs_nlink_t nlink,
- dev_t rdev,
- prid_t prid,
- xfs_buf_t **ialloc_context,
- xfs_inode_t **ipp)
+int
+xfs_icreate(
+ struct xfs_trans *tp,
+ xfs_ino_t ino,
+ const struct xfs_icreate_args *args,
+ struct xfs_inode **ipp)
{
- struct xfs_mount *mp = tp->t_mountp;
- xfs_ino_t ino;
- xfs_inode_t *ip;
- uint flags;
- int error;
- struct timespec64 tv;
- struct inode *inode;
+ struct xfs_mount *mp = tp->t_mountp;
+ struct xfs_inode *ip = NULL;
+ int error;
/*
- * Call the space management code to pick
- * the on-disk inode to be allocated.
+ * Get the in-core inode with the lock held exclusively to prevent
+ * others from looking at until we're done.
*/
- error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
- ialloc_context, &ino);
+ error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
if (error)
return error;
- if (*ialloc_context || ino == NULLFSINO) {
- *ipp = NULL;
- return 0;
- }
- ASSERT(*ialloc_context == NULL);
- /*
- * Protect against obviously corrupt allocation btree records. Later
- * xfs_iget checks will catch re-allocation of other active in-memory
- * and on-disk inodes. If we don't catch reallocating the parent inode
- * here we will deadlock in xfs_iget() so we have to do these checks
- * first.
- */
- if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
- xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
- return -EFSCORRUPTED;
- }
-
- /*
- * Get the in-core inode with the lock held exclusively.
- * This is because we're setting fields here we need
- * to prevent others from looking at until we're done.
- */
- error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
- XFS_ILOCK_EXCL, &ip);
- if (error)
- return error;
ASSERT(ip != NULL);
- inode = VFS_I(ip);
-
- /*
- * We always convert v1 inodes to v2 now - we only support filesystems
- * with >= v2 inode capability, so there is no reason for ever leaving
- * an inode in v1 format.
- */
- if (ip->i_d.di_version == 1)
- ip->i_d.di_version = 2;
-
- inode->i_mode = mode;
- set_nlink(inode, nlink);
- ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
- ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
- inode->i_rdev = rdev;
- xfs_set_projid(ip, prid);
-
- if (pip && XFS_INHERIT_GID(pip)) {
- ip->i_d.di_gid = pip->i_d.di_gid;
- if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
- inode->i_mode |= S_ISGID;
- }
-
- /*
- * If the group ID of the new file does not match the effective group
- * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
- * (and only if the irix_sgid_inherit compatibility variable is set).
- */
- if ((irix_sgid_inherit) &&
- (inode->i_mode & S_ISGID) &&
- (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
- inode->i_mode &= ~S_ISGID;
-
- ip->i_d.di_size = 0;
- ip->i_d.di_nextents = 0;
- ASSERT(ip->i_d.di_nblocks == 0);
-
- tv = current_time(inode);
- inode->i_mtime = tv;
- inode->i_atime = tv;
- inode->i_ctime = tv;
-
- ip->i_d.di_extsize = 0;
- ip->i_d.di_dmevmask = 0;
- ip->i_d.di_dmstate = 0;
- ip->i_d.di_flags = 0;
-
- if (ip->i_d.di_version == 3) {
- inode_set_iversion(inode, 1);
- ip->i_d.di_flags2 = 0;
- ip->i_d.di_cowextsize = 0;
- ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
- ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
- }
-
-
- flags = XFS_ILOG_CORE;
- switch (mode & S_IFMT) {
- case S_IFIFO:
- case S_IFCHR:
- case S_IFBLK:
- case S_IFSOCK:
- ip->i_d.di_format = XFS_DINODE_FMT_DEV;
- ip->i_df.if_flags = 0;
- flags |= XFS_ILOG_DEV;
- break;
- case S_IFREG:
- case S_IFDIR:
- if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
- uint di_flags = 0;
-
- if (S_ISDIR(mode)) {
- if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
- di_flags |= XFS_DIFLAG_RTINHERIT;
- if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
- di_flags |= XFS_DIFLAG_EXTSZINHERIT;
- ip->i_d.di_extsize = pip->i_d.di_extsize;
- }
- if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
- di_flags |= XFS_DIFLAG_PROJINHERIT;
- } else if (S_ISREG(mode)) {
- if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
- di_flags |= XFS_DIFLAG_REALTIME;
- if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
- di_flags |= XFS_DIFLAG_EXTSIZE;
- ip->i_d.di_extsize = pip->i_d.di_extsize;
- }
- }
- if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
- xfs_inherit_noatime)
- di_flags |= XFS_DIFLAG_NOATIME;
- if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
- xfs_inherit_nodump)
- di_flags |= XFS_DIFLAG_NODUMP;
- if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
- xfs_inherit_sync)
- di_flags |= XFS_DIFLAG_SYNC;
- if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
- xfs_inherit_nosymlinks)
- di_flags |= XFS_DIFLAG_NOSYMLINKS;
- if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
- xfs_inherit_nodefrag)
- di_flags |= XFS_DIFLAG_NODEFRAG;
- if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
- di_flags |= XFS_DIFLAG_FILESTREAM;
-
- ip->i_d.di_flags |= di_flags;
- }
- if (pip &&
- (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
- pip->i_d.di_version == 3 &&
- ip->i_d.di_version == 3) {
- uint64_t di_flags2 = 0;
-
- if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
- di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
- ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
- }
- if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
- di_flags2 |= XFS_DIFLAG2_DAX;
-
- ip->i_d.di_flags2 |= di_flags2;
- }
- /* FALLTHROUGH */
- case S_IFLNK:
- ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
- ip->i_df.if_flags = XFS_IFEXTENTS;
- ip->i_df.if_bytes = 0;
- ip->i_df.if_u1.if_root = NULL;
- break;
- default:
- ASSERT(0);
- }
- /*
- * Attribute fork settings for new inode.
- */
- ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
- ip->i_d.di_anextents = 0;
-
- /*
- * Log the new values stuffed into the inode.
- */
- xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
- xfs_trans_log_inode(tp, ip, flags);
+ xfs_trans_ijoin(tp, ip, 0);
+ xfs_inode_init(tp, args, ip);
/* now that we have an i_mode we can setup the inode structure */
xfs_setup_inode(ip);
@@ -952,300 +612,135 @@ xfs_ialloc(
return 0;
}
-/*
- * Allocates a new inode from disk and return a pointer to the
- * incore copy. This routine will internally commit the current
- * transaction and allocate a new one if the Space Manager needed
- * to do an allocation to replenish the inode free-list.
- *
- * This routine is designed to be called from xfs_create and
- * xfs_create_dir.
- *
- */
+/* Return dquots for the ids that will be assigned to a new file. */
int
-xfs_dir_ialloc(
- xfs_trans_t **tpp, /* input: current transaction;
- output: may be a new transaction. */
- xfs_inode_t *dp, /* directory within whose allocate
- the inode. */
- umode_t mode,
- xfs_nlink_t nlink,
- dev_t rdev,
- prid_t prid, /* project id */
- xfs_inode_t **ipp) /* pointer to inode; it will be
- locked. */
+xfs_icreate_dqalloc(
+ const struct xfs_icreate_args *args,
+ struct xfs_dquot **udqpp,
+ struct xfs_dquot **gdqpp,
+ struct xfs_dquot **pdqpp)
{
- xfs_trans_t *tp;
- xfs_inode_t *ip;
- xfs_buf_t *ialloc_context = NULL;
- int code;
- void *dqinfo;
- uint tflags;
-
- tp = *tpp;
- ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
-
- /*
- * xfs_ialloc will return a pointer to an incore inode if
- * the Space Manager has an available inode on the free
- * list. Otherwise, it will do an allocation and replenish
- * the freelist. Since we can only do one allocation per
- * transaction without deadlocks, we will need to commit the
- * current transaction and start a new one. We will then
- * need to call xfs_ialloc again to get the inode.
- *
- * If xfs_ialloc did an allocation to replenish the freelist,
- * it returns the bp containing the head of the freelist as
- * ialloc_context. We will hold a lock on it across the
- * transaction commit so that no other process can steal
- * the inode(s) that we've just allocated.
- */
- code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
- &ip);
-
- /*
- * Return an error if we were unable to allocate a new inode.
- * This should only happen if we run out of space on disk or
- * encounter a disk error.
- */
- if (code) {
- *ipp = NULL;
- return code;
- }
- if (!ialloc_context && !ip) {
- *ipp = NULL;
- return -ENOSPC;
- }
-
- /*
- * If the AGI buffer is non-NULL, then we were unable to get an
- * inode in one operation. We need to commit the current
- * transaction and call xfs_ialloc() again. It is guaranteed
- * to succeed the second time.
- */
- if (ialloc_context) {
- /*
- * Normally, xfs_trans_commit releases all the locks.
- * We call bhold to hang on to the ialloc_context across
- * the commit. Holding this buffer prevents any other
- * processes from doing any allocations in this
- * allocation group.
- */
- xfs_trans_bhold(tp, ialloc_context);
-
- /*
- * We want the quota changes to be associated with the next
- * transaction, NOT this one. So, detach the dqinfo from this
- * and attach it to the next transaction.
- */
- dqinfo = NULL;
- tflags = 0;
- if (tp->t_dqinfo) {
- dqinfo = (void *)tp->t_dqinfo;
- tp->t_dqinfo = NULL;
- tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
- tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
- }
-
- code = xfs_trans_roll(&tp);
-
- /*
- * Re-attach the quota info that we detached from prev trx.
- */
- if (dqinfo) {
- tp->t_dqinfo = dqinfo;
- tp->t_flags |= tflags;
- }
-
- if (code) {
- xfs_buf_relse(ialloc_context);
- *tpp = tp;
- *ipp = NULL;
- return code;
- }
- xfs_trans_bjoin(tp, ialloc_context);
+ struct inode *dir = VFS_I(args->pip);
+ kuid_t uid = GLOBAL_ROOT_UID;
+ kgid_t gid = GLOBAL_ROOT_GID;
+ prid_t prid = 0;
+ unsigned int flags = XFS_QMOPT_QUOTALL;
+ if (args->idmap) {
/*
- * Call ialloc again. Since we've locked out all
- * other allocations in this allocation group,
- * this call should always succeed.
+ * The uid/gid computation code must match what the VFS uses to
+ * assign i_[ug]id. INHERIT adjusts the gid computation for
+ * setgid/grpid systems.
*/
- code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
- &ialloc_context, &ip);
-
- /*
- * If we get an error at this point, return to the caller
- * so that the current transaction can be aborted.
- */
- if (code) {
- *tpp = tp;
- *ipp = NULL;
- return code;
- }
- ASSERT(!ialloc_context && ip);
-
+ uid = mapped_fsuid(args->idmap, i_user_ns(dir));
+ gid = mapped_fsgid(args->idmap, i_user_ns(dir));
+ prid = xfs_get_initial_prid(args->pip);
+ flags |= XFS_QMOPT_INHERIT;
}
- *ipp = ip;
- *tpp = tp;
-
- return 0;
-}
-
-/*
- * Decrement the link count on an inode & log the change. If this causes the
- * link count to go to zero, move the inode to AGI unlinked list so that it can
- * be freed when the last active reference goes away via xfs_inactive().
- */
-static int /* error */
-xfs_droplink(
- xfs_trans_t *tp,
- xfs_inode_t *ip)
-{
- xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
-
- drop_nlink(VFS_I(ip));
- xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
-
- if (VFS_I(ip)->i_nlink)
- return 0;
-
- return xfs_iunlink(tp, ip);
-}
+ *udqpp = *gdqpp = *pdqpp = NULL;
-/*
- * Increment the link count on an inode & log the change.
- */
-static int
-xfs_bumplink(
- xfs_trans_t *tp,
- xfs_inode_t *ip)
-{
- xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
-
- ASSERT(ip->i_d.di_version > 1);
- inc_nlink(VFS_I(ip));
- xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
- return 0;
+ return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
+ gdqpp, pdqpp);
}
int
xfs_create(
- xfs_inode_t *dp,
+ const struct xfs_icreate_args *args,
struct xfs_name *name,
- umode_t mode,
- dev_t rdev,
- xfs_inode_t **ipp)
+ struct xfs_inode **ipp)
{
- int is_dir = S_ISDIR(mode);
+ struct xfs_inode *dp = args->pip;
+ struct xfs_dir_update du = {
+ .dp = dp,
+ .name = name,
+ };
struct xfs_mount *mp = dp->i_mount;
- struct xfs_inode *ip = NULL;
struct xfs_trans *tp = NULL;
- int error;
- bool unlock_dp_on_error = false;
- prid_t prid;
- struct xfs_dquot *udqp = NULL;
- struct xfs_dquot *gdqp = NULL;
- struct xfs_dquot *pdqp = NULL;
+ struct xfs_dquot *udqp;
+ struct xfs_dquot *gdqp;
+ struct xfs_dquot *pdqp;
struct xfs_trans_res *tres;
+ xfs_ino_t ino;
+ bool unlock_dp_on_error = false;
+ bool is_dir = S_ISDIR(args->mode);
uint resblks;
+ int error;
trace_xfs_create(dp, name);
- if (XFS_FORCED_SHUTDOWN(mp))
+ if (xfs_is_shutdown(mp))
+ return -EIO;
+ if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
return -EIO;
- prid = xfs_get_initial_prid(dp);
-
- /*
- * Make sure that we have allocated dquot(s) on disk.
- */
- error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
- xfs_kgid_to_gid(current_fsgid()), prid,
- XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
- &udqp, &gdqp, &pdqp);
+ /* Make sure that we have allocated dquot(s) on disk. */
+ error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
if (error)
return error;
if (is_dir) {
- resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
+ resblks = xfs_mkdir_space_res(mp, name->len);
tres = &M_RES(mp)->tr_mkdir;
} else {
- resblks = XFS_CREATE_SPACE_RES(mp, name->len);
+ resblks = xfs_create_space_res(mp, name->len);
tres = &M_RES(mp)->tr_create;
}
+ error = xfs_parent_start(mp, &du.ppargs);
+ if (error)
+ goto out_release_dquots;
+
/*
* Initially assume that the file does not exist and
* reserve the resources for that case. If that is not
* the case we'll drop the one we have and get a more
* appropriate transaction later.
*/
- error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
+ error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
+ &tp);
if (error == -ENOSPC) {
/* flush outstanding delalloc blocks and retry */
xfs_flush_inodes(mp);
- error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
+ error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
+ resblks, &tp);
}
if (error)
- goto out_release_inode;
+ goto out_parent;
xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
unlock_dp_on_error = true;
/*
- * Reserve disk quota and the inode.
- */
- error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
- pdqp, resblks, 1, 0);
- if (error)
- goto out_trans_cancel;
-
- /*
* A newly created regular or special file just has one directory
* entry pointing to them, but a directory also the "." entry
* pointing to itself.
*/
- error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
+ error = xfs_dialloc(&tp, args, &ino);
+ if (!error)
+ error = xfs_icreate(tp, ino, args, &du.ip);
if (error)
goto out_trans_cancel;
/*
* Now we join the directory inode to the transaction. We do not do it
- * earlier because xfs_dir_ialloc might commit the previous transaction
+ * earlier because xfs_dialloc might commit the previous transaction
* (and release all the locks). An error from here on will result in
* the transaction cancel unlocking dp so don't do it explicitly in the
* error path.
*/
- xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
- unlock_dp_on_error = false;
+ xfs_trans_ijoin(tp, dp, 0);
- error = xfs_dir_createname(tp, dp, name, ip->i_ino,
- resblks ?
- resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
- if (error) {
- ASSERT(error != -ENOSPC);
+ error = xfs_dir_create_child(tp, resblks, &du);
+ if (error)
goto out_trans_cancel;
- }
- xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
- xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
-
- if (is_dir) {
- error = xfs_dir_init(tp, ip, dp);
- if (error)
- goto out_trans_cancel;
-
- error = xfs_bumplink(tp, dp);
- if (error)
- goto out_trans_cancel;
- }
/*
* If this is a synchronous mount, make sure that the
* create transaction goes to disk before returning to
* the user.
*/
- if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
+ if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
xfs_trans_set_sync(tp);
/*
@@ -1253,7 +748,7 @@ xfs_create(
* These ids of the inode couldn't have changed since the new
* inode has been locked ever since it was created.
*/
- xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
+ xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
error = xfs_trans_commit(tp);
if (error)
@@ -1263,7 +758,10 @@ xfs_create(
xfs_qm_dqrele(gdqp);
xfs_qm_dqrele(pdqp);
- *ipp = ip;
+ *ipp = du.ip;
+ xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
+ xfs_iunlock(dp, XFS_ILOCK_EXCL);
+ xfs_parent_finish(mp, du.ppargs);
return 0;
out_trans_cancel:
@@ -1274,11 +772,14 @@ xfs_create(
* setup of the inode and release the inode. This prevents recursive
* transactions and deadlocks from xfs_inactive.
*/
- if (ip) {
- xfs_finish_inode_setup(ip);
- xfs_irele(ip);
+ if (du.ip) {
+ xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
+ xfs_finish_inode_setup(du.ip);
+ xfs_irele(du.ip);
}
-
+ out_parent:
+ xfs_parent_finish(mp, du.ppargs);
+ out_release_dquots:
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
xfs_qm_dqrele(pdqp);
@@ -1290,53 +791,46 @@ xfs_create(
int
xfs_create_tmpfile(
- struct xfs_inode *dp,
- umode_t mode,
+ const struct xfs_icreate_args *args,
struct xfs_inode **ipp)
{
+ struct xfs_inode *dp = args->pip;
struct xfs_mount *mp = dp->i_mount;
struct xfs_inode *ip = NULL;
struct xfs_trans *tp = NULL;
- int error;
- prid_t prid;
- struct xfs_dquot *udqp = NULL;
- struct xfs_dquot *gdqp = NULL;
- struct xfs_dquot *pdqp = NULL;
+ struct xfs_dquot *udqp;
+ struct xfs_dquot *gdqp;
+ struct xfs_dquot *pdqp;
struct xfs_trans_res *tres;
+ xfs_ino_t ino;
uint resblks;
+ int error;
- if (XFS_FORCED_SHUTDOWN(mp))
- return -EIO;
+ ASSERT(args->flags & XFS_ICREATE_TMPFILE);
- prid = xfs_get_initial_prid(dp);
+ if (xfs_is_shutdown(mp))
+ return -EIO;
- /*
- * Make sure that we have allocated dquot(s) on disk.
- */
- error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
- xfs_kgid_to_gid(current_fsgid()), prid,
- XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
- &udqp, &gdqp, &pdqp);
+ /* Make sure that we have allocated dquot(s) on disk. */
+ error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
if (error)
return error;
resblks = XFS_IALLOC_SPACE_RES(mp);
tres = &M_RES(mp)->tr_create_tmpfile;
- error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
- if (error)
- goto out_release_inode;
-
- error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
- pdqp, resblks, 1, 0);
+ error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
+ &tp);
if (error)
- goto out_trans_cancel;
+ goto out_release_dquots;
- error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
+ error = xfs_dialloc(&tp, args, &ino);
+ if (!error)
+ error = xfs_icreate(tp, ino, args, &ip);
if (error)
goto out_trans_cancel;
- if (mp->m_flags & XFS_MOUNT_WSYNC)
+ if (xfs_has_wsync(mp))
xfs_trans_set_sync(tp);
/*
@@ -1359,6 +853,7 @@ xfs_create_tmpfile(
xfs_qm_dqrele(pdqp);
*ipp = ip;
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
return 0;
out_trans_cancel:
@@ -1370,10 +865,11 @@ xfs_create_tmpfile(
* transactions and deadlocks from xfs_inactive.
*/
if (ip) {
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_finish_inode_setup(ip);
xfs_irele(ip);
}
-
+ out_release_dquots:
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
xfs_qm_dqrele(pdqp);
@@ -1381,22 +877,58 @@ xfs_create_tmpfile(
return error;
}
+static inline int
+xfs_projid_differ(
+ struct xfs_inode *tdp,
+ struct xfs_inode *sip)
+{
+ /*
+ * If we are using project inheritance, we only allow hard link/renames
+ * creation in our tree when the project IDs are the same; else
+ * the tree quota mechanism could be circumvented.
+ */
+ if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
+ tdp->i_projid != sip->i_projid)) {
+ /*
+ * Project quota setup skips special files which can
+ * leave inodes in a PROJINHERIT directory without a
+ * project ID set. We need to allow links to be made
+ * to these "project-less" inodes because userspace
+ * expects them to succeed after project ID setup,
+ * but everything else should be rejected.
+ */
+ if (!special_file(VFS_I(sip)->i_mode) ||
+ sip->i_projid != 0) {
+ return -EXDEV;
+ }
+ }
+
+ return 0;
+}
+
int
xfs_link(
- xfs_inode_t *tdp,
- xfs_inode_t *sip,
+ struct xfs_inode *tdp,
+ struct xfs_inode *sip,
struct xfs_name *target_name)
{
- xfs_mount_t *mp = tdp->i_mount;
- xfs_trans_t *tp;
- int error;
+ struct xfs_dir_update du = {
+ .dp = tdp,
+ .name = target_name,
+ .ip = sip,
+ };
+ struct xfs_mount *mp = tdp->i_mount;
+ struct xfs_trans *tp;
+ int error, nospace_error = 0;
int resblks;
trace_xfs_link(tdp, target_name);
ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
- if (XFS_FORCED_SHUTDOWN(mp))
+ if (xfs_is_shutdown(mp))
+ return -EIO;
+ if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
return -EIO;
error = xfs_qm_dqattach(sip);
@@ -1407,54 +939,31 @@ xfs_link(
if (error)
goto std_return;
- resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
- error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
- if (error == -ENOSPC) {
- resblks = 0;
- error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
- }
+ error = xfs_parent_start(mp, &du.ppargs);
if (error)
goto std_return;
- xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
-
- xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
- xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
+ resblks = xfs_link_space_res(mp, target_name->len);
+ error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
+ &tp, &nospace_error);
+ if (error)
+ goto out_parent;
/*
- * If we are using project inheritance, we only allow hard link
- * creation in our tree when the project IDs are the same; else
- * the tree quota mechanism could be circumvented.
+ * We don't allow reservationless or quotaless hardlinking when parent
+ * pointers are enabled because we can't back out if the xattrs must
+ * grow.
*/
- if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
- (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
- error = -EXDEV;
+ if (du.ppargs && nospace_error) {
+ error = nospace_error;
goto error_return;
}
- if (!resblks) {
- error = xfs_dir_canenter(tp, tdp, target_name);
- if (error)
- goto error_return;
- }
-
- /*
- * Handle initial link state of O_TMPFILE inode
- */
- if (VFS_I(sip)->i_nlink == 0) {
- error = xfs_iunlink_remove(tp, sip);
- if (error)
- goto error_return;
- }
-
- error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
- resblks);
+ error = xfs_projid_differ(tdp, sip);
if (error)
goto error_return;
- xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
- xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
- error = xfs_bumplink(tp, sip);
+ error = xfs_dir_add_child(tp, resblks, &du);
if (error)
goto error_return;
@@ -1463,14 +972,24 @@ xfs_link(
* link transaction goes to disk before returning to
* the user.
*/
- if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
+ if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
xfs_trans_set_sync(tp);
- return xfs_trans_commit(tp);
+ error = xfs_trans_commit(tp);
+ xfs_iunlock(tdp, XFS_ILOCK_EXCL);
+ xfs_iunlock(sip, XFS_ILOCK_EXCL);
+ xfs_parent_finish(mp, du.ppargs);
+ return error;
error_return:
xfs_trans_cancel(tp);
+ xfs_iunlock(tdp, XFS_ILOCK_EXCL);
+ xfs_iunlock(sip, XFS_ILOCK_EXCL);
+ out_parent:
+ xfs_parent_finish(mp, du.ppargs);
std_return:
+ if (error == -ENOSPC && nospace_error)
+ error = nospace_error;
return error;
}
@@ -1484,10 +1003,10 @@ xfs_itruncate_clear_reflink_flags(
if (!xfs_is_reflink_inode(ip))
return;
- dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
- cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
+ dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
+ cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
- ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
+ ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
if (cfork->if_bytes == 0)
xfs_inode_clear_cowblocks_tag(ip);
}
@@ -1524,14 +1043,11 @@ xfs_itruncate_extents_flags(
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp = *tpp;
xfs_fileoff_t first_unmap_block;
- xfs_fileoff_t last_block;
- xfs_filblks_t unmap_len;
int error = 0;
- int done = 0;
- ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
- ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
- xfs_isilocked(ip, XFS_IOLOCK_EXCL));
+ xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
+ if (icount_read(VFS_I(ip)))
+ xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
ASSERT(new_size <= XFS_ISIZE(ip));
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
ASSERT(ip->i_itemp != NULL);
@@ -1547,41 +1063,26 @@ xfs_itruncate_extents_flags(
* the end of the file (in a crash where the space is allocated
* but the inode size is not yet updated), simply remove any
* blocks which show up between the new EOF and the maximum
- * possible file size. If the first block to be removed is
- * beyond the maximum file size (ie it is the same as last_block),
- * then there is nothing to do.
+ * possible file size.
+ *
+ * We have to free all the blocks to the bmbt maximum offset, even if
+ * the page cache can't scale that far.
*/
first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
- last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
- if (first_unmap_block == last_block)
+ if (!xfs_verify_fileoff(mp, first_unmap_block)) {
+ WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
return 0;
-
- ASSERT(first_unmap_block < last_block);
- unmap_len = last_block - first_unmap_block + 1;
- while (!done) {
- ASSERT(tp->t_firstblock == NULLFSBLOCK);
- error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
- XFS_ITRUNC_MAX_EXTENTS, &done);
- if (error)
- goto out;
-
- /*
- * Duplicate the transaction that has the permanent
- * reservation and commit the old transaction.
- */
- error = xfs_defer_finish(&tp);
- if (error)
- goto out;
-
- error = xfs_trans_roll_inode(&tp, ip);
- if (error)
- goto out;
}
+ error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
+ XFS_MAX_FILEOFF);
+ if (error)
+ goto out;
+
if (whichfork == XFS_DATA_FORK) {
/* Remove all pending CoW reservations. */
error = xfs_reflink_cancel_cow_blocks(ip, &tp,
- first_unmap_block, last_block, true);
+ first_unmap_block, XFS_MAX_FILEOFF, true);
if (error)
goto out;
@@ -1601,84 +1102,49 @@ out:
return error;
}
-int
-xfs_release(
- xfs_inode_t *ip)
+/*
+ * Mark all the buffers attached to this directory stale. In theory we should
+ * never be freeing a directory with any blocks at all, but this covers the
+ * case where we've recovered a directory swap with a "temporary" directory
+ * created by online repair and now need to dump it.
+ */
+STATIC void
+xfs_inactive_dir(
+ struct xfs_inode *dp)
{
- xfs_mount_t *mp = ip->i_mount;
- int error;
-
- if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
- return 0;
-
- /* If this is a read-only mount, don't do this (would generate I/O) */
- if (mp->m_flags & XFS_MOUNT_RDONLY)
- return 0;
-
- if (!XFS_FORCED_SHUTDOWN(mp)) {
- int truncated;
-
- /*
- * If we previously truncated this file and removed old data
- * in the process, we want to initiate "early" writeout on
- * the last close. This is an attempt to combat the notorious
- * NULL files problem which is particularly noticeable from a
- * truncate down, buffered (re-)write (delalloc), followed by
- * a crash. What we are effectively doing here is
- * significantly reducing the time window where we'd otherwise
- * be exposed to that problem.
- */
- truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
- if (truncated) {
- xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
- if (ip->i_delayed_blks > 0) {
- error = filemap_flush(VFS_I(ip)->i_mapping);
- if (error)
- return error;
- }
- }
- }
-
- if (VFS_I(ip)->i_nlink == 0)
- return 0;
-
- if (xfs_can_free_eofblocks(ip, false)) {
-
- /*
- * Check if the inode is being opened, written and closed
- * frequently and we have delayed allocation blocks outstanding
- * (e.g. streaming writes from the NFS server), truncating the
- * blocks past EOF will cause fragmentation to occur.
- *
- * In this case don't do the truncation, but we have to be
- * careful how we detect this case. Blocks beyond EOF show up as
- * i_delayed_blks even when the inode is clean, so we need to
- * truncate them away first before checking for a dirty release.
- * Hence on the first dirty close we will still remove the
- * speculative allocation, but after that we will leave it in
- * place.
- */
- if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
- return 0;
- /*
- * If we can't get the iolock just skip truncating the blocks
- * past EOF because we could deadlock with the mmap_sem
- * otherwise. We'll get another chance to drop them once the
- * last reference to the inode is dropped, so we'll never leak
- * blocks permanently.
- */
- if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
- error = xfs_free_eofblocks(ip);
- xfs_iunlock(ip, XFS_IOLOCK_EXCL);
+ struct xfs_iext_cursor icur;
+ struct xfs_bmbt_irec got;
+ struct xfs_mount *mp = dp->i_mount;
+ struct xfs_da_geometry *geo = mp->m_dir_geo;
+ struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
+ xfs_fileoff_t off;
+
+ /*
+ * Invalidate each directory block. All directory blocks are of
+ * fsbcount length and alignment, so we only need to walk those same
+ * offsets. We hold the only reference to this inode, so we must wait
+ * for the buffer locks.
+ */
+ for_each_xfs_iext(ifp, &icur, &got) {
+ for (off = round_up(got.br_startoff, geo->fsbcount);
+ off < got.br_startoff + got.br_blockcount;
+ off += geo->fsbcount) {
+ struct xfs_buf *bp = NULL;
+ xfs_fsblock_t fsbno;
+ int error;
+
+ fsbno = (off - got.br_startoff) + got.br_startblock;
+ error = xfs_buf_incore(mp->m_ddev_targp,
+ XFS_FSB_TO_DADDR(mp, fsbno),
+ XFS_FSB_TO_BB(mp, geo->fsbcount),
+ XBF_LIVESCAN, &bp);
if (error)
- return error;
- }
+ continue;
- /* delalloc blocks after truncation means it really is dirty */
- if (ip->i_delayed_blks)
- xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
+ xfs_buf_stale(bp);
+ xfs_buf_relse(bp);
+ }
}
- return 0;
}
/*
@@ -1696,7 +1162,7 @@ xfs_inactive_truncate(
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
if (error) {
- ASSERT(XFS_FORCED_SHUTDOWN(mp));
+ ASSERT(xfs_is_shutdown(mp));
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
@@ -1707,14 +1173,14 @@ xfs_inactive_truncate(
* of a system crash before the truncate completes. See the related
* comment in xfs_vn_setattr_size() for details.
*/
- ip->i_d.di_size = 0;
+ ip->i_disk_size = 0;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
if (error)
goto error_trans_cancel;
- ASSERT(ip->i_d.di_nextents == 0);
+ ASSERT(ip->i_df.if_nextents == 0);
error = xfs_trans_commit(tp);
if (error)
@@ -1754,7 +1220,7 @@ xfs_inactive_ifree(
* now remains allocated and sits on the unlinked list until the fs is
* repaired.
*/
- if (unlikely(mp->m_inotbt_nores)) {
+ if (unlikely(mp->m_finobt_nores)) {
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
&tp);
@@ -1767,28 +1233,48 @@ xfs_inactive_ifree(
"Failed to remove inode(s) from unlinked list. "
"Please free space, unmount and run xfs_repair.");
} else {
- ASSERT(XFS_FORCED_SHUTDOWN(mp));
+ ASSERT(xfs_is_shutdown(mp));
}
return error;
}
+ /*
+ * We do not hold the inode locked across the entire rolling transaction
+ * here. We only need to hold it for the first transaction that
+ * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
+ * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
+ * here breaks the relationship between cluster buffer invalidation and
+ * stale inode invalidation on cluster buffer item journal commit
+ * completion, and can result in leaving dirty stale inodes hanging
+ * around in memory.
+ *
+ * We have no need for serialising this inode operation against other
+ * operations - we freed the inode and hence reallocation is required
+ * and that will serialise on reallocating the space the deferops need
+ * to free. Hence we can unlock the inode on the first commit of
+ * the transaction rather than roll it right through the deferops. This
+ * avoids relogging the XFS_ISTALE inode.
+ *
+ * We check that xfs_ifree() hasn't grown an internal transaction roll
+ * by asserting that the inode is still locked when it returns.
+ */
xfs_ilock(ip, XFS_ILOCK_EXCL);
- xfs_trans_ijoin(tp, ip, 0);
+ xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
error = xfs_ifree(tp, ip);
+ xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
if (error) {
/*
* If we fail to free the inode, shut down. The cancel
* might do that, we need to make sure. Otherwise the
* inode might be lost for a long time or forever.
*/
- if (!XFS_FORCED_SHUTDOWN(mp)) {
+ if (!xfs_is_shutdown(mp)) {
xfs_notice(mp, "%s: xfs_ifree returned error %d",
__func__, error);
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
}
xfs_trans_cancel(tp);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
@@ -1797,17 +1283,94 @@ xfs_inactive_ifree(
*/
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
+ return xfs_trans_commit(tp);
+}
+
+/*
+ * Returns true if we need to update the on-disk metadata before we can free
+ * the memory used by this inode. Updates include freeing post-eof
+ * preallocations; freeing COW staging extents; and marking the inode free in
+ * the inobt if it is on the unlinked list.
+ */
+bool
+xfs_inode_needs_inactive(
+ struct xfs_inode *ip)
+{
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
+
/*
- * Just ignore errors at this point. There is nothing we can do except
- * to try to keep going. Make sure it's not a silent error.
+ * If the inode is already free, then there can be nothing
+ * to clean up here.
*/
- error = xfs_trans_commit(tp);
- if (error)
- xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
- __func__, error);
+ if (VFS_I(ip)->i_mode == 0)
+ return false;
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- return 0;
+ /*
+ * If this is a read-only mount, don't do this (would generate I/O)
+ * unless we're in log recovery and cleaning the iunlinked list.
+ */
+ if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
+ return false;
+
+ /* If the log isn't running, push inodes straight to reclaim. */
+ if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
+ return false;
+
+ /* Metadata inodes require explicit resource cleanup. */
+ if (xfs_is_internal_inode(ip))
+ return false;
+
+ /* Want to clean out the cow blocks if there are any. */
+ if (cow_ifp && cow_ifp->if_bytes > 0)
+ return true;
+
+ /* Unlinked files must be freed. */
+ if (VFS_I(ip)->i_nlink == 0)
+ return true;
+
+ /*
+ * This file isn't being freed, so check if there are post-eof blocks
+ * to free.
+ *
+ * Note: don't bother with iolock here since lockdep complains about
+ * acquiring it in reclaim context. We have the only reference to the
+ * inode at this point anyways.
+ */
+ return xfs_can_free_eofblocks(ip);
+}
+
+/*
+ * Save health status somewhere, if we're dumping an inode with uncorrected
+ * errors and online repair isn't running.
+ */
+static inline void
+xfs_inactive_health(
+ struct xfs_inode *ip)
+{
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_perag *pag;
+ unsigned int sick;
+ unsigned int checked;
+
+ xfs_inode_measure_sickness(ip, &sick, &checked);
+ if (!sick)
+ return;
+
+ trace_xfs_inode_unfixed_corruption(ip, sick);
+
+ if (sick & XFS_SICK_INO_FORGET)
+ return;
+
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
+ if (!pag) {
+ /* There had better still be a perag structure! */
+ ASSERT(0);
+ return;
+ }
+
+ xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
+ xfs_perag_put(pag);
}
/*
@@ -1818,12 +1381,12 @@ xfs_inactive_ifree(
* now be truncated. Also, we clear all of the read-ahead state
* kept for the inode here since the file is now closed.
*/
-void
+int
xfs_inactive(
xfs_inode_t *ip)
{
struct xfs_mount *mp;
- int error;
+ int error = 0;
int truncate = 0;
/*
@@ -1832,344 +1395,291 @@ xfs_inactive(
*/
if (VFS_I(ip)->i_mode == 0) {
ASSERT(ip->i_df.if_broot_bytes == 0);
- return;
+ goto out;
}
mp = ip->i_mount;
ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
- /* If this is a read-only mount, don't do this (would generate I/O) */
- if (mp->m_flags & XFS_MOUNT_RDONLY)
- return;
+ xfs_inactive_health(ip);
+
+ /*
+ * If this is a read-only mount, don't do this (would generate I/O)
+ * unless we're in log recovery and cleaning the iunlinked list.
+ */
+ if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
+ goto out;
+
+ /* Metadata inodes require explicit resource cleanup. */
+ if (xfs_is_internal_inode(ip))
+ goto out;
/* Try to clean out the cow blocks if there are any. */
- if (xfs_inode_has_cow_data(ip))
- xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
+ if (xfs_inode_has_cow_data(ip)) {
+ error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
+ if (error)
+ goto out;
+ }
if (VFS_I(ip)->i_nlink != 0) {
/*
- * force is true because we are evicting an inode from the
- * cache. Post-eof blocks must be freed, lest we end up with
- * broken free space accounting.
- *
* Note: don't bother with iolock here since lockdep complains
* about acquiring it in reclaim context. We have the only
* reference to the inode at this point anyways.
*/
- if (xfs_can_free_eofblocks(ip, true))
- xfs_free_eofblocks(ip);
+ if (xfs_can_free_eofblocks(ip))
+ error = xfs_free_eofblocks(ip);
- return;
+ goto out;
}
if (S_ISREG(VFS_I(ip)->i_mode) &&
- (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
- ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
+ (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
+ xfs_inode_has_filedata(ip)))
truncate = 1;
- error = xfs_qm_dqattach(ip);
- if (error)
- return;
+ if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
+ /*
+ * If this inode is being inactivated during a quotacheck and
+ * has not yet been scanned by quotacheck, we /must/ remove
+ * the dquots from the inode before inactivation changes the
+ * block and inode counts. Most probably this is a result of
+ * reloading the incore iunlinked list to purge unrecovered
+ * unlinked inodes.
+ */
+ xfs_qm_dqdetach(ip);
+ } else {
+ error = xfs_qm_dqattach(ip);
+ if (error)
+ goto out;
+ }
+
+ if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
+ xfs_inactive_dir(ip);
+ truncate = 1;
+ }
if (S_ISLNK(VFS_I(ip)->i_mode))
error = xfs_inactive_symlink(ip);
else if (truncate)
error = xfs_inactive_truncate(ip);
if (error)
- return;
+ goto out;
/*
* If there are attributes associated with the file then blow them away
* now. The code calls a routine that recursively deconstructs the
* attribute fork. If also blows away the in-core attribute fork.
*/
- if (XFS_IFORK_Q(ip)) {
+ if (xfs_inode_has_attr_fork(ip)) {
error = xfs_attr_inactive(ip);
if (error)
- return;
+ goto out;
}
- ASSERT(!ip->i_afp);
- ASSERT(ip->i_d.di_anextents == 0);
- ASSERT(ip->i_d.di_forkoff == 0);
+ ASSERT(ip->i_forkoff == 0);
/*
* Free the inode.
*/
error = xfs_inactive_ifree(ip);
- if (error)
- return;
+out:
/*
- * Release the dquots held by inode, if any.
+ * We're done making metadata updates for this inode, so we can release
+ * the attached dquots.
*/
xfs_qm_dqdetach(ip);
+ return error;
}
/*
- * This is called when the inode's link count goes to 0 or we are creating a
- * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
- * set to true as the link count is dropped to zero by the VFS after we've
- * created the file successfully, so we have to add it to the unlinked list
- * while the link count is non-zero.
- *
- * We place the on-disk inode on a list in the AGI. It will be pulled from this
- * list when the inode is freed.
+ * Find an inode on the unlinked list. This does not take references to the
+ * inode as we have existence guarantees by holding the AGI buffer lock and that
+ * only unlinked, referenced inodes can be on the unlinked inode list. If we
+ * don't find the inode in cache, then let the caller handle the situation.
*/
-STATIC int
-xfs_iunlink(
- struct xfs_trans *tp,
- struct xfs_inode *ip)
+struct xfs_inode *
+xfs_iunlink_lookup(
+ struct xfs_perag *pag,
+ xfs_agino_t agino)
{
- xfs_mount_t *mp = tp->t_mountp;
- xfs_agi_t *agi;
- xfs_dinode_t *dip;
- xfs_buf_t *agibp;
- xfs_buf_t *ibp;
- xfs_agino_t agino;
- short bucket_index;
- int offset;
- int error;
-
- ASSERT(VFS_I(ip)->i_mode != 0);
+ struct xfs_inode *ip;
- /*
- * Get the agi buffer first. It ensures lock ordering
- * on the list.
- */
- error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
- if (error)
- return error;
- agi = XFS_BUF_TO_AGI(agibp);
+ rcu_read_lock();
+ ip = radix_tree_lookup(&pag->pag_ici_root, agino);
+ if (!ip) {
+ /* Caller can handle inode not being in memory. */
+ rcu_read_unlock();
+ return NULL;
+ }
/*
- * Get the index into the agi hash table for the
- * list this inode will go on.
+ * Inode in RCU freeing limbo should not happen. Warn about this and
+ * let the caller handle the failure.
*/
- agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
- ASSERT(agino != 0);
- bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
- ASSERT(agi->agi_unlinked[bucket_index]);
- ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
+ if (WARN_ON_ONCE(!ip->i_ino)) {
+ rcu_read_unlock();
+ return NULL;
+ }
+ ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
+ rcu_read_unlock();
+ return ip;
+}
- if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
- /*
- * There is already another inode in the bucket we need
- * to add ourselves to. Add us at the front of the list.
- * Here we put the head pointer into our next pointer,
- * and then we fall through to point the head at us.
- */
- error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
- 0, 0);
- if (error)
- return error;
+/*
+ * Load the inode @next_agino into the cache and set its prev_unlinked pointer
+ * to @prev_agino. Caller must hold the AGI to synchronize with other changes
+ * to the unlinked list.
+ */
+int
+xfs_iunlink_reload_next(
+ struct xfs_trans *tp,
+ struct xfs_buf *agibp,
+ xfs_agino_t prev_agino,
+ xfs_agino_t next_agino)
+{
+ struct xfs_perag *pag = agibp->b_pag;
+ struct xfs_mount *mp = pag_mount(pag);
+ struct xfs_inode *next_ip = NULL;
+ int error;
- ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
- dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
- offset = ip->i_imap.im_boffset +
- offsetof(xfs_dinode_t, di_next_unlinked);
+ ASSERT(next_agino != NULLAGINO);
- /* need to recalc the inode CRC if appropriate */
- xfs_dinode_calc_crc(mp, dip);
+#ifdef DEBUG
+ rcu_read_lock();
+ next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
+ ASSERT(next_ip == NULL);
+ rcu_read_unlock();
+#endif
- xfs_trans_inode_buf(tp, ibp);
- xfs_trans_log_buf(tp, ibp, offset,
- (offset + sizeof(xfs_agino_t) - 1));
- xfs_inobp_check(mp, ibp);
- }
+ xfs_info_ratelimited(mp,
+ "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
+ next_agino, pag_agno(pag));
/*
- * Point the bucket head pointer at the inode being inserted.
+ * Use an untrusted lookup just to be cautious in case the AGI has been
+ * corrupted and now points at a free inode. That shouldn't happen,
+ * but we'd rather shut down now since we're already running in a weird
+ * situation.
*/
- ASSERT(agino != 0);
- agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
- offset = offsetof(xfs_agi_t, agi_unlinked) +
- (sizeof(xfs_agino_t) * bucket_index);
- xfs_trans_log_buf(tp, agibp, offset,
- (offset + sizeof(xfs_agino_t) - 1));
- return 0;
+ error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
+ XFS_IGET_UNTRUSTED, 0, &next_ip);
+ if (error) {
+ xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
+ return error;
+ }
+
+ /* If this is not an unlinked inode, something is very wrong. */
+ if (VFS_I(next_ip)->i_nlink != 0) {
+ xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
+ error = -EFSCORRUPTED;
+ goto rele;
+ }
+
+ next_ip->i_prev_unlinked = prev_agino;
+ trace_xfs_iunlink_reload_next(next_ip);
+rele:
+ ASSERT(!(inode_state_read_once(VFS_I(next_ip)) & I_DONTCACHE));
+ if (xfs_is_quotacheck_running(mp) && next_ip)
+ xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
+ xfs_irele(next_ip);
+ return error;
}
/*
- * Pull the on-disk inode from the AGI unlinked list.
+ * Look up the inode number specified and if it is not already marked XFS_ISTALE
+ * mark it stale. We should only find clean inodes in this lookup that aren't
+ * already stale.
*/
-STATIC int
-xfs_iunlink_remove(
- xfs_trans_t *tp,
- xfs_inode_t *ip)
+static void
+xfs_ifree_mark_inode_stale(
+ struct xfs_perag *pag,
+ struct xfs_inode *free_ip,
+ xfs_ino_t inum)
{
- xfs_ino_t next_ino;
- xfs_mount_t *mp;
- xfs_agi_t *agi;
- xfs_dinode_t *dip;
- xfs_buf_t *agibp;
- xfs_buf_t *ibp;
- xfs_agnumber_t agno;
- xfs_agino_t agino;
- xfs_agino_t next_agino;
- xfs_buf_t *last_ibp;
- xfs_dinode_t *last_dip = NULL;
- short bucket_index;
- int offset, last_offset = 0;
- int error;
-
- mp = tp->t_mountp;
- agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
+ struct xfs_mount *mp = pag_mount(pag);
+ struct xfs_inode_log_item *iip;
+ struct xfs_inode *ip;
+
+retry:
+ rcu_read_lock();
+ ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
+
+ /* Inode not in memory, nothing to do */
+ if (!ip) {
+ rcu_read_unlock();
+ return;
+ }
/*
- * Get the agi buffer first. It ensures lock ordering
- * on the list.
+ * because this is an RCU protected lookup, we could find a recently
+ * freed or even reallocated inode during the lookup. We need to check
+ * under the i_flags_lock for a valid inode here. Skip it if it is not
+ * valid, the wrong inode or stale.
*/
- error = xfs_read_agi(mp, tp, agno, &agibp);
- if (error)
- return error;
-
- agi = XFS_BUF_TO_AGI(agibp);
+ spin_lock(&ip->i_flags_lock);
+ if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
+ goto out_iflags_unlock;
/*
- * Get the index into the agi hash table for the
- * list this inode will go on.
+ * Don't try to lock/unlock the current inode, but we _cannot_ skip the
+ * other inodes that we did not find in the list attached to the buffer
+ * and are not already marked stale. If we can't lock it, back off and
+ * retry.
*/
- agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
- if (!xfs_verify_agino(mp, agno, agino))
- return -EFSCORRUPTED;
- bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
- if (!xfs_verify_agino(mp, agno,
- be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
- XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
- agi, sizeof(*agi));
- return -EFSCORRUPTED;
- }
-
- if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
- /*
- * We're at the head of the list. Get the inode's on-disk
- * buffer to see if there is anyone after us on the list.
- * Only modify our next pointer if it is not already NULLAGINO.
- * This saves us the overhead of dealing with the buffer when
- * there is no need to change it.
- */
- error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
- 0, 0);
- if (error) {
- xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
- __func__, error);
- return error;
- }
- next_agino = be32_to_cpu(dip->di_next_unlinked);
- ASSERT(next_agino != 0);
- if (next_agino != NULLAGINO) {
- dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
- offset = ip->i_imap.im_boffset +
- offsetof(xfs_dinode_t, di_next_unlinked);
-
- /* need to recalc the inode CRC if appropriate */
- xfs_dinode_calc_crc(mp, dip);
-
- xfs_trans_inode_buf(tp, ibp);
- xfs_trans_log_buf(tp, ibp, offset,
- (offset + sizeof(xfs_agino_t) - 1));
- xfs_inobp_check(mp, ibp);
- } else {
- xfs_trans_brelse(tp, ibp);
+ if (ip != free_ip) {
+ if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
+ spin_unlock(&ip->i_flags_lock);
+ rcu_read_unlock();
+ delay(1);
+ goto retry;
}
- /*
- * Point the bucket head pointer at the next inode.
- */
- ASSERT(next_agino != 0);
- ASSERT(next_agino != agino);
- agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
- offset = offsetof(xfs_agi_t, agi_unlinked) +
- (sizeof(xfs_agino_t) * bucket_index);
- xfs_trans_log_buf(tp, agibp, offset,
- (offset + sizeof(xfs_agino_t) - 1));
- } else {
- /*
- * We need to search the list for the inode being freed.
- */
- next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
- last_ibp = NULL;
- while (next_agino != agino) {
- struct xfs_imap imap;
-
- if (last_ibp)
- xfs_trans_brelse(tp, last_ibp);
-
- imap.im_blkno = 0;
- next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
-
- error = xfs_imap(mp, tp, next_ino, &imap, 0);
- if (error) {
- xfs_warn(mp,
- "%s: xfs_imap returned error %d.",
- __func__, error);
- return error;
- }
+ }
+ ip->i_flags |= XFS_ISTALE;
- error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
- &last_ibp, 0, 0);
- if (error) {
- xfs_warn(mp,
- "%s: xfs_imap_to_bp returned error %d.",
- __func__, error);
- return error;
- }
+ /*
+ * If the inode is flushing, it is already attached to the buffer. All
+ * we needed to do here is mark the inode stale so buffer IO completion
+ * will remove it from the AIL.
+ */
+ iip = ip->i_itemp;
+ if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
+ ASSERT(!list_empty(&iip->ili_item.li_bio_list));
+ ASSERT(iip->ili_last_fields || xlog_is_shutdown(mp->m_log));
+ goto out_iunlock;
+ }
- last_offset = imap.im_boffset;
- next_agino = be32_to_cpu(last_dip->di_next_unlinked);
- if (!xfs_verify_agino(mp, agno, next_agino)) {
- XFS_CORRUPTION_ERROR(__func__,
- XFS_ERRLEVEL_LOW, mp,
- last_dip, sizeof(*last_dip));
- return -EFSCORRUPTED;
- }
- }
+ /*
+ * Inodes not attached to the buffer can be released immediately.
+ * Everything else has to go through xfs_iflush_abort() on journal
+ * commit as the flock synchronises removal of the inode from the
+ * cluster buffer against inode reclaim.
+ */
+ if (!iip || list_empty(&iip->ili_item.li_bio_list))
+ goto out_iunlock;
- /*
- * Now last_ibp points to the buffer previous to us on the
- * unlinked list. Pull us from the list.
- */
- error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
- 0, 0);
- if (error) {
- xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
- __func__, error);
- return error;
- }
- next_agino = be32_to_cpu(dip->di_next_unlinked);
- ASSERT(next_agino != 0);
- ASSERT(next_agino != agino);
- if (next_agino != NULLAGINO) {
- dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
- offset = ip->i_imap.im_boffset +
- offsetof(xfs_dinode_t, di_next_unlinked);
-
- /* need to recalc the inode CRC if appropriate */
- xfs_dinode_calc_crc(mp, dip);
-
- xfs_trans_inode_buf(tp, ibp);
- xfs_trans_log_buf(tp, ibp, offset,
- (offset + sizeof(xfs_agino_t) - 1));
- xfs_inobp_check(mp, ibp);
- } else {
- xfs_trans_brelse(tp, ibp);
- }
- /*
- * Point the previous inode on the list to the next inode.
- */
- last_dip->di_next_unlinked = cpu_to_be32(next_agino);
- ASSERT(next_agino != 0);
- offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
+ __xfs_iflags_set(ip, XFS_IFLUSHING);
+ spin_unlock(&ip->i_flags_lock);
+ rcu_read_unlock();
- /* need to recalc the inode CRC if appropriate */
- xfs_dinode_calc_crc(mp, last_dip);
+ /* we have a dirty inode in memory that has not yet been flushed. */
+ spin_lock(&iip->ili_lock);
+ iip->ili_last_fields = iip->ili_fields;
+ iip->ili_fields = 0;
+ spin_unlock(&iip->ili_lock);
+ ASSERT(iip->ili_last_fields);
- xfs_trans_inode_buf(tp, last_ibp);
- xfs_trans_log_buf(tp, last_ibp, offset,
- (offset + sizeof(xfs_agino_t) - 1));
- xfs_inobp_check(mp, last_ibp);
- }
- return 0;
+ if (ip != free_ip)
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ return;
+
+out_iunlock:
+ if (ip != free_ip)
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+out_iflags_unlock:
+ spin_unlock(&ip->i_flags_lock);
+ rcu_read_unlock();
}
/*
@@ -2177,29 +1687,26 @@ xfs_iunlink_remove(
* inodes that are in memory - they all must be marked stale and attached to
* the cluster buffer.
*/
-STATIC int
+static int
xfs_ifree_cluster(
- xfs_inode_t *free_ip,
- xfs_trans_t *tp,
+ struct xfs_trans *tp,
+ struct xfs_perag *pag,
+ struct xfs_inode *free_ip,
struct xfs_icluster *xic)
{
- xfs_mount_t *mp = free_ip->i_mount;
+ struct xfs_mount *mp = free_ip->i_mount;
+ struct xfs_ino_geometry *igeo = M_IGEO(mp);
+ struct xfs_buf *bp;
+ xfs_daddr_t blkno;
+ xfs_ino_t inum = xic->first_ino;
int nbufs;
int i, j;
int ioffset;
- xfs_daddr_t blkno;
- xfs_buf_t *bp;
- xfs_inode_t *ip;
- xfs_inode_log_item_t *iip;
- struct xfs_log_item *lip;
- struct xfs_perag *pag;
- xfs_ino_t inum;
+ int error;
- inum = xic->first_ino;
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
- nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster;
+ nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
- for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) {
+ for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
/*
* The allocation bitmap tells us which inodes of the chunk were
* physically allocated. Skip the cluster if an inode falls into
@@ -2207,7 +1714,7 @@ xfs_ifree_cluster(
*/
ioffset = inum - xic->first_ino;
if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
- ASSERT(ioffset % mp->m_inodes_per_cluster == 0);
+ ASSERT(ioffset % igeo->inodes_per_cluster == 0);
continue;
}
@@ -2216,232 +1723,102 @@ xfs_ifree_cluster(
/*
* We obtain and lock the backing buffer first in the process
- * here, as we have to ensure that any dirty inode that we
- * can't get the flush lock on is attached to the buffer.
+ * here to ensure dirty inodes attached to the buffer remain in
+ * the flushing state while we mark them stale.
+ *
* If we scan the in-memory inodes first, then buffer IO can
* complete before we get a lock on it, and hence we may fail
* to mark all the active inodes on the buffer stale.
*/
- bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
- mp->m_bsize * mp->m_blocks_per_cluster,
- XBF_UNMAPPED);
-
- if (!bp)
- return -ENOMEM;
+ error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
+ mp->m_bsize * igeo->blocks_per_cluster, 0, &bp);
+ if (error)
+ return error;
/*
* This buffer may not have been correctly initialised as we
* didn't read it from disk. That's not important because we are
* only using to mark the buffer as stale in the log, and to
- * attach stale cached inodes on it. That means it will never be
- * dispatched for IO. If it is, we want to know about it, and we
- * want it to fail. We can acheive this by adding a write
- * verifier to the buffer.
+ * attach stale cached inodes on it.
+ *
+ * For the inode that triggered the cluster freeing, this
+ * attachment may occur in xfs_inode_item_precommit() after we
+ * have marked this buffer stale. If this buffer was not in
+ * memory before xfs_ifree_cluster() started, it will not be
+ * marked XBF_DONE and this will cause problems later in
+ * xfs_inode_item_precommit() when we trip over a (stale, !done)
+ * buffer to attached to the transaction.
+ *
+ * Hence we have to mark the buffer as XFS_DONE here. This is
+ * safe because we are also marking the buffer as XBF_STALE and
+ * XFS_BLI_STALE. That means it will never be dispatched for
+ * IO and it won't be unlocked until the cluster freeing has
+ * been committed to the journal and the buffer unpinned. If it
+ * is written, we want to know about it, and we want it to
+ * fail. We can acheive this by adding a write verifier to the
+ * buffer.
*/
+ bp->b_flags |= XBF_DONE;
bp->b_ops = &xfs_inode_buf_ops;
/*
- * Walk the inodes already attached to the buffer and mark them
- * stale. These will all have the flush locks held, so an
- * in-memory inode walk can't lock them. By marking them all
- * stale first, we will not attempt to lock them in the loop
- * below as the XFS_ISTALE flag will be set.
- */
- list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
- if (lip->li_type == XFS_LI_INODE) {
- iip = (xfs_inode_log_item_t *)lip;
- ASSERT(iip->ili_logged == 1);
- lip->li_cb = xfs_istale_done;
- xfs_trans_ail_copy_lsn(mp->m_ail,
- &iip->ili_flush_lsn,
- &iip->ili_item.li_lsn);
- xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
- }
- }
-
-
- /*
- * For each inode in memory attempt to add it to the inode
- * buffer and set it up for being staled on buffer IO
- * completion. This is safe as we've locked out tail pushing
- * and flushing by locking the buffer.
- *
- * We have already marked every inode that was part of a
- * transaction stale above, which means there is no point in
- * even trying to lock them.
+ * Now we need to set all the cached clean inodes as XFS_ISTALE,
+ * too. This requires lookups, and will skip inodes that we've
+ * already marked XFS_ISTALE.
*/
- for (i = 0; i < mp->m_inodes_per_cluster; i++) {
-retry:
- rcu_read_lock();
- ip = radix_tree_lookup(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(mp, (inum + i)));
-
- /* Inode not in memory, nothing to do */
- if (!ip) {
- rcu_read_unlock();
- continue;
- }
-
- /*
- * because this is an RCU protected lookup, we could
- * find a recently freed or even reallocated inode
- * during the lookup. We need to check under the
- * i_flags_lock for a valid inode here. Skip it if it
- * is not valid, the wrong inode or stale.
- */
- spin_lock(&ip->i_flags_lock);
- if (ip->i_ino != inum + i ||
- __xfs_iflags_test(ip, XFS_ISTALE)) {
- spin_unlock(&ip->i_flags_lock);
- rcu_read_unlock();
- continue;
- }
- spin_unlock(&ip->i_flags_lock);
-
- /*
- * Don't try to lock/unlock the current inode, but we
- * _cannot_ skip the other inodes that we did not find
- * in the list attached to the buffer and are not
- * already marked stale. If we can't lock it, back off
- * and retry.
- */
- if (ip != free_ip) {
- if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
- rcu_read_unlock();
- delay(1);
- goto retry;
- }
-
- /*
- * Check the inode number again in case we're
- * racing with freeing in xfs_reclaim_inode().
- * See the comments in that function for more
- * information as to why the initial check is
- * not sufficient.
- */
- if (ip->i_ino != inum + i) {
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- rcu_read_unlock();
- continue;
- }
- }
- rcu_read_unlock();
-
- xfs_iflock(ip);
- xfs_iflags_set(ip, XFS_ISTALE);
-
- /*
- * we don't need to attach clean inodes or those only
- * with unlogged changes (which we throw away, anyway).
- */
- iip = ip->i_itemp;
- if (!iip || xfs_inode_clean(ip)) {
- ASSERT(ip != free_ip);
- xfs_ifunlock(ip);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- continue;
- }
-
- iip->ili_last_fields = iip->ili_fields;
- iip->ili_fields = 0;
- iip->ili_fsync_fields = 0;
- iip->ili_logged = 1;
- xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
- &iip->ili_item.li_lsn);
-
- xfs_buf_attach_iodone(bp, xfs_istale_done,
- &iip->ili_item);
-
- if (ip != free_ip)
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- }
+ for (i = 0; i < igeo->inodes_per_cluster; i++)
+ xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
xfs_trans_stale_inode_buf(tp, bp);
xfs_trans_binval(tp, bp);
}
-
- xfs_perag_put(pag);
return 0;
}
/*
- * Free any local-format buffers sitting around before we reset to
- * extents format.
- */
-static inline void
-xfs_ifree_local_data(
- struct xfs_inode *ip,
- int whichfork)
-{
- struct xfs_ifork *ifp;
-
- if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
- return;
-
- ifp = XFS_IFORK_PTR(ip, whichfork);
- xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
-}
-
-/*
- * This is called to return an inode to the inode free list.
- * The inode should already be truncated to 0 length and have
- * no pages associated with it. This routine also assumes that
- * the inode is already a part of the transaction.
+ * This is called to return an inode to the inode free list. The inode should
+ * already be truncated to 0 length and have no pages associated with it. This
+ * routine also assumes that the inode is already a part of the transaction.
*
- * The on-disk copy of the inode will have been added to the list
- * of unlinked inodes in the AGI. We need to remove the inode from
- * that list atomically with respect to freeing it here.
+ * The on-disk copy of the inode will have been added to the list of unlinked
+ * inodes in the AGI. We need to remove the inode from that list atomically with
+ * respect to freeing it here.
*/
int
xfs_ifree(
struct xfs_trans *tp,
struct xfs_inode *ip)
{
- int error;
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_perag *pag;
struct xfs_icluster xic = { 0 };
+ struct xfs_inode_log_item *iip = ip->i_itemp;
+ int error;
- ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
+ xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
ASSERT(VFS_I(ip)->i_nlink == 0);
- ASSERT(ip->i_d.di_nextents == 0);
- ASSERT(ip->i_d.di_anextents == 0);
- ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
- ASSERT(ip->i_d.di_nblocks == 0);
+ ASSERT(ip->i_df.if_nextents == 0);
+ ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
+ ASSERT(ip->i_nblocks == 0);
- /*
- * Pull the on-disk inode from the AGI unlinked list.
- */
- error = xfs_iunlink_remove(tp, ip);
- if (error)
- return error;
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
- error = xfs_difree(tp, ip->i_ino, &xic);
+ error = xfs_inode_uninit(tp, pag, ip, &xic);
if (error)
- return error;
+ goto out;
- xfs_ifree_local_data(ip, XFS_DATA_FORK);
- xfs_ifree_local_data(ip, XFS_ATTR_FORK);
-
- VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
- ip->i_d.di_flags = 0;
- ip->i_d.di_flags2 = 0;
- ip->i_d.di_dmevmask = 0;
- ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
- ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
- ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
+ if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
+ xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
/* Don't attempt to replay owner changes for a deleted inode */
- ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
-
- /*
- * Bump the generation count so no one will be confused
- * by reincarnations of this inode.
- */
- VFS_I(ip)->i_generation++;
- xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+ spin_lock(&iip->ili_lock);
+ iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
+ spin_unlock(&iip->ili_lock);
if (xic.deleted)
- error = xfs_ifree_cluster(ip, tp, &xic);
-
+ error = xfs_ifree_cluster(tp, pag, ip, &xic);
+out:
+ xfs_perag_put(pag);
return error;
}
@@ -2454,12 +1831,20 @@ static void
xfs_iunpin(
struct xfs_inode *ip)
{
- ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
+ struct xfs_inode_log_item *iip = ip->i_itemp;
+ xfs_csn_t seq = 0;
trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
+ xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
+
+ spin_lock(&iip->ili_lock);
+ seq = iip->ili_commit_seq;
+ spin_unlock(&iip->ili_lock);
+ if (!seq)
+ return;
/* Give the log a push to start the unpinning I/O */
- xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
+ xfs_log_force_seq(ip->i_mount, seq, 0, NULL);
}
@@ -2517,19 +1902,27 @@ xfs_iunpin_wait(
*/
int
xfs_remove(
- xfs_inode_t *dp,
+ struct xfs_inode *dp,
struct xfs_name *name,
- xfs_inode_t *ip)
+ struct xfs_inode *ip)
{
- xfs_mount_t *mp = dp->i_mount;
- xfs_trans_t *tp = NULL;
+ struct xfs_dir_update du = {
+ .dp = dp,
+ .name = name,
+ .ip = ip,
+ };
+ struct xfs_mount *mp = dp->i_mount;
+ struct xfs_trans *tp = NULL;
int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
+ int dontcare;
int error = 0;
uint resblks;
trace_xfs_remove(dp, name);
- if (XFS_FORCED_SHUTDOWN(mp))
+ if (xfs_is_shutdown(mp))
+ return -EIO;
+ if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
return -EIO;
error = xfs_qm_dqattach(dp);
@@ -2540,99 +1933,79 @@ xfs_remove(
if (error)
goto std_return;
- /*
- * We try to get the real space reservation first,
- * allowing for directory btree deletion(s) implying
- * possible bmap insert(s). If we can't get the space
- * reservation then we use 0 instead, and avoid the bmap
- * btree insert(s) in the directory code by, if the bmap
- * insert tries to happen, instead trimming the LAST
- * block from the directory.
- */
- resblks = XFS_REMOVE_SPACE_RES(mp);
- error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
- if (error == -ENOSPC) {
- resblks = 0;
- error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
- &tp);
- }
- if (error) {
- ASSERT(error != -ENOSPC);
+ error = xfs_parent_start(mp, &du.ppargs);
+ if (error)
goto std_return;
- }
-
- xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
-
- xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
- xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
/*
- * If we're removing a directory perform some additional validation.
+ * We try to get the real space reservation first, allowing for
+ * directory btree deletion(s) implying possible bmap insert(s). If we
+ * can't get the space reservation then we use 0 instead, and avoid the
+ * bmap btree insert(s) in the directory code by, if the bmap insert
+ * tries to happen, instead trimming the LAST block from the directory.
+ *
+ * Ignore EDQUOT and ENOSPC being returned via nospace_error because
+ * the directory code can handle a reservationless update and we don't
+ * want to prevent a user from trying to free space by deleting things.
*/
- if (is_dir) {
- ASSERT(VFS_I(ip)->i_nlink >= 2);
- if (VFS_I(ip)->i_nlink != 2) {
- error = -ENOTEMPTY;
- goto out_trans_cancel;
- }
- if (!xfs_dir_isempty(ip)) {
- error = -ENOTEMPTY;
- goto out_trans_cancel;
- }
-
- /* Drop the link from ip's "..". */
- error = xfs_droplink(tp, dp);
- if (error)
- goto out_trans_cancel;
-
- /* Drop the "." link from ip to self. */
- error = xfs_droplink(tp, ip);
- if (error)
- goto out_trans_cancel;
- } else {
- /*
- * When removing a non-directory we need to log the parent
- * inode here. For a directory this is done implicitly
- * by the xfs_droplink call for the ".." entry.
- */
- xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
+ resblks = xfs_remove_space_res(mp, name->len);
+ error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
+ &tp, &dontcare);
+ if (error) {
+ ASSERT(error != -ENOSPC);
+ goto out_parent;
}
- xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
- /* Drop the link from dp to ip. */
- error = xfs_droplink(tp, ip);
+ error = xfs_dir_remove_child(tp, resblks, &du);
if (error)
goto out_trans_cancel;
- error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
- if (error) {
- ASSERT(error != -ENOENT);
- goto out_trans_cancel;
- }
-
/*
* If this is a synchronous mount, make sure that the
* remove transaction goes to disk before returning to
* the user.
*/
- if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
+ if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
xfs_trans_set_sync(tp);
error = xfs_trans_commit(tp);
if (error)
- goto std_return;
+ goto out_unlock;
if (is_dir && xfs_inode_is_filestream(ip))
xfs_filestream_deassociate(ip);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ xfs_iunlock(dp, XFS_ILOCK_EXCL);
+ xfs_parent_finish(mp, du.ppargs);
return 0;
out_trans_cancel:
xfs_trans_cancel(tp);
+ out_unlock:
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ xfs_iunlock(dp, XFS_ILOCK_EXCL);
+ out_parent:
+ xfs_parent_finish(mp, du.ppargs);
std_return:
return error;
}
+static inline void
+xfs_iunlock_rename(
+ struct xfs_inode **i_tab,
+ int num_inodes)
+{
+ int i;
+
+ for (i = num_inodes - 1; i >= 0; i--) {
+ /* Skip duplicate inodes if src and target dps are the same */
+ if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
+ continue;
+ xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
+ }
+}
+
/*
* Enter all inodes for a rename transaction into a sorted array.
*/
@@ -2647,7 +2020,7 @@ xfs_sort_for_rename(
struct xfs_inode **i_tab,/* out: sorted array of inodes */
int *num_inodes) /* in/out: inodes in array */
{
- int i, j;
+ int i;
ASSERT(*num_inodes == __XFS_SORT_INODES);
memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
@@ -2669,178 +2042,76 @@ xfs_sort_for_rename(
i_tab[i++] = wip;
*num_inodes = i;
- /*
- * Sort the elements via bubble sort. (Remember, there are at
- * most 5 elements to sort, so this is adequate.)
- */
- for (i = 0; i < *num_inodes; i++) {
- for (j = 1; j < *num_inodes; j++) {
- if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
- struct xfs_inode *temp = i_tab[j];
- i_tab[j] = i_tab[j-1];
- i_tab[j-1] = temp;
- }
- }
- }
+ xfs_sort_inodes(i_tab, *num_inodes);
}
-static int
-xfs_finish_rename(
- struct xfs_trans *tp)
-{
- /*
- * If this is a synchronous mount, make sure that the rename transaction
- * goes to disk before returning to the user.
- */
- if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
- xfs_trans_set_sync(tp);
-
- return xfs_trans_commit(tp);
-}
-
-/*
- * xfs_cross_rename()
- *
- * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
- */
-STATIC int
-xfs_cross_rename(
- struct xfs_trans *tp,
- struct xfs_inode *dp1,
- struct xfs_name *name1,
- struct xfs_inode *ip1,
- struct xfs_inode *dp2,
- struct xfs_name *name2,
- struct xfs_inode *ip2,
- int spaceres)
+void
+xfs_sort_inodes(
+ struct xfs_inode **i_tab,
+ unsigned int num_inodes)
{
- int error = 0;
- int ip1_flags = 0;
- int ip2_flags = 0;
- int dp2_flags = 0;
-
- /* Swap inode number for dirent in first parent */
- error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
- if (error)
- goto out_trans_abort;
+ int i, j;
- /* Swap inode number for dirent in second parent */
- error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
- if (error)
- goto out_trans_abort;
+ ASSERT(num_inodes <= __XFS_SORT_INODES);
/*
- * If we're renaming one or more directories across different parents,
- * update the respective ".." entries (and link counts) to match the new
- * parents.
+ * Sort the elements via bubble sort. (Remember, there are at
+ * most 5 elements to sort, so this is adequate.)
*/
- if (dp1 != dp2) {
- dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
-
- if (S_ISDIR(VFS_I(ip2)->i_mode)) {
- error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
- dp1->i_ino, spaceres);
- if (error)
- goto out_trans_abort;
-
- /* transfer ip2 ".." reference to dp1 */
- if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
- error = xfs_droplink(tp, dp2);
- if (error)
- goto out_trans_abort;
- error = xfs_bumplink(tp, dp1);
- if (error)
- goto out_trans_abort;
- }
-
- /*
- * Although ip1 isn't changed here, userspace needs
- * to be warned about the change, so that applications
- * relying on it (like backup ones), will properly
- * notify the change
- */
- ip1_flags |= XFS_ICHGTIME_CHG;
- ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
- }
-
- if (S_ISDIR(VFS_I(ip1)->i_mode)) {
- error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
- dp2->i_ino, spaceres);
- if (error)
- goto out_trans_abort;
-
- /* transfer ip1 ".." reference to dp2 */
- if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
- error = xfs_droplink(tp, dp1);
- if (error)
- goto out_trans_abort;
- error = xfs_bumplink(tp, dp2);
- if (error)
- goto out_trans_abort;
- }
-
- /*
- * Although ip2 isn't changed here, userspace needs
- * to be warned about the change, so that applications
- * relying on it (like backup ones), will properly
- * notify the change
- */
- ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
- ip2_flags |= XFS_ICHGTIME_CHG;
+ for (i = 0; i < num_inodes; i++) {
+ for (j = 1; j < num_inodes; j++) {
+ if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
+ swap(i_tab[j], i_tab[j - 1]);
}
}
-
- if (ip1_flags) {
- xfs_trans_ichgtime(tp, ip1, ip1_flags);
- xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
- }
- if (ip2_flags) {
- xfs_trans_ichgtime(tp, ip2, ip2_flags);
- xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
- }
- if (dp2_flags) {
- xfs_trans_ichgtime(tp, dp2, dp2_flags);
- xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
- }
- xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
- xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
- return xfs_finish_rename(tp);
-
-out_trans_abort:
- xfs_trans_cancel(tp);
- return error;
}
/*
* xfs_rename_alloc_whiteout()
*
- * Return a referenced, unlinked, unlocked inode that that can be used as a
+ * Return a referenced, unlinked, unlocked inode that can be used as a
* whiteout in a rename transaction. We use a tmpfile inode here so that if we
* crash between allocating the inode and linking it into the rename transaction
* recovery will free the inode and we won't leak it.
*/
static int
xfs_rename_alloc_whiteout(
+ struct mnt_idmap *idmap,
+ struct xfs_name *src_name,
struct xfs_inode *dp,
struct xfs_inode **wip)
{
+ struct xfs_icreate_args args = {
+ .idmap = idmap,
+ .pip = dp,
+ .mode = S_IFCHR | WHITEOUT_MODE,
+ .flags = XFS_ICREATE_TMPFILE,
+ };
struct xfs_inode *tmpfile;
+ struct qstr name;
int error;
- error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
+ error = xfs_create_tmpfile(&args, &tmpfile);
if (error)
return error;
+ name.name = src_name->name;
+ name.len = src_name->len;
+ error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
+ if (error) {
+ xfs_finish_inode_setup(tmpfile);
+ xfs_irele(tmpfile);
+ return error;
+ }
+
/*
* Prepare the tmpfile inode as if it were created through the VFS.
- * Otherwise, the link increment paths will complain about nlink 0->1.
- * Drop the link count as done by d_tmpfile(), complete the inode setup
- * and flag it as linkable.
+ * Complete the inode setup and flag it as linkable. nlink is already
+ * zero, so we can skip the drop_nlink.
*/
- drop_nlink(VFS_I(tmpfile));
xfs_setup_iops(tmpfile);
xfs_finish_inode_setup(tmpfile);
- VFS_I(tmpfile)->i_state |= I_LINKABLE;
+ inode_state_set_raw(VFS_I(tmpfile), I_LINKABLE);
*wip = tmpfile;
return 0;
@@ -2851,6 +2122,7 @@ xfs_rename_alloc_whiteout(
*/
int
xfs_rename(
+ struct mnt_idmap *idmap,
struct xfs_inode *src_dp,
struct xfs_name *src_name,
struct xfs_inode *src_ip,
@@ -2859,15 +2131,27 @@ xfs_rename(
struct xfs_inode *target_ip,
unsigned int flags)
{
+ struct xfs_dir_update du_src = {
+ .dp = src_dp,
+ .name = src_name,
+ .ip = src_ip,
+ };
+ struct xfs_dir_update du_tgt = {
+ .dp = target_dp,
+ .name = target_name,
+ .ip = target_ip,
+ };
+ struct xfs_dir_update du_wip = { };
struct xfs_mount *mp = src_dp->i_mount;
struct xfs_trans *tp;
- struct xfs_inode *wip = NULL; /* whiteout inode */
struct xfs_inode *inodes[__XFS_SORT_INODES];
+ int i;
int num_inodes = __XFS_SORT_INODES;
bool new_parent = (src_dp != target_dp);
bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
int spaceres;
- int error;
+ bool retried = false;
+ int error, nospace_error = 0;
trace_xfs_rename(src_dp, target_dp, src_name, target_name);
@@ -2880,8 +2164,8 @@ xfs_rename(
* appropriately.
*/
if (flags & RENAME_WHITEOUT) {
- ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
- error = xfs_rename_alloc_whiteout(target_dp, &wip);
+ error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
+ &du_wip.ip);
if (error)
return error;
@@ -2889,705 +2173,899 @@ xfs_rename(
src_name->type = XFS_DIR3_FT_CHRDEV;
}
- xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
- inodes, &num_inodes);
+ xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
+ inodes, &num_inodes);
+
+ error = xfs_parent_start(mp, &du_src.ppargs);
+ if (error)
+ goto out_release_wip;
+
+ if (du_wip.ip) {
+ error = xfs_parent_start(mp, &du_wip.ppargs);
+ if (error)
+ goto out_src_ppargs;
+ }
+
+ if (target_ip) {
+ error = xfs_parent_start(mp, &du_tgt.ppargs);
+ if (error)
+ goto out_wip_ppargs;
+ }
- spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
+retry:
+ nospace_error = 0;
+ spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
+ target_name->len, du_wip.ip != NULL);
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
if (error == -ENOSPC) {
+ nospace_error = error;
spaceres = 0;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
&tp);
}
if (error)
- goto out_release_wip;
+ goto out_tgt_ppargs;
+
+ /*
+ * We don't allow reservationless renaming when parent pointers are
+ * enabled because we can't back out if the xattrs must grow.
+ */
+ if (du_src.ppargs && nospace_error) {
+ error = nospace_error;
+ xfs_trans_cancel(tp);
+ goto out_tgt_ppargs;
+ }
/*
* Attach the dquots to the inodes
*/
error = xfs_qm_vop_rename_dqattach(inodes);
- if (error)
- goto out_trans_cancel;
+ if (error) {
+ xfs_trans_cancel(tp);
+ goto out_tgt_ppargs;
+ }
/*
* Lock all the participating inodes. Depending upon whether
* the target_name exists in the target directory, and
* whether the target directory is the same as the source
- * directory, we can lock from 2 to 4 inodes.
+ * directory, we can lock from 2 to 5 inodes.
*/
xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
/*
- * Join all the inodes to the transaction. From this point on,
- * we can rely on either trans_commit or trans_cancel to unlock
- * them.
+ * Join all the inodes to the transaction.
*/
- xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
+ xfs_trans_ijoin(tp, src_dp, 0);
if (new_parent)
- xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
- xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
+ xfs_trans_ijoin(tp, target_dp, 0);
+ xfs_trans_ijoin(tp, src_ip, 0);
if (target_ip)
- xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
- if (wip)
- xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
+ xfs_trans_ijoin(tp, target_ip, 0);
+ if (du_wip.ip)
+ xfs_trans_ijoin(tp, du_wip.ip, 0);
- /*
- * If we are using project inheritance, we only allow renames
- * into our tree when the project IDs are the same; else the
- * tree quota mechanism would be circumvented.
- */
- if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
- (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
- error = -EXDEV;
+ error = xfs_projid_differ(target_dp, src_ip);
+ if (error)
goto out_trans_cancel;
- }
/* RENAME_EXCHANGE is unique from here on. */
- if (flags & RENAME_EXCHANGE)
- return xfs_cross_rename(tp, src_dp, src_name, src_ip,
- target_dp, target_name, target_ip,
- spaceres);
+ if (flags & RENAME_EXCHANGE) {
+ error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
+ spaceres);
+ if (error)
+ goto out_trans_cancel;
+ goto out_commit;
+ }
/*
- * Set up the target.
+ * Try to reserve quota to handle an expansion of the target directory.
+ * We'll allow the rename to continue in reservationless mode if we hit
+ * a space usage constraint. If we trigger reservationless mode, save
+ * the errno if there isn't any free space in the target directory.
*/
- if (target_ip == NULL) {
- /*
- * If there's no space reservation, check the entry will
- * fit before actually inserting it.
- */
- if (!spaceres) {
- error = xfs_dir_canenter(tp, target_dp, target_name);
- if (error)
- goto out_trans_cancel;
+ if (spaceres != 0) {
+ error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
+ 0, false);
+ if (error == -EDQUOT || error == -ENOSPC) {
+ if (!retried) {
+ xfs_trans_cancel(tp);
+ xfs_iunlock_rename(inodes, num_inodes);
+ xfs_blockgc_free_quota(target_dp, 0);
+ retried = true;
+ goto retry;
+ }
+
+ nospace_error = error;
+ spaceres = 0;
+ error = 0;
}
- /*
- * If target does not exist and the rename crosses
- * directories, adjust the target directory link count
- * to account for the ".." reference from the new entry.
- */
- error = xfs_dir_createname(tp, target_dp, target_name,
- src_ip->i_ino, spaceres);
if (error)
goto out_trans_cancel;
+ }
- xfs_trans_ichgtime(tp, target_dp,
- XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+ /*
+ * We don't allow quotaless renaming when parent pointers are enabled
+ * because we can't back out if the xattrs must grow.
+ */
+ if (du_src.ppargs && nospace_error) {
+ error = nospace_error;
+ goto out_trans_cancel;
+ }
- if (new_parent && src_is_directory) {
- error = xfs_bumplink(tp, target_dp);
+ /*
+ * Lock the AGI buffers we need to handle bumping the nlink of the
+ * whiteout inode off the unlinked list and to handle dropping the
+ * nlink of the target inode. Per locking order rules, do this in
+ * increasing AG order and before directory block allocation tries to
+ * grab AGFs because we grab AGIs before AGFs.
+ *
+ * The (vfs) caller must ensure that if src is a directory then
+ * target_ip is either null or an empty directory.
+ */
+ for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
+ if (inodes[i] == du_wip.ip ||
+ (inodes[i] == target_ip &&
+ (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
+ struct xfs_perag *pag;
+ struct xfs_buf *bp;
+
+ pag = xfs_perag_get(mp,
+ XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
+ error = xfs_read_agi(pag, tp, 0, &bp);
+ xfs_perag_put(pag);
if (error)
goto out_trans_cancel;
}
- } else { /* target_ip != NULL */
- /*
- * If target exists and it's a directory, check that both
- * target and source are directories and that target can be
- * destroyed, or that neither is a directory.
- */
- if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
- /*
- * Make sure target dir is empty.
- */
- if (!(xfs_dir_isempty(target_ip)) ||
- (VFS_I(target_ip)->i_nlink > 2)) {
- error = -EEXIST;
- goto out_trans_cancel;
- }
- }
+ }
+
+ error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
+ &du_wip);
+ if (error)
+ goto out_trans_cancel;
+ if (du_wip.ip) {
/*
- * Link the source inode under the target name.
- * If the source inode is a directory and we are moving
- * it across directories, its ".." entry will be
- * inconsistent until we replace that down below.
- *
- * In case there is already an entry with the same
- * name at the destination directory, remove it first.
+ * Now we have a real link, clear the "I'm a tmpfile" state
+ * flag from the inode so it doesn't accidentally get misused in
+ * future.
*/
- error = xfs_dir_replace(tp, target_dp, target_name,
- src_ip->i_ino, spaceres);
- if (error)
- goto out_trans_cancel;
+ inode_state_clear_raw(VFS_I(du_wip.ip), I_LINKABLE);
+ }
- xfs_trans_ichgtime(tp, target_dp,
- XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+out_commit:
+ /*
+ * If this is a synchronous mount, make sure that the rename
+ * transaction goes to disk before returning to the user.
+ */
+ if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
+ xfs_trans_set_sync(tp);
- /*
- * Decrement the link count on the target since the target
- * dir no longer points to it.
- */
- error = xfs_droplink(tp, target_ip);
- if (error)
- goto out_trans_cancel;
+ error = xfs_trans_commit(tp);
+ nospace_error = 0;
+ goto out_unlock;
- if (src_is_directory) {
- /*
- * Drop the link from the old "." entry.
- */
- error = xfs_droplink(tp, target_ip);
- if (error)
- goto out_trans_cancel;
- }
- } /* target_ip != NULL */
+out_trans_cancel:
+ xfs_trans_cancel(tp);
+out_unlock:
+ xfs_iunlock_rename(inodes, num_inodes);
+out_tgt_ppargs:
+ xfs_parent_finish(mp, du_tgt.ppargs);
+out_wip_ppargs:
+ xfs_parent_finish(mp, du_wip.ppargs);
+out_src_ppargs:
+ xfs_parent_finish(mp, du_src.ppargs);
+out_release_wip:
+ if (du_wip.ip)
+ xfs_irele(du_wip.ip);
+ if (error == -ENOSPC && nospace_error)
+ error = nospace_error;
+ return error;
+}
+
+static int
+xfs_iflush(
+ struct xfs_inode *ip,
+ struct xfs_buf *bp)
+{
+ struct xfs_inode_log_item *iip = ip->i_itemp;
+ struct xfs_dinode *dip;
+ struct xfs_mount *mp = ip->i_mount;
+ int error;
+
+ xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
+ ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
+ ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
+ ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
+ ASSERT(iip->ili_item.li_buf == bp);
+
+ dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
/*
- * Remove the source.
+ * We don't flush the inode if any of the following checks fail, but we
+ * do still update the log item and attach to the backing buffer as if
+ * the flush happened. This is a formality to facilitate predictable
+ * error handling as the caller will shutdown and fail the buffer.
*/
- if (new_parent && src_is_directory) {
- /*
- * Rewrite the ".." entry to point to the new
- * directory.
- */
- error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
- target_dp->i_ino, spaceres);
- ASSERT(error != -EEXIST);
- if (error)
- goto out_trans_cancel;
+ error = -EFSCORRUPTED;
+ if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC) ||
+ XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_1)) {
+ xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+ "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
+ __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
+ goto flush_out;
+ }
+ if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) {
+ if (!S_ISREG(VFS_I(ip)->i_mode) ||
+ !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) {
+ xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+ "%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT,
+ __func__, xfs_metafile_type_str(ip->i_metatype),
+ ip->i_ino, ip);
+ goto flush_out;
+ }
+ } else if (S_ISREG(VFS_I(ip)->i_mode)) {
+ if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
+ ip->i_df.if_format != XFS_DINODE_FMT_BTREE) ||
+ XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_3)) {
+ xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+ "%s: Bad regular inode %llu, ptr "PTR_FMT,
+ __func__, ip->i_ino, ip);
+ goto flush_out;
+ }
+ } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
+ if ((ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
+ ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
+ ip->i_df.if_format != XFS_DINODE_FMT_LOCAL) ||
+ XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_4)) {
+ xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+ "%s: Bad directory inode %llu, ptr "PTR_FMT,
+ __func__, ip->i_ino, ip);
+ goto flush_out;
+ }
+ }
+ if (ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
+ ip->i_nblocks || XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_5)) {
+ xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+ "%s: detected corrupt incore inode %llu, "
+ "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
+ __func__, ip->i_ino,
+ ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
+ ip->i_nblocks, ip);
+ goto flush_out;
+ }
+ if (ip->i_forkoff > mp->m_sb.sb_inodesize ||
+ XFS_TEST_ERROR(mp, XFS_ERRTAG_IFLUSH_6)) {
+ xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+ "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
+ __func__, ip->i_ino, ip->i_forkoff, ip);
+ goto flush_out;
}
- /*
- * We always want to hit the ctime on the source inode.
- *
- * This isn't strictly required by the standards since the source
- * inode isn't really being changed, but old unix file systems did
- * it and some incremental backup programs won't work without it.
- */
- xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
- xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
+ if (xfs_inode_has_attr_fork(ip) &&
+ ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) {
+ xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+ "%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT,
+ __func__, ip->i_ino, ip);
+ goto flush_out;
+ }
/*
- * Adjust the link count on src_dp. This is necessary when
- * renaming a directory, either within one parent when
- * the target existed, or across two parent directories.
+ * Inode item log recovery for v2 inodes are dependent on the flushiter
+ * count for correct sequencing. We bump the flush iteration count so
+ * we can detect flushes which postdate a log record during recovery.
+ * This is redundant as we now log every change and hence this can't
+ * happen but we need to still do it to ensure backwards compatibility
+ * with old kernels that predate logging all inode changes.
*/
- if (src_is_directory && (new_parent || target_ip != NULL)) {
-
- /*
- * Decrement link count on src_directory since the
- * entry that's moved no longer points to it.
- */
- error = xfs_droplink(tp, src_dp);
- if (error)
- goto out_trans_cancel;
- }
+ if (!xfs_has_v3inodes(mp))
+ ip->i_flushiter++;
/*
- * For whiteouts, we only need to update the source dirent with the
- * inode number of the whiteout inode rather than removing it
- * altogether.
+ * If there are inline format data / attr forks attached to this inode,
+ * make sure they are not corrupt.
*/
- if (wip) {
- error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
- spaceres);
- } else
- error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
- spaceres);
- if (error)
- goto out_trans_cancel;
+ if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
+ xfs_ifork_verify_local_data(ip))
+ goto flush_out;
+ if (xfs_inode_has_attr_fork(ip) &&
+ ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
+ xfs_ifork_verify_local_attr(ip))
+ goto flush_out;
/*
- * For whiteouts, we need to bump the link count on the whiteout inode.
- * This means that failures all the way up to this point leave the inode
- * on the unlinked list and so cleanup is a simple matter of dropping
- * the remaining reference to it. If we fail here after bumping the link
- * count, we're shutting down the filesystem so we'll never see the
- * intermediate state on disk.
+ * Copy the dirty parts of the inode into the on-disk inode. We always
+ * copy out the core of the inode, because if the inode is dirty at all
+ * the core must be.
*/
- if (wip) {
- ASSERT(VFS_I(wip)->i_nlink == 0);
- error = xfs_bumplink(tp, wip);
- if (error)
- goto out_trans_cancel;
- error = xfs_iunlink_remove(tp, wip);
- if (error)
- goto out_trans_cancel;
- xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
+ xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
- /*
- * Now we have a real link, clear the "I'm a tmpfile" state
- * flag from the inode so it doesn't accidentally get misused in
- * future.
- */
- VFS_I(wip)->i_state &= ~I_LINKABLE;
+ /* Wrap, we never let the log put out DI_MAX_FLUSH */
+ if (!xfs_has_v3inodes(mp)) {
+ if (ip->i_flushiter == DI_MAX_FLUSH)
+ ip->i_flushiter = 0;
}
- xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
- xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
- if (new_parent)
- xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
+ xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
+ if (xfs_inode_has_attr_fork(ip))
+ xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
- error = xfs_finish_rename(tp);
- if (wip)
- xfs_irele(wip);
- return error;
+ /*
+ * We've recorded everything logged in the inode, so we'd like to clear
+ * the ili_fields bits so we don't log and flush things unnecessarily.
+ * However, we can't stop logging all this information until the data
+ * we've copied into the disk buffer is written to disk. If we did we
+ * might overwrite the copy of the inode in the log with all the data
+ * after re-logging only part of it, and in the face of a crash we
+ * wouldn't have all the data we need to recover.
+ *
+ * What we do is move the bits to the ili_last_fields field. When
+ * logging the inode, these bits are moved back to the ili_fields field.
+ * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
+ * we know that the information those bits represent is permanently on
+ * disk. As long as the flush completes before the inode is logged
+ * again, then both ili_fields and ili_last_fields will be cleared.
+ */
+ error = 0;
+flush_out:
+ spin_lock(&iip->ili_lock);
+ iip->ili_last_fields = iip->ili_fields;
+ iip->ili_fields = 0;
+ set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
+ spin_unlock(&iip->ili_lock);
-out_trans_cancel:
- xfs_trans_cancel(tp);
-out_release_wip:
- if (wip)
- xfs_irele(wip);
+ /*
+ * Store the current LSN of the inode so that we can tell whether the
+ * item has moved in the AIL from xfs_buf_inode_iodone().
+ */
+ xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
+ &iip->ili_item.li_lsn);
+
+ /* generate the checksum. */
+ xfs_dinode_calc_crc(mp, dip);
+ if (error)
+ xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return error;
}
-STATIC int
+/*
+ * Non-blocking flush of dirty inode metadata into the backing buffer.
+ *
+ * The caller must have a reference to the inode and hold the cluster buffer
+ * locked. The function will walk across all the inodes on the cluster buffer it
+ * can find and lock without blocking, and flush them to the cluster buffer.
+ *
+ * On successful flushing of at least one inode, the caller must write out the
+ * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
+ * the caller needs to release the buffer. On failure, the filesystem will be
+ * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
+ * will be returned.
+ */
+int
xfs_iflush_cluster(
- struct xfs_inode *ip,
struct xfs_buf *bp)
{
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_perag *pag;
- unsigned long first_index, mask;
- unsigned long inodes_per_cluster;
- int cilist_size;
- struct xfs_inode **cilist;
- struct xfs_inode *cip;
- int nr_found;
+ struct xfs_mount *mp = bp->b_mount;
+ struct xfs_log_item *lip, *n;
+ struct xfs_inode *ip;
+ struct xfs_inode_log_item *iip;
int clcount = 0;
- int i;
-
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
-
- inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
- cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
- cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
- if (!cilist)
- goto out_put;
+ int error = 0;
- mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
- first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
- rcu_read_lock();
- /* really need a gang lookup range call here */
- nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
- first_index, inodes_per_cluster);
- if (nr_found == 0)
- goto out_free;
-
- for (i = 0; i < nr_found; i++) {
- cip = cilist[i];
- if (cip == ip)
- continue;
+ /*
+ * We must use the safe variant here as on shutdown xfs_iflush_abort()
+ * will remove itself from the list.
+ */
+ list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
+ iip = (struct xfs_inode_log_item *)lip;
+ ip = iip->ili_inode;
/*
- * because this is an RCU protected lookup, we could find a
- * recently freed or even reallocated inode during the lookup.
- * We need to check under the i_flags_lock for a valid inode
- * here. Skip it if it is not valid or the wrong inode.
+ * Quick and dirty check to avoid locks if possible.
*/
- spin_lock(&cip->i_flags_lock);
- if (!cip->i_ino ||
- __xfs_iflags_test(cip, XFS_ISTALE)) {
- spin_unlock(&cip->i_flags_lock);
+ if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
+ continue;
+ if (xfs_ipincount(ip))
continue;
- }
/*
- * Once we fall off the end of the cluster, no point checking
- * any more inodes in the list because they will also all be
- * outside the cluster.
+ * The inode is still attached to the buffer, which means it is
+ * dirty but reclaim might try to grab it. Check carefully for
+ * that, and grab the ilock while still holding the i_flags_lock
+ * to guarantee reclaim will not be able to reclaim this inode
+ * once we drop the i_flags_lock.
*/
- if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
- spin_unlock(&cip->i_flags_lock);
- break;
+ spin_lock(&ip->i_flags_lock);
+ ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
+ if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
+ spin_unlock(&ip->i_flags_lock);
+ continue;
}
- spin_unlock(&cip->i_flags_lock);
/*
- * Do an un-protected check to see if the inode is dirty and
- * is a candidate for flushing. These checks will be repeated
- * later after the appropriate locks are acquired.
+ * ILOCK will pin the inode against reclaim and prevent
+ * concurrent transactions modifying the inode while we are
+ * flushing the inode. If we get the lock, set the flushing
+ * state before we drop the i_flags_lock.
*/
- if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
+ if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
+ spin_unlock(&ip->i_flags_lock);
continue;
+ }
+ __xfs_iflags_set(ip, XFS_IFLUSHING);
+ spin_unlock(&ip->i_flags_lock);
/*
- * Try to get locks. If any are unavailable or it is pinned,
- * then this inode cannot be flushed and is skipped.
+ * Abort flushing this inode if we are shut down because the
+ * inode may not currently be in the AIL. This can occur when
+ * log I/O failure unpins the inode without inserting into the
+ * AIL, leaving a dirty/unpinned inode attached to the buffer
+ * that otherwise looks like it should be flushed.
*/
-
- if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
- continue;
- if (!xfs_iflock_nowait(cip)) {
- xfs_iunlock(cip, XFS_ILOCK_SHARED);
- continue;
- }
- if (xfs_ipincount(cip)) {
- xfs_ifunlock(cip);
- xfs_iunlock(cip, XFS_ILOCK_SHARED);
+ if (xlog_is_shutdown(mp->m_log)) {
+ xfs_iunpin_wait(ip);
+ xfs_iflush_abort(ip);
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ error = -EIO;
continue;
}
-
- /*
- * Check the inode number again, just to be certain we are not
- * racing with freeing in xfs_reclaim_inode(). See the comments
- * in that function for more information as to why the initial
- * check is not sufficient.
- */
- if (!cip->i_ino) {
- xfs_ifunlock(cip);
- xfs_iunlock(cip, XFS_ILOCK_SHARED);
+ /* don't block waiting on a log force to unpin dirty inodes */
+ if (xfs_ipincount(ip)) {
+ xfs_iflags_clear(ip, XFS_IFLUSHING);
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
continue;
}
+ if (!xfs_inode_clean(ip))
+ error = xfs_iflush(ip, bp);
+ else
+ xfs_iflags_clear(ip, XFS_IFLUSHING);
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ if (error)
+ break;
+ clcount++;
+ }
+
+ if (error) {
/*
- * arriving here means that this inode can be flushed. First
- * re-check that it's dirty before flushing.
+ * Shutdown first so we kill the log before we release this
+ * buffer. If it is an INODE_ALLOC buffer and pins the tail
+ * of the log, failing it before the _log_ is shut down can
+ * result in the log tail being moved forward in the journal
+ * on disk because log writes can still be taking place. Hence
+ * unpinning the tail will allow the ICREATE intent to be
+ * removed from the log an recovery will fail with uninitialised
+ * inode cluster buffers.
*/
- if (!xfs_inode_clean(cip)) {
- int error;
- error = xfs_iflush_int(cip, bp);
- if (error) {
- xfs_iunlock(cip, XFS_ILOCK_SHARED);
- goto cluster_corrupt_out;
- }
- clcount++;
- } else {
- xfs_ifunlock(cip);
- }
- xfs_iunlock(cip, XFS_ILOCK_SHARED);
+ xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
+ bp->b_flags |= XBF_ASYNC;
+ xfs_buf_ioend_fail(bp);
+ return error;
}
- if (clcount) {
- XFS_STATS_INC(mp, xs_icluster_flushcnt);
- XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
- }
+ if (!clcount)
+ return -EAGAIN;
-out_free:
- rcu_read_unlock();
- kmem_free(cilist);
-out_put:
- xfs_perag_put(pag);
+ XFS_STATS_INC(mp, xs_icluster_flushcnt);
+ XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
return 0;
+}
-cluster_corrupt_out:
- /*
- * Corruption detected in the clustering loop. Invalidate the
- * inode buffer and shut down the filesystem.
- */
- rcu_read_unlock();
- xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
-
- /*
- * We'll always have an inode attached to the buffer for completion
- * process by the time we are called from xfs_iflush(). Hence we have
- * always need to do IO completion processing to abort the inodes
- * attached to the buffer. handle them just like the shutdown case in
- * xfs_buf_submit().
- */
- ASSERT(bp->b_iodone);
- bp->b_flags &= ~XBF_DONE;
- xfs_buf_stale(bp);
- xfs_buf_ioerror(bp, -EIO);
- xfs_buf_ioend(bp);
-
- /* abort the corrupt inode, as it was not attached to the buffer */
- xfs_iflush_abort(cip, false);
- kmem_free(cilist);
- xfs_perag_put(pag);
- return -EFSCORRUPTED;
+/* Release an inode. */
+void
+xfs_irele(
+ struct xfs_inode *ip)
+{
+ trace_xfs_irele(ip, _RET_IP_);
+ iput(VFS_I(ip));
}
/*
- * Flush dirty inode metadata into the backing buffer.
- *
- * The caller must have the inode lock and the inode flush lock held. The
- * inode lock will still be held upon return to the caller, and the inode
- * flush lock will be released after the inode has reached the disk.
- *
- * The caller must write out the buffer returned in *bpp and release it.
+ * Ensure all commited transactions touching the inode are written to the log.
*/
int
-xfs_iflush(
- struct xfs_inode *ip,
- struct xfs_buf **bpp)
+xfs_log_force_inode(
+ struct xfs_inode *ip)
{
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_buf *bp = NULL;
- struct xfs_dinode *dip;
- int error;
+ struct xfs_inode_log_item *iip = ip->i_itemp;
+ xfs_csn_t seq = 0;
- XFS_STATS_INC(mp, xs_iflush_count);
+ if (!iip)
+ return 0;
- ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
- ASSERT(xfs_isiflocked(ip));
- ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
- ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
+ spin_lock(&iip->ili_lock);
+ seq = iip->ili_commit_seq;
+ spin_unlock(&iip->ili_lock);
- *bpp = NULL;
+ if (!seq)
+ return 0;
+ return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
+}
+
+/*
+ * Grab the exclusive iolock for a data copy from src to dest, making sure to
+ * abide vfs locking order (lowest pointer value goes first) and breaking the
+ * layout leases before proceeding. The loop is needed because we cannot call
+ * the blocking break_layout() with the iolocks held, and therefore have to
+ * back out both locks.
+ */
+static int
+xfs_iolock_two_inodes_and_break_layout(
+ struct inode *src,
+ struct inode *dest)
+{
+ int error;
- xfs_iunpin_wait(ip);
+ if (src > dest)
+ swap(src, dest);
- /*
- * For stale inodes we cannot rely on the backing buffer remaining
- * stale in cache for the remaining life of the stale inode and so
- * xfs_imap_to_bp() below may give us a buffer that no longer contains
- * inodes below. We have to check this after ensuring the inode is
- * unpinned so that it is safe to reclaim the stale inode after the
- * flush call.
- */
- if (xfs_iflags_test(ip, XFS_ISTALE)) {
- xfs_ifunlock(ip);
- return 0;
+retry:
+ /* Wait to break both inodes' layouts before we start locking. */
+ error = break_layout(src, true);
+ if (error)
+ return error;
+ if (src != dest) {
+ error = break_layout(dest, true);
+ if (error)
+ return error;
}
- /*
- * This may have been unpinned because the filesystem is shutting
- * down forcibly. If that's the case we must not write this inode
- * to disk, because the log record didn't make it to disk.
- *
- * We also have to remove the log item from the AIL in this case,
- * as we wait for an empty AIL as part of the unmount process.
- */
- if (XFS_FORCED_SHUTDOWN(mp)) {
- error = -EIO;
- goto abort_out;
+ /* Lock one inode and make sure nobody got in and leased it. */
+ inode_lock(src);
+ error = break_layout(src, false);
+ if (error) {
+ inode_unlock(src);
+ if (error == -EWOULDBLOCK)
+ goto retry;
+ return error;
}
- /*
- * Get the buffer containing the on-disk inode. We are doing a try-lock
- * operation here, so we may get an EAGAIN error. In that case, we
- * simply want to return with the inode still dirty.
- *
- * If we get any other error, we effectively have a corruption situation
- * and we cannot flush the inode, so we treat it the same as failing
- * xfs_iflush_int().
- */
- error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
- 0);
- if (error == -EAGAIN) {
- xfs_ifunlock(ip);
+ if (src == dest)
+ return 0;
+
+ /* Lock the other inode and make sure nobody got in and leased it. */
+ inode_lock_nested(dest, I_MUTEX_NONDIR2);
+ error = break_layout(dest, false);
+ if (error) {
+ inode_unlock(src);
+ inode_unlock(dest);
+ if (error == -EWOULDBLOCK)
+ goto retry;
return error;
}
- if (error)
- goto corrupt_out;
- /*
- * First flush out the inode that xfs_iflush was called with.
- */
- error = xfs_iflush_int(ip, bp);
- if (error)
- goto corrupt_out;
+ return 0;
+}
- /*
- * If the buffer is pinned then push on the log now so we won't
- * get stuck waiting in the write for too long.
- */
- if (xfs_buf_ispinned(bp))
- xfs_log_force(mp, 0);
+static int
+xfs_mmaplock_two_inodes_and_break_dax_layout(
+ struct xfs_inode *ip1,
+ struct xfs_inode *ip2)
+{
+ int error;
+
+ if (ip1->i_ino > ip2->i_ino)
+ swap(ip1, ip2);
+
+again:
+ /* Lock the first inode */
+ xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
+ error = xfs_break_dax_layouts(VFS_I(ip1));
+ if (error) {
+ xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
+ return error;
+ }
+ if (ip1 == ip2)
+ return 0;
+
+ /* Nested lock the second inode */
+ xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
/*
- * inode clustering: try to gather other inodes into this write
- *
- * Note: Any error during clustering will result in the filesystem
- * being shut down and completion callbacks run on the cluster buffer.
- * As we have already flushed and attached this inode to the buffer,
- * it has already been aborted and released by xfs_iflush_cluster() and
- * so we have no further error handling to do here.
+ * We cannot use xfs_break_dax_layouts() directly here because it may
+ * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
+ * for this nested lock case.
*/
- error = xfs_iflush_cluster(ip, bp);
- if (error)
- return error;
+ error = dax_break_layout(VFS_I(ip2), 0, -1, NULL);
+ if (error) {
+ xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
+ xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
+ goto again;
+ }
- *bpp = bp;
return 0;
+}
-corrupt_out:
- if (bp)
- xfs_buf_relse(bp);
- xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
-abort_out:
- /* abort the corrupt inode, as it was not attached to the buffer */
- xfs_iflush_abort(ip, false);
- return error;
+/*
+ * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
+ * mmap activity.
+ */
+int
+xfs_ilock2_io_mmap(
+ struct xfs_inode *ip1,
+ struct xfs_inode *ip2)
+{
+ int ret;
+
+ ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
+ if (ret)
+ return ret;
+
+ if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
+ ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
+ if (ret) {
+ inode_unlock(VFS_I(ip2));
+ if (ip1 != ip2)
+ inode_unlock(VFS_I(ip1));
+ return ret;
+ }
+ } else
+ filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
+ VFS_I(ip2)->i_mapping);
+
+ return 0;
+}
+
+/* Unlock both inodes to allow IO and mmap activity. */
+void
+xfs_iunlock2_io_mmap(
+ struct xfs_inode *ip1,
+ struct xfs_inode *ip2)
+{
+ if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
+ xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
+ if (ip1 != ip2)
+ xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
+ } else
+ filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
+ VFS_I(ip2)->i_mapping);
+
+ inode_unlock(VFS_I(ip2));
+ if (ip1 != ip2)
+ inode_unlock(VFS_I(ip1));
+}
+
+/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
+void
+xfs_iunlock2_remapping(
+ struct xfs_inode *ip1,
+ struct xfs_inode *ip2)
+{
+ xfs_iflags_clear(ip1, XFS_IREMAPPING);
+
+ if (ip1 != ip2)
+ xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
+ xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
+
+ if (ip1 != ip2)
+ inode_unlock_shared(VFS_I(ip1));
+ inode_unlock(VFS_I(ip2));
}
/*
- * If there are inline format data / attr forks attached to this inode,
- * make sure they're not corrupt.
+ * Reload the incore inode list for this inode. Caller should ensure that
+ * the link count cannot change, either by taking ILOCK_SHARED or otherwise
+ * preventing other threads from executing.
*/
-bool
-xfs_inode_verify_forks(
+int
+xfs_inode_reload_unlinked_bucket(
+ struct xfs_trans *tp,
struct xfs_inode *ip)
{
- struct xfs_ifork *ifp;
- xfs_failaddr_t fa;
-
- fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
- if (fa) {
- ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
- xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
- ifp->if_u1.if_data, ifp->if_bytes, fa);
- return false;
+ struct xfs_mount *mp = tp->t_mountp;
+ struct xfs_buf *agibp;
+ struct xfs_agi *agi;
+ struct xfs_perag *pag;
+ xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
+ xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
+ xfs_agino_t prev_agino, next_agino;
+ unsigned int bucket;
+ bool foundit = false;
+ int error;
+
+ /* Grab the first inode in the list */
+ pag = xfs_perag_get(mp, agno);
+ error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
+ xfs_perag_put(pag);
+ if (error)
+ return error;
+
+ /*
+ * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
+ * incore unlinked list pointers for this inode. Check once more to
+ * see if we raced with anyone else to reload the unlinked list.
+ */
+ if (!xfs_inode_unlinked_incomplete(ip)) {
+ foundit = true;
+ goto out_agibp;
}
- fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
- if (fa) {
- ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
- xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
- ifp ? ifp->if_u1.if_data : NULL,
- ifp ? ifp->if_bytes : 0, fa);
- return false;
+ bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
+ agi = agibp->b_addr;
+
+ trace_xfs_inode_reload_unlinked_bucket(ip);
+
+ xfs_info_ratelimited(mp,
+ "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
+ agino, agno);
+
+ prev_agino = NULLAGINO;
+ next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
+ while (next_agino != NULLAGINO) {
+ struct xfs_inode *next_ip = NULL;
+
+ /* Found this caller's inode, set its backlink. */
+ if (next_agino == agino) {
+ next_ip = ip;
+ next_ip->i_prev_unlinked = prev_agino;
+ foundit = true;
+ goto next_inode;
+ }
+
+ /* Try in-memory lookup first. */
+ next_ip = xfs_iunlink_lookup(pag, next_agino);
+ if (next_ip)
+ goto next_inode;
+
+ /* Inode not in memory, try reloading it. */
+ error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
+ next_agino);
+ if (error)
+ break;
+
+ /* Grab the reloaded inode. */
+ next_ip = xfs_iunlink_lookup(pag, next_agino);
+ if (!next_ip) {
+ /* No incore inode at all? We reloaded it... */
+ ASSERT(next_ip != NULL);
+ error = -EFSCORRUPTED;
+ break;
+ }
+
+next_inode:
+ prev_agino = next_agino;
+ next_agino = next_ip->i_next_unlinked;
}
- return true;
+
+out_agibp:
+ xfs_trans_brelse(tp, agibp);
+ /* Should have found this inode somewhere in the iunlinked bucket. */
+ if (!error && !foundit)
+ error = -EFSCORRUPTED;
+ return error;
}
-STATIC int
-xfs_iflush_int(
- struct xfs_inode *ip,
- struct xfs_buf *bp)
+/* Decide if this inode is missing its unlinked list and reload it. */
+int
+xfs_inode_reload_unlinked(
+ struct xfs_inode *ip)
{
- struct xfs_inode_log_item *iip = ip->i_itemp;
- struct xfs_dinode *dip;
- struct xfs_mount *mp = ip->i_mount;
+ struct xfs_trans *tp;
+ int error = 0;
- ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
- ASSERT(xfs_isiflocked(ip));
- ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
- ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
- ASSERT(iip != NULL && iip->ili_fields != 0);
- ASSERT(ip->i_d.di_version > 1);
+ tp = xfs_trans_alloc_empty(ip->i_mount);
+ xfs_ilock(ip, XFS_ILOCK_SHARED);
+ if (xfs_inode_unlinked_incomplete(ip))
+ error = xfs_inode_reload_unlinked_bucket(tp, ip);
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ xfs_trans_cancel(tp);
- /* set *dip = inode's place in the buffer */
- dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
+ return error;
+}
- if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
- mp, XFS_ERRTAG_IFLUSH_1)) {
- xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
- "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
- __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
- goto corrupt_out;
- }
- if (S_ISREG(VFS_I(ip)->i_mode)) {
- if (XFS_TEST_ERROR(
- (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
- (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
- mp, XFS_ERRTAG_IFLUSH_3)) {
- xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
- "%s: Bad regular inode %Lu, ptr "PTR_FMT,
- __func__, ip->i_ino, ip);
- goto corrupt_out;
- }
- } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
- if (XFS_TEST_ERROR(
- (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
- (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
- (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
- mp, XFS_ERRTAG_IFLUSH_4)) {
- xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
- "%s: Bad directory inode %Lu, ptr "PTR_FMT,
- __func__, ip->i_ino, ip);
- goto corrupt_out;
+/* Has this inode fork been zapped by repair? */
+bool
+xfs_ifork_zapped(
+ const struct xfs_inode *ip,
+ int whichfork)
+{
+ unsigned int datamask = 0;
+
+ switch (whichfork) {
+ case XFS_DATA_FORK:
+ switch (ip->i_vnode.i_mode & S_IFMT) {
+ case S_IFDIR:
+ datamask = XFS_SICK_INO_DIR_ZAPPED;
+ break;
+ case S_IFLNK:
+ datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
+ break;
}
+ return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
+ case XFS_ATTR_FORK:
+ return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
+ default:
+ return false;
}
- if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
- ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
- xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
- "%s: detected corrupt incore inode %Lu, "
- "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
- __func__, ip->i_ino,
- ip->i_d.di_nextents + ip->i_d.di_anextents,
- ip->i_d.di_nblocks, ip);
- goto corrupt_out;
- }
- if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
- mp, XFS_ERRTAG_IFLUSH_6)) {
- xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
- "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
- __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
- goto corrupt_out;
- }
-
- /*
- * Inode item log recovery for v2 inodes are dependent on the
- * di_flushiter count for correct sequencing. We bump the flush
- * iteration count so we can detect flushes which postdate a log record
- * during recovery. This is redundant as we now log every change and
- * hence this can't happen but we need to still do it to ensure
- * backwards compatibility with old kernels that predate logging all
- * inode changes.
- */
- if (ip->i_d.di_version < 3)
- ip->i_d.di_flushiter++;
+}
- /* Check the inline fork data before we write out. */
- if (!xfs_inode_verify_forks(ip))
- goto corrupt_out;
+/* Compute the number of data and realtime blocks used by a file. */
+void
+xfs_inode_count_blocks(
+ struct xfs_trans *tp,
+ struct xfs_inode *ip,
+ xfs_filblks_t *dblocks,
+ xfs_filblks_t *rblocks)
+{
+ struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
- /*
- * Copy the dirty parts of the inode into the on-disk inode. We always
- * copy out the core of the inode, because if the inode is dirty at all
- * the core must be.
- */
- xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
+ *rblocks = 0;
+ if (XFS_IS_REALTIME_INODE(ip))
+ xfs_bmap_count_leaves(ifp, rblocks);
+ *dblocks = ip->i_nblocks - *rblocks;
+}
- /* Wrap, we never let the log put out DI_MAX_FLUSH */
- if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
- ip->i_d.di_flushiter = 0;
+static void
+xfs_wait_dax_page(
+ struct inode *inode)
+{
+ struct xfs_inode *ip = XFS_I(inode);
- xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
- if (XFS_IFORK_Q(ip))
- xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
- xfs_inobp_check(mp, bp);
+ xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
+ schedule();
+ xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
+}
- /*
- * We've recorded everything logged in the inode, so we'd like to clear
- * the ili_fields bits so we don't log and flush things unnecessarily.
- * However, we can't stop logging all this information until the data
- * we've copied into the disk buffer is written to disk. If we did we
- * might overwrite the copy of the inode in the log with all the data
- * after re-logging only part of it, and in the face of a crash we
- * wouldn't have all the data we need to recover.
- *
- * What we do is move the bits to the ili_last_fields field. When
- * logging the inode, these bits are moved back to the ili_fields field.
- * In the xfs_iflush_done() routine we clear ili_last_fields, since we
- * know that the information those bits represent is permanently on
- * disk. As long as the flush completes before the inode is logged
- * again, then both ili_fields and ili_last_fields will be cleared.
- *
- * We can play with the ili_fields bits here, because the inode lock
- * must be held exclusively in order to set bits there and the flush
- * lock protects the ili_last_fields bits. Set ili_logged so the flush
- * done routine can tell whether or not to look in the AIL. Also, store
- * the current LSN of the inode so that we can tell whether the item has
- * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
- * need the AIL lock, because it is a 64 bit value that cannot be read
- * atomically.
- */
- iip->ili_last_fields = iip->ili_fields;
- iip->ili_fields = 0;
- iip->ili_fsync_fields = 0;
- iip->ili_logged = 1;
+int
+xfs_break_dax_layouts(
+ struct inode *inode)
+{
+ xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
- xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
- &iip->ili_item.li_lsn);
+ return dax_break_layout_inode(inode, xfs_wait_dax_page);
+}
- /*
- * Attach the function xfs_iflush_done to the inode's
- * buffer. This will remove the inode from the AIL
- * and unlock the inode's flush lock when the inode is
- * completely written to disk.
- */
- xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
+int
+xfs_break_layouts(
+ struct inode *inode,
+ uint *iolock,
+ enum layout_break_reason reason)
+{
+ bool retry;
+ int error;
- /* generate the checksum. */
- xfs_dinode_calc_crc(mp, dip);
+ xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
- ASSERT(!list_empty(&bp->b_li_list));
- ASSERT(bp->b_iodone != NULL);
- return 0;
+ do {
+ retry = false;
+ switch (reason) {
+ case BREAK_UNMAP:
+ error = xfs_break_dax_layouts(inode);
+ if (error)
+ break;
+ fallthrough;
+ case BREAK_WRITE:
+ error = xfs_break_leased_layouts(inode, iolock, &retry);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ error = -EINVAL;
+ }
+ } while (error == 0 && retry);
-corrupt_out:
- return -EFSCORRUPTED;
+ return error;
}
-/* Release an inode. */
-void
-xfs_irele(
+/* Returns the size of fundamental allocation unit for a file, in bytes. */
+unsigned int
+xfs_inode_alloc_unitsize(
struct xfs_inode *ip)
{
- trace_xfs_irele(ip, _RET_IP_);
- iput(VFS_I(ip));
+ unsigned int blocks = 1;
+
+ if (XFS_IS_REALTIME_INODE(ip))
+ blocks = ip->i_mount->m_sb.sb_rextsize;
+
+ return XFS_FSB_TO_B(ip->i_mount, blocks);
+}
+
+/* Should we always be using copy on write for file writes? */
+bool
+xfs_is_always_cow_inode(
+ const struct xfs_inode *ip)
+{
+ return xfs_is_zoned_inode(ip) ||
+ (ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount));
}